7.1.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Limits for Occupational/Controlled Exposures					
0.3-3.0 3.0-30 30-300 300-1500 1500-100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6	
(B) Limits for General Population/Uncontrolled Exposure					
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f ²)	30 30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled initis apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 33 of 33

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E^{2} / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and

d (cm) =100 * d (m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10^{(P(dBm)/10)} and G(numeric) = 10^{(G(dBi)/10)}$

yields

 $d = 0.282 * 10^{(P+G)/20} / \sqrt{S}$ where d = MPE distance in cmP = Power in dBmG = Antenna Gain in dBi $S = Power Density \text{ Limit in } mW/cm^{2}$

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$

Page 34 of 34

<u>LIMITS</u>

From 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² in the 5.2 / 5.3 GHz band

RESULTS

No non-compliance noted

802.11a LEGACY MODE

Mode	MPE	Output	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11a LEGACY	20.0	17.82	6.23	0.05

802.11n 20 MHz SISO MODE is covered by the worst case Legacy testing

802.11n 40 MHz SISO MODE

Mode	MPE	Output	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11n 40 MHz SISO	20.0	17.34	6.23	0.05

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

7.2.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Limits for Occupational/Controlled Exposures					
0.3-3.0 3.0-30 30-300 300-1500 1500-100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6	
(B) Limits for General Population/Uncontrolled Exposure					
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f ²)	30 30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled initis apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 108 of 108

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E^{2}/3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and

d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10^{(Bm)} / 10)$ and $G(numeric) = 10^{(G(dBi))} / 10)$

yields

 $d = 0.282 * 10^{(P+G)/20} / \sqrt{S}$ where d = MPE distance in cmP = Power in dBmG = Antenna Gain in dBi $S = Power Density Limit in mW/cm^{2}$

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$

Page 109 of 109

LIMITS

From 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² in the 5.2 / 5.3 GHz band

RESULTS

No non-compliance noted

802.11a CDD MODE is covered by worst case 802.11n 20 MHz CDD

802.11n 20 MHz CDD

8.677dBi Antenna

Mode	MPE	Total	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11n 20 MHz CDD	20.0	16.56	8.677	0.07

6dBi Antenna

Mode	MPE	Total	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11n 20 MHz CDD	20.0	18.48	6.00	0.06

Page 110 of 110

802.11n 40 MHz CDD

Mode	MPE	Total	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11n 40 MHz CDD	20.0	18.90	8.677	0.11

6dBi Antenna

Mode	MPE	Total	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11n 40 MHz CDD	20.0	18.90	6.00	0.06

802.11n 40 MHz SDM

Mode	MPE	Total	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2
802.11n 40 MHz SDM	20.0	18.90	4.37	0.04

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 111 of 111

7.3.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)		
(A) Limits for Occupational/Controlled Exposures						
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6		
(B) Limits	for General Populati	on/Uncontrolled Exp	posure			
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30		

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500			f/1500	30
1500–100,000			1.0	30

f = frequency in MHz

f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure.

exposure or can not exercise control over their exposure.

Page 206 of 206

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E^{2} / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and

d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10^{(Bm)} / 10)$ and $G(numeric) = 10^{(G(dBi))} / 10)$

yields

 $d = 0.282 * 10^{(P+G)/20} / \sqrt{S}$ where d = MPE distance in cmP = Power in dBmG = Antenna Gain in dBi $S = Power Density Limit in mW/cm^{2}$

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$

Page 207 of 207

<u>LIMITS</u>

From 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² in the 5.6 GHz band

RESULTS

No non-compliance noted

802.11a LEGACY MODE

Mode	MPE	Output	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11a LEGACY	20.0	18.25	6.02	0.05

802.11n 20 MHz SISO MODE is covered by the worst case Legacy testing

802.11n 40 MHz SISO MCS 32 MODE

Mode	MPE	Output	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11n 40 MHz SISO	20.0	18.18	6.02	0.05

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 208 of 208

7.4.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500-100,000			1.0	30

f = frequency in MHz

f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure.

exposure or can not exercise control over their exposure.

Page 279 of 279

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E^{2} / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and

d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10^{(P(dBm) / 10)}$ and G (numeric) = 10^{(G(dBi) / 10)}

yields

 $d = 0.282 * 10^{(P+G)/20} / \sqrt{S}$ where d = MPE distance in cmP = Power in dBmG = Antenna Gain in dBi $S = Power Density Limit in mW/cm^{2}$

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$$

Page 280 of 280

LIMITS

From 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² in the 5.6 GHz band

RESULTS

No non-compliance noted

802.11a CDD MODE is covered by worst case 802.11n 20 MHz CDD MCS 0 MODE

802.11n 20 MHz CDD MCS 0 MODE

8.75dBi Antenna

Mode	MPE	Total	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11n 20 MHz CDD	20.0	17.32	8.750	0.08

6dBi Antenna

Mode	MPE	Total	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11n 20 MHz CDD	20.0	19.71	6.00	0.07

Page 281 of 281

802.11n 40 MHz CDD MCS 32 MODE

8.75dBi Antenna

Mode	MPE	Total	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11n 40 MHz CDD	20.0	21.00	8.750	0.19

6dBi Antenna

Mode	MPE	Total	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11n 40 MHz CDD	20.0	22.50	6.00	0.14

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 282 of 282