

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC OET BULLETIN 65 SUPPLEMENT C

FOR

BROADCOM 802.11AG/DRAFT 802.11N WIRELESS LAN PCI-E MINI CARD

MODEL: BCM94321MC

FCC ID: QDS-BRCM1022-H

REPORT NUMBER: 06U10557-4C

ISSUE DATE: OCTOBER 9, 2006

Prepared for

BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CA 94086 USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885

Revision History

Rev.	Issued date	Revisions	Revised By
	October 3, 2006	Initial issue	HS
В	October 3, 2006	Corrected FCC ID and Model Number.	SR
С	October 9, 2006	Extracted contents of Section 7., "PROCEDURE USED TO ESTABLISH TEST SIGNAL" to separate document, SAR REPORT ADDENDUM, number 06U10557- 4A.	SR

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

DAT	DATES OF TEST: September 11-15, and 28-29, 2006						
APPLICANT:	Broadcom Corporation						
ADDRESS:	190 Mathilda Place, Sunnyvale, CA 94086 USA						
FCC ID:	QDS-BRCM1022-H						
MODEL:	BCM94321MC						
DEVICE CATEGORY:	Portable Device						
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure						

Broadcom 802.11ag/Draft 802.11n Wireless LAN PCI-E Mini Card is installed in HP Pavilion TS1000, model HSTNN-Q22C along with Bluetooth module Model BCM92045NMD FFC ID: QDS-BRCM1018.

Test Sample is a:	Production unit									
Modulation type:	Orthogonal Frequency Divi	irect Sequence Spread Spectrum (DSSS) for 802.11b rthogonal Frequency Division Multiplexing (OFDM) for 802.11agn requency Hopping Spread Spectrum (FHSS) for Bluetooth module								
Rule Parts	Frequency Range [MHz]	The Highest SAR Values [1g_mW/g]	Collocation SAR Values [1g_mW/g]							
FCC 15.247	2412-2462	1.28	1.19							
	5745 - 5825	5745 - 5825 1.488 1.431								
FCC 15.407	5180 - 5320	1.37	1.281							

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (Edition 01-01).

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin-Fa Shih

Hsin Fu Shih Senior Engineer Compliance Certification Services Tested By:

Winey Dorough

Ninous Davoudi EMC Engineer Compliance Certification Services

Table Of Contents

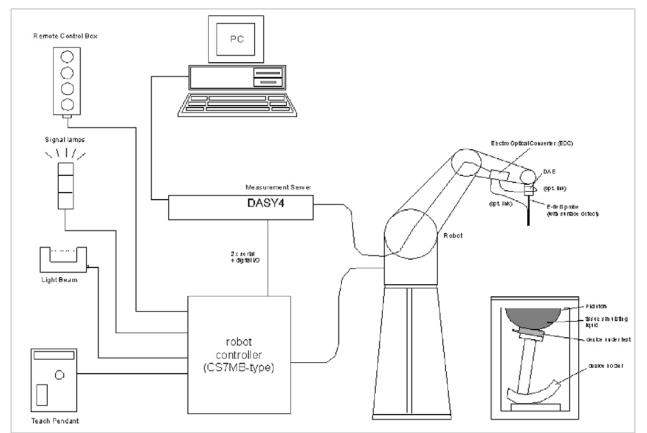
1	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	5
2	FACILITIES AND ACCREDITATION	
3	SYSTEM DESCRIPTION	
	3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS	
4	SIMULATING LIQUID PARAMETERS CHECK	9
	4.1 SIMULATING LIQUID PARAMETER CHECK RESULT	
5	SYSTEM PERFORMANCE CHECK	. 18
	5.1 SYSTEM PERFORMANCE CHECK RESULTS	. 20
6	SAR MEASURMENT PROCEDURE	.22
	6.1 DASY4 SAR MEASURMENT PROCEDURE	.23
7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	.24
8	SAR MEASURMENT RESULTS	. 25
	8.1 2.4GHZ	
	8.1.1 LCD EDGE MAIN ANTENNA POSITION8.1.2 LCD EDGE AUX ANTENNA POSITION	
	 8.1.2 LCD EDGE AUX ANTENNA POSITION	
	8.1.4 LAP HELD AUX ANTENNA POSITION	.28
	8.2 5.2GHZ	
	8.2.1 LCD EDGE MAIN ANTENNA POSITION	
	8.2.2 LCD EDGE AUX ANTENNA POSITION8.2.3 LAP HELD MAIN ANTENNA POSITION	
	8.2.4 LAP HELD AUX ANTENNA POSITION	
	8.3 5.8GHZ	. 33
	8.3.1 LCD EDGE MAIN ANTENNA POSITION	.33
	8.3.2 LCD EDGE AUX ANTENNA POSITION8.3.3 LAP HELD MAIN ANTENNA POSITION	
	8.3.4 LAP HELD AUX ANTENNA POSITION	
9	MEASURMENT UNCERTAINTY	. 37
	9.1 MEASURMENT UNCERTAINTY FOR 300 MHZ – 3000 MHZ	. 37
	9.2 MEASURMENT UNCERTAINTY 3 GHZ – 6 GHZ	. 38
10	EQUIPMENT LIST AND CALIBRATION	. 39
11	PHOTOS	.40
12	ATTACHMENTS	.44

1 EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Broadcom 802.11ag/Draft 802.11n Wireless LAN PCI-E Mini Card is installed in HP Pavilion TS1000, model HSTNN-Q22C along with Bluetooth module Model BCM92045NMD FFC ID: QDS-BRCM1018.

Normal operation:	Lap-held position, and LCD Edge positions
Accessory:	N/A
Earphone/Headset Jack:	N/A
Duty cycle:	97%
Host Device(s):	HP Pavilion TS1000, model HSTNN-Q22C
Antenna(s)	Main: Hon HAI Precision IND. CO., LTD, PIFA, PN # WDAN-HQT T8001-DF AUX: Hon HAI Precision IND. CO., LTD, PIFA, PN # WDAN-HQT T8003-DF
Power supply:	Power supplied through the laptop computer (host device).

2 FACILITIES AND ACCREDITATION


The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

3 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

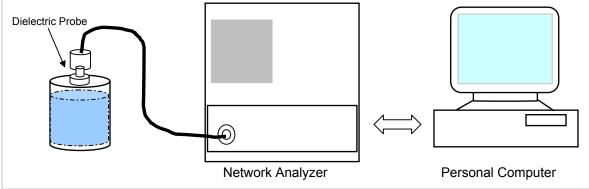
3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)								
(% by weight)	45	50	83	35	· 9′	15	19	00	2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose


Water: De-ionized, 16 MΩ+ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

4 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ead	Bo	dy
raiget requeitey (milz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured using a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired \pm 5% for the whole 5 to 5.8 GHz range.

f (MHz)	Head	Tissue	Body	Tissue	Reference		
1 (IVII 12)	rel. permitivity	conductivity	rel. permitivity	conductivity	Reference		
3000	38.5	2.40	52.0	2.73	Standard		
5800	35.3	5.27	48.2	6.00	Standard		
5000	36.2	1.45	49.3	5.07	Interpolated		
5100	36.1	4.55	49.1	5.18	Interpolated		
5200	36.0	4.66	49.0	5.30	Interpolated		
5300	35.9	4.76	48.9	5.42	Interpolated		
5400	35.8	4.86	48.7	5.53	Interpolated		
5500	35.6	4.96	48.6	5.65	Interpolated		
5600	35.5	5.07	48.5	5.77	Interpolated		
5700	35.4	5.17	48.3	5.88	Interpolated		

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 45%

f (MHz)	imulating Lio Temp. (°C)	quid Depth (cm)			Parameters	Measured	Target	Deviation (%)	Limit (%)
2450	22	15	e'	50.5506	Relative Permittivity (ε_r):	50.5506	52.7	-4.08	± 5
2430	22	15	e"	14.7061	Conductivity (σ):	2.00439	1.95	2.79	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 d	deg	. C; Liqu	id temperature: 22.0 d	deg C			
Septemb	er 11, 20	06 09:11 A	١M						
Frequence	у	e'			e"				
2400000	000.	50	.72	291	14.4892				
2410000	000.	50	.69	975	14.5264				
2420000	000.	50	.66	658	14.5715				
2430000	000.	50	.63	361	14.6259				
2440000	000.	50	.59	900	14.6533				
2450000	000.	50	.55	506	14.7061				
2460000	000.	50	.52	242	14.7292				
2470000	000.	50	.48	308	14.7702				
2480000	000.	50	.44	197	14.8259				
2490000	000.	50	.41	07	14.8739				
2500000	000.	50	.37	701	14.9135				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	$\sigma = \omega \varepsilon_{\theta} \mathbf{e}'' = 2 \pi f \varepsilon_{\theta} \mathbf{e}''$								
	where $f = target f * 10^6$								
EO	= 8.854 *	\$ 10 ⁻¹²							

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 45%

	Simulating Liquid				Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)							
2450	22	15	e'	50.7877	Relative Permittivity (ε_r):	50.7877	52.7	-3.63	± 5
		-	e"	14.8018	Conductivity (σ):	2.01744	1.95	3.46	± 5
Liquid Ch	neck								
•		ure: 23.0 d	leg	. C; Liqu	id temperature: 22.0 d	deg C			
	•	06 09:13 /	-	•		•			
Frequence	су	e'			e"				
2400000	000.	50	.98	31	14.5834				
2410000	000.	50	.94	47	14.6388				
2420000	000.	50	.9138 14.6748						
2430000			0.8709 14.7298						
2440000	000.	50	.83	329	14.7573				
2450000	000.	50	.78	377	14.8018				
2460000	000.	50	.75	526	14.8383				
2470000	000.	50	.69	53	14.8735				
2480000	000.	50	.67	'84	14.9073				
2490000	000.	50	.62	209	14.9666				
2500000	000.	50	.60	58	15.0143				
The cond	luctivity (ס) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta} \mathbf{e}'' = 2 \pi f \varepsilon_{\theta} \mathbf{e}''$									
where f									
EO	= 8.854 *	· 10 ⁻¹²							

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 40%

f (MHz)	imulating Lid Temp. (°C)				Parameters	Measured	Target	Deviation (%)	Limit (%)
2450	22	15	e'	52.2587	Relative Permittivity (ε_r):	52.2587	52.7	-0.84	± 5
2450	22	15	e"	14.8777	Conductivity (σ):	2.02778	1.95	3.99	± 5
Liquid Ch	neck								
•		ure: 23.0 d	deg	. C; Liqu	id temperature: 22.0 o	deg C			
		06 08:41 /				•			
Frequence	су	e'			e"				
2400000	000.	52	.42	204	14.6434				
2410000	000.	52	.37	798	14.7076				
2420000	000.	52	.3417 14.7542						
2430000	000.	52	.32	266	14.7875				
2440000	000.	52	.29	960	14.8374				
2450000	000.	52	.25	587	14.8777				
2460000	000.	52	.21	97	14.9094				
2470000	000.	52	.16	686	14.9306				
2480000	000.	52	.10)83	14.9494				
2490000	000.	52	.07	738	15.0046				
2500000	000.	52	04	13	15.0426				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	$\sigma = \omega \varepsilon_{\theta} \mathbf{e}'' = 2 \pi f \varepsilon_{\theta} \mathbf{e}''$								
where f									
8 0	= 8.854 *	• 10 ⁻¹²							

Ambient Temperature = 24°C; Relative humidity = 50%

s	imulating Lic	quid			Deremetere	Maggurad	Target	Deviation (%)	Limit $(9/)$
f (MHz)	Temp. (°C)	Depth (cm)			Parameters	Measured		Deviation (%)	Limit (%)
5800	23	15	e'	48.7873	Relative Permittivity (ε_r):	48.7873	48.2	1.22	± 5
0000	20	10	e"	19.4178	Conductivity (σ):	6.26537	6.00	4.42	± 5
Liquid Ch	neck								
		ure: 24.0 c	leg	. C; Liqu	id temperature: 23.0 d	deg C			
		06 09:20 A				•			
Frequence	су	e'			e"				
4600000	000.	51	.09	77	17.7707				
4650000	000.	50	.97	'81	17.8151				
4700000	000.	50	.94	-02	17.9520				
4750000	000.	50	.80	83	17.9816				
4800000	000.	50	.72	39	18.1012				
4850000	000.	50	.63	53	18.1391				
4900000			.51		18.2425				
4950000		50	.42	96	18.3231				
5000000	000.		.32		18.3669				
5050000			.22		18.4778				
5100000			.12		18.4939				
5150000		50	.02	219	18.6012				
5200000			.93		18.6527				
5250000		49	.82	234	18.7403				
5300000		49	.75	523	18.7883				
5350000		49	.63	801	18.8562				
5400000			.55		18.9146				
5450000				52	18.9655				
5500000			.33		19.0591				
5550000			.24		19.0988				
5600000				596	19.1606				
5650000			.06		19.2055				
5700000				'87	19.2954				
5750000				806	19.3290				
5800000			.78		19.4178				
5850000			.69		19.4554				
5900000			.58		19.5145				
5950000			.51		19.5856				
6000000	000.	48	.41	35	19.6728				
The cond	luctivity (ס) can be	give	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e″							
where f	= target f	$r * 10^{6}$							
EO	= 8.854 *	· 10 ⁻¹²							

Ambient Temperature = 24°C; Relative humidity = 50%

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			Faidmeters	ivieasureu		Deviation (70)	Liitiit (78)
5800	23	15	e'	48.4904	Relative Permittivity (ε_r):	48.4904	48.2	0.60	± 5
			e"	19.3244	Conductivity (σ):	6.23524	6.00	3.92	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 24.0 c	leg	. C; Liqu	id temperature: 23.0 d	deg C			
•		06 07:23 A	١M						
Frequence		e'			e"				
4600000				329	17.7021				
4650000				'38	17.7594				
4700000				19	17.8761				
4750000				818	17.9323				
4800000				62	18.0282				
4850000				75	18.0843				
4900000				98	18.1612				
4950000				529	18.2537				
5000000			.99		18.3160				
5050000)84	18.4013				
5100000				00	18.4433				
5150000)78	18.5389				
5200000				227	18.5678				
5250000)73)65	18.6495				
5300000				265	18.7137				
5350000				77	18.7754				
5400000 5450000			.22	250	18.8422 18.8980				
5500000				.51 867	18.9585				
55500000				13	19.0241				
5600000				589	19.0241				
5650000				-36 -36	19.0704				
5700000) 14	19.1423				
5750000				540	19.2485				
5800000				004	19.3244				
5850000				763	19.3662				
5900000				905	19.4580				
5950000				05	19.4900				
6000000				987	19.5774				
		σ) can be g							
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f									
€ _Ø	= 8.854 *	· 10 ⁻¹²							

Room Ambient Temperature = 24°C; Relative humidity = 50%

	imulating Lic				Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)						. ,	. ,
5200	23	15	e'	50.3252	Relative Permittivity (ε_r):	50.3252	49.0	2.70	± 5
			e"	18.8826	Conductivity (σ):	5.46241	5.30	3.06	± 5
_iquid Ch	neck								
Ambient	temperat	ure: 24.0 c	leg	. C; Liqu	id temperature: 23.0 (deg C			
•		06 03:43 F	PM						
Frequence		e'			e"				
4600000			.52		17.9083				
1650000				88	17.9853				
1700000				37	18.0743				
4750000				-06	18.1573				
4800000				86	18.2426				
4850000				505	18.3274				
4900000				285	18.4133				
4950000				62	18.4932				
5000000				83	18.5675				
5050000				42	18.6494				
5100000			.54		18.7447				
5150000				249	18.7914				
5200000				252	18.8826				
5250000			.22		18.9452				
5300000				70	19.0187				
5350000				232	19.0699				
5400000			.91		19.1460				
5450000				06	19.2144				
5500000			.73		19.2780				
5550000				272	19.3444				
5600000				95	19.4119				
5650000			.42		19.4558				
5700000				30	19.5401				
5750000				29	19.5949				
5800000				526	19.6846				
5850000				20	19.7192				
5900000			.95		19.8127				
5950000			.86		19.8836				
6000000	000.	48	.//	'90	19.9412				
The cond	luctivity (σ) can be	give	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
	= target f								
$\mathcal{E}_{ heta}$	= 8.854 *	° 10 ⁻¹²							

Room Ambient Temperature = 24°C; Relative humidity = 50%

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			i didificicio	Ivicasureu		Deviation (70)	
5200	23	15	e'	50.7567	Relative Permittivity (ε_r):	50.7567	49.0	3.59	± 5
0200	20	10	e"	18.9425	Conductivity (σ):	5.47974	5.30	3.39	± 5
_iquid Ch	neck								
•		ure: 24.0 c	leg	. C; Liqu	id temperature: 23.0 d	deg C			
		06 03:16 F			•	Ũ			
Frequenc	су	e'			e"				
4600000	000.	51	.80)46	17.9697				
4650000	000.	51	.76	638	18.0085				
4700000	000.	51	.62	273	18.1713				
4750000	000.	51	.64	29	18.1792				
4800000				616	18.2871				
4850000				597	18.3955				
4900000				246	18.4890				
4950000				808	18.5689				
5000000	000.	51	.17	'07	18.6370				
5050000				09	18.7276				
5100000				'52	18.7791				
5150000				74	18.8847				
5200000				567	18.9425				
5250000				36	19.0035				
5300000				50	19.0738				
5350000				'62	19.1361				
5400000				'05	19.2342				
5450000				'48	19.2734				
5500000				689	19.3700				
5550000				253	19.3266				
5600000				963	19.4646				
5650000				88	19.4610				
5700000				517	19.6673				
5750000				888	19.6490				
5800000				758	19.7366				
5850000				614	19.8382				
5900000			.49		19.8392				
5950000				865	20.0412				
6000000	000.	49	.34	101	20.0025				
The cond	luctivity (ס) can be	give	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
	[•] = target f								
€ ₀	= 8.854 *	· 10 ⁻¹²							

5 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm).
 For 5 GHz band Special 8x8x8 fine cube was chosen for cube integration(dx=dy=4.3mm; dz=3mm)
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.0mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using finite-difference time-domain FDTD method (feed point-impedance set to 50 ohms) and the mechanical dimensions of the D5GHzV2 dipole (manufactured by SPEAG).

f (MHz)	Head	Tissue	Body Tissue				
	SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	SAR _{Peak}		
5000	72.9	20.7	68.1	19.2	260.3		
5100	74.6	21.1	78.8	19.6	272.3		
5200	76.5	21.6	71.8	20.1	284.7		
5800	78.0	21.9	74.1	20.5	324.7		

Note: All SAR values normalized to 1 W forward power.

5.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 706

Date: September 11, 2006

```
Room Ambient Temperature = 23°C; Relative humidity = 45%
```

Measured by: Ninous Davoudi

Bod	Body Simulating Liquid		SAR (mW/q)		Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mw/g)		d to 1 W	raiget	(%)	(%)
2450	22	15	1 g	12.90	51.6	51.2	0.78	± 10
2400	22	10	10g	5.91	23.64	23.7	-0.25	± 10

Date: September 12, 2006

Room Ambient Temperature = 23° C; Relative humidity = 45%

Measured by: Ninous Davoudi

Bod	Body Simulating Liquid			(m)M/(a)	Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mW/g)		d to 1 W	Taryet	(%)	(%)
2450	2450 22	15	1 g	13.00	52	51.2	1.56	± 10
2450	22	15	10g	5.94	23.76	23.7	0.25	± 10

Date: September 15, 2006

Room Ambient Temperature = 23° C; Relative humidity = 40%

Bod	Body Simulating Liquid		SAR (mW/q)		Normalize	e Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mW/g)		to 1 W	raiget	(%)	(%)
2450	22	15	1 g	13.10	52.4	51.2	2.34	± 10
2450	22	15	10g	5.97	23.88	23.7	0.76	± 10

System Validation Dipole: D5GHzV2 SN 1003

Date: September 13, 2006

Ambient Temperature = 24°C; Relative humidity = 50%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SVD	(m M/a)	Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mW/g)		to 1 W	Target	(%)	(%)
5800	5800 23	15	1 g	19.00	76	74.1	2.56	± 10
5000	20	15	10g	5.24	20.96	20.5	2.24	± 10

Date: September 14, 2006

Ambient Temperature = 24° C; Relative humidity = 50%

Measured by: Ninous Davoudi

Bod	Body Simulating Liquid		SAR (mW/q)		Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mw/g)		to 1 W	Target	(%)	(%)
5800	23	15	1 g	18.90	75.6	74.1	2.02	± 10
5500	2.5	10	10g	5.21	20.84	20.5	1.66	± 10

Date: September 28, 2006

Room Ambient Temperature = 24°C; Relative humidity = 50%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SVD	(m) M/(a)	Normalize		Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mW/g)		to 1 W	Target	(%)	(%)
5200	23	15	1 g	18.00	72	71.8	0.28	± 10
5200	20	15	10g	5.07	20.28	20.1	0.90	± 10

Date: September 29, 2006

Room Ambient Temperature = 24°C; Relative humidity = 50%

Bod	Body Simulating Liquid		SAR(mW/a)		Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mW/g)		to 1 W	Taiyet	(%)	(%)
5200	23	15	1 g	18.10	72.4	71.8	0.84	± 10
5200	23	15	10g	5.08	20.32	20.1	1.09	± 10

6 SAR MEASURMENT PROCEDURE

A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

For 5 GHz band - The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.0 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 10 mm x 10 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

c) Around this point, a volume of X=Y= 30 and Z=21 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

For 5 GHz band - Around this point, a volume of X=Y=Z=30 mm is assessed by measuring 8 x 8 x 8 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

- (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
- (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
- (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
- (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

6.1 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

For 5 GHz band – Same as above except the Zoom Scan measures 8 x 8 x 8 points.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

7 PROCEDURE USED TO ESTABLISH TEST SIGNAL

NOTE: This section has been extracted to a separate document.

8 SAR MEASURMENT RESULTS

8.1 2.4GHZ

8.1.1 LCD EDGE MAIN ANTENNA POSITION

		Main V	VLAN Antenna	
802.11b (1Mbj	os)			
		Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
1	2412			
6	2437	0.610	0.000	0.610
11 902 44 m (6Mb)	2462			
802.11g (6Mb)	os)			
Channel	£ (NALI_)	Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz) 2412	1g (mW/g) 0.849	(dB) 0.000	1g (mW/g) 0.849
1 6	2412	0.849	-0.154	0.893
0 11	2437 2462	1.110	0.000	1.110
802.11n HT20		1.110	0.000	1.110
	(3101110003)	Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
1	2412	· · · · · · · · · · · · · · · · · · ·		19 (11119)
6	2437	0.318	0.000	0.318
11	2462			
802.11n HT40				
		Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
1	2422			
	0407	0.253	0.000	0.253
6	2437	0.233	0.000	0.200

process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.
The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6

mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.1.2 LCD EDGE AUX ANTENNA POSITION

			N Antenna	
802.11b (1Mb	ps)			
		Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
1	2412	0.966	0.000	0.966
6	2437	0.770	0.000	0.770
11 002 44 ~ (6Mb)	2462	0.739	0.000	0.739
802.11g (6Mb)	us)			
		Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
1	2412	1.060	0.000	1.060
6	2437	1.120	-0.030	1.128
11 6 ⁴	2462	0.977	0.000	0.977
-	2437	1.190	0.000	1.190
802.11n HT20	(0.51VIDps)	Marca 1045	D	
Charriel	£ (NAL 1-)	Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz) 2412	1g (mW/g)	(dB)	1g (mW/g)
1	2412 2437	0.296	0.000	0.296
6 11	2437 2462	0.386	0.000	0.386
802.11n HT40				
002.1111 11140		Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MH-)		Power Drift	
	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
1 6	2422 2437	0.317	-0.150	0.328

 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

4) Collocation with Bluetooth module.

8.1.3 LAP HELD MAIN ANTENNA POSITION

and the second sec				
				1.
4	*	0,4,0 #	0	
			Main WL	AN Antenna
802.11b (1Mb	ps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹ SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.043	-0.170	0.045
802.11g (6Mb				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹ SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.042	0.000	0.042
802.11n HT20) (6.5Mbps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹ SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.023	-0.195	0.024
802.11n HT40	(13.5Mbps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹ SAR 1g (mW/g)
1 6 11	2422 2437 2452	0.018	-0.177	0.019

measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.1.4 LAP HELD AUX ANTENNA POSITION

N.	and the second	and the second second	7	
			- ti	and the second second
-			1 21	- 00
-			innex19 Me	- ADM
6				
				VLAN Antenna
802.11b (1Mb	ps)			1
Observat		Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz) 2412	1g (mW/g)	(dB)	1g (mW/g)
1 6	2412	0.034	0.000	0.034
11	2462	0.004	0.000	0.004
802.11g (6Mb				
		Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
1	2412			
6	2437	0.036	0.000	0.036
11	2462			
802.11n HT20) (6.5Mbps)			
		Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
1	2412	0.047	0.000	0.047
6 11	2437	0.017	0.000	0.017
802.11n HT40	2462			
002.1111 1140	(13.51000)	Measured SAR	Power Drift	Extrapolated ¹ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
1	2422	ig (iiiw/g)	(ub)	ig (illvv/g)
6	2422	0.008	0.000	0.008
n	2701	0.000	0.000	0.000

 The exact method of extrapolation is Measured SAR x 10[^](-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.2 5.2GHZ

8.2.1 LCD EDGE MAIN ANTENNA POSITION

ſ		Main V	VLAN Antenna	
802.11a				
002.11d			Power Drift	1)
				Extranolated''SAD
Channel	f (MHz)	Measured SAR		Extrapolated ¹⁾ SAR
Channel 36	f (MHz) 5180	1g (mW/g)	(dB)	1g (mW/g)
Channel 36 52	f (MHz) 5180 5260			•
36 52 64	5180 5260 5320	1g (mW/g) 0.959	(dB) -0.188	1g (mW/g) 1.001
36 52	5180 5260 5320	1g (mW/g) 0.959 1.090	(dB) -0.188 -0.189	1g (mW/g) 1.001 1.138
36 52 64 802.11n HT20	5180 5260 5320	1g (mW/g) 0.959 1.090 1.250 Measured SAR	(dB) -0.188 -0.189 -0.118 Power Drift	1g (mW/g) 1.001 1.138 1.284 Extrapolated1) SAR
36 52 64	5180 5260 5320	1g (mW/g) 0.959 1.090 1.250	(dB) -0.188 -0.189 -0.118	1g (mW/g) 1.001 1.138 1.284
36 52 64 802.11n HT20 Channel 36	5180 5260 5320 f (MHz) 5180	1g (mW/g) 0.959 1.090 1.250 Measured SAR 1g (mW/g) 0.735	(dB) -0.188 -0.189 -0.118 Power Drift (dB) -0.122	1g (mW/g) 1.001 1.138 1.284 Extrapolated1) SAR 1g (mW/g) 0.756
36 52 64 802.11n HT20 Channel	5180 5260 5320 f (MHz)	1g (mW/g) 0.959 1.090 1.250 Measured SAR 1g (mW/g)	(dB) -0.188 -0.189 -0.118 Power Drift (dB)	1g (mW/g) 1.001 1.138 1.284 Extrapolated1) SAR 1g (mW/g)
36 52 64 802.11n HT20 Channel 36 52	5180 5260 5320 f (MHz) 5180 5260 5320	1g (mW/g) 0.959 1.090 1.250 Measured SAR 1g (mW/g) 0.735 0.968	(dB) -0.188 -0.189 -0.118 Power Drift (dB) -0.122 -0.019	1g (mW/g) 1.001 1.138 1.284 Extrapolated1) SAR 1g (mW/g) 0.756 0.972
36 52 64 802.11n HT20 Channel 36 52 64	5180 5260 5320 f (MHz) 5180 5260 5320	1g (mW/g) 0.959 1.090 1.250 Measured SAR 1g (mW/g) 0.735 0.968	(dB) -0.188 -0.189 -0.118 Power Drift (dB) -0.122 -0.019	1g (mW/g) 1.001 1.138 1.284 Extrapolated1) SAR 1g (mW/g) 0.756 0.972
36 52 64 802.11n HT20 Channel 36 52 64	5180 5260 5320 f (MHz) 5180 5260 5320	1g (mW/g) 0.959 1.090 1.250 Measured SAR 1g (mW/g) 0.735 0.968 1.270	(dB) -0.188 -0.189 -0.118 Power Drift (dB) -0.122 -0.019 -0.091	1g (mW/g) 1.001 1.138 1.284 Extrapolated1) SAR 1g (mW/g) 0.756 0.972 1.297
36 52 64 802.11n HT20 Channel 36 52 64 802.11n HT40	5180 5260 5320 f (MHz) 5180 5260 5320	1g (mW/g) 0.959 1.090 1.250 Measured SAR 1g (mW/g) 0.735 0.968 1.270 Measured SAR	(dB) -0.188 -0.189 -0.118 Power Drift (dB) -0.122 -0.019 -0.091 Power Drift	1g (mW/g) 1.001 1.138 1.284 Extrapolated1) SAR 1g (mW/g) 0.756 0.972 1.297 Extrapolated1) SAR
36 52 64 802.11n HT20 Channel 36 52 64 802.11n HT40 Channel	5180 5260 5320 f (MHz) 5180 5260 5320 f (MHz)	1g (mW/g) 0.959 1.090 1.250 Measured SAR 1g (mW/g) 0.735 0.968 1.270 Measured SAR 1g (mW/g)	(dB) -0.188 -0.189 -0.118 Power Drift (dB) -0.122 -0.019 -0.091 Power Drift (dB)	1g (mW/g) 1.001 1.138 1.284 Extrapolated1) SAR 1g (mW/g) 0.756 0.972 1.297 Extrapolated1) SAR 1g (mW/g)

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.2.2 LCD EDGE AUX ANTENNA POSITION

FLES		AUXILA	N Antenna	
802.11a				
		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
36	5180	1.230	0.000	1.230
52	5260	0.909	-0.152	0.941
64	5320	0.864	0.000	0.864
36 ⁴ 802.11n HT20	5180	1.230	-0.176	1.281
802 11n HT2(
002.11111120		Measured SAR	Power Drift	Extrapolated1) SAR
		1g (mW/g)		1g (mW/g)
Channel	f (MHz)		(dB)	
Channel 36	5180	1.130	-0.052	1.144
Channel 36 52	5180 5260	1.130 0.989	-0.052 -0.126	1.144 1.018
Channel 36 52 64	5180 5260 5320	1.130	-0.052	1.144
Channel 36 52	5180 5260 5320	1.130 0.989 0.801	-0.052 -0.126 -0.138	1.144 1.018 0.827
Channel 36 52 64 802.11n HT40	5180 5260 5320	1.130 0.989 0.801 Measured SAR	-0.052 -0.126 -0.138 Power Drift	1.144 1.018 0.827 Extrapolated1) SAR
Channel 36 52 64	5180 5260 5320	1.130 0.989 0.801	-0.052 -0.126 -0.138	1.144 1.018 0.827
Channel 36 52 64 802.11n HT40 Channel	5180 5260 5320 f (MHz)	1.130 0.989 0.801 Measured SAR 1g (mW/g)	-0.052 -0.126 -0.138 Power Drift (dB)	1.144 1.018 0.827 Extrapolated1) SAR 1g (mW/g)

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

4) Collocation with Bluetooth module. The collocation is performed on this position because the Bluetooth location is far from the LCD edge main antenna which is the worst case.

8.2.3 LAP HELD MAIN ANTENNA POSITION

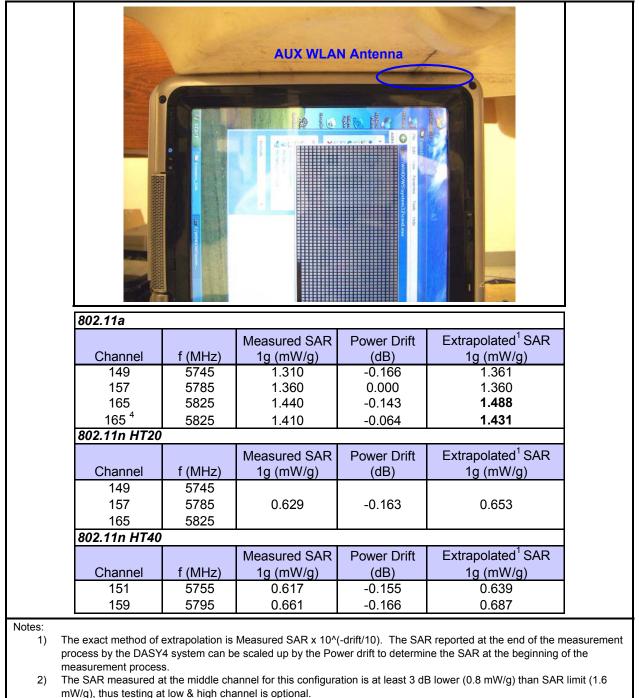
And Designation of the owner of the			the here is	C.
	and the second s	Contraction of the local division of the loc	-	
2		- OHO =	0 ≞ 0	- main
-				
			Main WL	AN Antenna
802.11a			David Drift	
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
36	5180	19 (1107,9)		
52	5260	0.085	0.000	0.085
64 802.11n HT20	5320			
002.11111120		Measured SAR	Power Drift	Extrapolated1) SAR
002.111111120				1g (mW/g)
Channel	f (MHz)	1g (mW/g)	(dB)	3(3)
Channel 36	5180			
Channel 36 52	5180 5260	0.073	-0.057	0.074
Channel 36 52 64	5180 5260 5320			
Channel 36 52	5180 5260 5320			
Channel 36 52 64 802.11n HT40 Channel	5180 5260 5320 f (MHz)	0.073	-0.057	0.074
Channel 36 52 64 802.11n HT40 Channel 38	5180 5260 5320 f (MHz) 5190	0.073 Measured SAR 1g (mW/g)	-0.057 Power Drift (dB)	0.074 Extrapolated1) SAR 1g (mW/g)
Channel 36 52 64 802.11n HT40 Channel	5180 5260 5320 f (MHz)	0.073 Measured SAR	-0.057 Power Drift	0.074 Extrapolated1) SAR

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional. Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

3)

8.2.4 LAP HELD AUX ANTENNA POSITION

- 3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.
- 4) SAR Values for this position are too low to be measured.


8.3 5.8GHZ

8.3.1 LCD EDGE MAIN ANTENNA POSITION

		Main W	VLAN Antenna	
802.11a				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹ SAR 1g (mW/g)
149	5745	1.230 1.390	0.000 -0.126	1.230 1.431
157	5785 5825		0 000	1 470
	5825	1.470	0.000	1.470
157 165	5825		0.000 Power Drift (dB) 0.000	1.470 Extrapolated ¹ SAR 1g (mW/g) 0.766
157 165 802.11n HT20 Channel 149 157 165	5825 f (MHz) 5745 5785 5825	1.470 Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹ SAR 1g (mW/g)
157 165 802.11n HT20 Channel 149 157	5825 f (MHz) 5745 5785 5825	1.470 Measured SAR 1g (mW/g) 0.766 0.832 0.792	Power Drift (dB) 0.000 -0.175 -0.117	Extrapolated ¹ SAR 1g (mW/g) 0.766 0.866 0.814
157 165 802.11n HT20 Channel 149 157 165	5825 f (MHz) 5745 5785 5825	1.470 Measured SAR 1g (mW/g) 0.766 0.832	Power Drift (dB) 0.000 -0.175	Extrapolated ¹ SAR 1g (mW/g) 0.766 0.866

Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.3.2 LCD EDGE AUX ANTENNA POSITION

Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.
 Collocation with Bluetooth module.

LAP HELD MAIN ANTENNA POSITION 8.3.3

		1		11
	R. Man Il	A	and the second second	The Party of the P
Contraction of the local division of the loc		A DOLLAR DESIGNATION OF THE OWNER		and the second se
Sec.		LOHO #	0+0	
	Store .	and a state of the second state	Main WI	AN Antenna
				AN AIIteinia
802.11a				
		Measured SAR	Device Duift	1
			Power Drift	Extrapolated ¹ SAR
Chann		1g (mW/g)	ower Drift (dB)	Extrapolated SAR 1g (mW/g)
149	5745	1g (mW/g)	(dB)	1g (mW/g)
149 157	5745 5785			-
149	5745 5785 5825	1g (mW/g)	(dB)	1g (mW/g)
149 157 165	5745 5785 5825	1g (mW/g)	(dB)	1g (mW/g) 0.119
149 157 165	5745 5785 5825 HT20	1g (mW/g) 0.114	(dB) -0.186	1g (mW/g)
149 157 165 802.11n I	5745 5785 5825 HT20	1g (mW/g) 0.114 Measured SAR	(dB) -0.186 Power Drift	1g (mW/g) 0.119 Extrapolated ¹ SAR
149 157 165 802.11n Chann	5745 5785 5825 HT20 el f (MHz)	1g (mW/g) 0.114 Measured SAR	(dB) -0.186 Power Drift	1g (mW/g) 0.119 Extrapolated ¹ SAR
149 157 165 802.11n Chann 149	el f (MHz) 5745 5785 5825 ftread f (MHz)	1g (mW/g) 0.114 Measured SAR 1g (mW/g)	(dB) -0.186 Power Drift (dB)	1g (mW/g) 0.119 Extrapolated ¹ SAR 1g (mW/g)
149 157 165 802.11n Chann 149 157	el f (MHz) 5785 5825 4720 5745 5785 5785 5825	1g (mW/g) 0.114 Measured SAR 1g (mW/g)	(dB) -0.186 Power Drift (dB)	1g (mW/g) 0.119 Extrapolated ¹ SAR 1g (mW/g) 0.094
149 157 165 802.11n 149 157 165 802.11n	el f (MHz) 5785 5825 HT20 el f (MHz) 5745 5785 5785 5825 HT40	1g (mW/g)0.114Measured SAR 1g (mW/g)0.094Measured SAR	(dB) -0.186 Power Drift (dB) 0.000 Power Drift	1g (mW/g) 0.119 Extrapolated ¹ SAR 1g (mW/g) 0.094 Extrapolated ¹ SAR
149 157 802.11n 149 157 165 802.11n Chann	el f (MHz) 5785 5825 HT20 el f (MHz) 5745 5785 5785 5825 HT40	1g (mW/g) 0.114 Measured SAR 1g (mW/g) 0.094	(dB) -0.186 Power Drift (dB) 0.000	1g (mW/g) 0.119 Extrapolated ¹ SAR 1g (mW/g) 0.094
149 157 802.11n Chann 149 157 165 802.11n	el f (MHz) 5785 5825 HT20 el f (MHz) 5745 5785 5785 5825 HT40	1g (mW/g)0.114Measured SAR 1g (mW/g)0.094Measured SAR	(dB) -0.186 Power Drift (dB) 0.000 Power Drift	1g (mW/g) 0.119 Extrapolated ¹ SAR 1g (mW/g) 0.094 Extrapolated ¹ SAR

mW/g), thus testing at low & high channel is optional. Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 3)

8.3.4 LAP HELD AUX ANTENNA POSITION

				AUX W	/LAN Antenna	
	La ⁻					
	802.11a					
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹ SAR 1g (mW/g)	
	149 157 165	5745 5785 5825	0.002	0.000	0.002	
Notes: 1) 2) 3) 4)	process by the DAS measurement process The SAR measured mW/g), thus testing a Please see attachme	/4 system can b ss. at the middle ch at low & high ch ents for the deta	e scaled up by the Por annel for this configura annel is optional.	wer drift to determin ation is at least 3 dE and plots showing	R reported at the end of the r ne the SAR at the beginning 3 lower (0.8 mW/g) than SAF 1 the maximum SAR location	of the R limit (1.6

9 MEASURMENT UNCERTAINTY

9.1 MEASURMENT UNCERTAINTY FOR 300 MHz - 3000 MHz

Uncortainty component		Probe	Div.	Ci(1r)	Ci (10c)	Std. U	າc.(±%)
Uncertainty component	Tol. (±%)	Dist.	Div.	Ci (1g)	Ci (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table							
1. Tol tolerance in influence quaitity							
2. N - Nomal							
3. R - Rectangular							
4. Div Divisor used to obtain standard uncertainty							

5. Ci - is te sensitivity coefficient

9.2 MEASURMENT UNCERTAINTY 3 GHz – 6 GHz

Uncertainty component		Probe	Div.	$C(4\pi)$	Ci (10m)	Std. Unc.(±%)	
Uncertainty component	Tol. (±%)	Dist.	Div.	Ci (1g)	Ci (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.66	10.73
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46
Notesfor table 1. Tol tolerance in influence quaitity	•						•

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

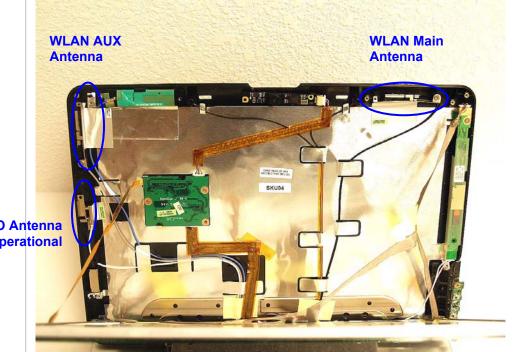
5. Ci - is te sensitivity coefficient

10 EQUIPMENT LIST AND CALIBRATION

Name of Equipment	Manufacturer	Type/Model	Serial Number	Cal. Due date
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535	N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041	N/A
Probe Alignment Unit	SPEAG	LB (V2)	261	N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	US39173569	2/9/07
Electronic Probe kit	Hewlett Packard	85070C	N/A	N/A
E-Field Probe	SPEAG	EX3DV4	3552	5/30/07
Thermometer	ERTCO	639-1S	1718	1/11/07
SAM Phantom (SAM1)	SPEAG	TP-1185	QD000P40CA	N/A
SAM Phantom (SAM2)	SPEAG	TP-1015	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	558	1/20/07
System Validation Dipole	SPEAG	D2450V2	706	4/27/08
System Validation Dipole	SPEAG	D5GHzV2	1003	11/22/07
Power Meter	Giga-tronics	8651A	8651404	12/27/06
Power Sensor	Giga-tronics	80701A	1834588	12/27/07
Amplifier	Mini-Circuits	ZVE-8G	0360	N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A
Radio Communication Tester	Rohde & Schwarz	CMU 200	838114/032	3/21/07
Signal Generator	HP	83732B	US34490599	10/5/2006
Simulating Liquid	CCS	M2450	N/A	Within 24 hrs of first test
Simulating Liquid	SPEAG	M5200-5800	N/A	Within 24 hrs of first test

11 PHOTOS

DUT


Host Laptop

Antenna Location

MIMO Antenna Non-Operational **DUT** location

12 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	14
2-1	SAR Test Plots-2.4GHz	24
2-2	SAR Test Plots-5.2GHz	23
2-3	SAR Test Plots-5.8GHz	19
3	Certificate of E-Field Probe - EXDV4SN3552	9
4	Certificate of System Validation Dipole - D2450 SN:706	9
5	Certificate of System Validation Dipole - D5GHzV2 SN:1003	10
6	Material Specification Data Sheet of Body Simulating Liquid (5GHz)	3

END OF REPORT