

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7 CLASS II PERMISSIVE CHANGE

CERTIFICATION TEST REPORT

FOR

BLUETOOTH TRANSCEIVER MODULE (Adding a higher antenna gain)

MODEL NUMBER: BCM92046MD

FCC ID: QDS-BRCM1029 IC: 4324A-BRCM1029

REPORT NUMBER: 10U13068-1

ISSUE DATE: FEBRUARY 26, 2010

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	02/26/10	Initial Issue	T. Chan

Page 2 of 21

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS4
2.	TES	T METHODOLOGY
3.	FAC	ILITIES AND ACCREDITATION5
4.	CAL	IBRATION AND UNCERTAINTY5
4	¹ .1.	MEASURING INSTRUMENT CALIBRATION
4	.2.	SAMPLE CALCULATION
4	.3.	MEASUREMENT UNCERTAINTY5
5.	EQU	IPMENT UNDER TEST6
5	5.1.	DESCRIPTION OF EUT
5	5.2.	MAXIMUM OUTPUT POWER6
5	5.3.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE
5	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS
5	5.5.	SOFTWARE AND FIRMWARE
5	5.6.	WORST-CASE CONFIGURATION AND MODE
5	5.7.	DESCRIPTION OF TEST SETUP
6.	TES	T AND MEASUREMENT EQUIPMENT9
7.	RAD	IATED TEST RESULTS10
7	.1.	LIMITS AND PROCEDURE
7	7.2. 7.2.1 7.2.2	
7	.3.	WORST-CASE BELOW 1 GHz17
8.	МАХ	IMUM PERMISSIBLE EXPOSURE18
9.	SET	UP PHOTOS

Page 3 of 21

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-210 Issue 7 Annex 8

compliance with the requirements as documented in this report.

COMPANY NAME:	BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086, U.S.A.	
EUT DESCRIPTION:	BLUETOOTH TRANSCEIVER MODUL	E
MODEL:	BCM92046MD	
SERIAL NUMBER:	1137470	
DATE TESTED:	FEBRUARY 18 - 25, 2010	
	APPLICABLE STANDARDS	
SI	ANDARD	TEST RESULTS
CFR 47 F	Part 15 Subpart C	Pass

 INDUSTRY CANADA RSS-GEN Issue 2
 Pass

 Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

121

THU CHAN EMC MANAGER COMPLIANCE CERTIFICATION SERVICES

Tested By:

VIEN TRAN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Pass

Page 4 of 21

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth transceiver module 2.1 + EDR

The radio module is manufactured by Broadcom Corporation.

5.2. MAXIMUM OUTPUT POWER

The test measurement passed within \pm 0.5dBm of the original output power.

5.3. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The major change filed under this application is adding an optional of a higher antenna gain.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an external antenna, with a maximum gain of 6.25 dBi.

5.5. SOFTWARE AND FIRMWARE

The EUT driver software installed in the host support equipment during testing was Broadcom, 2070 Bluetooth rev.5.5.0.7600.

The test utility software used during testing was Blue Tool, rev. 1.2.4.3.

5.6. WORST-CASE CONFIGURATION AND MODE

Based on previous report and by compared the GFSK / 8PSK band edges, there were not significant differences between these two modes. The 8PSK mode is chosen as worst mode to conduct the testing since its data rate is higher than GFSK mode.

The worst-case channel is determined as the channel with the highest output power.

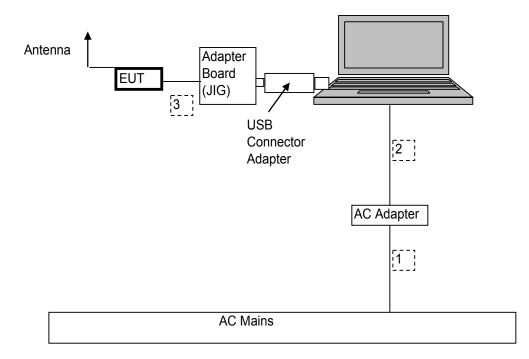
Page 6 of 21

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

	PERIPHERAL SUPPORT EQUIPMENT LIST												
Description	Manufacturer	Model	Serial Number	FCC ID									
Laptop	Lenovo	Lenovo 4446	R8-CAD03 09/08	DoC									
AC Adapter	Lenovo	ADP-65YB B	11S42T4458Z1ZF4K96B09D	N/A									
Adapter Board	Broadcom	BCM9USB3P3V	1149512	N/A									

I/O CABLES


	I/O CABLE LIST												
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks							
1	AC	1	US115V	Unshielded	1m	N/A							
2	DC	1	DC	Unshielded	1.5m	N/A							
3	Ribbon	1	Ribbon Cable	Unshielded	.3m	EUT / Adapter Board							
4	USB	1	USB Connector Adapter	UnShielded		N/A							

TEST SETUP

The EUT is connected to a host laptop computer via a 5 VDC adapter board during the tests. Test software exercised the radio card.

Page 7 of 21

SETUP DIAGRAM FOR TESTS

Page 8 of 21

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIPMENT LIST											
Description	Manufacturer	Model	Asset	Cal Due								
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/11								
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/11								
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/10								
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/10								
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	07/05/10								
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	11/28/10								

Page 9 of 21

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

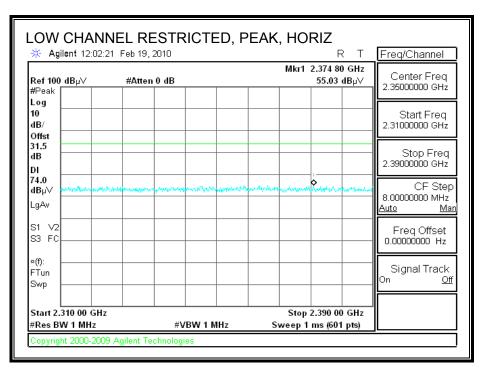
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

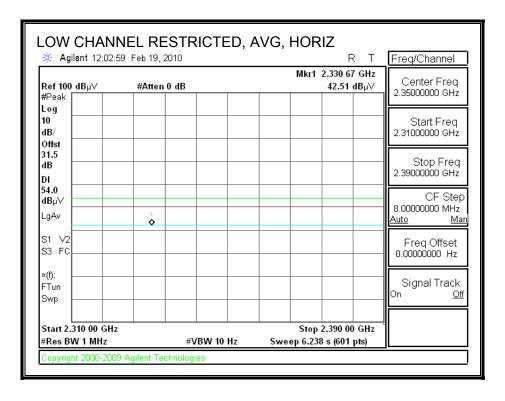
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

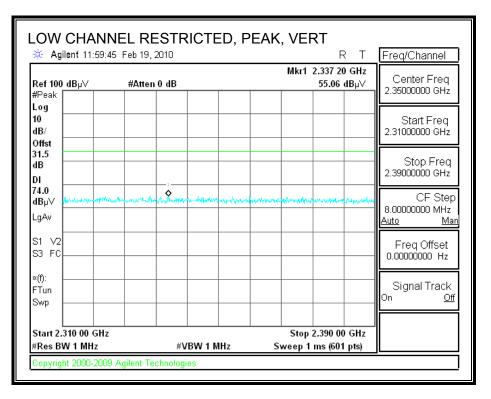
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

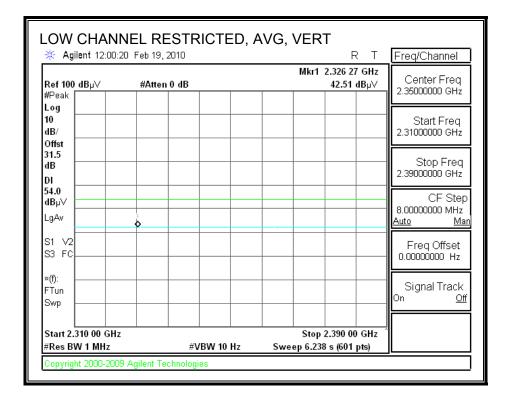

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

7.2. TRANSMITTER ABOVE 1 GHz

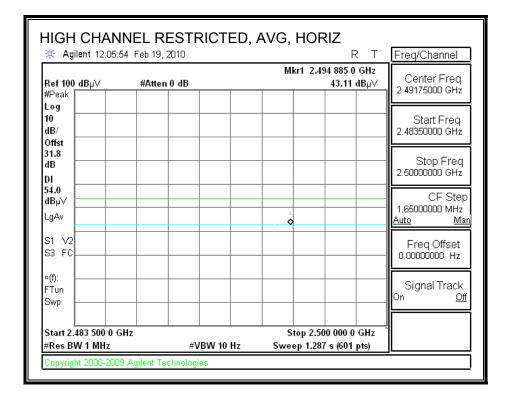
7.2.1. ENHANCED DATA RATE 8PSK MODULATION


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



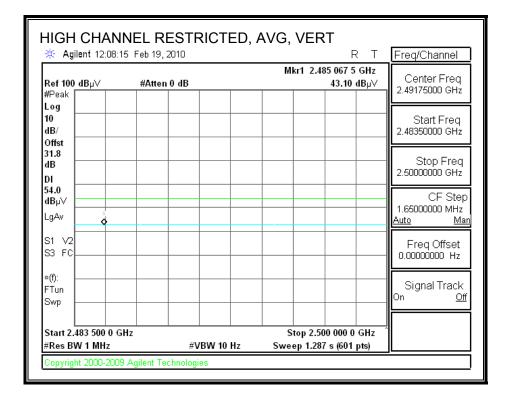
Page 11 of 21

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 12 of 21

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)


	INEL RESTRI	CTED, P	EAK, HO		
🔆 Agilent 12:05:	34 Feb 19, 2010			RT	Freq/Channel
Ref 100 dBµ∨ #Peak	#Atten 0 dB		Mkr1 2.49	6 755 0 GHz 55.85 dBµ∨	Center Freq 2.49175000 GHz
Log 10 dB/ Offst					Start Freq 2.48350000 GHz
31.8 dB DI					Stop Freq 2.5000000 GHz
74.0 dBµ∨ LgAv	haidestation (not the provide provident of the	Mappeler a barring of the	mundpund	were the set with for the set	CF Step 1.6500000 MHz <u>Auto Man</u>
S1 V2 S3 FC					Freq Offset 0.00000000 Hz
×(f): FTun Swp					Signal Track On <u>Off</u>
Start 2.483 500 0 (#Res BW 1 MHz		N 1 MHz	•	0 000 0 GHz ms (601 pts)	
Copyright 2000-200	9 Agilent Technologies				

Page 13 of 21

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HIGH CHAN	NEL RESTRIC 7 Feb 19, 2010	CTED, PI	EAK, VER	T R T	Freq/Channel
Ref 100 dBµ∨ #Peak	#Atten 0 dB		Mkr1 2.491 5	365 0 GHz 55.76 dBµ∀	Center Freq 2.49175000 GHz
Log 10 dB/ Offst					Start Freq 2.48350000 GHz
31.8 dB					Stop Freq 2.5000000 GHz
74.0 dBµ∨ LgAv	matriallandum	-lafter of a second sec	~pronteplerondari	han-patrikanainat	CF Step 1.6500000 MHz <u>Auto Man</u>
S1 V2 S3 FC					Freq Offset 0.00000000 Hz
×(f): FTun Swp					Signal Track On <u>Off</u>
Start 2.483 500 0 G #Res BW 1 MHz		1 MHz	Stop 2.500 Sweep 1 m		
Copyright 2000-2009	Agilent Technologies				

Page 14 of 21

HARMONICS AND SPURIOUS EMISSIONS

		Measuren tification		s, Fre	mont 37	n Chamb	er								
Test Engr: Vien Tran															
Date:		02/19/10													
Project #:		10U1306	8												
Company	•	Broadcom Bluetooth Transceiver Module 2.1 + EDR BCM92064MD													
EUT M/N:															
Test Targo	et:	FCC Cla	FCC Class B												
Mode Op	21:	Tx 8PSK	:												
	f	Measuren	nent Freq	piency	Amp	Preamp (Gain			Average	Field Stren	gth Limit			
	Dist	Distance	to Anter	ma	D Corr	Distance	Correc	ct to 3 me	ters	Peak Fie	eld Strength	Limit			
	Read	Analyzer	Reading		Avg	Average	Field S	trength @)3 m	Margin v	rs. Average	Limit			
	AF	Antenna	Factor		Peak			r Field Stre		Margin	vs. Peak Lii	nit			
	CL	Cable Los	55		HPF	High Pas	s Filter	r		-					
f	Dist	Read	AF	CL	Атр	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes		
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP			
Low Chai	ınel, 24	02MHz													
1.804	3.0	32.0	32.7	5.8	-34.8	0.0	0.0	35.6	74.0	-38.4	V	P			
1.804	3.0	19.6	32.7	5.8	-34.8	0.0	0.0	23.2	54.0	-30.8	V	A			
1.804	3.0	31.4	32.7	5.8	-34.8	0.0	0.0	35.0	74.0	-39.0	H	Р			
1.804	3.0	20.0	32.7	5.8	-34.8	0.0	0.0	23.6	54.0	-30.4	H	A			
Mid Char		· · · · · · · · · · · · · · · · · · ·													
1.882	3.0	34.4	32.7	5.8	-34.8	0.0	0.0	38.1	74.0	-35.9	V	P			
4.882	3.0	25.2	32.7	5.8	-34.8	0.0	0.0	28.9	54.0 74.0	-25.1	V	A			
7.323 7.323	3.0 3.0	32.9 19.7	35.5 35.5	7.3 7.3	-34.1 -34.1	0.0 0.0	0.0 0.0	41.6 28.4	74.0 54.0	-32.4	V	P A			
1.343	3.0	32.8	38.5	7.3 9.8	-34.1	0.0	0.0	48.6	54.0 74.0	-25.6 -25.4	V V	A P			
12.205	3.0	20.6	38.5	9.8	-32.5	0.0	0.0	36.5	74.0 54.0	-17.5	v	A A			
4.882	3.0	32.0	32.7	5.8	-34.8	0.0	0.0	35.7	74.0	-38.3	Ĥ	P			
.882	3.0	20.7	32.7	5.8	-34.8	0.0	0.0	24.5	54.0	-29.5	H	Â			
7.323	3.0	31.4	35.5	7.3	-34.1	0.0	0.0	40.0	74.0	-34.0	H	P			
7.323	3.0	19.3	35.5	7.3	-34.1	0.0	0.0	28.0	54.0	-26.0	H	A			
12.205	3.0	31.7	38.5	9.8	-32.5	0.0	0.0	47.5	74.0	-26.5	H	P			
12.205	3.0	18.2	38.5	9.8	-32.5	0.0	0.0	34.0	54.0	-20.0	H	A			
ligh Cha		·····								ļ	ļ				
.960	3.0	31.4	32.8	5.9	-34.8	0.0	0.0	35.3	74.0	-38.7	V	Р			
4.960	3.0	19.6	32.8	5.9	-34.8	0.0	0.0	23.4	54.0	-30.6	V	A			
1.440	3.0	32.9	35.6	7.3	-34.1	0.0	0.0	41.8	74.0	-32.2	V	P			
1.440	3.0	20.8	35.6	7.3	-34.1	0.0	0.0	29.7	54.0	-24.3	V	A			
2.400	3.0	33.6	38.4	9.9	-32.5	0.0	0.0	49.5	74.0	-24.5	V	P			
2.400	3.0	23.0	38.4	9.9 5 0	-32.5 -34.8	0.0 0.0	0.0	38.9 35.2	54.0 74.0	-15.1	V	A P			
1.960 1.960	3.0 3.0	31.3	32.8 32.8	5.9 5.9	-34.8	0.0	0.0	35.2	74.0 54.0	-38.8 -31.3	H				
N.700	3.0	18.9 31.2	35.6	ə.y 7.3	-34.8	0.0	0.0 0.0	40.1	54.0 74.0	-31.3	H H	A P			
		19.4	35.6	7.3	-34.1	0.0	0.0	28.3	74.0 54.0	-33.9	H H	A P			
7.440						· • · · · · · · · · · · · · · · · · · ·	•••••••••••••••••								
	3.0 3.0	29.8	38.4	9.9	-32.5	0.0	0.0	45.7	74.0	-28.3	H	Р			

Page 15 of 21

7.2.2. RECEIVER ABOVE 1 GHz

	High	Frequency	⁷ Measurem	ent											
ompli	ance Ce	rtification	Services, Fr	emont	3m Ch	amber									
			Broadcom 10U13068 02/19/10 Vien Tran EUT / USB Rx Mode	Adapte	r/Te	st JIG /	Laptop								
est Ec	uipment	<u>t:</u>													
н	lorn 1-	18GHz	Pre-ar	nplifer	1-260	GHz	Pre-am	plifer	26-40GH	z	н	orn > 18(GHz		Limit
T60: 1	S/N: 2238	3@3m	- T34 HF	9 8449B		-		-						•	RX RSS 210 🚽
3'	quency Cab cable 2 able 228	2807700		able 2		00	20' cal 20' cab		807500		HPF	Re	iject Filter	RB Avera	<u>k Measurements</u> W=VBW=1MHz age Measurements
	_	_												RBW=	1MHz ; VBW=10Hz
f			Read Avg.		$\mathbf{C}\mathbf{L}$	Amp	D Corr		Peak	Avg			Pk Mar	-	Notes
GHz 152	(m) 3.0	dBuV 48.6	dBuV 35.5	dB/m 25.0	dB 2.5	dB -38.0	dB	dB 0.0	dBuV/m 38.0	dBuV/m 25.0	dBuV/m 74	dBuV/m 54	dB - 36.0	dB -29.0	(V/H) H
330	3.0	46.0	35.5 34.2	25.6	2.5	-36.0		0.0	38.1	25.0	74 74	54 54	-35.9	-29.3	H
95	3.0	46.4	33.9	26.1	2.9	-37.6		0.0	37.9	25.4	74	54	- 36.1	-28.6	Н
152	3.0	46.9	34.3	25.0	2.5	-38.0		0.0	36.4	23.8	74	54	- 37.6	-30.2	v
330	3.0	44.9	32.3	25.6	2.7	-37.8		0.0	35.4	22.8	74	54	-38.6	-31.2	<u>v</u>
195	3.0	43.8	31.0	26.1	29	-37.6	<u>.</u>	0.0	35.3	22.5	74	54	-38.7	-31 <i>5</i>	<u>v</u>
	f	Measureme	ent Frequenc [,]	7		Amp	Preamp (Gain				Avg Lim	Average F	ield Strengt	h Limit
	Dist	Distance to	Antenna			D Corr	-		ct to 3 mete	rs			Peak Field		
	Read	Analyzer R	eading			Avg	Average	Field S	Strength @	3 m		Avg Mar	Margin vs.	Average L	imit
	AF	Antenna Fa	actor			Peak	Calculate	d Peal	k Field Stre	ngth		-	Margin vs.	-	
	CL	Cable Loss	3			HPF	High Pas	s Filter	-	-			-		

Page 16 of 21

7.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

-	ce Certif	ication Se	rvices, Fi	remon	t 3m Cha	amber							
Test Engr:		Vien Tra	n										
Date:		02/25/10	,										
Project #: Company: EUT Description: EUT M/N:		10U13068											
		Broadcom Bluetooth Transceiver Module 2.1 + EDR BCM9064MD											
													Eor mon: Test Targe
Mode Ope		Tx Worst											
ope													
	f	Measurem	-		Amp	Preamp (Margin	Margin vs.	Limit	
	Dist							to 3 meters					
	Read	Analyzer l	-		Filter	Filter Ins							
AF		Antenna Factor Corr.				Calculate		-					
CL Cable Loss			Limit	Field Stre	ngth Lir	nit							
f	Dist	Read	AF	CL	Amp	D Corr	Filter	Согт.	Limit	Margin	Ant. Pol.	Det.	Notes
MHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Horizonta													
71.882	3.0	51.1	8.2	0.7	28.3	0.0	0.0	31.7	40.0	- 8.3	H	Р	
204.127	3.0	53.1	11.9	1.2	27.4	0.0	0.0	38.8	43.5	-4.7	H	P	
598.583	3.0	37.0	18.4	2.2	28.6	0.0	0.0	29.0	46.0	-17.0	H	P	
997.240	3.0	36.3	22.7	2.9	27.6	0.0	0.0	34.3	54.0	-19.7	H	Р	
Vertical 60.001	3.0	52.4	7.9	0.7	28.3	0.0	0.0	32.7	40.0	-7.3	v	Р	
144.005	3.0	54.4 46.9	12.9	1.0	28.3	0.0	0.0	33.0	40.0 43.5	-7.5	v	P P	
432.017	3.0	38.6	15.6	1.0	28.2	0.0	0.0	27.8	46.0	-18.2	v	P	
933.277	3.0	37.9	22.3	2.8	27.8	0.0	0.0	35.2	46.0	-10.8	v	P	
997.120	3.0	37.9	22.7	2.9	27.6	0.0	0.0	35.9	54.0	-18.1	v	P	
Rev. 1.27.0 Note: No c	-	issions we:	re detect	ted abo	we the sy	/stem noi	se floor						

Page 17 of 21

8. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	l/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 8
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500 1500–100.000	27.5	0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-tions where a transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm^2 .
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 19 of 21

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m² EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m²

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP = (P1 * G1) + (P2 * G2) + ... + (Pn * Pn)

where

Px = Power of transmitter xGx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

<u>LIMITS</u>

From FCC 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	Bluetooth	0.20	5.47	6.25	0.030	0.003