

FCC CFR47 PART 15 SUBPART E CERTIFICATION TEST REPORT FOR

BROADCOM Draft 802.11n 5GHz AP

MODEL NUMBER: BCM94705LMP

FCC ID: QDS-BRCM1025

REPORT NUMBER: 07U10812-1B

ISSUE DATE: FEBRUARY 20, 2007

Prepared for

BROADCOM CORP. 190 MATHILDA PLACE SUNNYVALE, CA 94086, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

DATE: FEBRUARY 20, 2007 FCC ID: QDS-BRCM1025

Revision History

	Issue	Di-i	Di 1 D
Rev.	Date	Revisions	Revised By
	02/16/07	Initial Issue	Thu
	02/20/07	Updated Antenna's Gain Page 28	Thu

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	5
2. T	EST METHODOLOGY	6
3. F.	ACILITIES AND ACCREDITATION	6
4. C	CALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	MEASUREMENT UNCERTAINTY	6
5. E	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	MAXIMUM OUTPUT POWER	7
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	<i>7</i>
<i>5.4</i> .	SOFTWARE AND FIRMWARE	<i>7</i>
5.5.	WORST-CASE CONFIGURATION AND MODE	<i>7</i>
5.6.	DESCRIPTION OF TEST SETUP	8
6. T	EST AND MEASUREMENT EQUIPMENT	10
7. L	IMITS AND RESULTS	11
7.1.	CHANNEL TESTS FOR THE 5250 TO 5350 MHz BAND	11
	.1.1. AVERAGE POWER	11
	.1.2. 99% BANDWIDTH AND 26 dB BANDWIDTH	
	.1.4. PEAK POWER SPECTRAL DENSITY	
7.	.1.5. PEAK EXCURSION	
7.	.1.6. CONDUCTED SPURIOUS EMISSIONS	
	.1.7. FREQUENCY STABILITY	
7.	.1.8. MAXIMUM PERMISSIBLE EXPOSURE	50
	RADIATED EMISSIONS	
	.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	
	.2.2. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	
7.	.2.3. TRANSMITTER ABOVE 1 GHz	
<i>7.3</i> .	POWERLINE CONDUCTED EMISSIONS	69
7.4.	DYNAMIC FREQUENCY SELECTION	
7.	.4.1. LIMITS	73
	.4.2. TEST AND MEASUREMENT SYSTEM	
	.4.3. TEST AND MEASUREMENT EQUIPMENT	
	.4.4. SETUP OF EUT	
	.4.5. DESCRIPTION OF EUT	
7.	.4.6. PLOTS OF RADAR WAVEFORM, AND WLAN TRAFFIC	82
	Page 3 of 126	

REPORT NO: 07U10812-1B
EUT: BROADCOM DRAFT 802.11n 5GHz AP

	PHOTOS	
7.4.12.	IN-SERVICE MONITORING	102
7.4.11.	DETECTION BANDWIDTH	100
	NON-OCCUPANCY PERIOD.	
7.4.9.	CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	94
7.4.8.	CHANNEL AVAILABILITY CHECK TIME	89
	TEST CHANNEL AND METHOD	

REPORT NO: 07U10812-1B EUT: BROADCOM DRAFT 802.11n 5GHz AP

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: BROADCOM CORP.

190 MATHILDA PLACE

SUNNYVALE, CA 94086, USA

EUT DESCRIPTION: BROADCOM DRAFT 802.11n 5GHz AP

MODEL: BCM94705LMP

SERIAL NUMBER: 100 1152660030

DATE TESTED: JANUARY 22- FEBRUARY 1, 2007

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 15 SUBPART E NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

THANH NGUYEN EMC TECHNICIAN

Mankonguym

COMPLIANCE CERTIFICATION SERVICES

DATE: FEBRUARY 20, 2007

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15 and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Draft 802.11n 5GHz MIMO Access Point operating with a 40 MHz nominal bandwidth in the 5250 – 5350 MHz band.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

5250 to 5350 MHz Authorized Band

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5270 - 5310	802.11n HT40	15.09	32.28

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes two Dipole antennas, each with a maximum gain of 3 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed in the Laptop support during testing was LALA-REL-4-80-1.

The test utility software used during testing was WL tools.

5.5. WORST-CASE CONFIGURATION AND MODE

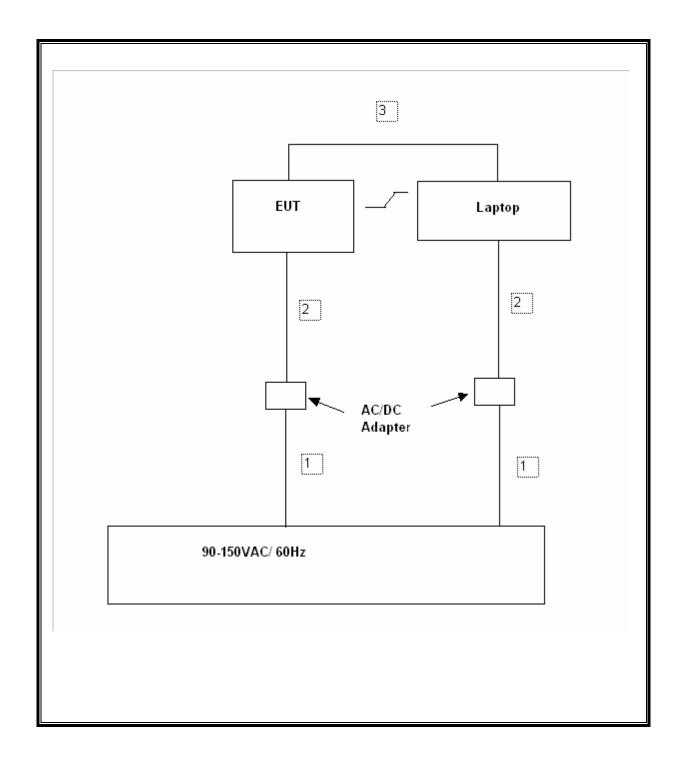
The determination of the worst-case data rate is based on measuring the PPSD, peak power, average power on conducted emissions, plus bandedge and 2nd harmonic (5GHz only) on radiated emissions across all the data rates, bandwidths, modulations and spatial stream modes.

For operation in the 40 MHz MIMO mode using this chipset in our opinion MCS Index 0 is worst case.

DESCRIPTION OF TEST SETUP 5.6.

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
AC Adapter	Adaptech	STD_0505	3/21/1901	DoC			
Laptop	DELL	Latitude D510	N/A	N/A			


I/O CABLES

I/O CABLE LIST								
Cable	Port	# of	Connector	Cable	Cable	Remarks		
No.		Identical	Type	Type	Length			
		Ports						
1	AC	2	US 115V	Un-shielded	2m	N/A		
2	DC	2	DC Plug	Un-shielded	2m	Ferrite bead at EUT end.		
3	Serial	1	DB9	Shielded	2m	Use activate HyperTerminal		

TEST SETUP

The EUT is controlled by the host laptop computer via a serial port and sset to transmit continuously.

SETUP DIAGRAM FOR TESTS

Page 9 of 126

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
EMI Receiver, 9 kHz ~ 2.9 GHz	Agilent / HP	8542E	3942A00286	02/04/07		
RF Filter Section	Agilent / HP	85420E	3705A00256	02/04/07		
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	08/13/07		
Antenna, Horn 1 ~ 18 GHz	ETS	3117	29301	04/22/07		
Antenna, Horn 26 ~ 40 GHz	ARA	MWH-2640/B	1029	04/13/07		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42070220	11/26/07		
7.6 GHz Highpass Filter	Micro-Tronics	HPM13195	1	CNR		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00369	08/01/07		
Preamplifier, 26 ~ 40 GHz	Miteq	NSP4000-SP2	924343	08/24/07		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	12/02/07		
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/02/07		
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	09/15/07		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	09/15/07		
EMI Test Receiver	R&S	ESHS 20	827129/006	01/27/08		

7. LIMITS AND RESULTS

7.1. CHANNEL TESTS FOR THE 5250 TO 5350 MHz BAND

7.1.1. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

Each chain is measured separately and the total power is calculated using:

Total Power = $10 \log (10^{\circ} (\text{Chain 0 Power } / 10) + 10^{\circ} (\text{Chain 1 Power } / 10))$

DATE: FEBRUARY 20, 2007

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Mode Channel	Frequency	Average Power Chain 0	Average Power Chain 1	Average Power Total	
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	5270	11.3	10.7	14.0	
High	5310	12.2	11.7	14.9	

7.1.2. 99% BANDWIDTH AND 26 dB BANDWIDTH

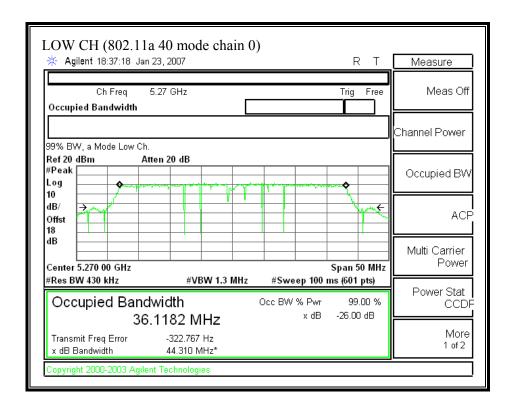
LIMIT

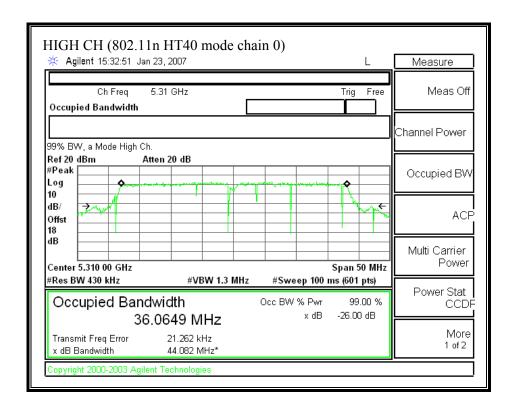
None; for reporting purposes only.

TEST PROCEDURE

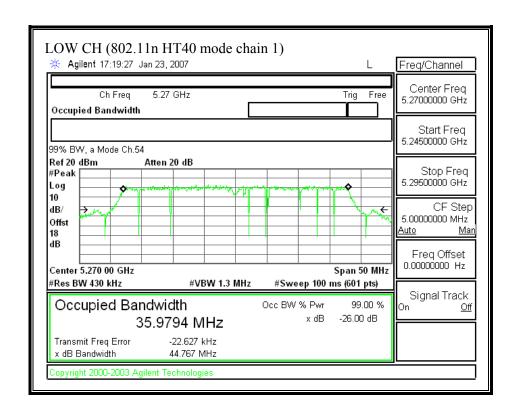
The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth and 26 dB bandwidth functions are utilized.

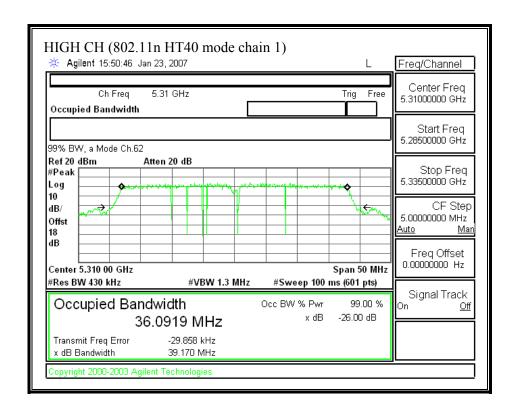
DATE: FEBRUARY 20, 2007


REPORT NO: 07U10812-1B DATE: FEBRUARY 20, 2007 EUT: BROADCOM DRAFT 802.11n 5GHz AP FCC ID: QDS-BRCM1025


RESULTS

No non-compliance noted:


Mode	Frequency	99%	99%	26 dB	26 dB	Worst
Channel		BW	BW	BW	BW	Case
		Chain 0	Chain 1	Chain 0	Chain 1	10 Log B
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(dB)
Low	5270	36.118	35.974	44.310	44.764	16.509
High	5310	36.065	36.092	44.082	39.170	16.443


(802.11n HT40 MODE CHAIN 0)

(802.11n HT40 MODE CHAIN 1)

7.1.3. MAXIMUM POWER

LIMIT

§15.407 (a) (1) For the band 5.15-5.25 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.407 (a) (1) For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

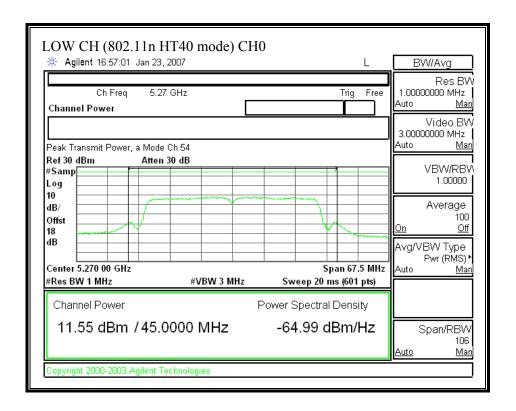
Each chain is measured separately and the total power is calculated using:

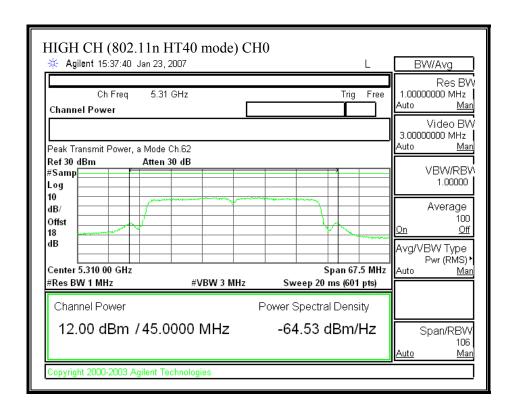
Total Power = $10 \log (10^{\circ} (Chain 0 Power / 10) + 10^{\circ} (Chain 1 Power / 10))$

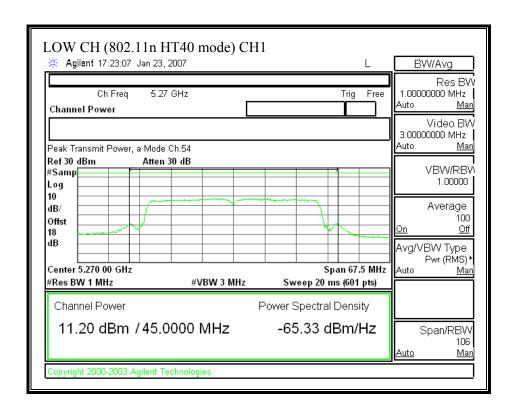
DATE: FEBRUARY 20, 2007 FCC ID: QDS-BRCM1025

LIMITS AND RESULTS

No non-compliance noted:

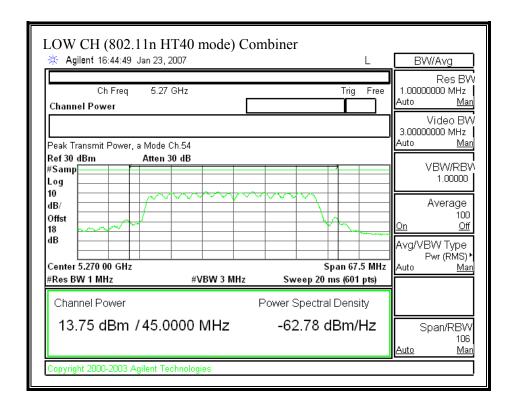

5250 to 5350 Band

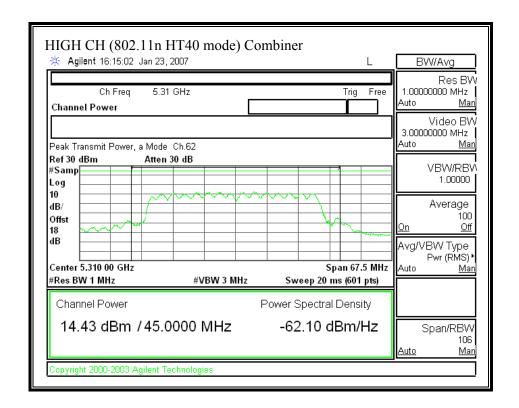

Fixed Limit (dBm)	30
Antenna Gain (dBi)	3


Mode	Freq	10LogB	11+10LogB	Limit	Chain	Chain	Total	Margin
Chan			Limit		0	1	Power	
					Power	Power		
				(
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHz) 5270	(dBm) 16.5	(dBm) 27.50	(dBm) 27.50	(dBm) 11.55	(dBm) 11.20	(dBm) 14.39	-13.11

Mode	Freq	10LogB	11+10LogB	Limit	Total	Margin
Chan			Limit		Power	
					Combiner	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	16.5	27.50	27.50	13.75	-13.75
LOW	2270	10.0	_ , ,, ,			

(802.11n HT40 MODE)





(802.11 HT40 MODE) COMBINER

7.1.4. PEAK POWER SPECTRAL DENSITY

LIMIT

§15.407 (a) (1) For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.407 (a) (1) For the band 5.25-5.35 GHz, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Each chain is measured separately and the total PPSD is calculated using:

Total PPSD = $10 \log (10^{\circ} (\text{Chain } 0 \text{ PPSD } / 10) + 10^{\circ} (\text{Chain } 1 \text{ PPSD } / 10))$

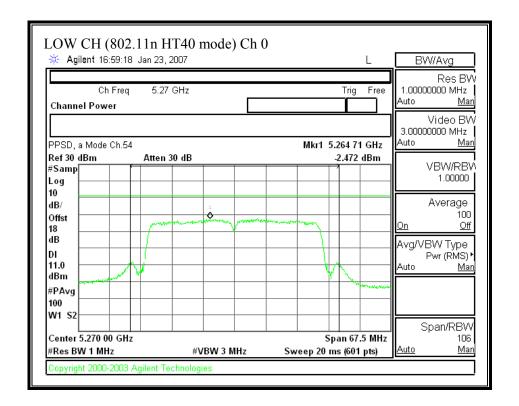
DATE: FEBRUARY 20, 2007 FCC ID: QDS-BRCM1025

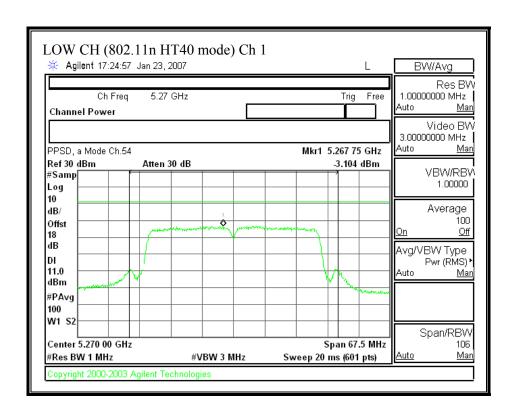
RESULTS

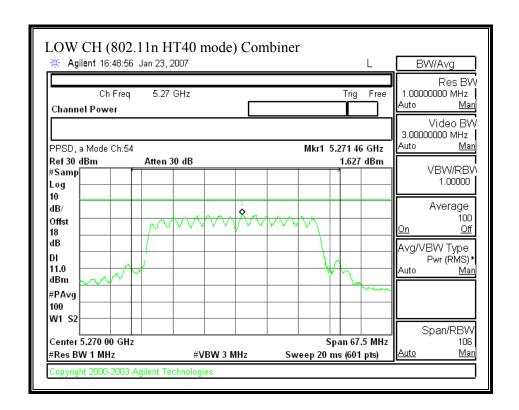
No non-compliance noted:

5250 to 5350 Band

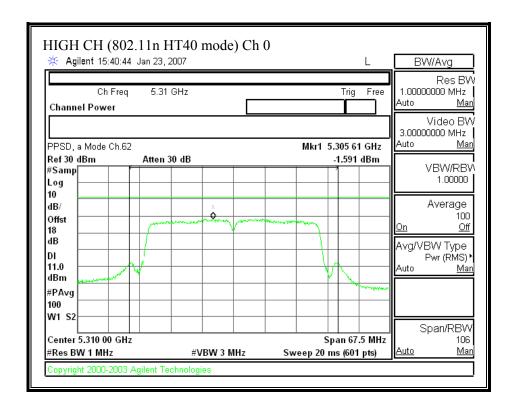
Antenna Gain (dBi)

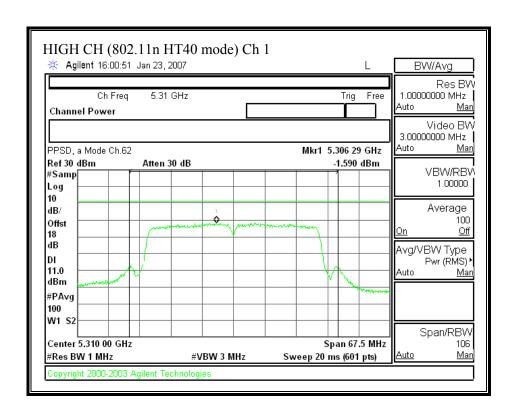

DATE: FEBRUARY 20, 2007

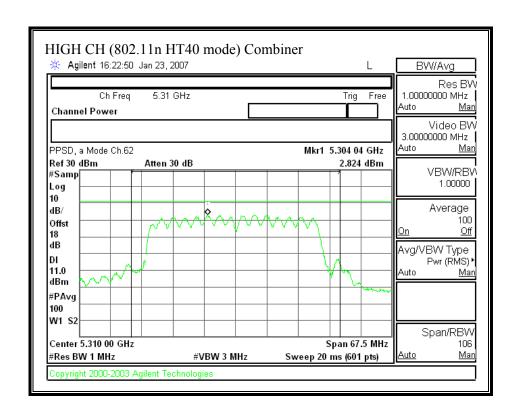

FCC ID: QDS-BRCM1025


Mode	Frequency	PPSD	PPSD	PPSD	Limit	Margin
Channel		Chain 0	Chain 1	Total		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	-2.47	-3.10	0.23	11.00	-10.77
High	5310	-1.59	-1.59	1.42	11.00	-9.58

Mode	Frequency	PPSD	Limit	Margin
Channel		With Combiner		
	(MHz)	(dBm)	(dBm)	(dB)
Low	5270	1.63	11.00	-9.37
High	5310	2.82	11.00	-9.37


(802.11n HT40 MODE)





(802.11a 40 MODE)

REPORT NO: 07U10812-1B EUT: BROADCOM DRAFT 802.11n 5GHz AP

7.1.5. PEAK EXCURSION

LIMIT

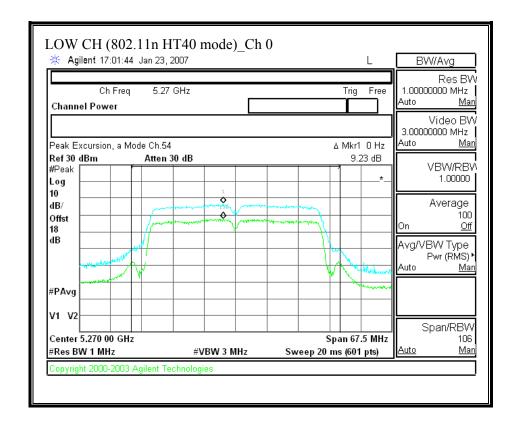
§15.407 (a) (6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

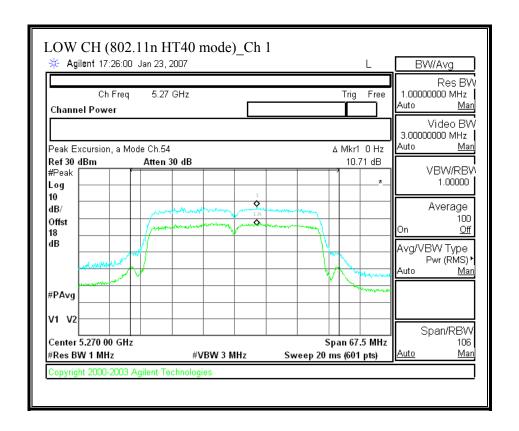
TEST PROCEDURE

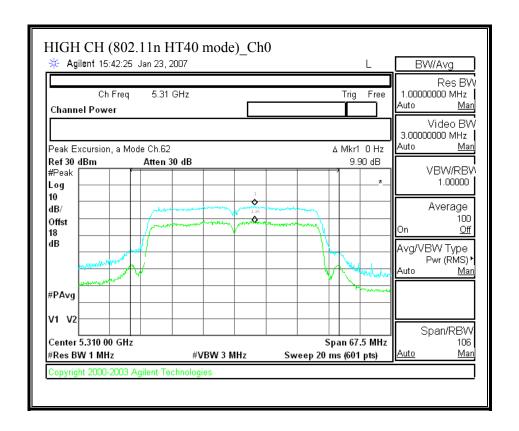
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

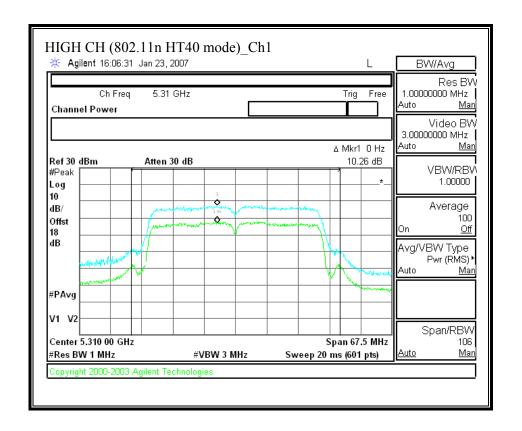
Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

DATE: FEBRUARY 20, 2007


REPORT NO: 07U10812-1B DATE: FEBRUARY 20, 2007 EUT: BROADCOM DRAFT 802.11n 5GHz AP FCC ID: QDS-BRCM1025


RESULTS


No non-compliance noted:


Mode	Frequency	Peak	Peak	Limit	Worst
Channel		Excursion	Excursion		Case
		Chain 0	Chain 1		Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	9.23	10.71	13	-2.29

(802.11n HT40 MODE)

7.1.6. CONDUCTED SPURIOUS EMISSIONS

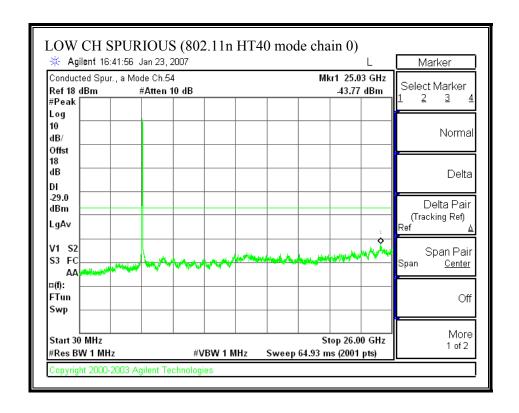
LIMITS

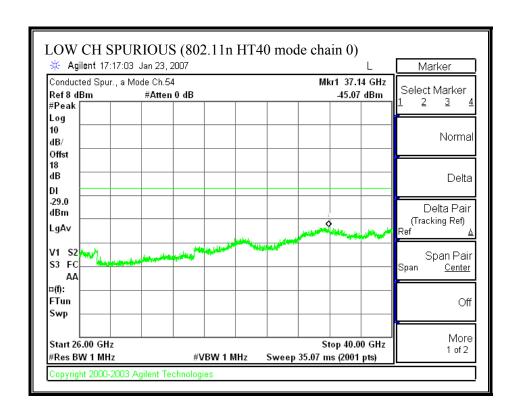
§15.407 (b) (1 & 2) For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm / MHz.

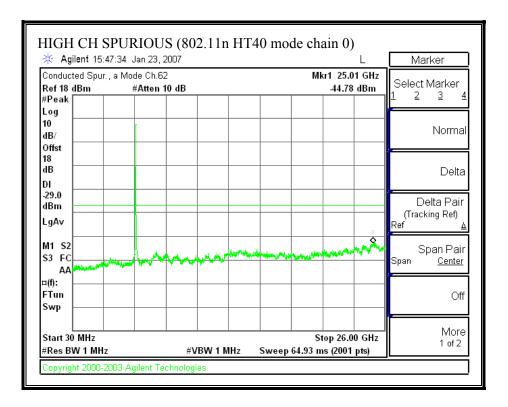
TEST PROCEDURE

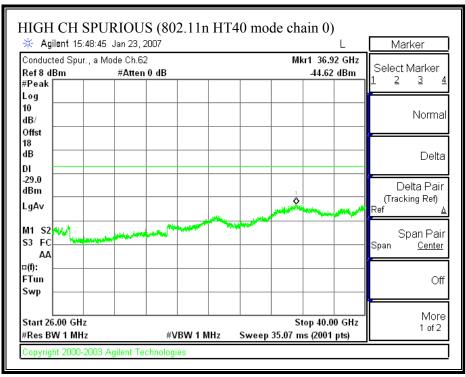
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

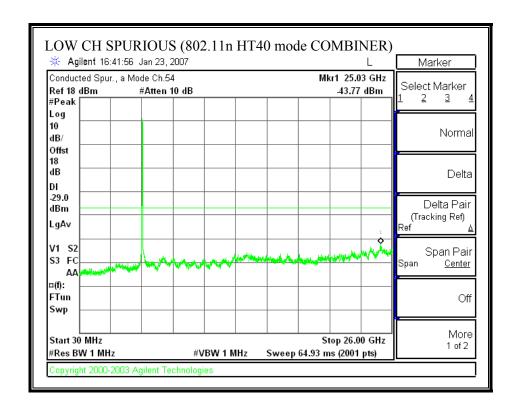

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

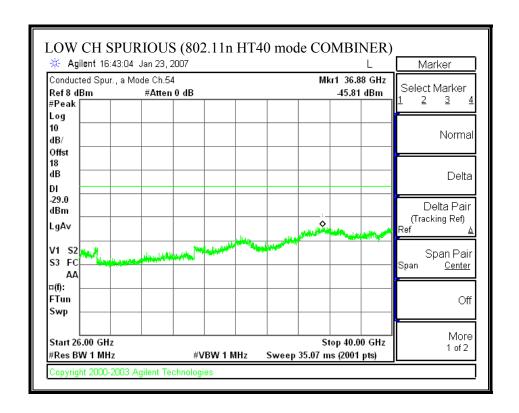

RESULTS

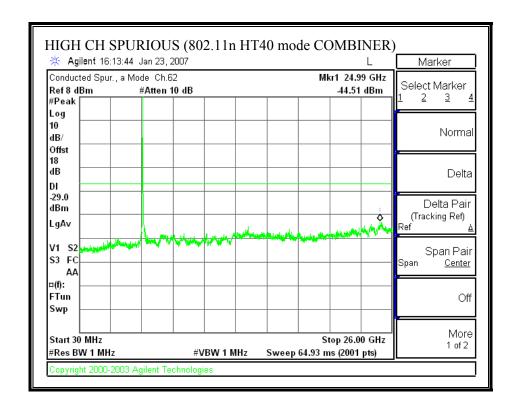

No non-compliance noted:

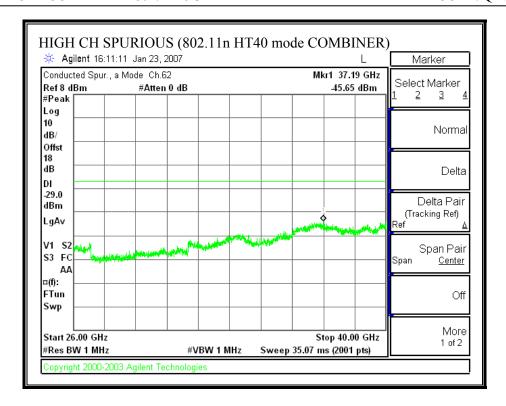

Note: The limits should be an EIRP limit of -27dBm / MHz plus 3 dBi gain=-30 dBm /MHz EIRP limit. The antenna gain was modified after testing was completed, so the plots reflect the former 2 dBi antenna gain.

SPURIOUS EMISSIONS (802.11n HT40 MODE CHAIN 0)








Page 44 of 126

SPURIOUS EMISSIONS (802.11n HT40 MODE COMBINER)

7.1.7. FREQUENCY STABILITY

LIMIT

§15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

RSS-210 A9.5 (e) +/- 10 ppm

TEST PROCEDURE

Reference measurements of the carrier frequency are made at nominal conditions of +20°C and the rated supply voltage.

Additional measurements are made at temperatures of -30° C and $+50^{\circ}$ C at the manufacturer's rated power supply voltage. Additional measurements are made at +/-15 percent of the manufacturer's rated supply voltage temperature of $+20^{\circ}$ C.

The additional measurements are compared with the reference measurements to calculate the frequency stability.

RESULTS

No non-compliance noted:

Reference Frequency at 20 deg C and 115 VAC

Supply Voltage	Temperature	Frequency	Delta
(VAC)	(deg C)	(MHz)	(ppm)
115.00	20	5259.96411	Reference
115.00	-30	* See note	* See note
115.00	50	* See note	* See note
97.75	20	5259.96660	-0.473
132.25	20	5259.96431	-0.038

^{*} The Frequency Tolerance vs Temperature please refers to the attached document "Frequency Stability vs Temperature Measurement BCM94705LMP.pdf" which is testing performed by Broadcom.

DATE: FEBRUARY 20, 2007

FCC ID: QDS-BRCM1025

7.1.8. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range Electric field strength (MHz) Electric field strength (V/m) Magnetic field strength (mW/cm²) Averagii (minumunity)										
(A) Lim	nits for Occupational	/Controlled Exposu	res							
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6						
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure							
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30						

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

DATE: FEBRUARY 20, 2007 FCC ID: QDS-BRCM1025

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G) / d}$$

and

$$S = E ^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations yields:

$$S = (30 * P * G) / (3770 * (d^2))$$

Changing to units of Power to mW and Distance to cm, using:

$$P(W) = P(mW) / 1000$$
 and $d(m) = d(cm) / 100$

and substituting the logarithmic form of power and gain using:

$$P(mW) = 10 ^ (P(dBm) / 10)$$
 and $G(numeric) = 10 ^ (G(dBi) / 10)$

yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

LIMITS

From §1.1310 Table 1 (B), the maximum value of $S = 1.0 \text{ mW/cm}^2$

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

Band	MPE	Total	Antenna	Power
	Distance	Power	Gain	Density
(MHz)	(cm)	(dBm)	(dBi)	(mW/cm^2)
5250 to 5350	20.0	15.09	3.00	0.01

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

7.2. RADIATED EMISSIONS

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$\binom{2}{}$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

DATE: FEBRUARY 20, 2007

FCC ID: QDS-BRCM1025

² Above 38 6

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

This report shall not be reproduced except in full, without the written approval of CCS.

^{§15.209 (}b) In the emission table above, the tighter limit applies at the band edges.

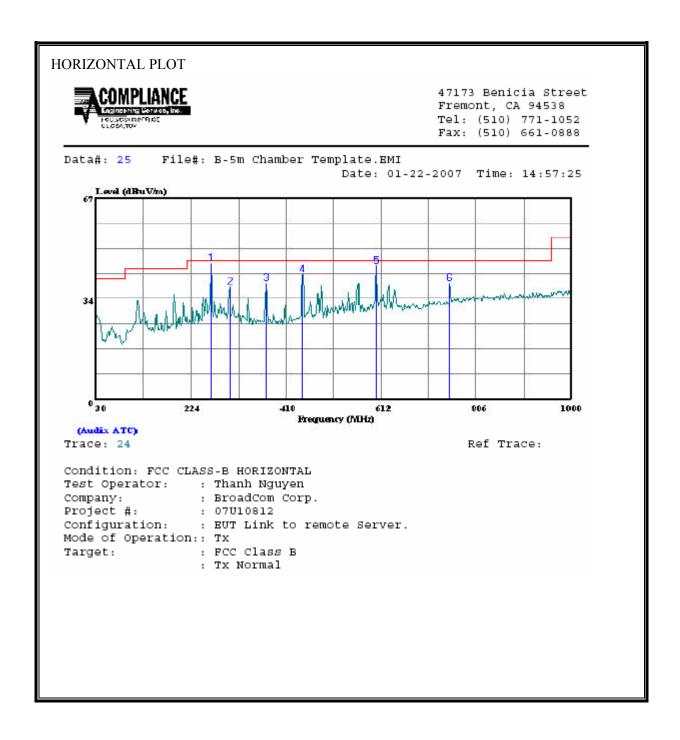
REPORT NO: 07U10812-1B DATE: FEBRUARY 20, 2007 EUT: BROADCOM DRAFT 802.11n 5GHz AP FCC ID: QDS-BRCM1025

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

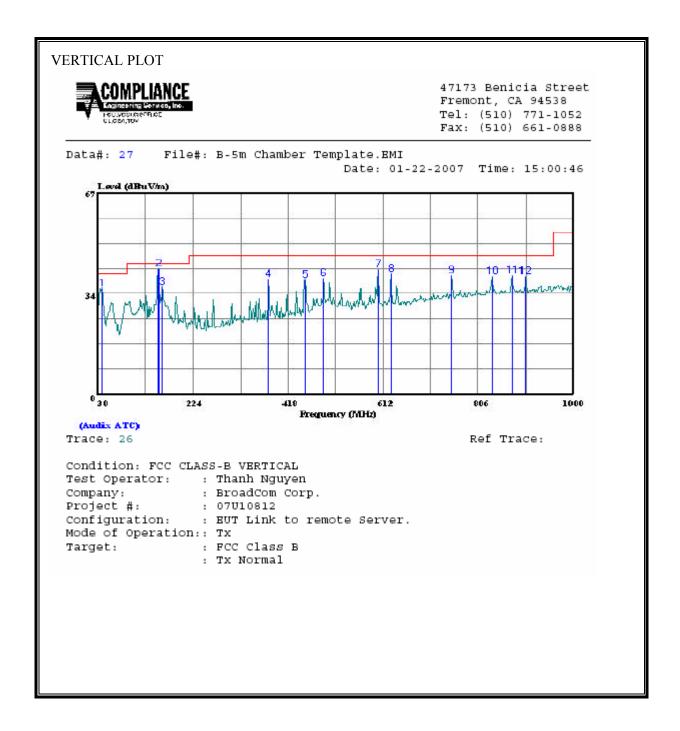
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

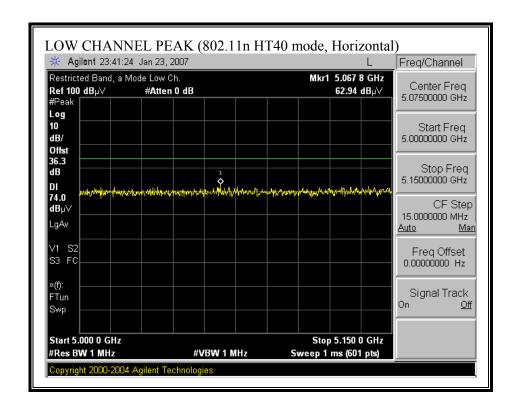
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

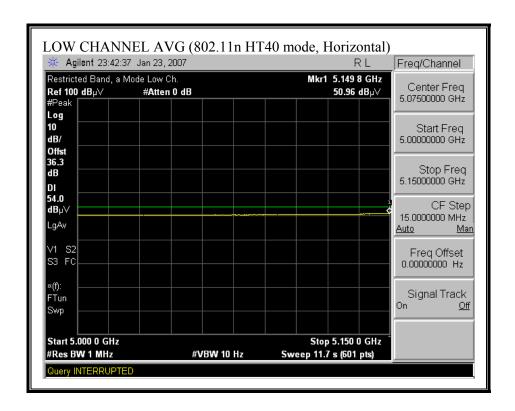
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

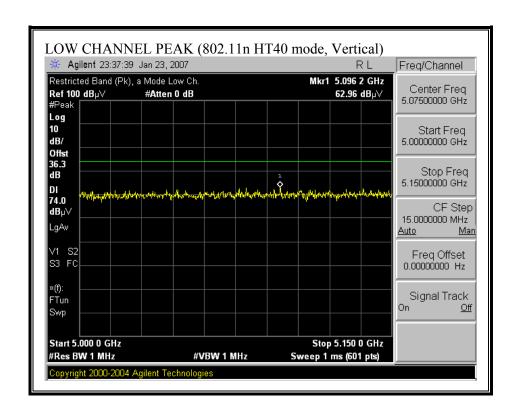

7.2.2. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

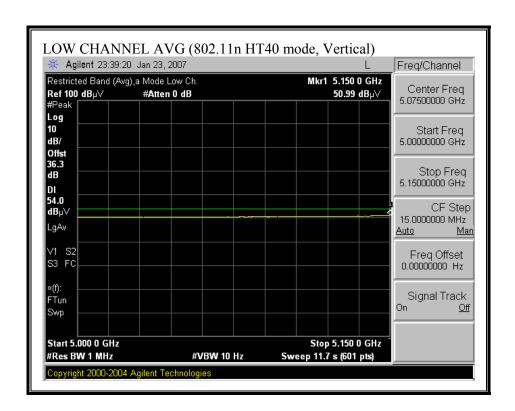
SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Read Level Factor Level Line Limit Remark MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 1 264.740 30.80 14.42 45.22 46.00 -0.78 Peak 2 303.540 21.66 15.86 37.52 46.00 -8.48 Peak 3 378.230 20.74 17.70 38.44 46.00 -7.56 Peak 4 451.950 21.93 19.44 41.37 46.00 -4.63 Peak	Freq Level Factor Level Line Limit Remark MHz dBuV dB dBuV/m dBuV/m dB 264.740 30.80 14.42 45.22 46.00 -0.78 Peak 303.540 21.66 15.86 37.52 46.00 -8.48 Peak 378.230 20.74 17.70 38.44 46.00 -7.56 Peak	HORIZO	NTAL DATA						
MHz dBuV dB dBuV/m dBuV/m dB 1 264.740 30.80 14.42 45.22 46.00 -0.78 Peak 2 303.540 21.66 15.86 37.52 46.00 -8.48 Peak 3 378.230 20.74 17.70 38.44 46.00 -7.56 Peak	MHz dBuV dB dBuV/m dBuV/m dB 264.740 30.80 14.42 45.22 46.00 -0.78 Peak 303.540 21.66 15.86 37.52 46.00 -8.48 Peak 378.230 20.74 17.70 38.44 46.00 -7.56 Peak 451.950 21.93 19.44 41.37 46.00 -4.63 Peak 601.330 22.43 22.02 44.45 46.00 -1.55 Peak		Fred		Factor	I.evre1			Demark
1 264.740 30.80 14.42 45.22 46.00 -0.78 Peak 2 303.540 21.66 15.86 37.52 46.00 -8.48 Peak 3 378.230 20.74 17.70 38.44 46.00 -7.56 Peak	264.740 30.80 14.42 45.22 46.00 -0.78 Peak 303.540 21.66 15.86 37.52 46.00 -8.48 Peak 378.230 20.74 17.70 38.44 46.00 -7.56 Peak 451.950 21.93 19.44 41.37 46.00 -4.63 Peak 601.330 22.43 22.02 44.45 46.00 -1.55 Peak	_							
2 303.540 21.66 15.86 37.52 46.00 -8.48 Peak 3 378.230 20.74 17.70 38.44 46.00 -7.56 Peak	303.540 21.66 15.86 37.52 46.00 -8.48 Peak 378.230 20.74 17.70 38.44 46.00 -7.56 Peak 451.950 21.93 19.44 41.37 46.00 -4.63 Peak 601.330 22.43 22.02 44.45 46.00 -1.55 Peak		MHZ	aBuv	ав	aBuv/m	aBuv/m	ав	
3 378.230 20.74 17.70 38.44 46.00 -7.56 Peak	378.230 20.74 17.70 38.44 46.00 -7.56 Peak 451.950 21.93 19.44 41.37 46.00 -4.63 Peak 601.330 22.43 22.02 44.45 46.00 -1.55 Peak	1	264.740	30.80	14.42	45.22	46.00	-0.78	Peak
	451.950 21.93 19.44 41.37 46.00 -4.63 Peak 601.330 22.43 22.02 44.45 46.00 -1.55 Peak	2	303.540	21.66	15.86	37.52	46.00	-8.48	Peak
4 451.950 21.93 19.44 41.37 46.00 -4.63 Peak	601.330 22.43 22.02 44.45 46.00 -1.55 Peak	3	378.230	20.74	17.70	38.44	46.00	-7.56	Peak
		4	451.950	21.93	19.44	41.37	46.00	-4.63	Peak
5 601.330 22.43 22.02 44.45 46.00 -1.55 Peak	751.680 14.29 24.23 38.52 46.00 -7.48 Peak	5	601.330	22.43	22.02	44.45	46.00	-1.55	Peak
6 751.680 14.29 24.23 38.52 46.00 -7.48 Peak		6	751.680	14.29	24.23	38.52	46.00	-7.48	Peak

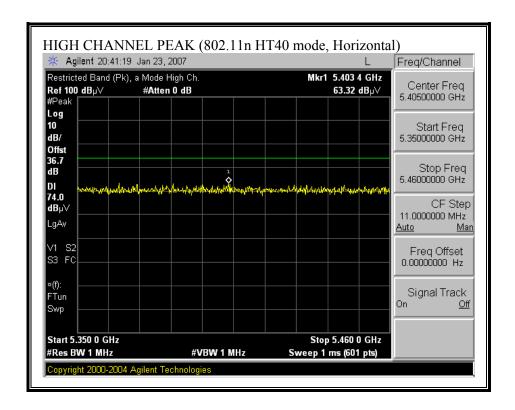

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

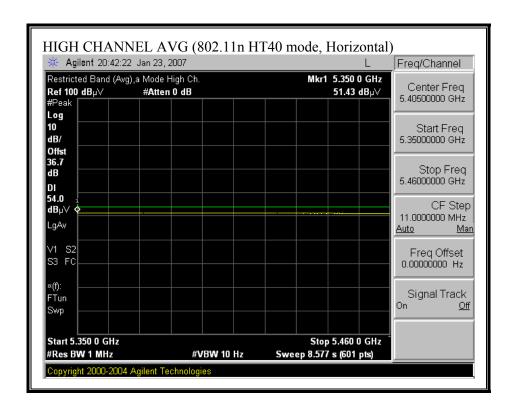


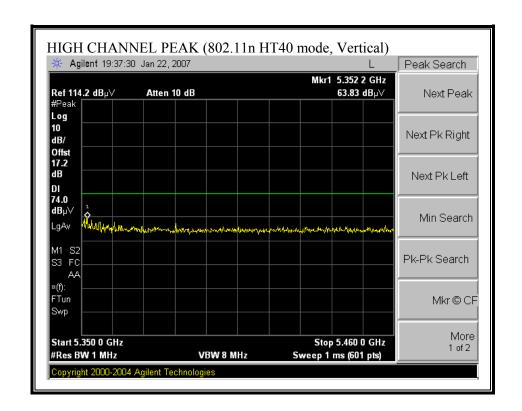

	Frog	Read	Factor	Level	Limit Line	Over	Remark
	Freq	телет	Factor	телет	птие	птштс	Remark
_	MHz	dBuV	dB	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	
1	37.760	17.39	17.62	35.00	40.00	-5.00	Peak
2	153.190	27.43	14.19	41.62	43.50	-1.88	Peak
3	159.980	21.83	13.99	35.82	43.50	-7.68	Peak
4	378.230	20.53	17.70	38.23	46.00	-7.77	Peak
5	452.920	18.57	19.46	38.03	46.00	-7.97	Peak
6	489.780	18.37	20.23	38.60	46.00	-7.40	Peak
7	601.330	19.58	22.02	41.60	46.00	-4.40	Peak
8	628.490	17.49	22.43	39.92	46.00	-6.08	Peak
9	751.680	15.18	24.23	39.41	46.00	-6.59	Peak
10	834.130	13.78	25.33	39.11	46.00	-6 89	Deak
11		13.66	25.85	39.51		-6.49	
12		12.77	26.25	39.02		-6.98	

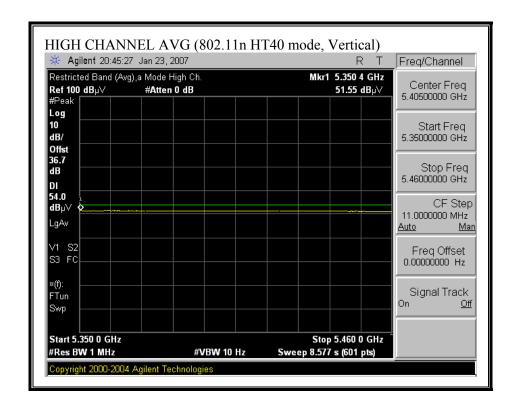

7.2.3. TRANSMITTER ABOVE 1 GHz

RESTRICTED BANDEDGE (802.11n HT40 MODE, LOW CHANNEL)

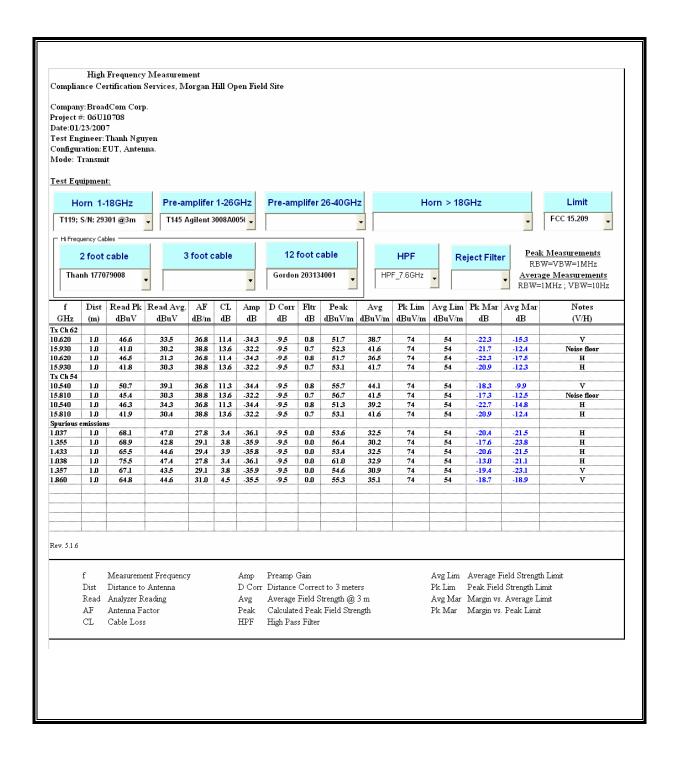








RESTRICTED BANDEDGE (802.11n HT40 MODE, HIGH CHANNEL)



HARMONICS AND SPURIOUS EMISSIONS (802.11n HT40 MODE)

7.3. **POWERLINE CONDUCTED EMISSIONS**

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 °	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

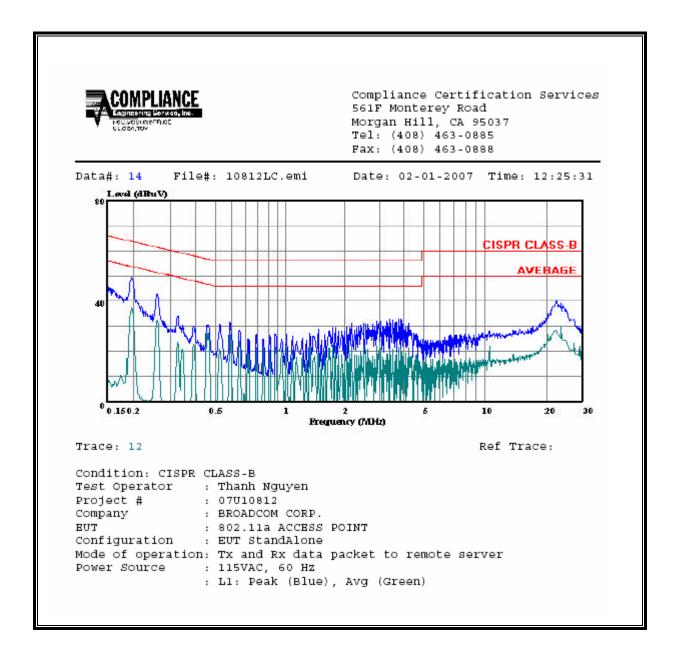
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

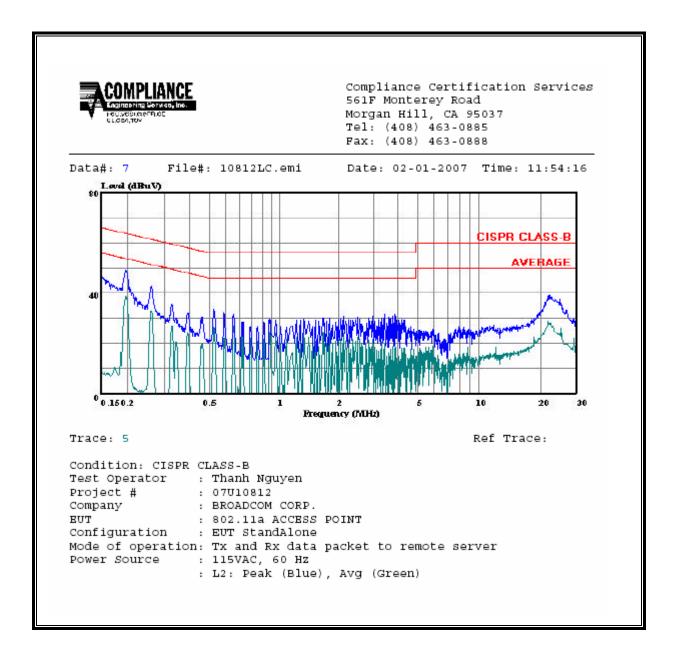
Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:


DATE: FEBRUARY 20, 2007

FCC ID: QDS-BRCM1025


6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq.		Reading		Closs	Limit	EN_B	Marg	in	Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2	
0.20	49.28			0.00	63.82	53.82	-14.54	-4.54	L1	
3.94	31.52			0.00	56.00	46.00	-24.48	-14.48	L1	
22.30	39.15			0.00	60.00	50.00	-20.85	-10.85	L1	
0.20	49.52			0.00	63.82	53.82	-14.30	-4.30	L2	
3.47	32.76			0.00	56.00	46.00	-23.24	-13.24	L2	
22.18	39.78			0.00	60.00	50.00	-20.22	-10.22	L2	
6 Worst l	Data 									

LINE 1 RESULTS

LINE 2 RESULTS

7.4. DYNAMIC FREQUENCY SELECTION

7.4.1. LIMITS

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode				
	Master Client Client		Client		
		(without DFS)	(with DFS)		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		

DATE: FEBRUARY 20, 2007

FCC ID: QDS-BRCM1025

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds
	over remaining 10 second
	period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

- For the Short pulse radar Test Signals this instant is the end of the *Burst*.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.
- For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

REPORT NO: 07U10812-1B DATE: FEBRUARY 20, 2007 FCC ID: QDS-BRCM1025 EUT: BROADCOM DRAFT 802.11n 5GHz AP

Table 5 – Short Pulse Radar Test Waveforms

Tuble 5 Short Tube Rudul Test Wave forms						
Radar Type	Pulse Width	PRI	Pulses	Minimum	Minimum	
	(Microseconds)	(Microseconds)		Percentage of	Trials	
				Successful		
				Detection		
1	1	1428	18	60%	30	
2	1-5	150-230	23-29	60%	30	
3	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
Aggregate (Ra	adar Types 1-4)	80%	120			

Table 6 – Long Pulse Radar Test Signal

· · · · · · · · · · · · · · · · · · ·							
Radar	Bursts	Pulses	Pulse	Chirp	PRI	Minimum	Minimum
Waveform		per	Width	Width	(µsec)	Percentage of	Trials
		Burst	(µsec)	(MHz)		Successful	
						Detection	
5	8-20	1-3	50-100	5-20	1000-	80%	30
					2000		

Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful Detection	
6	1	333	300	9	.333	70%	30

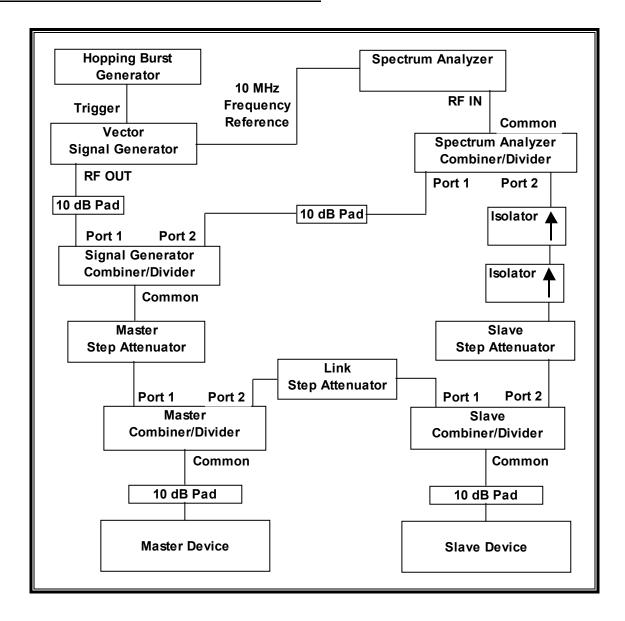
7.4.2. TEST AND MEASUREMENT SYSTEM

SYSTEM OVERVIEW

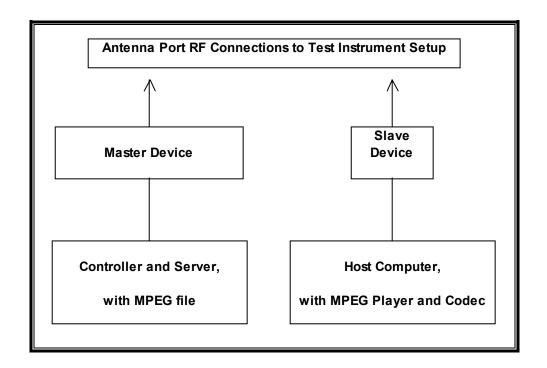
The measurement system is based on a conducted test method.

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.


The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold. The time-domain resolution is 3 msec / bin with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.


Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the 10 dB pad connected to the Master Device (and/or between the Slave Combiner/Divider and the 10 dB pad connected to the Slave Device). Additional 10 dB pads are connected as needed, such that there is one pad at each RF port on each EUT.

DATE: FEBRUARY 20, 2007 FCC ID: QDS-BRCM1025

CONDUCTED METHOD SYSTEM BLOCK DIAGRAM

EUT TEST SETUP

REPORT NO: 07U10812-1B DATE: FEBRUARY 20, 2007 FCC ID: QDS-BRCM1025 EUT: BROADCOM DRAFT 802.11n 5GHz AP

SYSTEM CALIBRATION

Connect the spectrum analyzer to the test system in place of the master device. Set the signal generator to CW mode. Adjust the amplitude of the signal generator to yield a measured level of -64 dBm on the spectrum analyzer.

Without changing any of the instrument settings, reconnect the spectrum analyer to the Common port of the Spectrum Analyzer Combiner/Divider and connect a 50 ohm load to the Master Device port of the test system.

Measure the amplitude and calculate the difference from -64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference. Confirm that the signal is displayed at -64 dBm. Readjust the RBW and VBW to 3 MHz, set the span to 10 MHz, and confirm that the signal is still displayed at -64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

Establish a link between the Master and Slave, adjusting the Link Step Attenuator as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. Confirm that the displayed traffic is from the Master Device. Confirm that the displayed traffic does not include Slave Device traffic.

If a different setting of the Master Step Attenuator is required to meet the above conditions, perform a new System Calibration for the new Master Step Attenuator setting.

7.4.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42070220	7/29/2007		
Vector Signal Generator 250kHz-						
20GHz	Agilent / HP	E8267C	US43320336	11/2/2007		
	National					
High Speed Digital I/O Card	Instruments	PCI-6534	HA1612845	1/16/2008		

7.4.4. SETUP OF EUT

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	FCC ID	
AC Adapter	ADAPTER TECH	STD-0505	446	DoC	
Laptop	HP	Pavilion zv6000	00045-584-707-717	DoC	
AC Adapter	HP	PA-1121-12HD	58B240ALLRQCEE	DoC	
Laptop	DELL	LATITUDE D510	JP-OY1338-42016-4C5-1104	DoC	
AC Adapter	DELL	HP-OQ065B83	05U092-47890-31D-0049	DoC	
WLAN Card	BROADCOM	BCM94321MP	1100141	N/A*	
	* This is a proto	otype radio module, n	ot available for sale.		

7.4.5. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz range.

The EUT is a Master Device.

The highest power level is 15.09 dBm conducted and 18.09 dBm EIRP.

The only antenna assembly utilized with the EUT has a gain of 3 dBi.

Two identical antennas are utilized to meet the transmit diversity operational requirements.

The rated output power of the Master unit is < 23 dBm (EIRP). Therefore the required interference threshold level is -62 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -62 + 3 + 1 = -58 dBm.

The calibrated conducted DFS Detection Threshold level is set to -61 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses one transmitter connected to two 50-ohm coaxial antenna ports via a diversity switch. Both antenna ports are connected to the test system via a power divider to perform conducted tests.

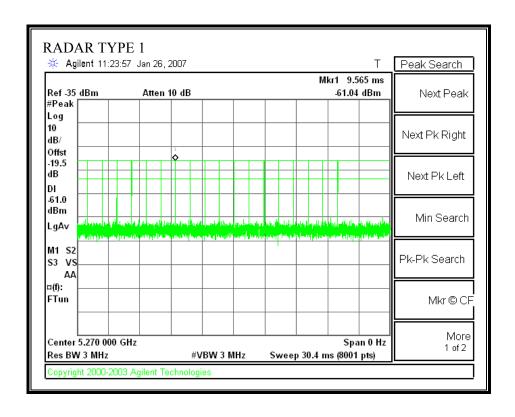
The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

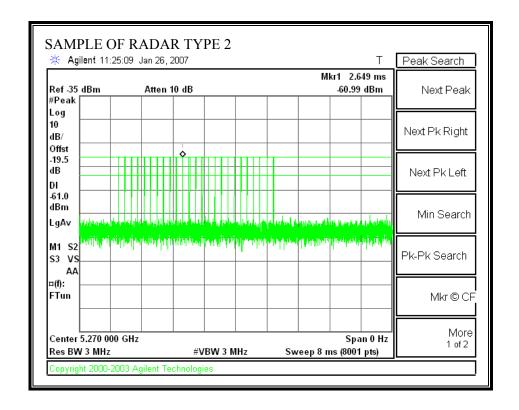
The EUT utilizes the 802.11n architecture. One nominal channel bandwidth, 40 MHz, is implemented.

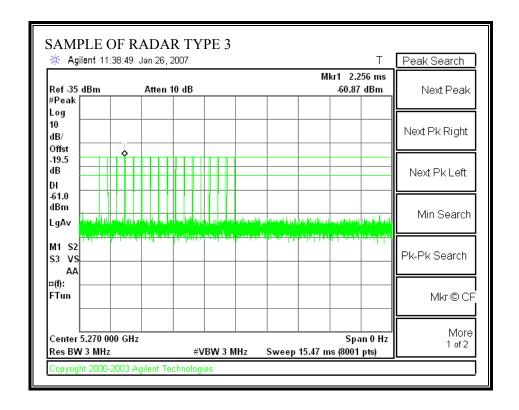
The software installed in the access point is PO 4 100 22 2.

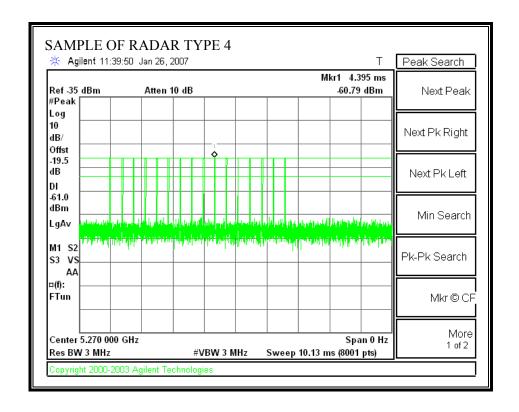

Test results show that the EUT requires 22.48 seconds to complete its initial power-up cycle.

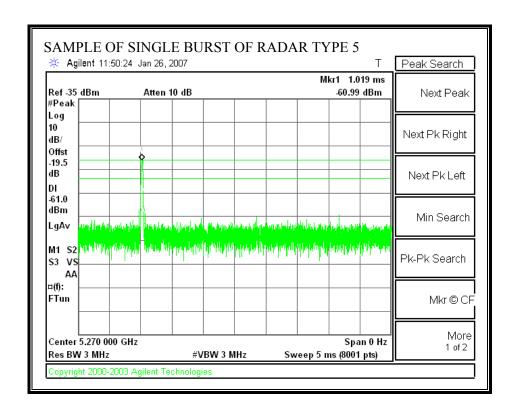
DATE: FEBRUARY 20, 2007 FCC ID: QDS-BRCM1025

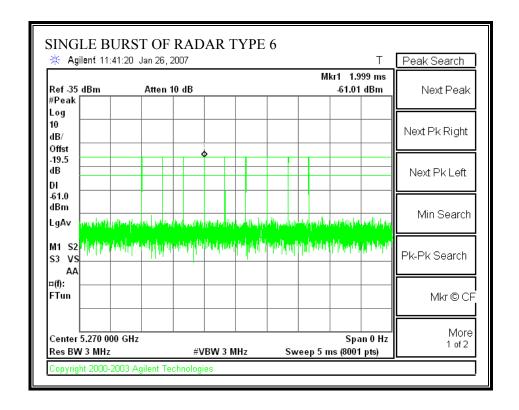
This report shall not be reproduced except in full, without the written approval of CCS.

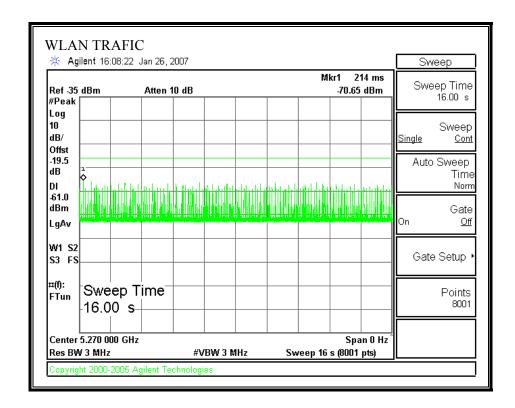

7.4.6. PLOTS OF RADAR WAVEFORM, AND WLAN TRAFFIC


PLOTS OF RADAR WAVEFORMS




DATE: FEBRUARY 20, 2007


FCC ID: QDS-BRCM1025



PLOT OF WLAN TRAFFIC FROM MASTER

7.4.7. TEST CHANNEL AND METHOD

All tests were performed at a channel center frequency of 5270 MHz utilizing a conducted test method.

7.4.8. CHANNEL AVAILABILITY CHECK TIME

TEST PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel, then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

TEST PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

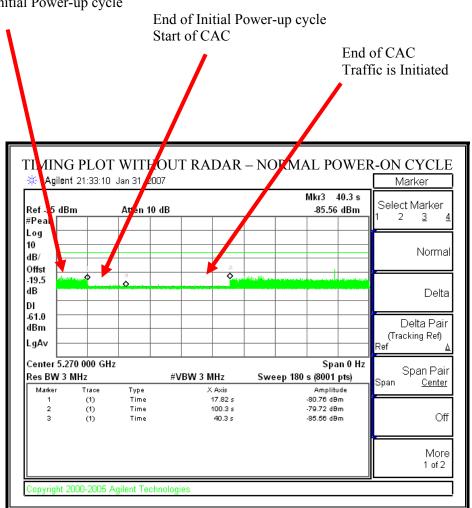
The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

DATE: FEBRUARY 20, 2007

FCC ID: QDS-BRCM1025

CHANNEL AVAILABILITY CHECK TIME RESULTS

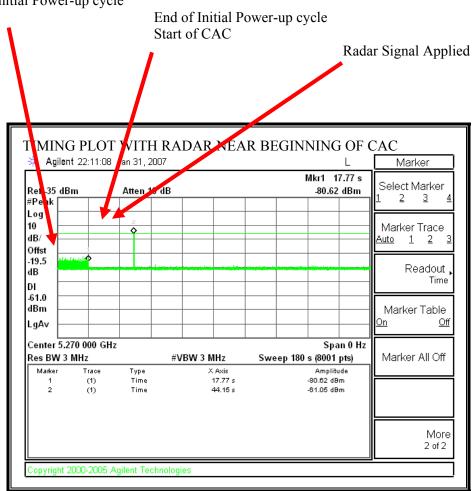
No non-compliance noted:


Time required for EUT to complete the initial power-up cycle					
(sec)					
22.48					

If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

Timing of Radar Burst	Display on EUT / PC Control Computer	Spectrum Analyzer Display
No Radar Triggered	(EUT Initiates Transmisisons)	Transmissions begin on channel after completion of the initial power-up cycle and the 60 second CAC
Within 0 to 6 second window	EUT indicates radar detected EUT does not display any radar parameter values	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected EUT does not display any radar parameter values	No transmissions on channel

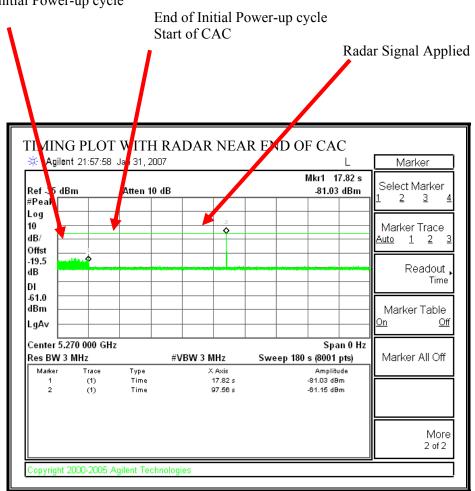
TIMING PLOT WITHOUT RADAR DURING CAC


AP is rebooted Traffic ceases Start of Initial Power-up cycle

The initial power-up cycle requires (100.3 - 17.82 - 60) = 22.48 seconds.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle



The radar signal is applied (44.15 - 17.77) = 26.38 seconds after reboot, which is (26.38 - 22.48) = 3.9 seconds after the start of the CAC period.

No EUT transmissions were observed after the radar signal.

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

The radar signal is applied (97.56 - 17.82) = 79.74 seconds after reboot, which is (79.74 - 22.48) = 57.26seconds after the start of the CAC period.

No EUT transmissions were observed after the radar signal.

7.4.9. CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

DATE: FEBRUARY 20, 2007

FCC ID: QDS-BRCM1025

GENERAL REPORTING NOTES

The reference marker is set at the end of last radar pulse.

TYPE 1 RADAR REPORTING NOTES

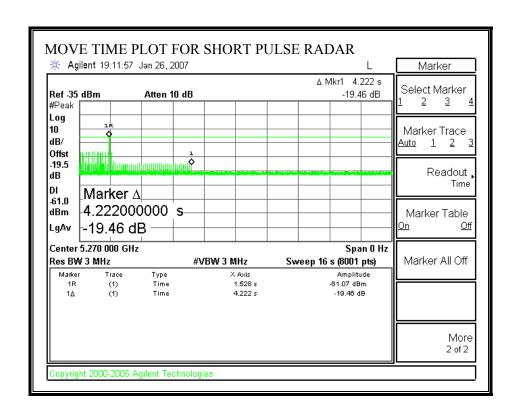
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

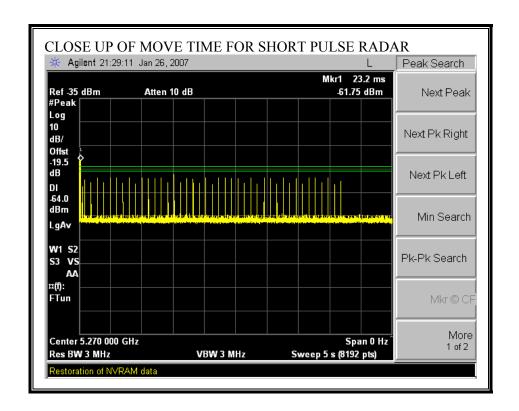
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated Begins at (Reference Marker + 200 msec)

Ends no earlier than (Reference Marker + 10 sec).


TYPE 5 RADAR REPORTING NOTES

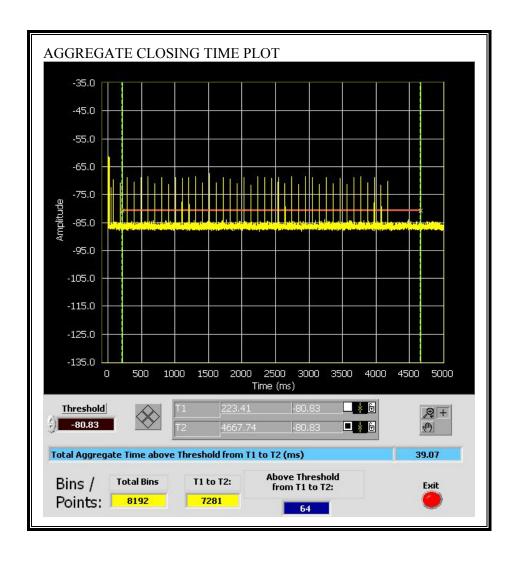
The delta marker is set to 10 seconds after the end of the radar pulse.


TYPE 1 CHANNEL MOVE TIME RESULTS

No non-compliance noted:

Channel Move Time	Limit
(s)	(s)
4.222	10

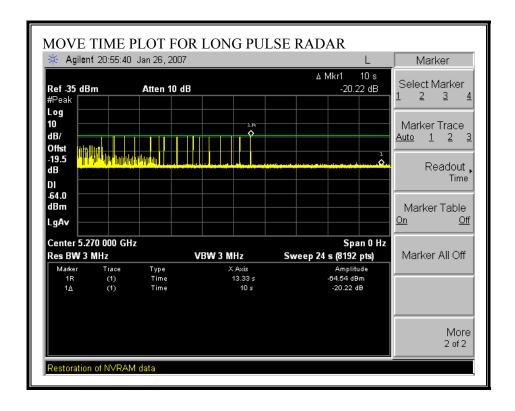
CLOSE UP OF MOVE TIME



TYPE 1 CHANNEL CLOSING TRANSMISSION TIME RESULTS

No non-compliance noted:

Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
39.07	60	20.93


Only intermittent transmissions are observed during the aggregate monitoring period.

Page 97 of 126

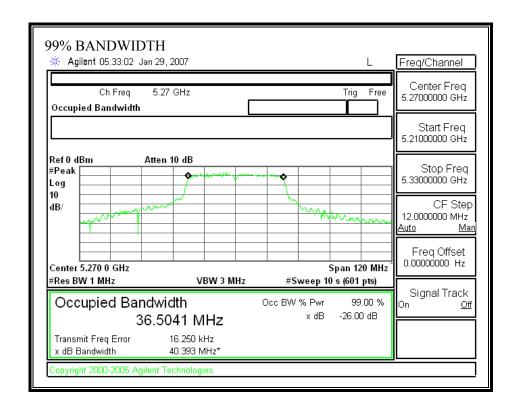
TYPE 5 CHANNEL MOVE TIME RESULTS

No non-compliance noted: The traffic ceases prior to the end of the radar waveform, therefore it also ceases prior to 10 seconds after the end of the radar waveform.

7.4.10. NON-OCCUPANCY PERIOD

RESULTS

No non-compliance noted: No EUT transmissions were observed on the test channel during the 30 minute observation time.



DATE: FEBRUARY 20, 2007

FCC ID: QDS-BRCM1025

7.4.11. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

No non-compliance noted:

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5249	5291	42	36.504	115.1	80

DATE: FEBRUARY 20, 2007

FCC ID: QDS-BRCM1025

Detection Bandw	ridth Test Results):	Waveform: TY	PE 1
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5248	10	4	40.00	_
5249	10	10	100.00	FL
5250	10	10	100.00	
5251	10	10	100.00	
5252	10	10	100.00	
5253	10	10	100.00	
5254	10	10	100.00	
5255	10	10	100.00	
5256	10	10	100.00	
5257	10	10	100.00	
5258	10	10	100.00	
5259	10	10	100.00	
5260	10	10	100.00	
5261	10	10	100.00	
5262	10	10	100.00	
5263	10	10	100.00	
5264	10	10	100.00	
5265	10	10	100.00	
5266	10	10	100.00	
5267	10	10	100.00	
5268	10	10	100.00	
5269	10	10	100.00	
5270	10	10	100.00	
5271	10	10	100.00	
5272	10	10	100.00	
5273	10	10	100.00	
5274	10	10	100.00	
5275	10	10	100.00	
5276	10	10	100.00	
5277	10	10	100.00	
5278	10	10	100.00	
5279	10	10	100.00	
5280	10	10	100.00	
5281	10	10	100.00	
5282	10	10	100.00	
5283	10	10	100.00	
5284	10	10	100.00	
5285	10	10	100.00	
5286	10	10	100.00	
5287	10	10	100.00	
5288	10	10	100.00	
5289	10	10	100.00	
5290	10	10	100.00	
5291	10	10	100.00	FH
5292	10	2	20.00	

7.4.12. **IN-SERVICE MONITORING**

RESULTS

No non-compliance noted:

Signal Type	Waveform/Trial No.	Detection (%)	Limit (%)	Pas/Fail
FCC TYPE 1	30	96.67	60.00	Pass
FCC TYPE 2	30	90.00	60.00	Pass
FCC TYPE 3	30	83.33	60.00	Pass
FCC TYPE 4	30	76.67	60.00	Pass
Aggregate	4	86.67	80.00	Pass
FCC TYPE 5	30	100.00	80.00	Pass
FCC TYPE 6	43	97.67	70.00	Pass

DATE: FEBRUARY 20, 2007 FCC ID: QDS-BRCM1025

TYPE 1 DETECTION PROBABILITY

Data Sheet for Short Pulse Radar Type 1		
Trial No.	Successful Detection (Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	No	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

TYPE 2 DETECTION PROBABILITY

Data Sheet for	Short Pulse Rad	ar Type 2		
			Pulse	
Waveform	# Pulses per	Pulse Width	repetition	Successful Detection
No.	burst	(us)	Interval	(Yes/No)
			(us)	
2001	25	2.70	165	Yes
2002	24	4.60	185	Yes
2003	28	3.20	172	Yes
2004	26	1.60	212	Yes
2005	26	1.80	219	Yes
2006	27	3.20	222	No
2007	25	4.00	155	Yes
2008	28	4.80	226	Yes
2009	23	1.00	163	Yes
2010	24	3.20	173	Yes
2011	24	4.10	197	Yes
2012	26	4.70	178	Yes
2013	29	3.90	216	Yes
2014	29	4.50	198	Yes
2015	26	1.00	202	Yes
2016	28	2.90	185	Yes
2017	29	2.30	224	No
2018	27	4.30	209	Yes
2019	24	1.30	168	Yes
2020	29	4.50	198	Yes
2021	25	2.40	173	Yes
2022	26	4.30	222	Yes
2023	24	2.60	178	Yes
2024	24	3.90	151	Yes
2025	25	1.30	153	Yes
2026	29	4.00	218	No
2027	26	3.80	223	Yes
2028	25	4.40	210	Yes
2029	28	2.20	187	Yes
2030	23	1.20	193	Yes

TYPE 3 DETECTION PROBABILITY

Data Sheet for	Short Pulse Rad	ar Type 3		
			Pulse	
Waveform	# Pulses per	Pulse Width	repetition	Successful Detection
No.	burst	(us)	Interval	(Yes/No)
			(us)	
3001	17	6.70	419	Yes
3002	16	6.20	357	No
3003	16	10.00	341	Yes
3004	18	8.50	407	Yes
3005	17	5.30	280	Yes
3006	17	8.30	333	No
3007	18	5.50	380	Yes
3008	16	8.40	298	Yes
3009	16	9.80	491	No
3010	18	5.90	339	Yes
3011	18	7.90	305	Yes
3012	17	8.10	408	Yes
3013	18	8.40	259	Yes
3014	16	5.30	305	Yes
3015	16	8.30	448	Yes
3016	18	7.70	323	Yes
3017	17	7.00	396	Yes
3018	17	5.40	457	Yes
3019	17	7.60	490	No
3020	16	5.50	295	Yes
3021	17	7.00	476	Yes
3022	17	5.40	376	Yes
3023	18	8.80	321	Yes
3024	17	5.60	347	Yes
3025	16	7.60	348	Yes
3026	18	9.50	401	Yes
3027	16	8.20	495	Yes
3028	16	7.40	425	Yes
3029	18	7.50	302	Yes
3030	18	5.60	440	No

TYPE 4 DETECTION PROBABILITY

	Short Pulse Rad		Pulse	
Waveform	# Pulses per	Pulse Width	repetition	Successful Detection
No.	burst	(us)	Interval	(Yes/No)
110.	Saiot	(40)	(us)	(100/110)
4001	16	19.40	377	No
4002	14	15.50	346	Yes
4003	12	14.10	391	Yes
4004	14	16.60	444	Yes
4005	13	16.00	366	Yes
4006	16	16.40	495	No
4007	14	11.40	415	Yes
4008	15	10.80	324	Yes
4009	13	19.20	460	No
4010	12	12.20	342	Yes
4011	13	17.40	333	Yes
4012	15	18.60	400	Yes
4013	13	10.20	264	No
4014	15	13.00	446	Yes
4015	15	19.50	396	No
4016	12	15.20	443	No
4017	14	16.00	487	Yes
4018	13	17.00	334	No
4019	14	18.60	316	Yes
4020	16	17.20	302	Yes
4021	15	14.40	274	Yes
4022	16	15.20	334	Yes
4023	15	14.00	341	Yes
4024	12	10.50	337	Yes
4025	16	18.30	315	Yes
4026	15	19.90	430	Yes
4027	13	18.00	264	Yes
4028	14	14.60	480	Yes
4029	16	19.60	356	Yes
4030	16	14.50	442	Yes

TYPE 5 DETECTION PROBABILITY

Data Sheet for Long Pulse Radar Type 5				
Waveform No.	Successful Detection (Yes/No)			
5001	Yes			
5002	Yes			
5003	Yes			
5004	Yes			
5005	Yes			
5006	Yes			
5007	Yes			
5008	Yes			
5009	Yes			
5010	Yes			
5011	Yes			
5012	Yes			
5013	Yes			
5014	Yes			
5015	Yes			
5016	Yes			
5017	Yes			
5018	Yes			
5019	Yes			
5020	Yes			
5021	Yes			
5022	Yes			
5023	Yes			
5024	Yes			
5025	Yes			
5026	Yes			
5027	Yes			
5028	Yes			
5029	Yes			
5030	Yes			

TYPE 5 WAVEFORM PARAMETERS

Waveform 1 2 3 4 5 6 7 8 9 10 11	1 3 2 3 1 3 1 2 2 1	Pulse Width (usec) um of Bursts = 95 90 70 55 90 85 55 95 70 70	Chirp Width (MHz) 17; Burst Interv 15 18 10 20 15 18 5 14 7	Pulse 1 to 2 Pri (usec) val (us) = 705882 1073 1061 1673 1768 1181	Pulse 2 to 3 Pri (usec) 2.0; Total number 1457 1982 1292	Starting Location Within Interval (usec) er of pulses = 33 439880 1348668 1428897 2234463 2980166 4211489 4879929
1 2 3 4 5 6 6 7 8 9 9	Num = 1; No 1 3 2 3 1 3 1 2 2 1 1 2	um of Bursts = 95 90 70 55 90 85 55 95 70	17; Burst Interv 15 18 10 20 15 18 5	val (us) = 705882 1073 1061 1673 1768	2.0; Total number 1457 1982 1292	er of pulses = 33 439880 1348668 1428897 2234463 2980166 4211489
1 2 3 4 5 6 6 7 8 9 9	1 3 2 3 1 3 1 2 2 1	95 90 70 55 90 85 55 95	15 18 10 20 15 18 5	1073 1061 1673 1768	1457 1982 1292	439880 1348668 1428897 2234463 2980166 4211489
2 3 4 5 6 7 8 9 10	3 2 3 1 3 1 2 2 1	90 70 55 90 85 55 95	18 10 20 15 18 5	1061 1673 1768 	1982 1292	1348668 1428897 2234463 2980166 4211489
3 4 5 6 6 7 8 9 9 10	2 3 1 3 1 2 2 1	70 55 90 85 55 95	10 20 15 18 5	1061 1673 1768 	1982 1292	1428897 2234463 2980166 4211489
4 5 6 7 8 9 10	3 1 3 1 2 2 1 2	55 90 85 55 95	20 15 18 5 14	1673 1768 	1982 1292	2234463 2980166 4211489
5 6 7 8 9 10	1 3 1 2 2 1	90 85 55 95 70	15 18 5 14	1768 	 1292	2980166 4211489
6 7 8 9 10	3 1 2 2 1 2	85 55 95 70	18 5 14	1768 	1292	4211489
7 8 9 10 11	1 2 2 1 2	55 95 70	5 14			
8 9 10 11	2 2 1 2	95 70	14			4879929
9 10 11	2 1 2	70		1181		
10 11	1 2		7			5215359
11	2	70		1596		6205484
			10			7046459
12		95	5	1915		7464868
	2	55	13	1657		7977400
13	1	55	13			8712255
14	3	50	10	1455	1893	9598129
15	2	60	13	1954		10430306
16	2	80	15	1841		11045789
17	2	80	12	1950		11906587
Waveform I				• •	3.0; Total number	er of pulses = 16
1	1	95	16			1234053
2	3	85	17	1003	1545	1243896
3	1	80	15			1246765
4	2	50	10	1172		1004779
5	2	55	17	1748		1443085
6	3	90	14	1511	1794	1116727
7	1	50	20			1140432
8	1	95	17			987102
9	. 2	55	8	1127		2393061
Waveform I						er of pulses = 20
1	2	75 25	8	1002		34704
2	3	95	16	1154	1345	1990064
3	3	85 55	11	1644	1369	702319
4	2	55	16	1163		1297490
5	1	100	7	4550		1542881
6	2	70	20	1550		1479836
7	1	80	19	4000		241874
8	2	80	5	1890		2137788
9 10	2 2	90 50	15 11	1721 1230		1014347 1251164

Burst#	Number of Pulses	Pulse Width (usec)	Chirp Width (MHz)	Pulse 1 to 2 Pri (usec)	Pulse 2 to 3 Pri (usec)	Starting Location Within Interval (usec)
Waveform	Num = 4; N	lum of Bursts =	13; Burst Interv	al (us) = 923077	7.0; Total number	er of pulses = 26
1	2	75	8	1121		522045
2	3	65	17	1220	1231	625840
3	2	55	7	1475		1541263
4	1	85	17			527230
5	3	100	19	1807	1159	974382
6	1	50	16			489394
7	2	50	17	1542		1538427
8	2	80	17	1442		576858
9	2	90	9	1934		711499
10	3	95	11	1850	1149	1554384
11	1	95	16			154788
12	3	100	19	1954	1289	1344422
13	1	50	8			711815
Waveform	Num = 5; N	lum of Bursts =	10; Burst Interv	al (us) = 120000	0.0; Total numb	er of pulses = 18
1	3	55	14	1792	1958	1010026
2	3	85	7	1563	1357	929831
3	1	50	8			966594
4	2	90	20	1692		882346
5	2	65	17	1432		1501514
6	1	80	11			760211
7	1	80	11			1816834
8	2	65	9	1879		941091
9	1	80	10			919966
10	2	100	18	1097		1694041
Waveform	Num = 6; N	um of Bursts =	8; Burst Interva	al (us) = 1500000	0.0; Total number	er of pulses = 15
1	2	55	17	1441		1126575
2	3	70	14	1247	1586	933749
3	1	55	19			2360519
4	1	55	10			1328632
5	1	50	13			690014
6	3	50	15	1993	1412	1426225
7	1	65	13			1873983
8	3	90	8	1042	1314	755867

Burst#	Number of Pulses	Pulse Width (usec)	Chirp Width (MHz)	Pulse 1 to 2 Pri (usec)	Pulse 2 to 3 Pri (usec)	Starting Location Within Interval
Wayoform	Num = 7: N	um of Burete = 1	Q: Burst Intony	al (us) = 666667		(usec) er of pulses = 43
1	2 2	85	12 aug 12	1412	.u, Total Hullion	454289
2	3	65	6	1071	1517	531384
3	1	90	16		1317	1002648
4	2	60	8	1281		264015
5	1	90	5			431280
6	3	65	5 11	1760	 1721	1100401
7	ა 1	50	15			
	2			4006		217488
8	-	95 50	17	1086	4062	910095
9	3	50 50	13	1541	1062	970522
10	3	50 75	16	1802	1703	196726
11	3	75 55	20	1279	1977	982005
12	3	55	7	1862	1036	433043
13	2	85	10	1499		927638
14	2	80	12	1244		455256
15	3	50	19	1799	1143	1012287
16	3	50	6	1156	1391	314685
17	3	85	18	1333	1987	561030
18	3	85	13	1480	1030	515905
				al (us) = 600000	0.0; Total number	er of pulses = 39
1	1	100	15			479575
2	1	75	16			155667
3	2	75	20	1230		973586
4	1	65	18			208755
5	2	100	13	1051		656732
6	2	50	6	1513		549645
7	3	85	14	1003	1847	991441
8	2	95	13	1126		400919
9	2	85	15	1679		785708
10	3	100	17	1014	1034	474723
11	2	70	14	1426		686450
12	1	50	16			786703
13	1	70	9			369645
14	1	90	16			452309
15	2	60	7	1267		443784
16	1	75	11			965967
17	3	60	8	1460	1286	489669
18	3	95	16	1793	1809	362740
19	3	50	20	1473	1413	775411
20	3	55	10	1165	1769	460656

Burst #	Number of Pulses	(usec)	Chirp Width (MHz)	Pulse 1 to 2 Pri (usec)	Pulse 2 to 3 Pri (usec)	Starting Location Within Interval (usec)
Waveform	Num = 9; N	um of Bursts = 20); Burst Interv	` '	0.0; Total number	er of pulses = 39
1	2	85	6	1733		493721
2	2	95	9	1645		576768
3	2	95	12	1397		320445
4	3	95	13	1617	1198	530953
5	1	50	7			738795
6	1	80	17			670450
7	2	85	9	1706		407698
8	2	80	16	1252		543138
9	2	75	15	1964		548483
10	2	65	19	1047		931049
11	3	75	18	1570	1110	674458
12	2	80	18	1600		267556
13	2	65	15	1245		605894
14	1	65	16			691649
15	1	55	19			885804
16	3	55	11	1621	1574	436678
17	2	75	11	1442		263012
18	1	95	5			1107570
19	2	55	6	1671		192441
20	3	80	20	1103	1006	562184
Waveform	Num = 10; N	Num of Bursts = 1	3; Burst Interv	/al (us) = 92307	7.0; Total numb	er of pulses = 23
1	3	95	11	1675	1631	315888
2	1	100	13			1403887
3	1	80	15			957501
4	2	55	6	1195		241674
5	3	95	12	1421	1519	1282700
6	1	55	11			517134
7	1	55	18			1508163
8	2	75	13	1796		1088740
9	1	95	13			476084
10	1	100	12			625305
11	3	75	12	1937	1034	1245925
12	1	50	6			856530
13	3	50	5	1465	1258	814254

						Starting Location
Duret #	Number of	Pulse Width	Chirp Width	Pulse 1 to 2	Pulse 2 to 3	_
Burst #	Pulses	(usec)	(MHz)	Pri (usec)	Pri (usec)	Within Interval
10/2006	Norman Ada N	, ,	44. Downt later	,	, ,	(usec)
				, ,		er of pulses = 25
1	1	50 05	20	4000		77805
2	2	95	15	1869		1065226
3	2	70	7 1 -	1802		1034698
4	1	60	17			435932
5	1	75	15			1106143
6	3	60	9	1516	1194	698289
7	1	70	6			760559
8	2	70	5	1880		1168389
9	2	55	15	1464		595561
10	1	95	5			1392657
11	2	80	17	1944		511255
12	3	95	17	1788	1602	558777
13	2	60	14	1693		1531017
14	2	85	6	1839		201358
Waveform						er of pulses = 35
1	2	100	13	1511		48779
2	3	80	20	1170	1133	703895
3	3	80	5	1971	1255	735928
4	2	65	5	1816		1077047
5	1	55	13			889251
6	3	60	11	1687	1725	527934
7	1	65	20			309711
8	1	80	6			1015513
9	1	75	7			849840
10	1	95	6			761023
11	1	100	18			169083
12	2	100	17	1232		779841
13	3	70	12	1388	1301	685117
14	3	75	8	1025	1072	839846
15	3	90	14	1666	1176	482154
16	2	70	5	1469		1352626
17	3	55	16	1789	1537	82906
Waveform	Num = 13; N	Num of Bursts =	12; Burst Interv	/al (us) = 100000	0.0; Total numb	per of pulses = 25
1	1	85	20			295517
2	1	60	10			970201
3	3	50	8	1395	1686	795925
4	1	95	15			1175871
5	3	60	9	1267	1938	1055373
6	2	60	8	1153		1140626
7	3	70	15	1451	1065	1330162
8	2	75	5	1183		703337
9	2	85	14	1601		655128
10	3	70	18	1121	1851	1722467
11	1	60	8			959478
12	3	90	13	1225	1697	788805

Burst #	Number of Pulses	Pulse Width (usec)	Chirp Width (MHz)	Pulse 1 to 2 Pri (usec)	Pulse 2 to 3 Pri (usec)	Starting Location Within Interval (usec)
Waveform	Num = 14; N	Num of Bursts =	9; Burst Interv	al (us) = 133333	3.0; Total numb	er of pulses = 22
1	3	90	14	1060	1539	1188603
2	2	85	8	1397		1278237
3	3	90	20	1457	1363	1167849
4	3	55	16	1602	1907	1438857
5	3	80	16	1672	1140	873236
6	2	50	10	1616		1753417
7	1	75	14			897589
8	3	90	19	1056	1541	1004887
9	2	95	7	1875		1295414
Waveform	Num = 15; N	Num of Bursts =	20; Burst Interv	/al (us) = 60000	0.0; Total numb	er of pulses = 41
1	2	75	17	1936		16504
2	3	85	5	1878	1493	876477
3	2	75	5	1127		622117
4	2	80	14	1330		503775
5	2	55	11	1861		570018
6	2	75	18	1488		827178
7	2	85	11	1812		317049
8	1	50	9			831326
9	3	60	5	1312	1999	318505
10	3	80	16	1039	1342	985606
11	2	85	15	1666		144549
12	2	85	10	1896		623378
13	3	95	8	1730	1669	637222
14	1	60	20			518888
15	2	75	10	1228		809956
16	1	80	16			881527
17	2	75	10	1923		506402
18	2	90	17	1681		550389
19	1	80	8			376281
20	3	95	15	1529	1467	447406

	Number of	Pulse Width	Chirp Width	Pulse 1 to 2	Pulse 2 to 3	Starting Location
Burst #	Pulses	(usec)	(MHz)	Pri (usec)	Pri (usec)	Within Interval
			` ′	,	, ,	(usec)
Waveform	Num = 16; N	Num of Bursts = '		/al (us) = 75000	0.0; Total numb	er of pulses = 32
1	1	65	15			735563
2	1	85	6			242865
3	1	100	14			1041851
4	3	60	10	1802	1284	910890
5	2	95	18	1000		609185
6	3	80	15	1285	1312	589646
7	1	80	8			740148
8	2	95	5	1931		812674
9	3	85	18	1021	1741	854694
10	3	70	11	1671	1754	505219
11	1	80	7			909200
12	2	85	17	1970		522188
13	1	100	10			724763
14	2	60	11	1474		923966
15	3	65	16	1401	1303	951357
16	3	70	7	1825	1191	539210
Waveform	Num = 17; 1		12; Burst Interv	/al (us) = 100000	0.0; Total numl	per of pulses = 28
1	3	50	18	1213	1004	975698
2	2	80	15	1615		79873
3	2	85	16	1509		1639345
4	2	55	15	1914		308831
5	3	90	9	1916	1089	1332414
6	1	65	16			993453
7	1	75	20			1056718
8	3	80	16	1921	1691	716146
9	3	80	10	1418	1749	1294318
10	3	60	16	1441	1653	1455757
11	3	50	8	1639	1166	138191
12	2	80	9	1411		1369680
						er of pulses = 37
1	3	95	6	1555	1194	498478
2	1	75	5			462541
3	3	75	11	1863	1141	545804
4	2	65	13	1086		921433
5	3	80	5	1086	1153	771781
6	2	50	16	1759		769459
7	2	85	9	1713		904095
8	2	55	20	1193		689177
9	3	85	14	1656	1630	232425
10	1	90	12			1036947
11	1	95	9			828038
12	3	70	18	1848	1273	746340
13	2	80	11	1124		201216
14	3	75	9	1059	1301	582663
15	1	50	19			1161804
16	3	80	15	1479	1087	819206
17	2	55	11	1899		480099

Burst#	Number of Pulses	Pulse Width (usec)	Chirp Width (MHz)	Pulse 1 to 2 Pri (usec)	Pulse 2 to 3 Pri (usec)	Starting Location Within Interval
		, ,	, ,	, ,	,	(usec)
_					0.0; Total numb	er of pulses = 34
1	2	95	18	1987		188631
2	3	100	5	1660	1862	1000309
3	2	100	8	1497		46364
4	1	80	16			915551
5	1	70	14			546445
6	2	65	7	1251		607828
7	1	95	6			554939
8	1	65	9			440380
9	3	65	9	1311	1103	590768
10	2	50	7	1889		777339
11	3	80	14	1416	1658	817716
12	1	65	13			135030
13	2	60	14	1001		1010167
14	1	80	20			172637
15	1	50	7			631583
16	3	50	19	1640	1554	989654
17	1	90	13			428028
18	2	50	19	1298		369648
19	1	75	18			838873
20	1	80	16			618778
Waveform	Num = 20; N	Num of Bursts =	9; Burst Interv	al (us) = 133333	3.0; Total numb	er of pulses = 17
1	1	50	7			248474
2	2	50	16	1192		2271842
3	2	95	5	1100		326382
4	3	60	15	1681	1445	2421082
5	1	85	18			76910
6	3	50	15	1133	1938	1825522
7	1	60	14			1427576
8	3	95	20	1175	1030	1530170
9	1	80	14			1777972
Waveform	Num = 21; N	Num of Bursts =	16; Burst Interv	val (us) = 75000	0.0; Total numb	er of pulses = 29
1	2	75	14	1153		391806
2	1	70	16			731538
3	1	95	20			604103
4	3	60	10	1666	1638	975827
5	2	50	5	1770		304789
6	1	95	14			880189
7	1	90	7			752247
8	3	80	10	1896	1918	619131
9	3	70	17	1491	1586	920697
10	1	90	16			703024
11	1	60	13			849432
12	3	95	5	1440	1459	1146690
13	1	50	5			781310
14	3	60	16	1807	1583	594636
15	1	80	16			492065
16	2	75	14	1900		1074530

	Number of	Pulse Width	Chirp Width	Pulse 1 to 2	Pulse 2 to 3	Starting Location
Burst #	Pulses	(usec)	(MHz)	Pri (usec)	Pri (usec)	Within Interval
				, ,	, ,	(usec)
Waveform	Num = 22;	Num of Bursts = 1		val (us) = 100000	0.0; Total numl	per of pulses = 25
1	2	65	20	1005		436903
2	3	60	15	1196	1513	1544642
3	1	85	14			289414
4	3	100	18	1444	1784	1593463
5	2	95	12	1885		1032749
6	2	80	11	1944		1064607
7	3	55	17	1330	1451	658511
8	1	65	10			495060
9	2	60	20	1137		1379615
10	1	85	18			918286
11	2	55	14	1450		1055606
12	3	85	19	1823	1275	654545
Waveform	Num = 23;	Num of Bursts = 1	6; Burst Interv	val (us) = 75000	0.0; Total numb	er of pulses = 31
1	1	100	9			218615
2	2	55	12	1224		744789
3	2	95	20	1903		1188122
4	1	80	15			543013
5	2	70	12	1585		628443
6	3	60	11	1088	1189	775651
7	1	60	5			945431
8	3	75	17	1165	1165	921619
9	2	90	11	1816		98507
10	2	70	6	1921		1068988
11	1	80	20			484006
12	2	70	14	1568		1024031
13	3	90	6	1835	1292	329747
14	3	95	10	1200	1333	1066980
15	2	50	6	1773		1033183
16	1	80	13			451043
Waveform	Num = 24;	Num of Bursts = 1	4; Burst Inter-	val (us) = 85714	3.0; Total numb	er of pulses = 29
1	3	95	20	1290	1690	131167
2	3	100	18	1544	1150	986163
3	3	75	13	1812	1250	650725
4	3	95	8	1296	1077	1296952
5	1	85	17			791785
6	2	90	10	1664		605337
7	3	75	13	1111	1809	820184
8	1	80	14			1330639
9	1	70	11			777805
10	3	100	9	1021	1340	861276
11	2	60	9	1838		907716
12	1	75	16			547754
13	2	55	15	1824		998361
14	1	90	6			950106

Burst # Number of Pulses Pulse Width (usec) Chirp Width (mHz) Pulse 1 to 2 Pulse 2 to 3 Pri (usec) Within Intrinsical Pulses 1	
Burst # Pulses (usec) (MHz) Pri (usec) Pri (usec) Within Interval (usec) Within Interval (usec) Surst Interval (usec) Pri (usec) Within Interval (usec) Surst Interval (usec)	
Waveform Num = 25; Num of Bursts = 20; Burst Interval (us) = 600000.0; Total number of pulses = 1 1 1 100 12	erval
1 1 100 12 435347 2 1 80 13 636916 3 3 75 6 1130 1171 502888 4 1 60 5 699524 5 3 1000 7 1469 1370 679886 6 3 75 6 1274 1853 619507 7 1 65 15 192782 8 3 85 12 1072 1672 993846 9 2 50 8 1172 192782 8 3 85 12 1072 1672 993846 9 2 50 8 1172 98721 10 1 70 5 654703 11 2 55 16 1972 65833 12 3 85 8 <td< td=""><td></td></td<>	
2 1 80 13 636918 3 3 75 6 1130 1171 502888 4 1 60 5 699524 5 3 100 7 1469 1370 679886 6 3 75 6 1274 1853 619570 7 1 65 15 192782 8 3 85 12 1072 1672 993844 9 2 50 8 1172 98721 10 1 70 5 654703 11 2 55 16 1972 65837 12 3 85 8 1738 1162 497944 13 2 75 11 1624 101904 14 2 90 18 1072 52634 15 3 70 11 <	
3 3 75 6 1130 1171 502888 4 1 60 5 699524 5 3 100 7 1469 1370 679886 6 3 75 6 1274 1853 619507 7 1 65 15 192782 8 3 85 12 1072 1672 993848 9 2 50 8 1172 98721 10 1 70 5 654703 11 2 55 16 1972 65837 12 3 85 8 1738 1162 497946 13 2 75 11 1624 101904 14 2 90 18 1072 525634 15 3 70 11 1199 1680 643765 16 2 80 16	
4 1 60 5 699522 5 3 100 7 1469 1370 679886 6 3 75 6 1274 1853 619507 7 1 65 15 192782 8 3 85 12 1072 1672 993844 9 2 50 8 1172 98721 10 1 70 5 654703 11 2 55 16 1972 654831 12 3 85 8 1738 1162 497946 13 2 75 11 1624 101904 14 2 90 18 1072 52634 15 3 70 11 1199 1680 643763 16 2 80 16 1967 669976 17 2 70 10 1485 105526 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 520317 19 3 70 7 1804 1134 977724 20 1 55 14 520317 19 3 70 7 1804 1134 977724 20 1 55 14 520317 20 1 55 14 520317 19 3 70 7 1804 1134 977724 20 1 55 14 520317 19 3 70 7 1804 1134 977724 20 1 55 14 520317 19 3 70 7 1804 1134 977724 20 1 55 14 520317 20 1 55 14 520317 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 7 1208 1892 853956	
5 3 100 7 1469 1370 679886 6 3 75 6 1274 1853 619507 7 1 65 15 192782 8 3 85 12 1072 1672 993846 9 2 50 8 1172 98721 10 1 70 5 654703 11 2 55 16 1972 65683 12 3 85 8 1738 1162 497946 13 2 75 11 1624 101904 14 2 90 18 1072 525632 15 3 70 11 1199 1680 643763 16 2 80 16 1967 669976 17 2 70 10 1485 105526 18 1 80 5	
6 3 75 6 1274 1853 619507 7 1 65 15 192782 8 3 85 12 1072 1672 993848 9 2 50 8 1172 98721 10 1 70 5 654703 11 2 55 16 1972 656834 12 3 85 8 1738 1162 497948 13 2 75 11 1624 101904 14 2 90 18 1072 525634 15 3 70 11 1199 1680 643765 16 2 80 16 1967 669976 17 2 70 10 1485 105528 18 1 80 5 105528 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307912 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581018 3 3 70 7 1208 1892 853958 4 1 70 20 700410	
7 1 65 15 192782 8 3 85 12 1072 1672 993844 9 2 50 8 1172 98721 10 1 70 5 654703 11 2 55 16 1972 656833 12 3 85 8 1738 1162 497946 13 2 75 11 1624 101904 14 2 90 18 1072 525634 15 3 70 11 1199 1680 643763 16 2 80 16 1967 669976 17 2 70 10 1485 105522 18 1 80 5 105522 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581013 3 3 70 7 1208 1892 853956 4 1 70 20 700410	
8 3 85 12 1072 1672 993848 9 2 50 8 1172 98721 10 1 70 5 654703 11 2 55 16 1972 656831 12 3 85 8 1738 1162 497946 13 2 75 11 1624 101904 14 2 90 18 1072 525634 15 3 70 11 1199 1680 643763 16 2 80 16 1967 669976 17 2 70 10 1485 105528 18 1 80 5 105528 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581013 3 3 70 7 1208 1892 853956 4 1 70 20 700410	
9 2 50 8 1172 98721 10 1 70 5 654703 11 2 55 16 1972 656831 12 3 85 8 1738 1162 497946 13 2 75 11 1624 101904 14 2 90 18 1072 525634 15 3 70 11 1199 1680 643763 16 2 80 16 1967 669976 17 2 70 10 1485 105523 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581013 3 3 70 7 1208 1892 853956 4 1 70 20 700410	
10 1 70 5 654703 11 2 55 16 1972 65683 12 3 85 8 1738 1162 497946 13 2 75 11 1624 101904 14 2 90 18 1072 525634 15 3 70 11 1199 1680 643765 16 2 80 16 1967 669976 17 2 70 10 1485 105525 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3	3
11 2 55 16 1972 65683 12 3 85 8 1738 1162 497946 13 2 75 11 1624 101904 14 2 90 18 1072 525632 15 3 70 11 1199 1680 643763 16 2 80 16 1967 669976 17 2 70 10 1485 105528 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581018 3 3 <td< td=""><td></td></td<>	
12 3 85 8 1738 1162 497946 13 2 75 11 1624 101904 14 2 90 18 1072 525634 15 3 70 11 1199 1680 643765 16 2 80 16 1967 669976 17 2 70 10 1485 105525 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20	3
13 2 75 11 1624 101904 14 2 90 18 1072 525634 15 3 70 11 1199 1680 643763 16 2 80 16 1967 669976 17 2 70 10 1485 105528 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581015 3 3 70 7 1208 1892 853956 4 1 70 20 700410	
14 2 90 18 1072 525634 15 3 70 11 1199 1680 643763 16 2 80 16 1967 669976 17 2 70 10 1485 105528 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20 700410	5
15 3 70 11 1199 1680 643768 16 2 80 16 1967 669976 17 2 70 10 1485 105528 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20 700410	7
16 2 80 16 1967 669976 17 2 70 10 1485 105528 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20 700410	ļ
17 2 70 10 1485 105528 18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20 700410)
18 1 80 5 520317 19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20 700410	6
19 3 70 7 1804 1134 977724 20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20 700410	5
20 1 55 14 307913 Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20 700410	,
Waveform Num = 26; Num of Bursts = 16; Burst Interval (us) = 750000.0; Total number of pulses = 1750000.0; 1 2 95 17 1841 283793 2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20 700410	ŀ
1 2 95 17 1841 283793 2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20 700410	
2 3 80 9 1927 1221 581019 3 3 70 7 1208 1892 853956 4 1 70 20 700410	39
3 3 70 7 1208 1892 853956 4 1 70 20 700410	3
4 1 70 20 700410)
1 · · · · · · · · · · · · · · · · · · ·	6
5 3 85 12 1968 1208 960998)
	3
6 3 60 19 1518 1289 758197	•
7 3 85 20 1726 1338 581477	
8 3 100 14 1010 1057 851427	,
9 3 95 17 1604 1383 56328 ⁴	
10 2 60 20 1411 113268	7
11 2 85 17 1533 494380)
12 2 85 5 1696 104951	1
13 1 95 14 318607	•
14 2 95 17 1259 578166	;
15 3 75 16 1085 1295 99587°	
16 3 75 14 1536 1814 747207	,

	Number of	Pulse Width	Chirp Width	Pulse 1 to 2	Pulse 2 to 3	Starting Location
Burst #	Pulses		-		Pri (usec)	Within Interval
	Puises	(usec)	(MHz)	Pri (usec)	Pri (usec)	(usec)
Waveform	Num = 27; N	lum of Bursts = 1	14; Burst Interv	/al (us) = 85714	3.0; Total numb	er of pulses = 30
1	2	65	6	1690		579377
2	1	75	14			607873
3	3	55	15	1972	1359	785055
4	3	60	13	1443	1768	1230905
5	3	50	19	1483	1902	773723
6	3	60	11	1733	1375	1116862
7	1	60	7			307875
8	1	60	17			580265
9	2	65	20	1407		1299872
10	1	100	9			725856
11	3	75	10	1016	1774	717542
12	3	60	6	1761	1847	1100870
13	1	70	5			1093522
14	3	80	18	1522	1294	509691
	Num = 28: N					er of pulses = 37
1	2	70	16	1548		558487
2	2	70	20	1788		113210
3	2	55	5	1611		877693
4	3	100	7	1062	1597	1036454
5	2	60	, 12	1637		90085
6	2	100	18	1728		690661
7	3	75	12	1529	1788	973960
8	1	85	20			341598
9	2	95	19	1563		688465
10	1	80	9			1230973
11	2	90	10	1532		241284
12	3	100	14	1252	1984	903556
13	3	85	8	1924	1646	862587
14	1	75	11			356518
15	2	60	20	1341		380090
16	3	90	14	1778	1573	1194657
17	1	65	17			338024
18	2	55	7	1004		883039
_	_				 2 0: Total numb	er of pulses = 29
1	Nuiii – 29, r 3		14, Burst linters		3.0, 10tai numb 1305	-
2	ა 1	80 50	10	1369 	1305	130780
3	3	50 50	16	1552	 1714	1489774 494191
×	ა 3	50 85	10	1791	1943	963446
5	•	85 85	10 8	1791 1432		963446 591445
	2				 1950	
6 7	3 1	80 65	20 16	1703	1859	1020750 1215342
8	1	55 75	10 15			170186
9	1	75 50	15 6	4202		1495148
10	2	50 00	6 17	1382	4022	933481
11	3	90 75	17	1937	1022	431980
12	1	75 90	17	4747		860135
13	2	80	10	1747	4050	941659
14	3	80	8	1931	1658	1041814

Burst #	Number of Pulses	Pulse Width (usec)	Chirp Width (MHz)	Pulse 1 to 2 Pri (usec)	Pulse 2 to 3 Pri (usec)	Starting Location Within Interval (usec)
Waveform	Num = 30; N	Num of Bursts =	16; Burst Interv	/al (us) = 75000	0.0; Total numb	er of pulses = 32
1	3	70	6	1076	1062	190062
2	1	65	19			1039135
3	3	75	20	1930	1348	469605
4	2	85	15	1179		696215
5	2	95	10	1259		958283
6	1	50	20			1024925
7	3	100	8	1188	1708	819719
8	3	80	7	1374	1108	32736
9	1	100	16			921825
10	3	60	7	1015	1991	627564
11	1	80	7			743773
12	3	70	5	1095	1265	1168000
13	1	85	15			381828
14	1	55	6			752656
15	1	85	19			970270
16	3	90	5	1670	1864	573486

TYPE 6 DETECTION PROBABILITY

Data Sheet fo	or Hopping Signal			
Trial No.	Starting Index within NTIA August 2005 Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	221	5249	8	Yes
2	696	5250	5	Yes
3	1171	5251	5	Yes
4	1646	5252	10	Yes
5	2121	5253	11	Yes
6	2596	5254	9	Yes
7	3071	5255	17	No
8	3546	5256	9	Yes
9	4021	5257	7	Yes
10	4496	5258	8	Yes
11	4971	5259	7	Yes
12	5446	5260	3	Yes
13	5921	5261	10	Yes
14	6396	5262	8	Yes
15	6871	5263	6	Yes
16	7346	5264	9	Yes
17	7821	5265	5	Yes
18	8296	5266	8	Yes
19	8771	5267	11	Yes
20	9246	5268	11	Yes
21	9721	5269	14	Yes
22	10196	5270	8	Yes
23	10671	5271	13	Yes
24	11146	5272	10	Yes
25	11621	5273	5	Yes
26	12096	5274	8	Yes
27	12571	5275	11	Yes
28	13046	5276	9	Yes
29	13521	5277	10	Yes
30	13996	5278	13	Yes
31	14471	5279	9	Yes
32	14946	5280	7	Yes
33	15421	5281	3	Yes
34	15896	5282	10	Yes
35	16371	5283	6	Yes
36	16846	5284	10	Yes
37	17321	5285	3	Yes
38	17796	5286	6	Yes
39	18271	5287	5	Yes
40	18746	5288	8	Yes
41	19221	5289	8	Yes
42	19696	5290	4	Yes
43	20171	5291	7	Yes