Collocated MPE Calculations QDS-BRCM1020 with N7N-MC5725-H

Systems operating under the provision of 47 CFR 1.1307(b)(1) shall be operated in a manor that ensures that the public is not exposed to radio frequency energy levels in excess of the FCC guidelines.

The EUT will only be used with a separation of 20 centimeters or greater between the antennas and the body of the user or nearby persons and can therefore be considered a mobile transmitter per 47 CFR 2.1091(b).

The EUT contains a PCS Licensed Transmitter, FCC Identifier N7N-MC5725-H, covered under FCC parts 24 E and 22 H of CFR part 47.

The details for this transmitter are shown in Table 1 below.

FCC Rule Parts	Range (MHz)	Maximum Conducted Output, Watts	Duty Cycle	Peak Antenna Gain to be used for collocated MPE, dBi
24 E	$1850.2-1909.8$	0.3048	1.0	4.15
22 H	$824.2-848.8$	0.3258	0.25	5.1

Table 1
The EUT contains a transmitter, with FCC Identifier QDS-BRCM1020, operating in the Unlicensed IMS bands covered under part 15C of CFR part 47. The details for this transmitter are shown below in Table 2.

FCC Rule Parts	Range (MHz)	Max Output, Watts	Peak Antenna Gain to be used for collocated MPE, dBi
15 C	$2412.0-2462.0$	0.414	3.00

Table 2

Equations

The equations used are based on methods described in OET Bulletin 65 and appendices.
Given

$$
\mathrm{E}=\sqrt{ }(30 * P * D C * G) / d
$$

And

$$
S=E^{2} / 3770
$$

Where
$\mathrm{E}=$ Field Strength in Volts/meter
$\mathrm{P}=$ Power in Watts
DC = Duty cycle, dimensionless
$G=$ Numeric antenna gain
$d=$ Distance in meters
$S=$ Power Density in milli-watts/square centimeter

Combining equations and rearranging the terms to express the Power Density in terms of the other variables yields,

$$
\mathrm{S}=(30 * \mathrm{P} * \mathrm{DC} * \mathrm{G}) /\left(3770 * \mathrm{~d}^{2}\right)
$$

Changing the units of Power to mW and Distance to cm , using,

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~mW})=1000 * \mathrm{P}(\mathrm{~W}) \\
& \mathrm{d}(\mathrm{~cm})=100 * \mathrm{~d}(\mathrm{~m})
\end{aligned}
$$

Yields,

$$
\mathrm{S}=(30 *(\mathrm{P} / 1000) * \mathrm{DC} * \mathrm{G}) /\left(3770 *(\mathrm{~d} / 100)^{2}\right)
$$

Or,

$$
\mathrm{S}=(0.0795756 * \mathrm{P} * \mathrm{DC} * \mathrm{G}) /\left(\mathrm{d}^{2}\right)
$$

Where
$\mathrm{d}=$ distance in cm
$\mathrm{P}=$ Power in mW
DC $=$ Duty cycle, dimensionless
$\mathrm{G}=$ Numeric antenna gain
$\mathrm{S}=$ Power Density in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$

FCC Limits for Maximum Permissible Exposure (MPE)

(B) Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\left\|\mathrm{E}^{2}, \mathrm{IH}\right\|^{2}$ or S $($ minutes $)$
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	--	--	$\mathrm{f} / 1500$	30
$1500-100,000$	--	--	1.0	30

The MPE calculations for $\mathrm{d}=20 \mathrm{~cm}$ are shown below for the possible combinations of transmit frequency bands.

Per OET Bulletin 65, for frequency bands with the same MPE limits, the Power Densities produced by each transmitter are summed. The summation must be under the limit for the band.

Per OET Bulletin 65, for frequency bands with different limits the Power Densities are calculated separately for each band, divided by the limit for the band and the results are then summed. The summation must be less than 1.

For the frequency band $824.2-848.8 \mathrm{MHz}$ the worst case (lowest) limit is used. The limit is calculated as follows,

$$
824.2 / 1500=0.55 \mathrm{~mW} / \mathrm{cm}^{2}
$$

Collocated MPE Calculations

Transmitter Frequency Band, MHz	Power, Watts	Power, milliWatts	Duty Cycle	Peak Antenna Gain, dBi	Peak Antenna Gain, Dimensionless	Power Density at $20 \mathrm{~cm}, \mathrm{~mW} / \mathrm{cm}^{2}$ ($\left.0.0795756^{*} \mathrm{P}^{*} * \mathrm{DC} * \mathrm{G}\right) /\left(\mathrm{d}^{2}\right)$	Fraction of Limit, Dimensionless
824.2-848.8	0.3258	325.8	1.0	5.1	3.24	NA	$0.21 / 0.55=0.38$
1850.2-1909.8	0.3048	304.8	1.0	4.15	2.60	0.16	NA
$2412.0-2462.0$	0.4140	414.0	1.00	3.00	2.00	0.16	$0.16 / 1=0.16$

Active			
Transmitter			
Bands, $\mathbf{M H z}$	$\mathbf{2 4 1 2 . 0} \mathbf{- \mathbf { 2 4 6 2 . 0 }}$	Unit	Limit
$\mathbf{8 2 4 . 2} \mathbf{- 8 4 8 . 8}$	$0.38+0.16=0.54$	Dimensionless	$\mathbf{1}$
$\mathbf{1 8 5 0 . 2} \mathbf{- 1 9 0 8 . 8}$	$0.16+0.16=0.32$	mW/cm2	$\mathbf{1}$

Calculated worse case MPE numbers are below required limits.

