Configuration, WLAN Module with WWAN Module Radio Module Part Number FFC ID
Conducted Power Levels From FCC Grant Conducted power, 1851.25-1908.75 MHz, Part 24E

Conducted power, 824.7-848.31 MHz, Part 22H Conducted power, 2412.0-2462.0 MHz, Part 15C Conducted power, $5745.0-5825.0 \mathrm{MHz}$, Part 15C Conducted power, $5180.0-5240.0 \mathrm{MHz}$, Part 15E Conducted power, 5260.0-5320.0 MHz, Part 15E

Maximum Antenna Gain for, 1851.25-1908.75 MHz, from WWAN Grant, 4.0 dBi Maximum Antenna Gain for, 824.7-848.31 MHz, from WWAN Grant, 8.0 dBi
Maximum Antenna Gain for, 2412.0-2462.0 MHz Maximum Antenna Gain for 5180.0 to $\mathbf{5 8 5 0 . 0} \mathbf{~ M H z}$
MPE Power Density Limit above $\mathbf{3 0 0}$ to $\mathbf{1 5 0 0} \mathbf{~ M H z}$, General Population Exposure, f/1500 $\mathrm{mW} / \mathrm{sqcm}$ ($\mathrm{f}=$ frequency in MHz). In $824.7-848.31 \mathrm{MHz}$ range, worse case $\mathrm{f}=824.7$ MPE Power Density Limit above 1.5 GHz , General Population Exposure, mW/sqcm

Active Transmiter Bands	2412.0-2462.0 MHz	$5180-5850.0 \mathrm{MHz}$	Units	Limit
824.7-848.31 MHz	96.65\%	89.55\%	\%	100\%
1851.25-1908.75 MHz	0.19	0.12	$\mathrm{mW} / \mathrm{sqcm}$	$1.0 \mathrm{~mW} / \mathrm{sqcm}$
Power Densities or Percentage of Limits for Each Individual Radio				
Band	2412.0-2462.0 MHz	5180-5850.0 MHz	824.7-848.31 MHz	1851.25-1908.75 MHz
Percentage of Limit	7.10\%	0.00\%	89.55\%	
Power Density, mW/cm^2	0.07	0.00	0.49	0.12

Cross Check
 Combined Limt \%

2400/800 5000/824 Combined limit Power Density 96.65\% 89.55\% 2400/1900 5000/1900

Notes:

1) Where frequencies are in same range of power density limits then the power and gain products are combined linearly
2) Where frequencies are in different ranges then the ratio of the power density with the limit is taken and the fractional parts summed
3) For the $824.7-848.31 \mathrm{MHz}$ band the worse case power density limit for $f=824.7 \mathrm{MHz}$ is used for the whole band
4) For the $5180-5850 \mathrm{MHz}$ band the worse case conducted transmit power level of 0.209 Watts
```
S = (EIRP*Duty Cycle) / 4(pi)R^2
S=(0.079524*P*G*DC)/(d^2)
```


CALCULATIONS

Given
$E=\sqrt{ }$
$E=\sqrt{ }(30 * P * G) / d$
and
$S=E^{\wedge} 2 / 3770$

So
$\mathrm{S}=\left(30^{*} \mathrm{P} * \mathrm{G}\right) /\left(3770 * \mathrm{~d}^{\wedge} 2\right)$
where,
$\mathrm{E}=$ Field Strength in Volts/meter
$\mathrm{P}=$ Power in Watts
G = Numeric antenna gain
$\mathrm{d}=$ Distance in meters
S = Power Density in milliwatts/square centimeter
Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$
d=\sqrt{ }((30 * P * G) /(3770 * S))
$$

Changing to units of Power to mW and Distance to cm , using:
$P(\mathrm{~mW})=P(W) / 1000$ and
(cm) $=100$ * d (m)
yields
$d=100 * \sqrt{ }((30 *(P / 1000) * G) /(3770 * S))$
$d=0.282 * \sqrt{ }(P * G / S)$
$\mathrm{S}=\left(0.079524^{*} \mathrm{P}^{*} \mathrm{G}\right) /\left(\mathrm{d}^{\wedge} 2\right)$

where

= distance in cm
= Power in mW
G = Numeric antenna gain
$\mathrm{S}=$ Power Density in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$
For multiple colocated transmitters operating simultaneously the total power density can be calculated by summing the Power * Gain product of each transmitter.
yields
$d=0.282 * \operatorname{SQRT}((\mathrm{P} 1 * \mathrm{G} 1)+(\mathrm{P} 2 * \mathrm{G} 2)+\ldots+(\mathrm{Pn} * \mathrm{Pn})) / \mathrm{S}) \quad$ Equation (1)
where
$\mathrm{d}=$ distance in cm
$P x=$ Power of transmitter x in $m W$
$G x=$ Numeric gain of antenna x
$\mathrm{S}=$ Power Density in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$
The summation is made in linear terms, and this yields a single distance for the colocated configuration.
The FCC's MPE limits vary with frequency. Therefore, in mixed or broadband RF fields
where several sources and frequencies are involved, the fraction of the recommended limit (in
erms of power density or square of the electric or magnetic field strength) incurred within each
frequency interval should be determined, and the sum of all fractional contributions should not
exceed 1.0, or 100% in terms of percentage.

