

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

BROADCOM USB BLUETOOTH DONGLE

MODEL NUMBER: BCM92035BTSD

FCC ID: QDS-BRCM1008

REPORT NUMBER: 03U2092-1

ISSUE DATE: AUGUST 27TH, 2003

Prepared for BROADCOM CORPORATION 190 MATHILDA PLACE SUNNYVALE, CALIFORNIA 94086 U.S.A

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1.	TE	ST RESULT CERTIFICATION
2.	EU	T DESCRIPTION4
3.	TE	ST METHODOLOGY
4.	FA	CILITIES AND ACCREDITATION
4	.1.	FACILITIES AND EQUIPMENT
4	.2.	TABLE OF ACCREDITATIONS AND LISTINGS 6
5.	CA	LIBRATION AND UNCERTAINTY
5	.1.	MEASURING INSTRUMENT CALIBRATION
5	.2.	MEASUREMENT UNCERTAINTY
5	.3.	TEST AND MEASUREMENT EQUIPMENT
6.	SE	FUP OF EQUIPMENT UNDER TEST9
7.	AP	PLICABLE LIMITS AND TEST RESULTS13
7	.1.	20 dB BANDWIDTH
7	.2.	PEAK OUTPUT POWER
7	.3.	MAXIMUM PERMISSIBLE EXPOSURE
7	.4.	AVERAGE POWER
7	.5.	PEAK POWER SPECTRAL DENSITY
7	.6.	CONDUCTED SPURIOUS EMISSIONS
7	.7.	NUMBER OF HOPPING CHANNELS
7	.8.	HOPPING FREQUENCY SEPARATION
7	.9.	AVERAGE TIME OF OCCUPANCY
7	.10.	RADIATED EMISSIONS
7	.11.	POWERLINE CONDUCTED EMISSIONS
8.	SE	ГИР РНОТОЅ

Page 2 of 74

1. TEST RESULT CERTIFICATION

COMPANY NAME: BROADCOM CORP. 190 MATHILDA PLACE SUNNYVALE, CA 94086 U.S.A				
EUT DESCRIPTION:	BROADCOM USB BLUETOOTH DONGLE			
MODEL:	BCM92035BTSD			
DATE TESTED:	JULY 31 – AUGUST 27, 2003			
	APPLICABLE STANDARDS			
STANDARI	D TEST RESULTS			
FCC PART 15 SUB	PART C NO NON-COMPLIANCE NOTED			

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

Tested By:

MH

MIKE HECKROTTE CHIEF ENGINEER COMPLIANCE CERTIFICATION SERVICES

ALL K

NEELESH RAJ EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

2. EUT DESCRIPTION

The EUT is a USB BLUETOOTH DONGLE operating in the 2400-2483.5 MHz range with 79 channels. The EUT has a peak output power of 2.78 dBm (1.9 mW) with an antenna gain of 2.8 dBi.

Page 4 of 74

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/1992, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

4.1. FACILITIES AND EQUIPMENT

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 5 of 74

4.2. TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FCC 1300
Japan	VCCI	CISPR 22 Two OATS and one conducted Site	VCCI R-1014, R-619, C-640
Norway	NEMKO	EN50081-1, EN50081-2, EN50082-1, EN50082-2, IEC61000-6-1, IEC61000-6-2, EN50083-2, EN50091-2, EN50130-4, EN55011, EN55013, EN55014-1, EN55104, EN55015, EN61547, EN55022, EN55024, EN61000-3-2, EN61000-3-3, EN60945, EN61326-1	N _{ELA 117}
Norway	NEMKO	EN60601-1-2 and IEC 60601-1-2, the Collateral Standards for Electro-Medical Products. MDD, 93/42/EEC, AIMD 90/385/EEC	N _{ELA-171}
Taiwan	BSMI	CNS 13438	SL2-IN-E-1012
Canada	Industry Canada	RSS210 Low Power Transmitter and Receiver	Canada IC2324 A,B,C, and F

Page 6 of 74

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measurement instruments utilized to perform the tests documented in this report have been calibrated in accordance with the manufacturer's recommendations, and are traceable to national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 74

5.3. TEST AND MEASUREMENT EQUIPMENT

T	EST EQUIPMENT I	LIST		
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	837990	9/6/2003
Line Filter	Lindgren	LMF-3489	497	CNR
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	9/6/2003
EMI Test Receiver	R & S	ESHS 20	827129/006	7/17/2004
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2004
Preamplifier, 1 ~ 26 GHz	Miteq	NSP10023988	646456	4/25/2004
Power Sensor, 100 kHz ~ 4.2 GHz	HP	8482A	2349A08568	7/15/2004
Power Meter	HP	436A	2709A29209	7/15/2004
Spectrum Analyzer 20 Hz ~ 44 GHz	Agilent	E4446A	US42070220	1/13/2004
Antenna, Bicon/Log, 25 ~ 2000 MHz	ARA	LPB-2520/A	1185	3/6/2004
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/20/2003
10dB Attenuator	Weinschel	56-10	k16148	N/A
2.4-2.5 Reject Filter	Micro-Tronics	BRM50702	1	N/A

The following test and measurement equipment was utilized for the tests documented in this report:

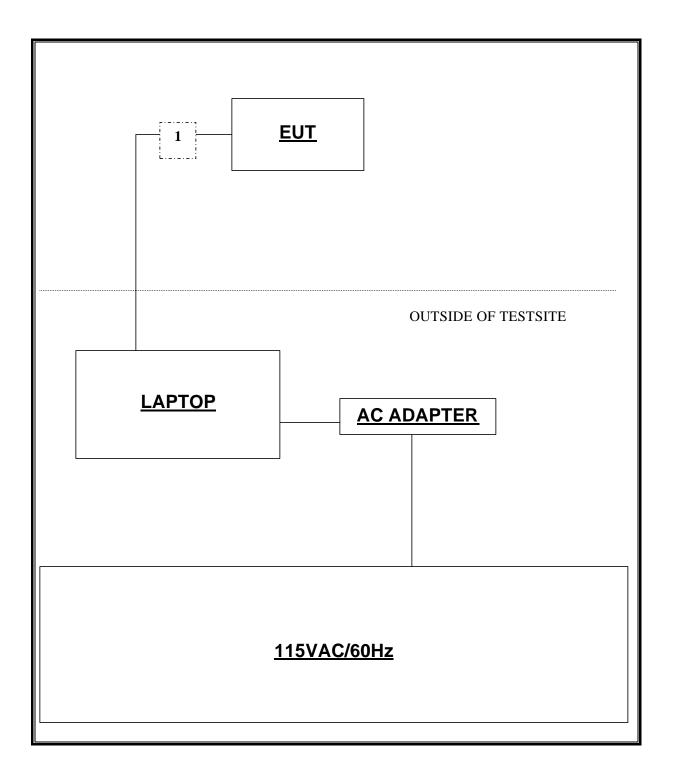
Page 8 of 74

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Device Type	Manufacturer	Model	Serial Number	FCC ID		
LAPTOP	DELL	PP01L	N/A	DoC		
AC ADAPTER	DELL	AA20031	09364U16291-297	N/A		

I/O CABLES


Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	USB	1	USB	SHIELDED	1.86M	N/A

TEST SETUP

The EUT was connected to the laptop via its USB port. The EUT was tested at X, Y, and Z positions, Y axis was found to be the worst case. During the testing process the laptop and ac adapter were located under the table.

Page 9 of 74

SETUP DIAGRAM

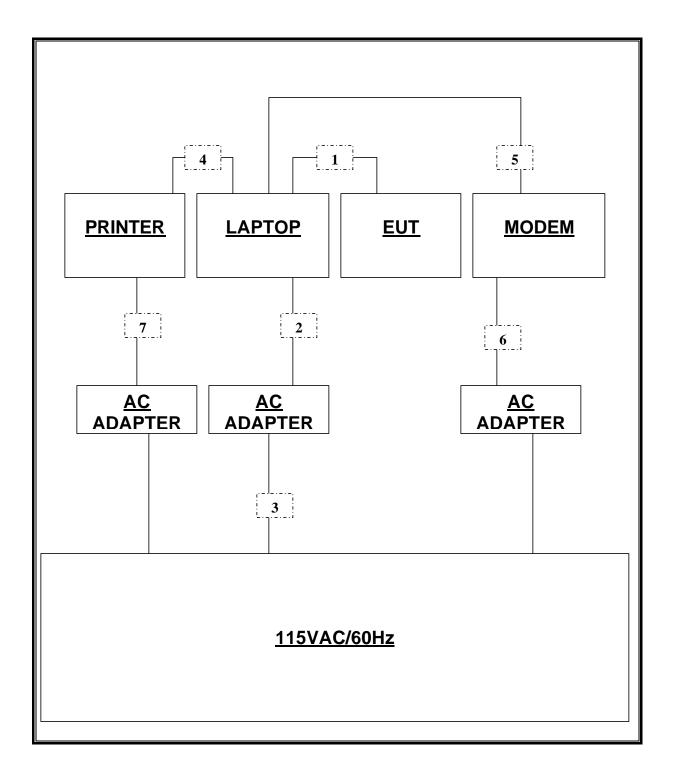
Page 10 of 74

SETUP FOR DIGITAL DEVICE TESTS

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Device Type	Manufacturer	Model	Serial Number	FCC ID		
LAPTOP	DELL	PP01L	N/A	DoC		
AC ADAPTER	DELL	AA20031	09364U16291-297	N/A		
MODEM	ACEEX	1414	9013537	IFAXDM1414		
PRINTER	HP	N/A	N/A	N/A		
AC/DC ADAPTER	ILSUNG ELECTRONICS	ISA-30509	N/A	N/A		
AC/DC ADAPTER	N/A	FB13130	N/A	N/A		

I/O CABLES


Cable	Port	# of	Connector	Cable	Cable	Remarks
No.		Identical	Туре	Type	Length	
		Ports				
1	USB	1	USB	SHIELDED	1.86M	N/A
2	DC PWR	1	DC PWR	UNSHIELDED	1.86M	FERRITE LAPTOP END
3	AC PWR	1	AC PWR	UNSHIELDED	1.86M	N/A
4	PARALLEL	1	DB-25	SHIELDED	1.86M	FERRITE PRINTER END
5	SERIAL	1	DB-9	UNSHIELDED	1.86M	N/A
6&7	DC PWR	1	DC PWR	UNSHIELDED	1.86M	N/A

TEST SETUP

The EUT was connected to the laptop via its USB port. The EUT was tested at X, Y, and Z positions, Y axis was found to be the worst case.

Page 11 of 74

SETUP DIAGRAM FOR DIGITAL DEVICE TESTS

Page 12 of 74

7. APPLICABLE LIMITS AND TEST RESULTS

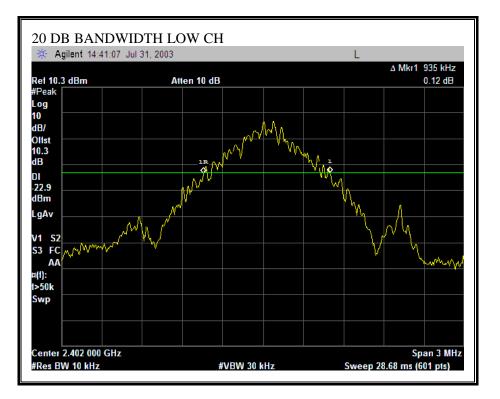
7.1. 20 dB BANDWIDTH

<u>LIMIT</u>

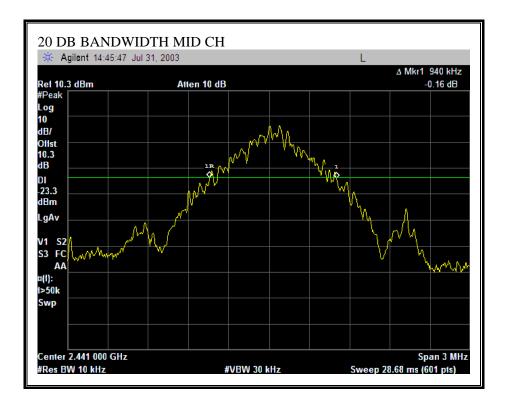
None; for reporting purposes only.

TEST PROCEDURE

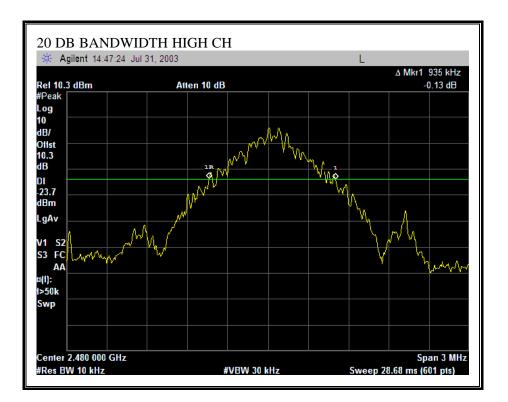
The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 20 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.


RESULTS

No non-compliance noted:


Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	935
Middle	2441	940
High	2480	935

Page 13 of 74


20 DB BANDWIDTH

Page 14 of 74

Page 15 of 74

Page 16 of 74

7.2. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

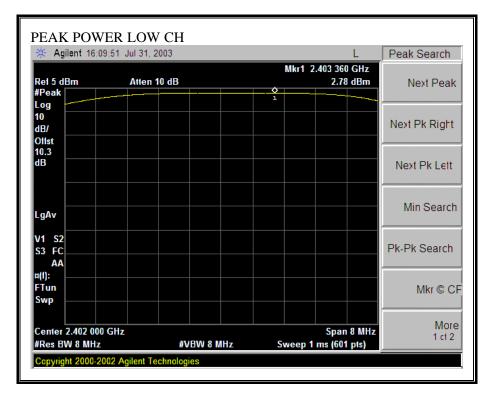
\$15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 2.8 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

No non-compliance noted:

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	2.78	30	-27.22
Middle	2441	2.49	30	-27.51
High	2480	2.03	30	-27.97

Page 17 of 74

OUTPUT POWER

Page 18 of 74

🔆 Agilent 16:08:11	Jul 31, 2003			L	Peak Search
Ref 5 dBm	Atten 10 dB			2.442 320 GHz 2.49 dBm	Next Peak
#Peak			1		
Log 10 dB/					Next Pk Right
Offst					
10.3 dB					Next Pk Left
LgAv					Min Search
M1 S2 S3 FC AA					Pk-Pk Search
¤(i):					
FTun Swp					Mkr © Cl
Center 2.441 000 GH				Span 8 MHz	More
#Res BW 8 MHz		VBW 8 MHz	Sweet	o 1 ms (601 pts)	1 ct 2

Page 19 of 74

🔆 Agilent 16:0	5:51 Jul 31, 2003			L	Peak Search
Ref 5 dBm	Atten 10 dB			1 2.481 293 GHz 2.03 dBm	Next Peak
#Peak			1		
Log 10 dB/					Next Pk Right
Ollst 10.3 dB					Next Pk Lett
LgAv					Min Search
V1 S2 S3 FC AA					Pk-Pk Search
¤(1): FTun Swp					Mkr © CF
Center 2.480 067 #Res BW 8 MHz		#VBW 8 MHz	Swee	Span 8 MHz p 1 ms (601 pts)	More 1 ct 2

Page 20 of 74

7.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

15.247 (b) (5) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See 1.1307(b)(1) of this chapter.

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E^{2}/3770$

where

E = Field Strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = distance in meters

S = Power Density in milliwatts / square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of mW and cm, using:

P (mW) = P (W) / 1000 andd (cm) = 100 * d (m)yields $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW / cm^2

Page 21 of 74

Substituting the logarithmic form of power and gain using:

Bubblin	$P (mW) = 10 \wedge (P (dBm) / 10)$ and	
	G (numeric) = $10 \wedge (G (dBi) / 10)$	
yields		
	$d = 0.282 * 10 \land ((P + G) / 20) / \sqrt{S}$	Equation (1)
where		
	d = MPE distance in cm	
	P = Power in dBm	
	G = Antenna Gain in dBi	
	$S = Power Density Limit in mW / cm^2$	

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

 $S = 1.0 \text{ mW} / \text{cm}^2 \text{ from } 1.1310 \text{ Table } 1$

RESULTS

No non-compliance noted:

Power Density Limit	Output Power	Antenna Gain	MPE Distance
(mW/cm^2)	(dBm)	(dBi)	(cm)
1.0	2.78	2.80	0.54

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 22 of 74

7.4. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 10.3 dB (including 10 dB pad and 0.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	2.38	
Middle	2441	2.18	
High	2480	1.83	

Page 23 of 74

7.5. PEAK POWER SPECTRAL DENSITY

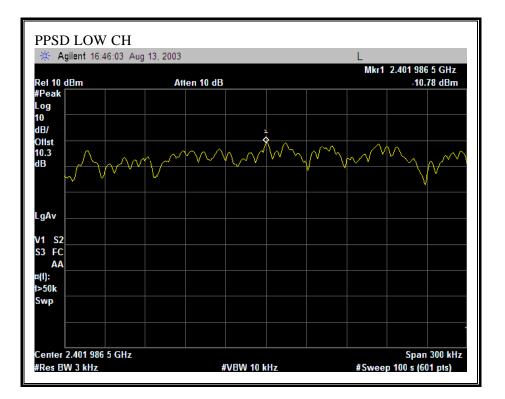
<u>LIMIT</u>

\$15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

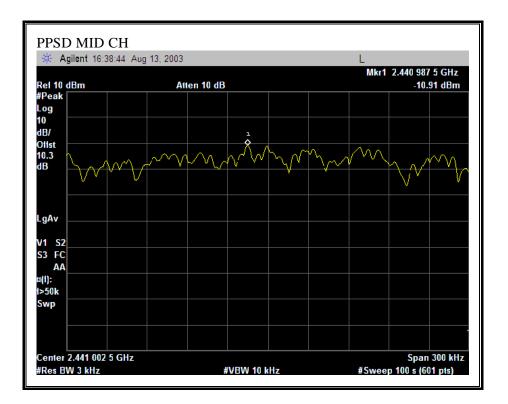
\$15.247 (f) The digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

TEST PROCEDURE

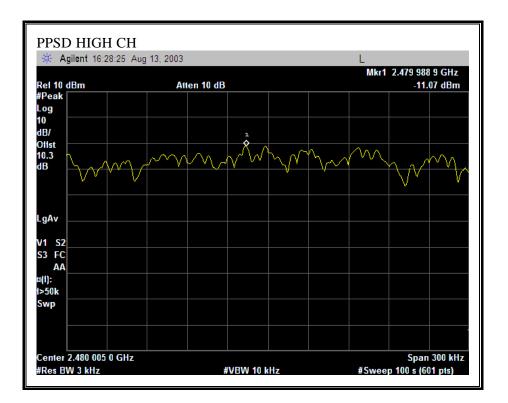
The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.


RESULTS

No non-compliance noted:


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-10.78	8	-18.78
Middle	2441	-10.91	8	-18.91
High	2480	-11.07	8	-19.07

Page 24 of 74


PEAK POWER SPECTRAL DENSITY

Page 25 of 74

Page 26 of 74

Page 27 of 74

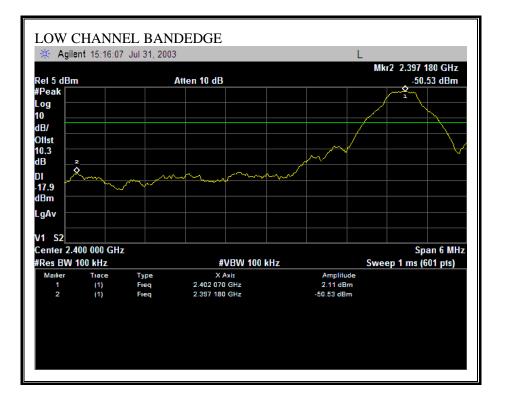
7.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

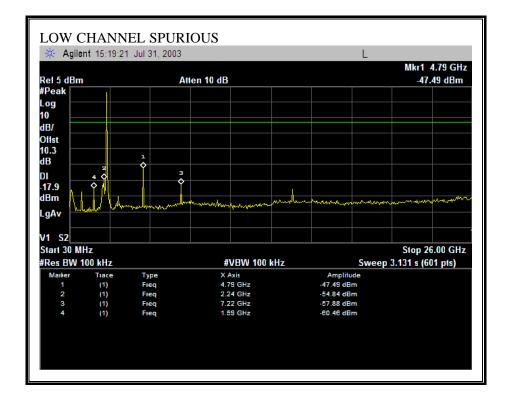
\$15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

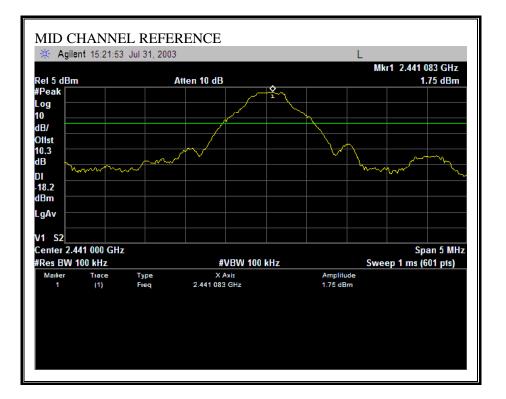

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

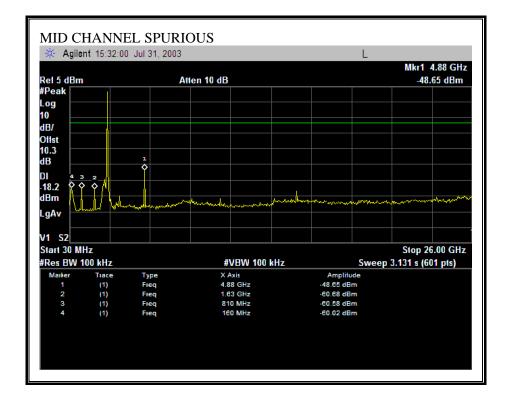

No non-compliance noted:

Page 28 of 74

SPURIOUS EMISSIONS, LOW CHANNEL

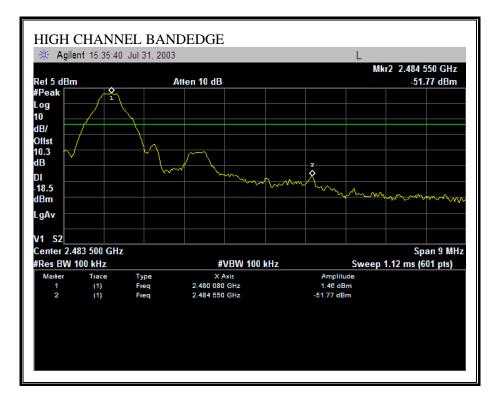


Page 29 of 74

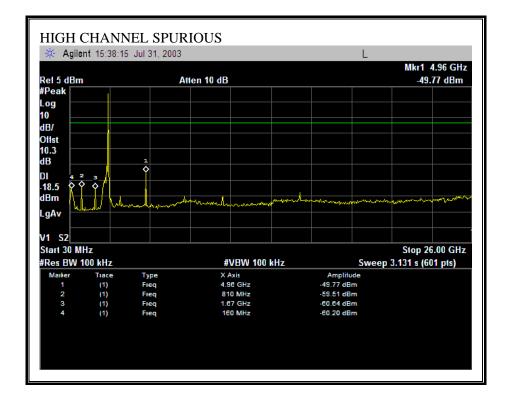


Page 30 of 74

SPURIOUS EMISSIONS, MID CHANNEL



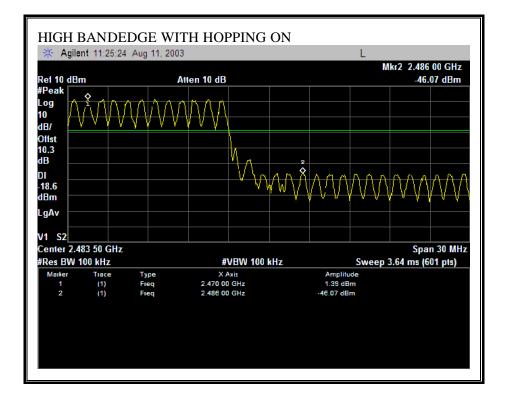
Page 31 of 74



Page 32 of 74

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 33 of 74



Page 34 of 74

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 35 of 74

Page 36 of 74

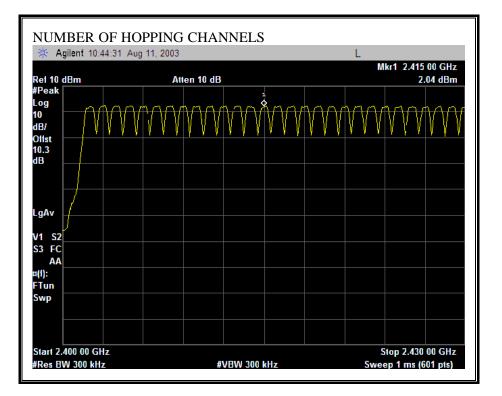
7.7. NUMBER OF HOPPING CHANNELS

LIMIT

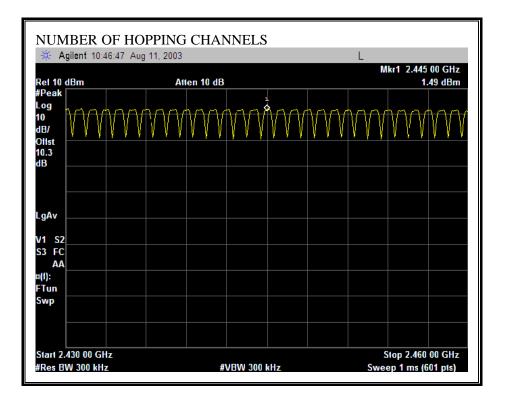
15.247 (a) (1) (iii) Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

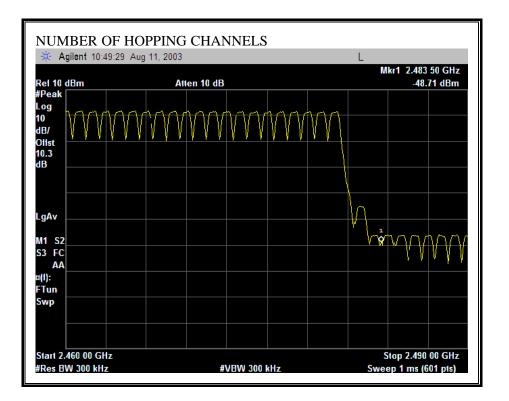
The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 1 % of the span. The analyzer is set to Max Hold.


RESULTS

No non-compliance noted:


79 Channels observed.

Page 37 of 74


NUMBER OF HOPPING CHANNELS

Page 38 of 74

Page 39 of 74

Page 40 of 74

7.8. HOPPING FREQUENCY SEPARATION

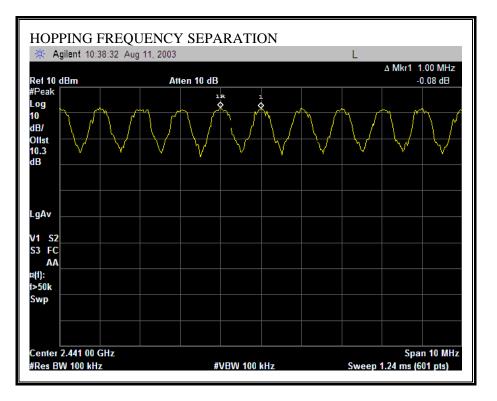
<u>LIMIT</u>

§15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS


No non-compliance noted:

802.11b Mode

Channel	Frequency	Channel	20dB	Margin
		Separation	Bandwidth	
	(MHz)	(kHz)	(kHz)	(kHz)
Middle	2441	1000	940	60

Page 41 of 74

HOPPING FREQUENCY SEPARATION

Page 42 of 74

7.9. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

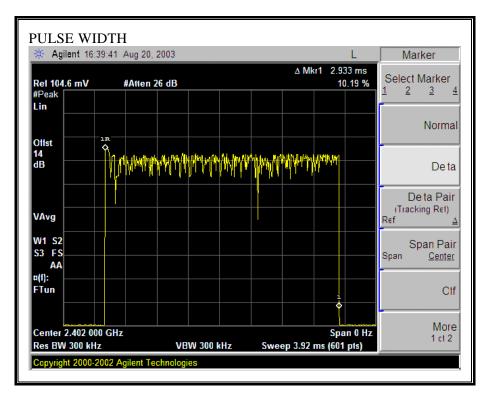
15.247 (a) (1) (iii) Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15 nonoverlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a slow scan.

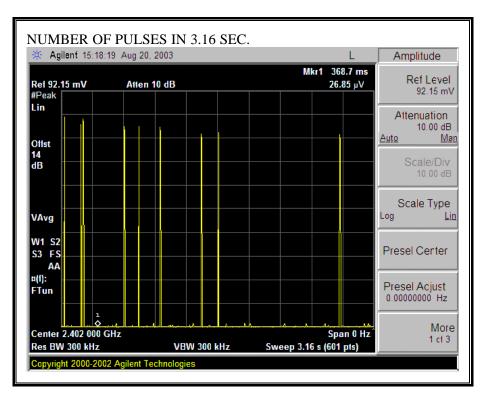
RESULTS

No non-compliance noted:


OCCURANCE
3.16 sec
8

OCCURANCE IN 31.6 SECONDS (79 CHANNELS x 0.4 SEC) 8 x 10 = 80 (PULSES IN 31.6 SECONDS)

PULSE WIDTH	PULSES IN 31.6 SECONDS	TIME OF OCCUPANCY	LIMIT	MARGIN
(mS)		(sec)	(sec)	(sec)
2.933	80	0.234	0.400	0.166


Page 43 of 74

PULSE WIDTH

Page 44 of 74

NUMBER OF PULSES

Page 45 of 74

7.10. RADIATED EMISSIONS

LIMITS

\$15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 46 of 74

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 47 of 74

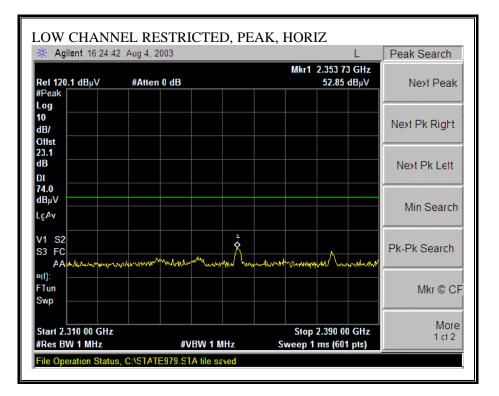
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

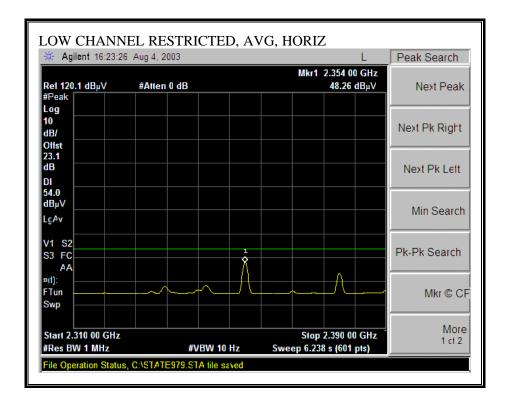
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

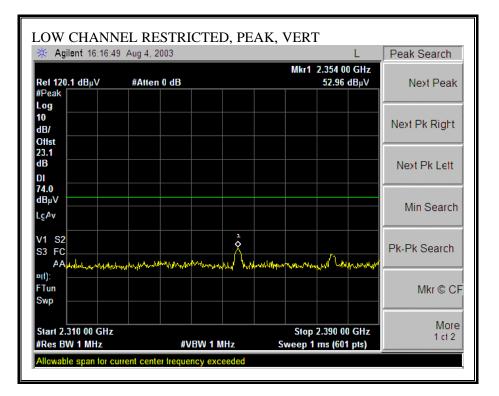

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

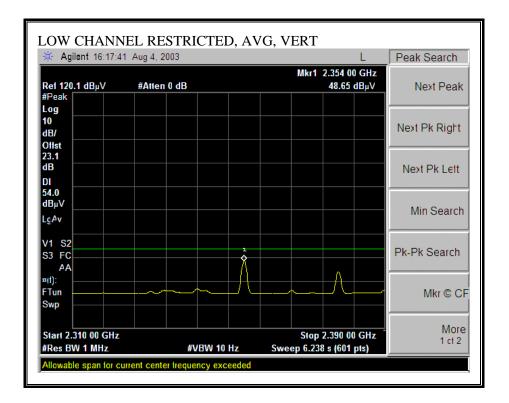

No non-compliance noted:

Page 48 of 74

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

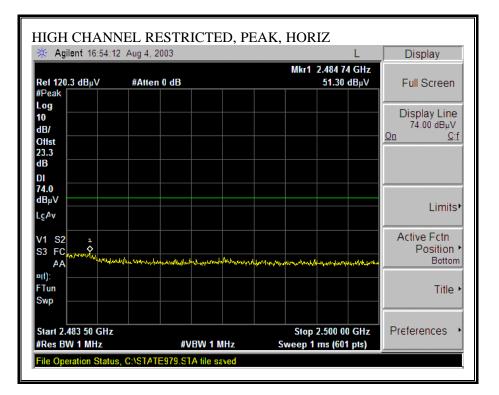


Page 49 of 74



Page 50 of 74

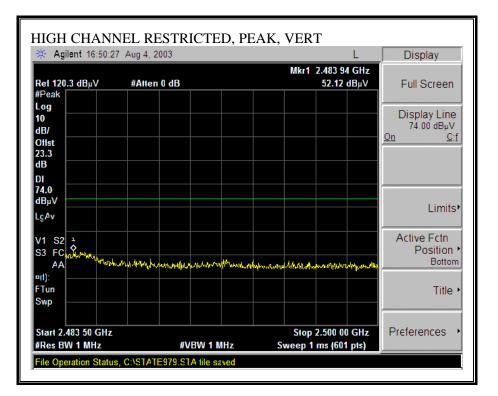
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 51 of 74

Page 52 of 74

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

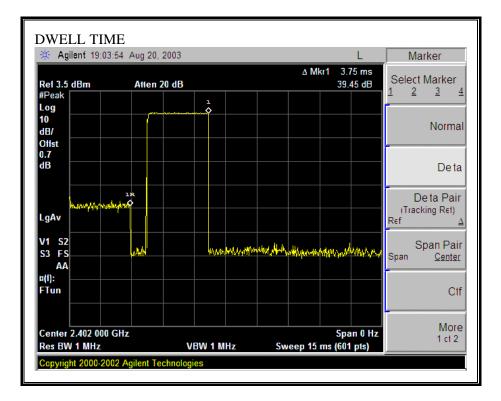


Page 53 of 74

🔆 Agilent 16:55:0	8 Aug 4, 2003		L	Peak Search
Rel 120.3 dBµV #Peak	#Atten 0 dB	Mkr1 2.483 39.1	3 50 GHz 56 dBµV	Next Peak
Log 10 dB/ Ollst				Next Pk Right
23.3 dB DI				Next Pk Lett
54.0 dBμV LgAv				Min Search
V1 S2 S3 FC				Pk-Pk Search
¤(1): ♦ FTun Swp				Mkr © Cł
Start 2.483 50 GHz #Res BW 1 MHz	#VBW 10	Stop 2.500 Hz Sweep 1.287 s (6		More 1 ct 2

Page 54 of 74

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



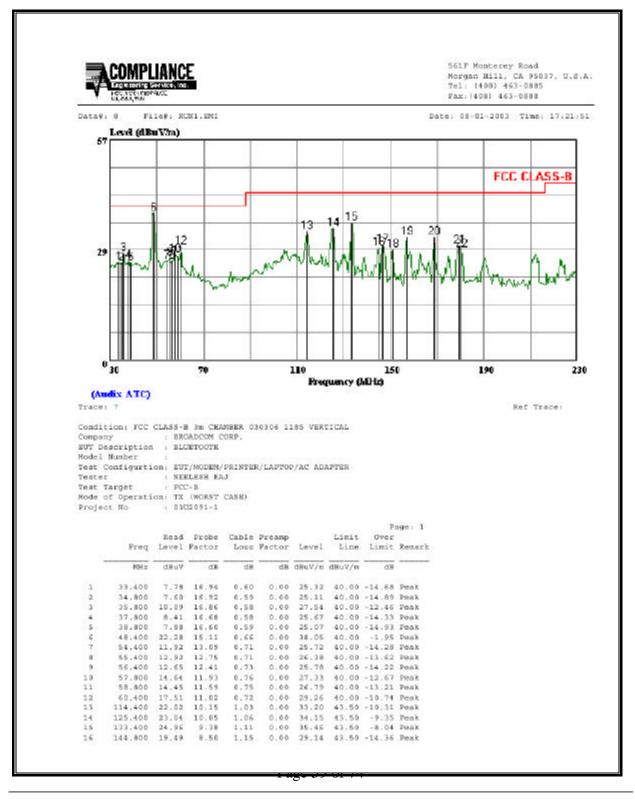
Page 55 of 74

	NEL RESTRICTEI 11 Aug 4, 2003	L	Peak Search
Rel 120.3 dBµV #Peak	#Atten 0 dB	Mkr1 2.483 50 G 41.61 dB	
Log 10 dB/			Next Pk Right
Oilst 23.3 dB DI			Next Pk Lett
54.0 dBμV LgAv			Min Search
V1 S2 S3 FC AA1			Pk-Pk Search
¤(1): FTun Swp			Mkr © CF
Start 2.483 50 GHz #Res BW 1 MHz	2 #VBW 10 F	Stop 2.500 00 Gl Hz Sweep 1.287 s (601 pts)	

Page 56 of 74

DUTY CYCLE CORRECTION FACTOR

*IN ACCORDANCE WITH FCC PUBLIC NOTICE DA-00-705, THE "DUTY CYCLE CORRECTION FACTOR" FOR SPURIOUS RADIATED EMISSIONS IS; 20 log * (3.75 ms / 100 ms) = -28.5 dB, WHICH WAS USED TO CORRECT THE AVERAGE SPURIOUS READING.


Page 57 of 74

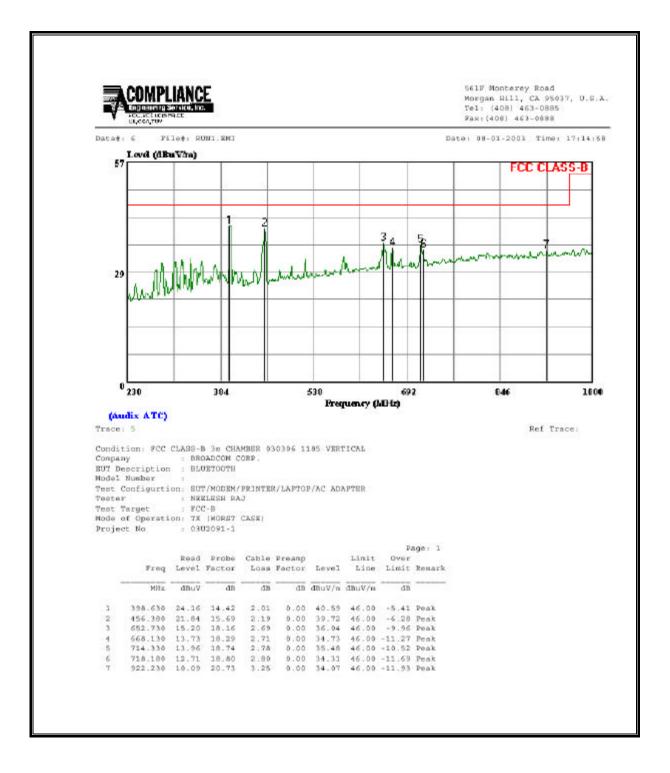
HARMONICS AND SPURIOUS EMISSIONS (LOW, MIDDLE, AND HIGH CHANNELS)

403 emlis			y Measuren Services, M		o Inte	non Kiel	d Site								
ompua	nce ce	runcation	services, b.	torgan r	moj	yen rieb	a one								
rest En	gr:	NEELESH R.	λJ.												
roject	ŧ.	0302091-1													
ompan	Ŋ:	BROADCON	A CORP.												
UT De	scrip.:	BLUETOOTI	H DONGLE												
EUT M	N:	BCM92035B	TSD												
Fest Ta	rget:	FOC													
Iode O	per:	TI (power (ğ +2dBm all ch	uannels)											
	10 D	<u>(</u> 2)													
est Eq	uipmen	<u>E</u>													
INCO	Hora 1	ISCH.	Pressent	ifer 1-26G			Spectrum /	Analyze	av l		Horn 21	LOOK.		Lini	it .
				0.000000400		_	<u></u>	- 23	_	-				FCC 15.215	
T60; S	/NE 2238	183m -	T63 Mitey	646456	•	psi	•		-	187; ARA .	18-26 GHz; \$	S/N:1049	*	POC 15 and	
1200	quency Ca		Lane Target	-					Measures			Measurem			
E (2	E)		□ (4~6 ff)	₹ (12 ft)								abriton Bunds Des desidés	width.		
						Į.		JUNHZ (Video Banth	rich	10Hz vineo	Bandwidth			
f	Dist	Raw Pk	Raw Avg.	AF	CL	Amp	D Corr	HPT	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	feet	dBuV	dBuV	dB/m	dB	dB	dB	1.13	dBuVm	dBuV/m	dBuV/m	dBuVin	dB	dB	
3.201		F	IGH CHANN	EL.	200		1.000	1.200		120000				1	
1368	9.8	54.4	51.9	33.2	3.0	-35.3	0.0	10	56.2	25.2	74.0	54.0	-17.8	-28.8	Y
.968	9.8	50.6	48.9	33.2	3.0	-35.3	0.0	1.0	52.5	22.3	74,0	54.0	-21.5	-31.7	Н
439	9.8	45.3	41.5	36.4	3.8	-34.5	0.0	1.0	52.0	19.7	74.0	54.0	-22.0	-313	Y
1439	9.8	44.3	40.5	36.4	3.8	-34.5	0.0	1.0	51.0	18.7	74.0	54.0	-23.0	-353	H
	1	M	DDLE CHAN	NEL		1	1	1	1	1				1	
4.882	9.8	53.9	51.8	33.2	3.0	-35.3	0.0	1.0	55.7	25.1	74.0	54.D	-18.3	-28.9	Y
1.882	9.8	50.7	49.2	33.2	3.0	-35.3	0.0	1.0	52.5	225	74.8	54 J	-21.5	-31.5	Н
7.323	9.8	44.3	40.2	36.2	3.8	-34.6	0.0	1.0	50.7	18.1	74.0	54.0	-23.3	-35.9	Y
323	9.8	45.7	41.3	36.2	3.8	-34.6	0.0	1.0	52.1	192	74.0	54.0	-21.9	-31.8	н
			OW CHANN				·	+		+				<u> </u>	
1.802	9.8	54.2	51.8	33.1	2.9	-35.3	0.0	10	55.9	25.0	74.0	54.0	-18.1	-29.0	Y
4.802	9.8	50.8	49,0	33.1	2.9	-35.3	0.0	1.0	52.5	22.2	74.0	54.0	-21.5	-31.8	Н
2.010	9.8	43.7	34.0	39.3	5.1	34.9	0.0	1.0	54.2	16.0	74.0	54.0	-19.8	-38.0	Y
12.010	9.8	44.0	34.1	39.3	5.1	34.9	0.0	1.0	54.5	16.1	74.0	54.0	-19.5	-37.9	Н
				+						+				↓	
	1			1	itt i		1	1						†	
		NO	OTHER SPUR	HOUS EM	ISSIO	NS DETE	CTED WIT	HIN TH	ERESTRIC	TED BANDS	ABOVE -2	ODB OF THE	LIMIT		
			NOTE AT	TTDA CTE 5		THENET	I PACT UP	Te DIT		ORRECTION	NEACTOR	05 10 510			
			HOILIAN	ERAGEP	TELD 2	IRENGI	A LICEUD	LaDUI	I CICLEC	CREECTION	AFACTOR	01-28246			
_				<u> </u>		<u> </u>	<u> </u>						0 0		
	f	Measurem	ent Frequenc	ey -		Amp	Preamp (Gain				Avg Lim	Average J	Field Strength Li	and
	Dist	Distance to	Antenna	8		D Corr	Distance	Cone	ct to 3 met	ers		1.0007700		d Strength Limit	
		Analyzer R				Avg			Strength @					s. Average Limit	
		1000				~	· · · · · ·		k Field Stre	5 C. 201				: Peak Limit	
		Anterna T.	arthor -												
	AF	Antenna Fa Cable Loss				HPF	High Pas			outher.		1.0.10100	Trian Etni + 1	. a own Lanap	

Page 58 of 74

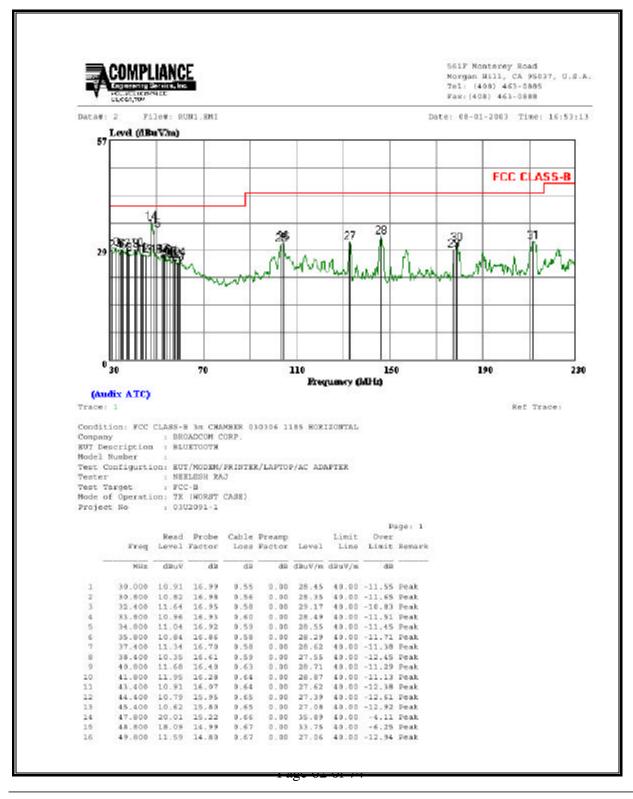
SPURIOUS EMISSIONS 30 TO 230 MHz (WORST-CASE CONFIGURATION; VERTICAL)

COMPLIANCE CERTIFICATION SERVICES


DOCUMENT NO: CCSUP4031A

SPURIOUS EMISSIONS 30 TO 230 MHz (WORST-CASE CONFIGURATION; VERTICAL)

			IN1,EMI					P	age: 2	: 08-01-2003	
	Freq		Probe Factor					Over			
5	MHz	dBuV	dB	dB	dB	dBuV/m	dBuV/π	вb			
17	146.800	20.25	8.37	1.19	0.00	29.80	43.50	-13.70	Peak		
18	150.800	19.35	8.19	1.19	0.00	28.73	43.50	-14.77	Peak		
19 20	156.800 168.800	22.01	8.48	1.24	0.00	31.73	43.50	-11,77	Peak		
	179.400	19.78	8.58	1.31	0.00	29.67	43.50	-13.83	Peak		
22	180.400	18.75	8.60	1.32	0.00	28.67	43.50	-14.83	Peak		

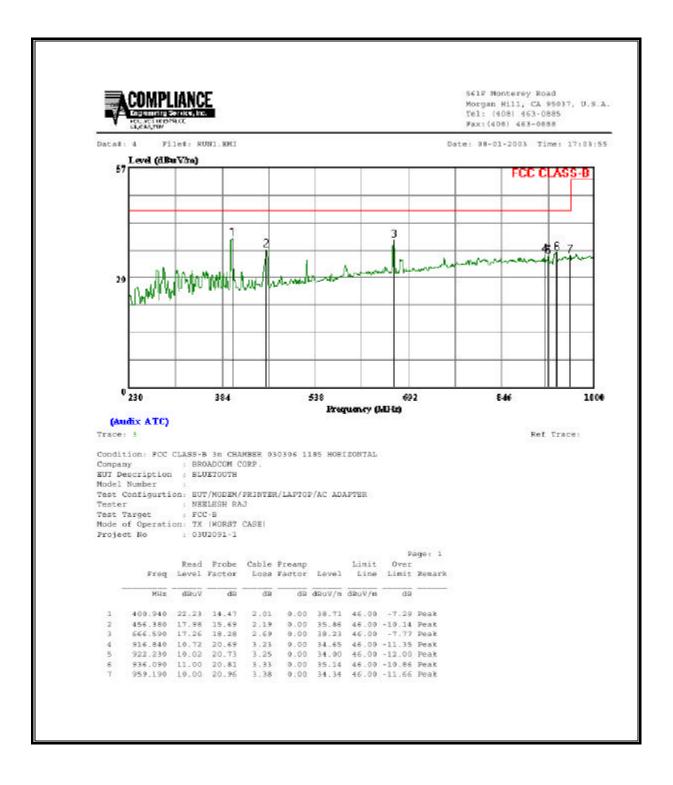

Page 60 of 74

SPURIOUS EMISSIONS 230-1000 MHz (WORST-CASE CONFIGURATION; VERTICAL)

Page 61 of 74

SPURIOUS EMISSIONS 30 TO 230 MHz (WORST-CASE CONFIGURATION; HORIZONTAL)

COMPLIANCE CERTIFICATION SERVICES


DOCUMENT NO: CCSUP4031A

SPURIOUS EMISSIONS 30 TO 230 MHz (WORST-CASE CONFIGURATION; HORIZONTAL)

Data#: 2 File#: RUN1.EM1 Date: 08-01-2003 Time: 16:53:13 Page: 2 Over Read Probe Cable Preamp Limit Freq Level Factor Loss Factor Level Line Limit Remark dBuV dB dB dBuV/m dBuV/m MHz dB dB 52.400 12.87 13.84 0.70 0.00 27.41 40.00 -12.59 Peak 17 53.400 12.94 13.49 0.71 0.00 27.14 40.00 -12.86 Peak 54.400 12.17 13.09 0.71 0.00 25.97 40.00 -14.03 Peak 18 19 20 55.400 12.99 12.75 56.800 13.87 12.27 0.71 0.00 26.45 40.00 -13.55 Peak 0.00 26.87 40.00 -13.13 Peak 21 0.74 22 57.800 13.21 11.93 0.76 0.00 25.90 40.00 -14.10 Peak 58.800 12.81 11.59 23 0.75 0.00 25.15 40.00 -14.85 Peak 24 59.800 14.39 11.25 0.73 0.00 26.37 40.00 -13.63 Peak 0.98 25 103.400 19.99 9.17 0.00 30.15 43.50 -13.35 Peak 104.400 20.24 30.53 43.50 -12.98 Peak 2.6 9.28 1.01 0.00 132.800 19.99 146.400 22.64 9.42 1.10 27 0.00 30.51 43.50 -12.99 Peak 28 0.00 32.12 43.50 -11.38 Peak 8.73 1.30 0.00 28.60 43.50 -14.90 Peak 8.63 1.30 0.00 30.29 43.50 -13.21 Peak 177.400 18.57 29 178.800 20.36 8.63 3.0 31 211.400 19.68 9.69 1.42 0.00 30.80 43.50 -12.70 Peak

Page 63 of 74

SPURIOUS EMISSIONS 230-1000 MHz (WORST-CASE CONFIGURATION; HORIZONTAL)

Page 64 of 74

7.11. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56	56 to 46			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

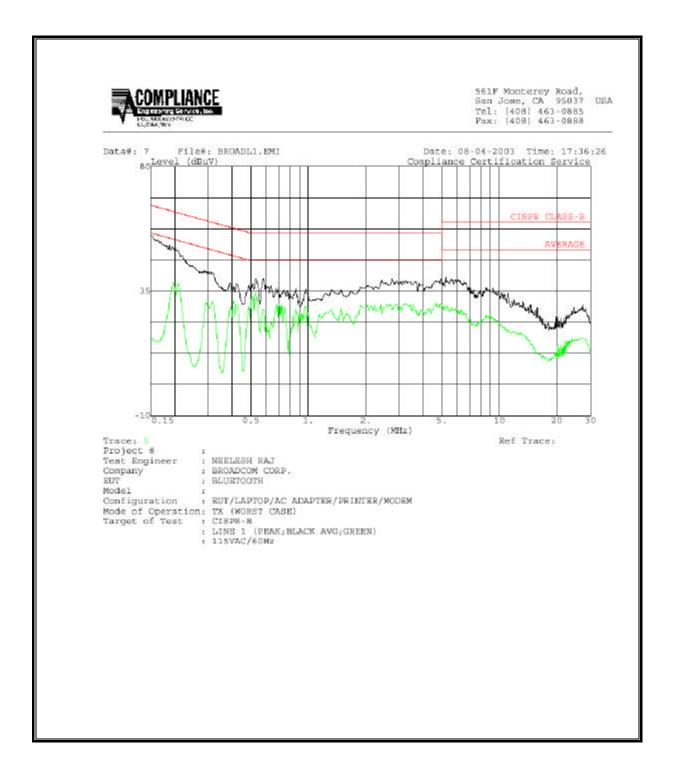
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

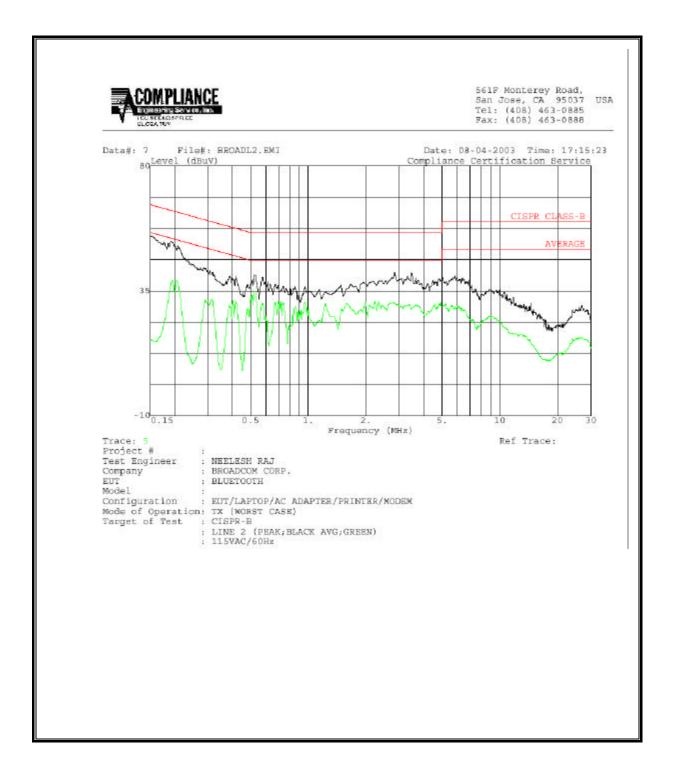
RESULTS

No non-compliance noted:


Page 65 of 74

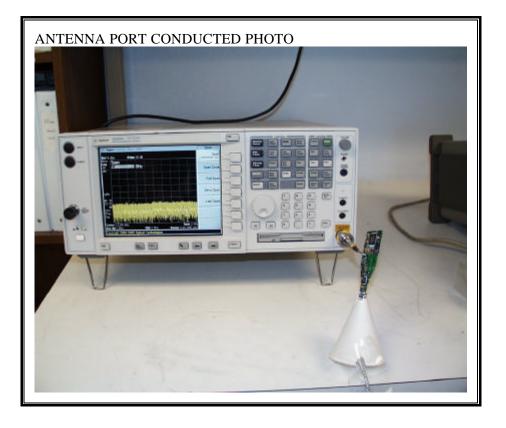
6 WORST EMISSIONS

Freq.	Reading			Closs Limit	Limit	EN B	Marg	Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2
0.15	54.80		17.94	0.00	66.00	56.00	-11.20	-38.06	L1
0.19	51.09		29.79	0.00	64.97	54.97	-13.88	-25.18	L1
0.21	49.78	27	37.65	0.00	64.34	54.34	-14.56	-16.69	L1
0.15	54.74		17.02	0.00	65.94	55.94	-11.20	-38.92	L2
0.19	52.88	-	36.90	0.00	64.83	54.83	-11.95	-17.93	L2
0.21	51.24	-	37.09	0.00	64.31	54.31	-13.07	-17.22	L2


Page 66 of 74

LINE 1 RESULTS

Page 67 of 74


LINE 2 RESULTS

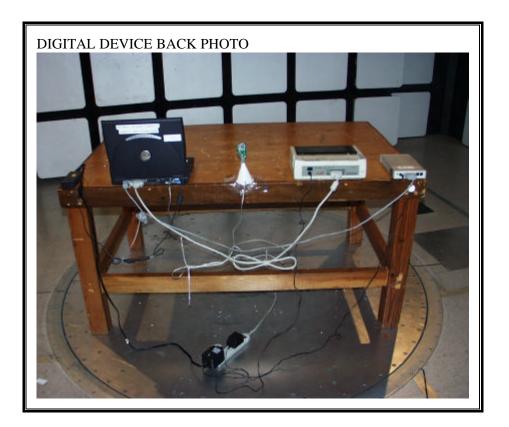
Page 68 of 74

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

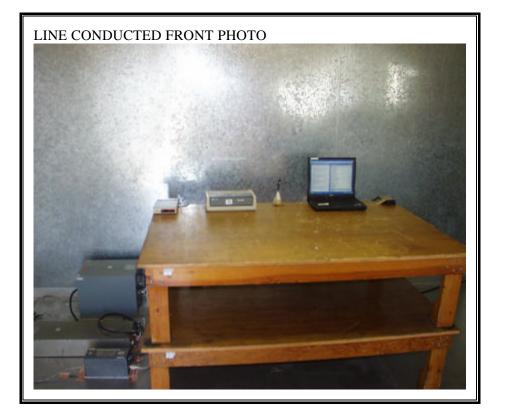
Page 69 of 74

RADIATED RF MEASUREMENT SETUP

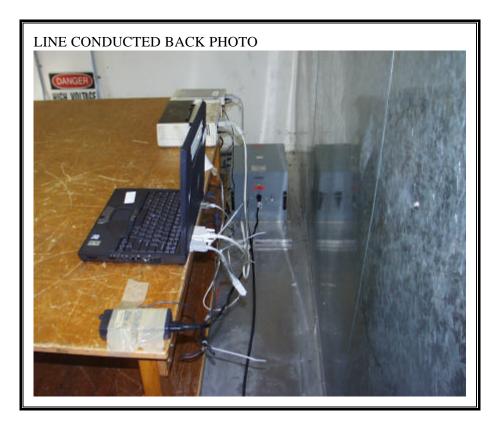


Page 70 of 74

DIGITAL DEVICE RADIATED EMISSIONS SETUP



Page 71 of 74



Page 72 of 74

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 73 of 74

END OF REPORT

Page 74 of 74