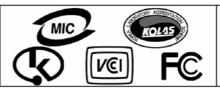


Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Test Report for FCC

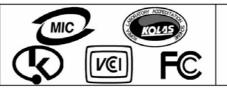
FCC ID: QDMW10


				10		VV 1 O			
Repo	Report Number		ESTF150711-001						
	Company name	ReignC	ReignCom Co.,Ltd.						
Applicant	Address	14 Kamo	14 Kamco Yangiae Tower, 949-3 Dogok 1-dong, Gangnam-gu, Seo						
	Telephone	82-2-3	3019-1864						
	Product name	Networ	k Terminal Unit						
Product	Model No.		W10	Manufacturer		Electronic (China) Co.,Ltd			
	Serial No.		NONE	Country of origin	С	hina			
Test date	2007-10-	4 ~ 2007-	-10-18	Date of issue	2-1	2-Nov-07			
Testing location	97-1 H	ESTECH Co., Ltd. Hoiuk-Ri Majang-Myon, Icheon-city, KyungKi-Do, Korea							
Standard		FCC P	PART 15 2007,	ANSI C 63.4 200	03				
Toot item	■ Conducted 6	Emission	☐ Class A	■ Class B	Test result	OK			
Test item	■ Radiated Em	nission	☐ Class A	■ Class B	Test result	OK			
Measurement	facility registration	number	94696						
Tested by	Senior Eng	gineer M.	J. Song	(Salaiure)					
Reviewed by	Engineering	Engineering Manager J.M.Yang (Signature)							
Abbreviation	OK, Pass = Pass	ed, Fail =	= Failed, N/A =	not applicable					

- * Note
- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used
- This test result based on a single evaluation of one sample of the above mentioned
- Memory capacity of the USB-Drive is used with 2GB and 4GB

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 1 of 14

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea


Electromagnetic Interference Test Report

Contents

1. Laboratory Information	3
2. Description of EUT	4
3. Test Standards ······	5
4. Measurement condition	6
5. Measurement of radiated emission	8
5.1 Measurement equipment	8
5.2 Environmental conditions	8
5.3 Test data	9
6. Measurement of conducted emission	10
6.1 Measurement equipment	10
6.2 Environmental conditions	10
6.3 Test data	11
7. Photographs of test setup	12
8 Photographs of FLIT	1./

Appendix 1. Spectral diagram

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.

ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

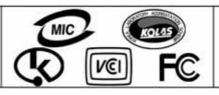
Corporation Name: ESTECH Co. Ltd

Head Office: Rm 1015, World Venture Center II, 426-5, Gasan-dong, Geumcheon-gu, Seoul, Kor-(Safety & Telecom. Test Lab)

EMC Test Lab: 58-1 Osan-Ri, GaNam-Myon, YeoJoo-Gun, KyungKi-Do, Korea
97-1 Hoiuk-Ri Majang-Myon, Icheon-city, KyungKi-Do, Korea

1.3 Official Qualification(s)

MIC: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication


KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC: Filed Laboratory at Federal Communications Commission

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 3 of 14

2. Description of EUT

2.1 Summary of Equipment Under Test

Product name : Network Terminal Unit

Model Number : W10 Serial Number : NONE

Manufacturer : Iriver Electronic Technology(China) Co.,Ltd

Country of origin : China
X-tal lists : 12MHz
Receipt Date : 19-Sep-07

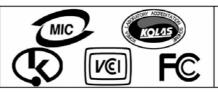
2.2 General descriptions of EUT

Main Process		CPU	TELECHIPS TCC7801
Memory		SDRAM	32bit*4Bank*4Mbit = 64MByte SDRAM
Audio		Codec	WOLFSON WM8960
FM		Tuner	SILAB SI4702
Disalas		Resolution	480 * RGB * 272
		Size	66.24mm x 37.54mm (4.3 inch)
Display		Color	18bit Colors
		Backlight	6 WHITE LEDS
Input Device	;	Key Assignment	Touch screen / joggle
WIEI		Base Band & RF	NANORADIO NRX701 / NRX510, 802.11b&11g
WIFI		Antenna	Internal
Storage NAND		Capacity	MLC 2GByte
USB		type	USB 2.0

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 4 of 14

3. Test Standards

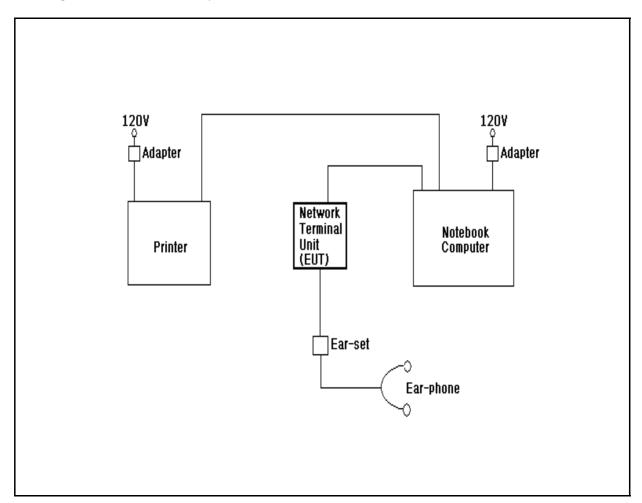
Test Standard: FCC PART 15 (2007)


This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.4 (2003)

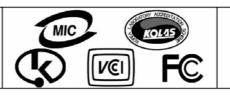
This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 5 of 14



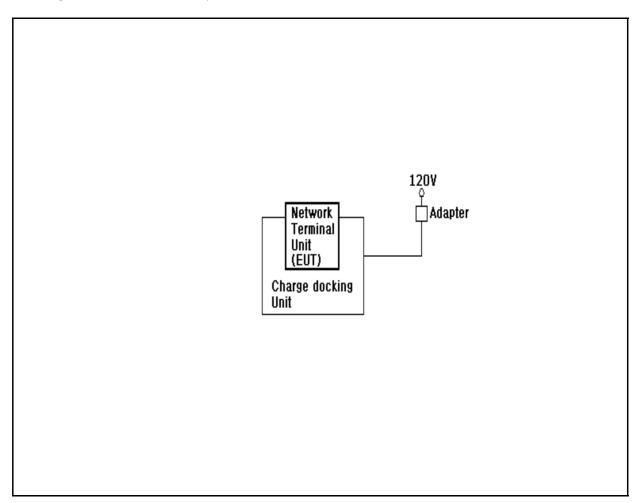
4. Measurement Condition(Test mode: USB STORAGE MODE)

4.1 EUT Operation.


- * The EUT was in the following operation mode during all testing
- * The operational conditions of the EUT was determined by the manufacturer according to the typical use of the EUT with respect to the expected hightest level of emission.
- * After setting as test arrangment diagram, tested image data doing display on note pc monitor screen.
- * Transferred "H" character data between the Network Terminal Unit and note pc during the test.

4.2 Configuration and Peripherals

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 6-1 of 14



4. Measurement Condition(Test mode: SINGLE MP3 MODE)

4.1 EUT Operation.

- * The EUT was in the following operation mode during all testing
- * The operational conditions of the EUT was determined by the manufacturer according to the typical use of the EUT with respect to the expected hightest level of emission.
- * After seting as test arrangment diagram, we tested the EUT under continuous playing Audio(mp3)

4.2 Configuration and Peripherals

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 6-2 of 14

4.3 EUT and Support equipment (Test mode: USB STORAGE MODE)

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
Network Terminal Unit	W10	NONE	Iriver Electronic Technology(China) Co.,Ltd	EUT
Ear-set	NONE	NONE	lriver	_
Earphone	NONE	NONE	Iriver	_
Notebook Computer	D400	NONE	Dell Asia Pacific Sdn.	_
ADAPTER	HP-OQ065B83	CN-0N2765- 47890-441-0249	Hipro Electronics (Dongguan)Co.,Ltd.	-
PRINTER	MJC-5750	NA34BFFP313402V	SAMSUNG ELECTRONICS(SHANDDON G)DIGITAL PRINTING CO.,LTD.	_
ADAPTER	PA8040WB	0703016518	Bestec Electronics (DongGuan)Co.,Ltd.	_

4.4 Cable Connecting (Test mode: USB STORAGE MODE)

Start Equipment		End Equip	Cable S	tandard	Remark	
Name	I/O port	Name	I/O port	Length	Shielded	nemark
Network Terminal Unit	USB	Notebook Computer	USB	1	Υ	-
Network Terminal Unit	Sound-out	Ear-set	-	1	Z	-
Ear-set	Ear-phone	Ear-phone	USB	1.5	Ν	ı
Notebook Computer	USB	Printer	USB	2	Y	-
Notebook Computer	DC Power	Adapter	-	2	Ν	-
Printer	Printer DC Power		-	2	N	-
	_					

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 7-1 of 14

4.3 EUT and Support equipment (Test mode: SINGLE MP3 MODE)

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
Network Terminal Unit	W10	NONE	Iriver Electronic Technology(China) Co.,Ltd	EUT
ADAPTER	KSAC0500200W1US	NONE	Ktec	-
Charge docking Unit	NONE	NONE	NONE	-

4.4 Cable Connecting (Test mode: SINGLE MP3 MODE)

Start Equipment		End Equip	Cable Sta	Remark		
Name	I/O port	Name	I/O port	Length	Shielded	Hemark
Network Terminal Unit	-	Charge docking Unit	-	-	_	-
Charge docking Unit	DC Power	AC Adapter	_	2	N	-
						_

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 7-2 of 14

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

5. Measurement of radiated disturbance (Test mode: USB STORAGE MODE)

Above 30 MHz Electric Field strength was measured in accordance with FCC Part 15 (2007) & ANSI C 63.4 (2003). The test setup was made according to FCC Part 15 (2007) & ANSI C 63.4 (2003) on an open test site, which allows a 3m distance measurement. The EUT was placed in the center of wooden turntable. The height of this table was 0.8m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

5.1 Measurement equipments (Test mode: USB STORAGE MODE)

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESPC	Rohde & Schwarz	845296/021	2008. 1. 23
Spectrum Analyzer	R3261C	ADVANTEST	61720116	2008. 4. 20
LogBicon Antenna	VULB 9160	Schwarzbeck	3142	2008. 5. 07
Amplifier	8447F	HP	2805A02972	2008. 6. 26
Spectrum Analyzer	8563E	HP	3623A05297	2008. 5. 06
PREAMPLIFIER	8449B	HP	3008A00581	2008. 5. 06
Horm Antenna	BBHA 9120 D	Schwarzbeck	469	2008. 3. 31
Turn Table	2087	EMCO	2129	-
Antenna Mast	2070-01	EMCO	9702-203	-
ANT Mast Controller	2090	EMCO	1535	-
Turn Table Controller	2090	EMCO	1535	_

5.2 Environmental Condition (Test mode: USB STORAGE MODE)

Test Place : Open site(3m)

Temperature (°C) : $20 \, ^{\circ}$ C Humidity (%) : $48 \, ^{\circ}$

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 8-1 of 14

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

5. Measurement of radiated disturbance (Test mode: SINGLE MP3 MODE)

Above 30 MHz Electric Field strength was measured in accordance with FCC Part 15 (2007) & ANSI C 63.4 (2003). The test setup was made according to FCC Part 15 (2007) & ANSI C 63.4 (2003) on an open test site, which allows a 3m distance measurement. The EUT was placed in the center of wooden turntable. The height of this table was 0.8m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

5.1 Measurement equipments (Test mode: SINGLE MP3 MODE)

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESPC	Rohde & Schwarz	845296/021	2008. 1. 23
Spectrum Analyzer	R3261C	ADVANTEST	61720116	2008. 4. 20
LogBicon Antenna	VULB 9160	Schwarzbeck	3142	2008. 5. 07
Amplifier	8447F	HP	2805A02972	2008. 6. 26
Spectrum Analyzer	8563E	HP	3623A05297	2008. 5. 06
PREAMPLIFIER	8449B	HP	3008A00581	2008. 5. 06
Horm Antenna	BBHA 9120 D	Schwarzbeck	469	2008. 3. 31
Turn Table	2087	EMCO	2129	-
Antenna Mast	2070-01	EMCO	9702-203	-
ANT Mast Controller	2090	EMCO	1535	-
Turn Table Controller	2090	EMCO	1535	_

5.2 Environmental Condition (Test mode: SINGLE MP3 MODE)

Test Place : Open site(3m)

Temperature (°C) : 19 °C Humidity (%) : 68 %

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 8-2 of 14

Am 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

5.3 Test data (Test mode: USB STORAGE MODE)

Test Date: 4-Oct-07 Measurement Distance: 3 m

	Took Bake Trook of Trook Bake Tro							
Frequency	Reading	Position	Height	Correction Factor Result Value				
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
110.15	16.50	Н	1.7	10.27	1.6	43.5	28.40	-15.10
112.55	14.50	Н	1.7	10.49	1.6	43.5	26.63	-16.87
147.24	11.60	V	1.0	12.79	1.8	43.5	26.20	-17.30
193.98	16.50	Н	1.9	10.11	2.2	43.5	28.80	-14.70
221.22	16.80	Н	1.4	10.42	2.4	46.0	29.63	-16.37
226.28	18.70	Н	1.2	10.61	2.4	46.0	31.76	-14.24
240.05	28.40	Н	1.6	11.14	2.5	46.0	42.06	-3.94
249.60	15.30	Н	1.1	11.50	2.6	46.0	29.43	-16.57
270.03	10.40	Н	1.0	12.16	2.7	46.0	25.29	-20.71
322.56	10.30	Н	1.0	13.62	3.1	46.0	27.03	-18.97
324.17	10.80	Н	1.0	13.65	3.1	46.0	27.58	-18.42
360.41	12.10	Н	1.0	14.45	3.4	46.0	29.95	-16.05
			·					

H: Horizontal, V: Vertical

Remark

*CL = Cable Loss(In case of below1000Mhz)

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 9-1 of 14

^{*}Checked in all 3 axis and the maximum measured data were reported.

^{*}CL = Cable Loss-Amplifier Gain(In case of above1000Mhz)

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120KHz for Quasi-peak detection at frequency below 1GHz.

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference **Test Report**

5.3 Test data (Test mode: SINGLE MP3 MODE)

Test Date: 18-Oct-07 Measurement Distance: 3 m

rest Date: 10-Oct-07 Measurement Distance: 3 III									
Frequency	Reading	Position	osition Height Correction Factor				Result Value		
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)	
34.65	10.10	V	1.0	11.06	1.0	40.0	22.14	-17.86	
43.52	11.50	V	1.0	12.03	1.0	40.0	24.57	-15.43	
43.80	11.90	V	1.0	12.06	1.0	40.0	25.01	-14.99	
Remark	H: Horizontal, V: Vertical *Checked in all 3 axis and the maximum measured data were reported. *CL = Cable Loss-Amplifier Gain(In case of above1000Mhz) *CL = Cable Loss(In case of below1000Mhz) *The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120KHz for Quasi-peak detection at frequency below 1GHz.								

Quasi-peak detection at frequency below 1GHz.

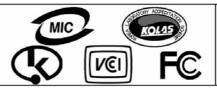
Report Number: ESTF150711-001, Web: www. estech. co. kr Page 9-2 of 14

6. Measurement of conducted disturbance (Test mode: USB STORAGE MODE)

The continuous disturbance voltage of AC Mains in the frequency from 0.15 to 30 MHz was measured in accordance to FCC Part 15 (2007) & ANSI C 63.4 (2003) The test setup was made according to FCC Part 15 (2007) & ANSI C 63.4 (2003) in a shielded Room. The EUT was placed on a non-conductive table at least 80 above the ground plan. A grounded vertical reference plane was positioned in a distance of 40cm from the EUT. The distance from the EUT to other metal surfaces was at least 0.8m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0m.. The test receiver with Quasi Peak detector complies with CISPR 16.

6.1 Measurement equipments (Test mode: USB STORAGE MODE)

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
LISN	ESH3-Z5	Schwarzbeck	838979/010	2008. 2. 28
LISN	NNLA8120A	Schwarzbeck	8120161	2008. 2. 28
TEST Receiver	ESPI7	Rohde & Schwarz	100185	2008. 8. 27
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	_


6.2 Environmental Condition (Test mode: USB STORAGE MODE)

Test Place : Shielded Room

Temperature (°C) : 22 °C Humidity (%) : 30 %

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 10-1 of 14

6. Measurement of conducted disturbance (Test mode: SINGLE MP3 MODE)

The continuous disturbance voltage of AC Mains in the frequency from 0.15 to 30 MHz was measured in accordance to FCC Part 15 (2007) & ANSI C 63.4 (2003) The test setup was made according to FCC Part 15 (2007) & ANSI C 63.4 (2003) in a shielded Room. The EUT was placed on a non-conductive table at least 80 above the ground plan. A grounded vertical reference plane was positioned in a distance of 40cm from the EUT. The distance from the EUT to other metal surfaces was at least 0.8m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0m.. The test receiver with Quasi Peak detector complies with CISPR 16.

6.1 Measurement equipments (Test mode: SINGLE MP3 MODE)

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date	
LISN	ESH3-Z5	Schwarzbeck	838979/010	2008. 2. 28	
LISN	NNLA8120A	Schwarzbeck	8120161	2008. 2. 28	
TEST Receiver	ESPI7	Rohde & Schwarz	100185	2008. 8. 27	
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	_	

6.2 Environmental Condition (Test mode: SINGLE MP3 MODE)

Test Place : Shielded Room

Temperature (°C) : 21 °C Humidity (%) : 45 %

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 10-2 of 14

6.3 Test data (Test mode: USB STORAGE MODE)

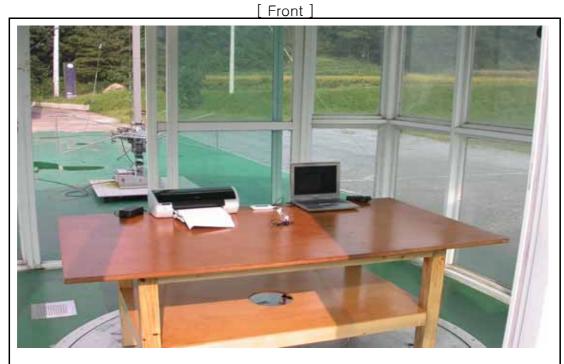
Test Date: 4-Oct-07

Test Date:	4-Oct-0,								
Frequency (MHz)	Correction Factor		Line	Quasi-peak Value			Average Value		
	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)
0.15	0.17	0.0	Ν	66.00	38.80	39.01	56.00	26.26	26.47
0.19	0.13	0.0	Ν	64.04	39.41	39.59	54.04	25.86	26.04
0.21	0.12	0.1	Н	63.13	34.54	34.71	53.13	24.34	24.51
0.22	0.12	0.1	Ν	63.01	35.32	35.49	53.01	23.66	23.83
0.24	0.12	0.1	Ν	62.20	33.68	33.86	52.20	24.27	24.45
0.45	0.14	0.1	Н	56.91	36.53	36.76	46.91	35.52	35.75
0.57	0.15	0.1	Н	56.00	21.30	21.56	46.00	19.59	19.85
0.90	0.22	0.1	Ν	56.00	34.95	35.32	46.00	33.71	34.08
1.18	0.26	0.2	Ν	56.00	29.08	29.51	46.00	23.00	23.43
3.58	0.34	0.4	Ν	56.00	34.60	35.31	46.00	31.80	32.51
4.64	0.37	0.5	Н	56.00	36.51	37.34	46.00	35.52	36.35
4.85	0.38	0.5	Н	56.00	37.59	38.44	46.00	35.65	36.50
5.69	0.41	0.5	Н	60.00	35.19	36.12	50.00	30.29	31.22
6.53	0.44	0.6	Н	60.00	29.25	30.25	50.00	26.64	27.64
6.74	0.45	0.6	Ν	60.00	29.57	30.59	50.00	27.03	28.05
7.38	0.48	0.6	Ν	60.00	26.88	27.96	50.00	26.13	27.21
7.46	0.49	0.6	Н	60.00	27.57	28.66	50.00	26.90	27.99
12.29	0.73	0.8	Ν	60.00	29.42	31.00	50.00	29.18	30.76
Remark			ŀ	H: Hot Liı	ne, N:N	eutral Lir	10		

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 11-1 of 14

6.3 Test data (Test mode: SINGLE MP3 MODE)

Test Date: 18-Oct-07


Test Date:	18-061-0) /								
Frequency (MHz)	Correction Factor		Line	Quasi-peak Value			Average Value			
	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)	
0.15	0.17	0.0	Ν	66.00	25.43	25.64	56.00	21.13	21.34	
0.19	0.13	0.0	Ν	63.95	45.06	45.24	53.95	28.01	28.19	
0.20	0.12	0.1	Ν	63.49	44.12	44.29	53.49	28.37	28.54	
0.25	0.13	0.1	Н	61.66	41.69	41.87	51.66	24.40	24.58	
0.39	0.14	0.1	Н	58.11	40.00	40.21	48.11	26.21	26.42	
0.41	0.14	0.1	Ν	57.63	37.01	37.23	47.63	23.11	23.33	
0.50	0.15	0.1	Ν	56.00	33.78	34.02	46.00	19.59	19.83	
0.55	0.15	0.1	Н	56.00	30.18	30.43	46.00	18.34	18.59	
0.61	0.16	0.1	Н	56.00	32.15	32.42	46.00	20.72	20.99	
0.62	0.16	0.1	Ν	56.00	33.62	33.89	46.00	21.04	21.31	
0.69	0.16	0.1	Н	56.00	32.70	32.99	46.00	20.04	20.33	
0.74	0.17	0.1	Н	56.00	31.31	31.62	46.00	20.74	21.05	
5.89	0.42	0.5	Ν	60.00	26.01	26.96	50.00	19.13	20.08	
6.42	0.44	0.6	Ν	60.00	24.53	25.52	50.00	14.44	15.43	
7.32	0.48	0.6	Ν	60.00	25.46	26.54	50.00	14.01	15.09	
7.86	0.51	0.6	Н	60.00	19.61	20.75	50.00	8.76	9.90	
8.44	0.55	0.7	Ν	60.00	22.86	24.07	50.00	14.14	15.35	
9.63	0.63	0.7	Ν	60.00	19.56	20.91	50.00	11.15	12.50	
Remark	H: Hot Line, N: Neutral Line									
1										

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 11-2 of 14

- 7. Photographs of test setup (Test mode: USB STORAGE MODE)
- 7.1 Setup for Radiated Test : 30 ~ 1000 MHz

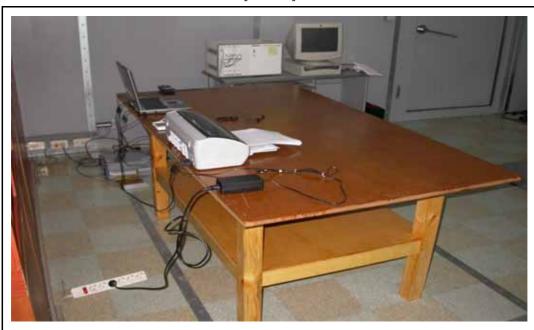
[Rear]

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 12-1 of 14

- 7. Photographs of test setup (Test mode: SINGLE MP3 MODE)
- 7.1 Setup for Radiated Test $: 30 \sim 1000 \text{ MHz}$

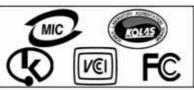
[Rear]

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 12-2 of 14



7.2 Setup for Conducted Test: 0.15 ~ 30 MHz (Test mode: USB STORAGE MODE)

[Front]

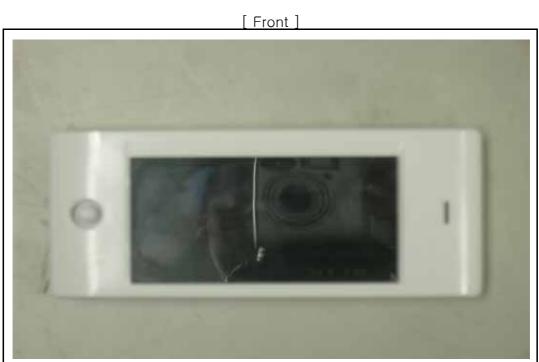


[Rear]

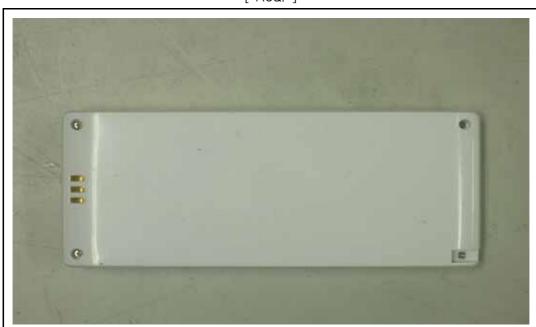
Report Number: ESTF150711-001, Web: www. estech. co. kr Page 13-1 of 14

7.2 Setup for Conducted Test: 0.15 ~ 30 MHz (Test mode: SINGLE MP3 MODE)

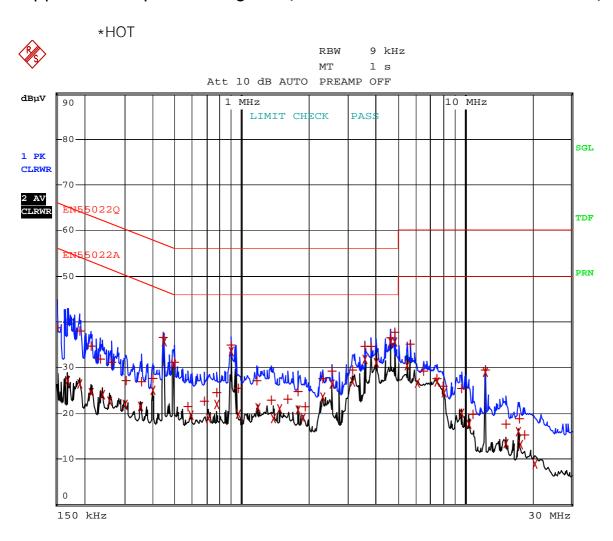
[Rear]



Report Number: ESTF150711-001, Web: www. estech. co. kr Page 13-2 of 14



8. Photographs of EUT

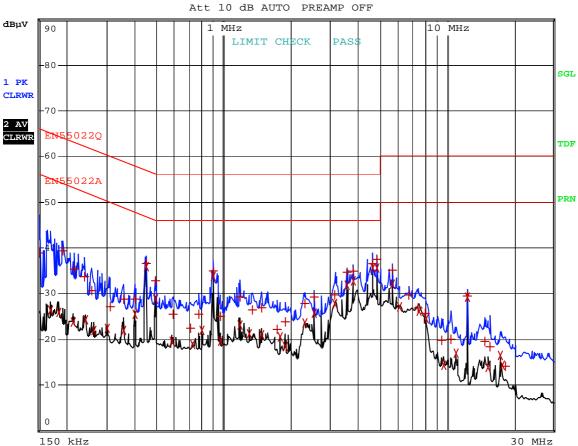


[Rear]

Report Number: ESTF150711-001, Web: www. estech. co. kr Page 14 of 14

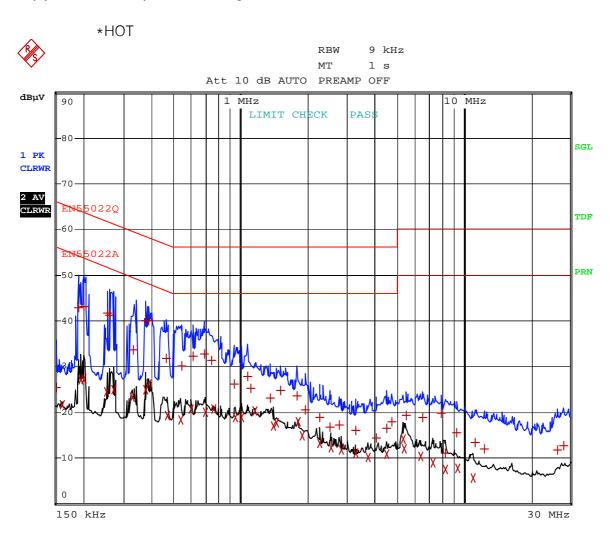
Appendix 1. Spectral diagram (Test mode: USB STORAGE MODE)

Comment: W10-HOT


Date: 4.OCT.2007 13:13:16

(Test mode: USB STORAGE MODE)

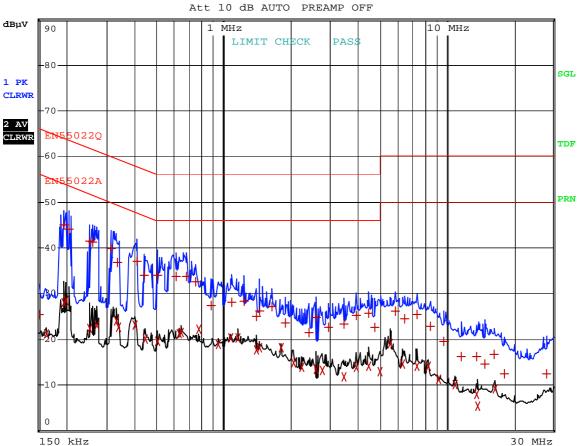
*NEUTRAL


RBW 9 kHz
MT 1 s

Comment: W10-NEUTRAL

Date: 4.OCT.2007 13:08:01

Appendix 1. Spectral diagram (Test mode: SINGLE MP3 MODE)


Comment: W10_SINGLE MODE_HOT
Date: 18.OCT.2007 21:22:43

(Test mode: SINGLE MP3 MODE)

*NEUTRAL

RBW 9 kHz
MT 1 s

Comment: W10_SINGLE MODE_NEUTRAL Date: 18.OCT.2007 21:29:59