Page: 1 of 60

SAR TEST REPORT

Equipment Under Test	EDA (Enterprise Digital Assistant)
Model Name	A25
Company Name	Airo Wireless Media Inc.
Company Address	12 Piedmont Center, Suite 310
Date of Receipt	2007.06.26
Date of Test(s)	2007.07.26-2007.07.29
Date of Issue	2007.09.14

Standards:

FCC OET Bulletin 65 supplement C, ANSI/IEEE C95.1, C95.3, IEEE 1528

In the configuration tested, the EUT complied with the standards specified above. **Remarks**:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory Services or testing done by SGS Taiwan Electronic & Communication Laboratory Services in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory Services in writing.

Tested by : LEO HSU Date : 2007.08.07

Approved by : DIKIN YANG Date : 2007.09.14

Report No. : ES/2007/70002 Page : 2 of 60

Contents

1	. General Information	
	1.1 Testing Laboratory	. 4
	1.2 Details of Applicant	. 4
	1.3 Description of EUT(s)	. 4
	1.4 Test Environment	_ 5
	1.5 Operation description	. 5
	1.6 Positioning Procedure	_ 6
	1.7 Evaluation Procedures	. 7
	1.8 SAR System Verification	. 8
	1.9 System Components	. 9
	1.10 SAR System Verification	_ 10
	1.11 Tissue Simulant Fluid for the Frequency Band	_ 12
	1.12 Test Standards and Limits	_ 13
2	. Summary of Results	_ 15
3	. Instruments List	_ 18
4	. Measurements	19
	GSM 850MHz	
	4.1.1 Right-head, cheek, lowest channel	19
	4.1.2 Right-head, cheek, middle channel	20
	4.1.3 Right-head, cheek, highest channel	21
	4.1.4 Left-head, cheek, lowest channel	. 22
	4.1.5 Left-head, cheek, middle channel	23
	4.1.6 Left-head, cheek, highest channel	. 24
	4.1.7 Left-head, cheek, highest channel_ repeated with Memory Card	
	4.1.8 Left-head, cheek, highest channel_ repeated with BT active on	
	4.1.9 Right-head, tilt 15°, lowest channel	
	4.1.10 Right-head, tilt 15°, middle channel	
	4.1.11 Right-head, tilt 15°, highest channel	29
	4.1.12 Left-head, tilt 15°, lowest channel	
	4.1.13 Left-head, tilt 15°, middle channel	
	4.1.14 Left-head, tilt 15°, highest channel	
	4.1.15 Body worn, lowest channel	
	4.1.16 Body worn, middle channel	
	4.1.17 Body worn, highest channel	
	4.1.18 Body worn, lowest channel_ repeated in EUT front to Phantom	36
	4.1.19 Body worn, lowest channel_ repeated with Headset	
	4.1.20 Body worn, lowest channel_ repeated with Memory Card_	39
	4.1.21 Body worn, lowest channel_ repeated with Bluetooth active on	
	4.1.22 Body worn, lowest channel_ repeated with EDGE mode	
	PCS 1900MHz	
	4.2.1 Right-head, cheek, lowest channel	42

	Page:	3	of	60
4.2.2 Right-head, cheek, middle channel	43			
4.2.3 Right-head, cheek, highest channel	44			
4.2.4 Left-head, cheek, lowest channel	<u></u> 45			
4.2.5 Left-head, cheek, middle channel				
4.2.6 Left-head, cheek, highest channel				
4.2.7 Right-head, tilt 15°, lowest channel				
4.2.8 Right-head, tilt 15°, middle channel				
4.2.9 Right-head, tilt 15°, highest channel	50			
4.2.10 Left-head, tilt 15°, lowest channel				
4.2.11 Left-head, tilt 15°, middle channel	52			
4.2.12 Left-head, tilt 15°, highest channel	53			
4.2.13 Body worn, lowest channel	54			
4.2.14 Body worn, middle channel				
4.2.15 Body worn, highest channel	56			
System Verification				
4.3.1 900MHz Head	57			
4.3.2 900MHz Body	58			
4.3.3 1900MHz Head	59			
4.3.4 1900MHz Body	60			

Page: 4 of 60

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. EC Lab		
134, Wu Kung Road, Wuku industrial zone		
Taipei county, Taiwan, R.O.C.		
Telephone +886-2-2299-3279		
Fax +886-2-2298-0488		
Internet	http://www.tw.sgs.com/	

1.2 Details of Applicant

Company Name	Airo Wireless Media Inc.
Company Address	12 Piedmont Center, Suite 310
Telephone	+1-404-526-9700
Fax	+1-404-846-8208
Contact Person	Jonathan Ventulett
E-mail	jventulett@airowireless.com
Web site	http://www.airowireless.com

1.3 Description of EUT

EUT Name	EDA (Enterprise Digital Assistant)	
Brand Name	Airo Wireless	
FCC ID	QDLA25TVVJ	
Model Name	A25	
Definition	Production unit	
IMEI Code	355634003036982	
Mode of Operation	GSM /GPRS/EDGE band	
Modulation mode	GMSK/8PSK	
Duty Cycle	GSM GPRS/EDGE	

Page: 5 of 60

	1/8	1/2
Maximum RF	GSM 850	PCS 1900
Conducted Power (Average)	32.44 dBm	29.77 dBm
TX Frequency Range	GSM 850	PCS 1900
(MHz)	824.2-848.8	1850-1910
Channel Number	GSM 850	PCS 1900
(ARFCN)	128-251	512-810
Battery Type	3.7 V Lithium-Ion	
Antenna Type	Internal Antenna	
Antenna Gain	GSM 850	PCS 1900
(Average, dBi)	-4.81	-1.79
H/W Version	A25-ENG1	
S/W Version	X13	
	Head	Body
Max. SAR Measured (1 g)	0.513 W/kg (At GSM850 Left-Cheek 251 Channel repeated with Bluetooth active on)	0.601 W/kg (At GPRS 850 Body 251 Channel repeated with Headset)

Note:

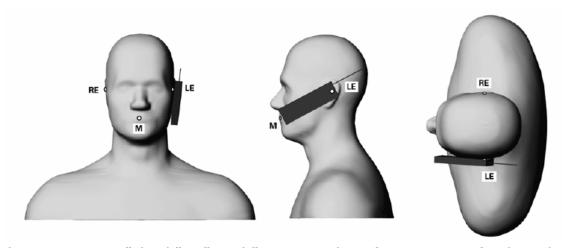
1. EGPRS mode was not measured because maximum averaged output power is more than 3 dB lower in EGPRS mode than in GPRS mode. (In EDGE mode, its power class level is E2 and output power less than 24dBm)

1.4 Test Environment

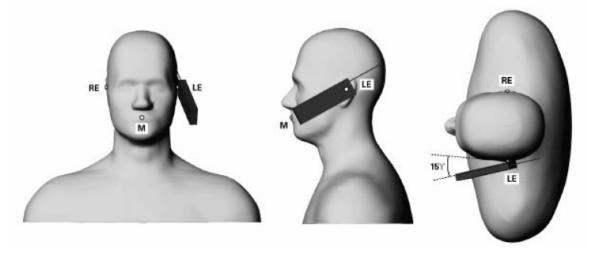
Ambient Temperature: 22.2° C Tissue Simulating Liquid: 21.7° C

Relative Humidity: 62 %

1.5 Operation description


- 1. The EUT controlled by using a Wireless Communication Tester (Agilent 8960), and the communication between the EUT and the tester is established by air link. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged.
- 2. In each band perform SAR testing for each operation mode using the center frequency on both the left and right sides of the head, cheek and tilt positions to find the maximum mass-averaged SAR value of these configurations (the worst case

Page: 6 of 60


configuration).

- 3. Measure the low-end and the high-end frequencies of the configuration giving rise to the maximum mass-averaged SAR in head positions.
- 4. For highest SAR configuration in this band repeated with Memory Card & Bluetooth active on & handset and EDGE mode.
- 5. During the SAR testing, the DASY4 system checks power drift by comparing the -field strength of one specific location measured at the beginning with that measured at the end of the SAR testing

1.6 Positioning Procedure

Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning

Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning

Cheek/Touch Position: the handset was brought toward the mouth of the head phantom by pivoting against the ear reference point until any point of the mouthpiece or

Page: 7 of 60

keypad touched the phantom.

Ear/Tilt Position: With the phone aligned in the Cheek/Touch position, the handset was tilted away from the mouth with respect to the test device reference point by 15 degrees.

1.7 EVALUATION PROCEDURES

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

 The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are

Page: 8 of 60

verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.8 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 4 professional system). A Model EX3DV3 3526-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei| 2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

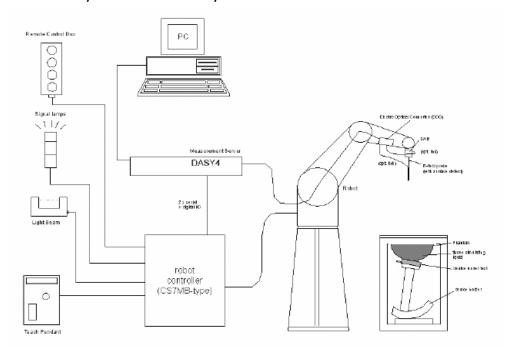


Fig.a The microwave circuit arrangement used for SAR system verification

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

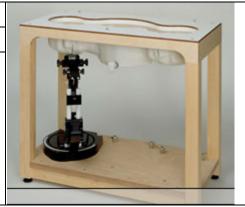
Page: 9 of 60

 A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
 - A computer operating Windows 2000 or Windows XP.
 - DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
 - The SAM twin phantom enabling testing left-hand and right-hand usage.
 - The device holder for handheld mobile phones.
 - Tissue simulating liquid mixed according to the given recipes.
 - Validation dipole kits allowing to validate the proper functioning of the system.

1.9 System Components

EX3DV3 E-Field Probe


Construction:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Calibration:	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL850/1900 Additional CF for other liquids and frequencies upon request	
	EX3DV3 E-Field Probe	
Frequency:	10 MHz to $>$ 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 6 GHz)	
Directivity:	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range:	: $10 \mu W/g$ to > $100 mW/g$; Linearity: $\pm 0.2 dB$ (noise: typically < $1 \mu W/g$)	
Dimensions:	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Application:	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better	

Page: 10 of 60

SAM	PHANTOM	V4.0C
		30%.

Construction:	The shell corresponds to the specifications of the Specific
	Anthropomorphic Mannequin (SAM) phantom defined in IEEE
	1528-200X, CENELEC 50361 and IEC 62209.
	It enables the dosimetric evaluation of left and right hand phone
	usage as well as body mounted usage at the flat phantom region. A
	cover prevents evaporation of the liquid. Reference markings on the
	phantom allow the complete setup of all predefined phantom
	positions and measurement grids by manually teaching three points
	with the robot.

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shell Thickness:	2 ± 0.2 mm
Filling Volume:	Approx. 25 liters
	Height: 251 mm; Length: 1000 mm; Width: 500 mm

DEVICE HOLDER

Construction	In combination with the Twin SAM Phantom V4.0/V4.0C or Twin SAM, the Mounting
	Device (made from POM) enables the rotation of the mounted transmitter in spherical
	coordinates, whereby the rotation point is the
	ear opening. The devices can be easily and
	accurately positioned according to IEC, IEEE,
	CENELEC, FCC or other specifications. The
	device holder can be locked at different
	phantom locations (left head, right head, flat phantom).

Device Holder

1.10 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 900/1900 MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1 & 2. During the tests, the ambient

Page: 11 of 60

temperature of the laboratory was in the range 22.2°C, the relative humidity was in the range 62% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

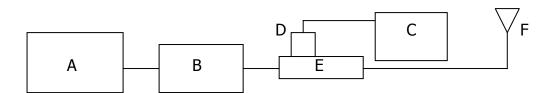


Fig.b The microwave circuit arrangement used for SAR system verification

- A. Agilent Model 8648D Signal Generator
- B. Mini circuits Model ZHL-42 Amplifier
- C. Agilent Model E4416A Power Meter
- D. Agilent Model 8481H Power Sensor
- E. Agilent Model 778D Dual directional coupling
- F. Reference dipole antenna

Photograph of the dipole Antenna

Validation Kit	Frequency (MHz)	Target SAR (1g) (Pin=250mW)	Measured SAR (1g)	Variation	Measured Date
D900V2 S/N: 178	900 MHz (Head)	2.66 m W/g	2.68 m W/g	0.75%	2007/7/26
D900V2 S/N: 178	900 MHz (Body)	2.69 m W/g	2.70 m W/g	0.37%	2007/7/29
D1900V2 S/N: 5d027	1900 MHz (Head)	9.28 m W/g	9.91 m W/g	6.78%	2007/7/24
D1900V2 S/N: 5d027	1900 MHz (Body)	9.67 m W/g	9.42 m W/g	2.58%	2007/7/29

Table 1. System validation (follow manufacture target value)

Page: 12 of 60

Validation Kit	Frequency (MHz)	Target SAR (1g) (Pin=250mW)	Measured SAR (1g)	Variation	Measured Date
D900V2 S/N: 178	900 MHz (Head)	2.7 m W/g	2.68 m W/g	0.74%	2007/7/26
D900V2 S/N: 178	900 MHz (Body)	2.7 m W/g	2.70 m W/g	0%	2007/7/29
D1900V2 S/N: 5d027	1900 MHz (Head)	9.92 m W/g	9.91 m W/g	0.1%	2007/7/24
D1900V2 S/N: 5d027	1900 MHz (Body)	9.92 m W/g	9.42 m W/g	5.0%	2007/7/29

Table 2. System validation (follow P1528 target value)

1.11 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this Head-simulant fluid were measured by using the HP Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjuncation with HP 8753D Network Analyzer (30 KHz-6000MHz) by using a procedure detailed in Section V.

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the ear reference point of the phantom was 15cm±5mm during all tests. (Fig .2)

Fraguency		Measurement date/	Dielectric Parameters			
Frequency Tissue type	Tissue type	Limits		a (C/m)	Simulated Tissue	
(MHz)		LIIIIICS	ρ	σ (S/m)	Temperature(° C)	
900	Head	Measured, 2007.07.26	40.9	1	21.7	
300	ricad	Recommended Limits	39.4-43.6	0.86-1.03	20-24	
900	Body	Measured, 2007.07.29	55.5	1.03	21.7	
900 Body	body	Recommended Limits	52.3-58	0.92-1.1	20-24	
1900	Head	Measured, 2007.07.24	40.2	1.44	21.6	
1900 Head	Recommended Limits	38-42.1	1.29-1.47	20-24		
1900	Body	Measured, 2007.07.19	50.9	1.56	21.7	
1900	bouy	Recommended Limits	50.6-56	1.38-1.6	20-24	

Table 3. Dielectric Parameters of Tissue Simulant Fluid

Page: 13 of 60

Band 850 Frequency (MHz)	Channel	Target	Permittivity Measurement Date	Variation	Target	Conductivity Measurement Date	Variation
Low(824.2)	128		42	1.10%		0.873	3%
Mid(836.6)	190	41.5	41.6	0.24%	0.9	0.877	2.50%
High(848.8)	251		41.3	0.48%		0.895	0.55%

Table 4. Dielectric Parameters of Tissue Simulant Fluid (follow P1528 target value)

The composition of the brain tissue simulating liquid for 900 & 1900 band:

Ingredient	900MHz(Head)	900Mhz(Body)	1900MHz(Head)	1900Mhz(Body)
DGMBE	X	X	444.52 g	300.67
Water	532.98 g	631.68 g	552.42 g	716.56 g
Salt	18.3 g	11.72 g	3.06 g	4.0 g
Preventol	2.4 g	1.2g	X	X
D-7				
Cellulose	3.2 g	X	X	X
Sugar	766.0 g	600 g	X	Χ
Total	1 L (1.0kg)	1 L (1.0kg)	1 L (1.0kg)	1 L (1.0kg)
amount				

Table 5. Recipes for tissue simulating liquid

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1-1992, Copyright 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate

Page: 14 of 60

compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .6)

	Uncontrolled Environment	Controlled Environment
Human Exposure	General Population	Occupational
Spatial Peak SAR	1.60 m W/g	8.00 m W/g
(Brain)		
Spatial Average SAR	0.08 m W/g	0.40 m W/g
(Whole Body)		
Spatial Peak SAR	4.00 m W/g	20.00 m W/g
(Hands/Feet/Ankle/Wrist)		

Table .6 RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Report No. : ES/2007/70002 Page : 15 of 60

2.Summary of Results

GSM 850 MHZ

GOINI OF						
Right Head	(Cheek Po	osition)				
Frequency	Channel	MHz	Conducted Output	Measured(W/kg)	Amb.	Liquid
			Power (Average)	1g	Temp[°C]	Temp[°C]
	128	824.2	32.44dbm	0.157	22.1	21.7
850 MHz	190	836.6	32.26dbm	0.264	22.1	21.7
	251	848.8	32.18dbm	0.438	22.1	21.7
Left Head (0	Cheek Pos	ition)				
Frequency	Channel	MHz	Conducted Output	Measured(W/kg)	Amb.	Liquid
			Power (Average)	1g	Temp[°C]	Temp[°C]
	128	824.2	32.44dbm	0.174	22.1	21.7
850 MHz	190	836.6	32.26dbm	0.300	22.1	21.7
	251	848.8	32.18dbm	0.492	22.1	21.7
Left Head (0	Cheek Pos	ition)-ı	epeated with Men	nory Card		
Frequency	Channel	MHz	Conducted Output	Measured(W/kg)	Amb.	Liquid
			Power (Average)	1g	Temp[°C]	Temp[°C]
850 MHz	251	848.8	32.18dbm	0.476	22.1	21.7
Left Head (0	Cheek Pos	ition)-ı	epeated with Blue	etooth active on		
Frequency	Channel	MHz	Conducted Output	Measured(W/kg)	Amb.	Liquid
			Power (Average)	1g	Temp[°C]	Temp[°C]
850 MHz	251	848.8	32.18dbm	0.513	22.1	21.7
Right Head	(15° Tilt I	Position	1)			
Frequency	Channel	MHz	Conducted Output	Measured(W/kg)	Amb.	Liquid
			Power (Average)	1g	Temp[°C]	Temp[°C]
	128	824.2	32.44dbm	0.103	22.1	21.7
850 MHz	190	836.6	32.26dbm	0.174	22.1	21.7
	251	848.8	32.18dbm	0.287	22.1	21.7
Left Head (5° Tilt Po	sition)				l
Frequency	Channel	MHz	Conducted Output	Measured(W/kg)	Amb.	Liquid
			Power (Average)	1g	Temp[°C]	Temp[°C]
	128	824.2	32.44dbm	0.100	22.1	21.7
850 MHz	190	836.6	32.26dbm	0.172	22.1	21.7
	251	848.8	32.18dbm	0.297	22.1	21.7
Body worn	(testing ir	GPRS	mode)			

Report No. : ES/2007/70002 Page : 16 of 60

Liquid					
-1					
C] Temp[°C]					
21.7					
21.7					
21.7					
Body worn - repeated for EUT front to phantom (testing in GPRS mode)					
Liquid					
C] Temp[°C]					
21.6					
Liquid					
C] Temp[°C]					
21.6					
Liquid					
C] Temp[°C]					
21.6					
)					
Liquid					
C] Temp[°C]					
21.6					
)					
Liquid					
C] Temp[°C]					
21.6					

PCS 1900 MHZ

Right Head (Cheek Position)							
Frequency	Channel	MHz	Conducted Output	Measured(W/kg)	Amb.	Liquid	
			Power (Average)	1g	Temp[°C]	Temp[°C]	
	512	1850.2	29.77dbm	0.200	22	21.6	
1900 MHz	661	1880	29.18dbm	0.177	22	21.6	
	810	1909.8	29.05dbm	0.164	22	21.6	
Left Head (0	Left Head (Cheek Position)						
Frequency	Channel	MHz	Conducted Output Power (Average)	Measured(W/kg) 1g	Amb. Temp[°C]	Liquid Temp[°C]	
			rowei (Average)	19		rempt c	

Page: 17 of 60 512 1850.2 29.77dbm 0.160 22 21.6 1900 MHz 661 1880 29.18dbm 0.145 22 21.6 810 1909.8 29.05dbm 0.136 22 21.6 Right Head (15° Tilt Position) **Conducted Output** Frequency Channel MHz Measured(W/kg) Amb. Liquid Power (Average) Temp[°C] | Temp[°C] 1g 512 1850.2 29.77dbm 0.186 22 21.6 1900 MHz 661 1880 29.18dbm 0.164 22 21.6 810 1909.8 29.05dbm 0.140 22 21.6 Left Head (15° Tilt Position) Conducted Output Measured(W/kg) Liquid Frequency Channel MHz Amb. Power (Average) Temp[°C] Temp[°C] 1g 1850.2 29.77dbm 0.198 512 22 21.6 661 1880 29.18dbm 0.173 22 21.6 1900 MHz 810 1909.8 29.05dbm 0.151 22 21.6 **Body worn (testing in GPRS mode)** Conducted Output Liquid Frequency Channel MHz Measured(W/kg) Amb. Power (Average) Temp[°C] |Temp[°C] 1g 0.320 22.1 21.7 512 1850.2 29.77dbm 1900 MHz 661 1880 29.18dbm 0.382 22.1 21.7 810 1909.8 29.05dbm 0.397 22.1 21.7

Note: SAR measurement results for the Mobile Phone at maximum output power.

Report No. : ES/2007/70002 Page : 18 of 60

3. Instruments List

Manufacturer	Device	Туре	Serial number	Date of last calibration
Schmid & Partner Engineering AG	Dosimetric E-Field Probe	EX3DV3	3526	Aug.25.2006
Schmid & Partner	900/1900 MHz System	D900V2	178	Feb.19.2007
Engineering AG	Validation Dipole	D1900V2	5d027	Mar.20.2007
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE4	547	Mar.21.2007
Schmid & Partner Engineering AG	Software	DASY 4 V4.7 Build 53	N/A	Calibration isn't necessary
Schmid & Partner Engineering AG	Phantom	SAM	N/A	Calibration isn't necessary
Agilent	Network Analyzer	8753D	3410A05547	Nov.16.2006
Agilent	Dielectric Probe Kit	85070D	US01440168	Calibration isn't necessary
Agilent	Dual-directional coupler	778D	50313	Sep.01.2006
Agilent	RF Signal Generator	8648D	3847M00432	May.22.2007
Agilent	Power Sensor	8481H	MY41091361	Jun.04.2007
Agilent	8960 Series 10 Wireless Communication Tester	8960	GB44051912	Nov.28.2006

Page: 19 of 60

4. Measurements

RE Cheek_CH128Date/Time: 2007/7/26 18:30:46

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used : f = 824.2 MHz; σ = 0.873 mho/m; ε = 42; ρ =

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

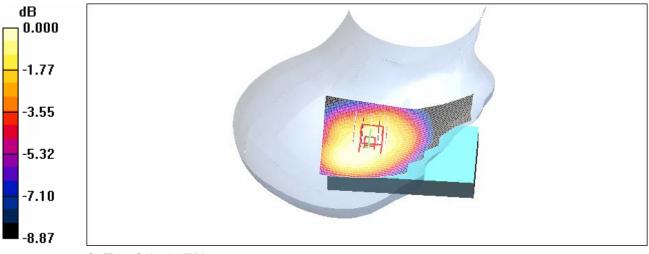
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.168 mW/g


RE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.7 V/m; Power Drift = -0.074 dB

Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.157 mW/g; SAR(10 g) = 0.119 mW/g

Maximum value of SAR (measured) = 0.165 mW/g

0 dB = 0.165 mW/g

Page: 20 of 60

Date/Time: 2007/7/26 18:45:39

RE Cheek CH190

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used: f = 836.6 MHz; $\sigma = 0.877$ mho/m; $\varepsilon_r = 41.6$; $\rho =$

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

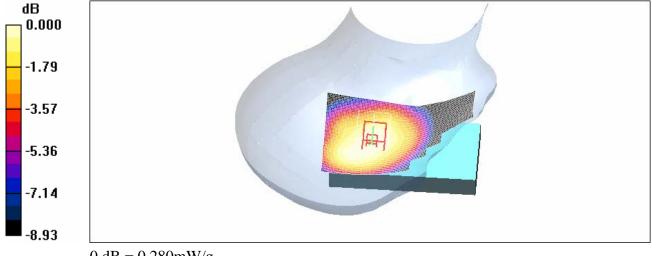
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.277 mW/g


RE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = -0.117 dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.264 mW/g; SAR(10 g) = 0.199 mW/g

Maximum value of SAR (measured) = 0.280 mW/g

0 dB = 0.280 mW/g

Page: 21 of 60

Date/Time: 2007/7/26 19:00:09

RE Cheek CH251

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used : f = 848.8 MHz; σ = 0.895 mho/m; ε = 41.3; ρ =

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

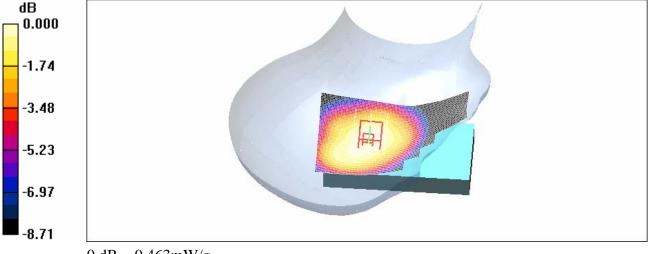
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.462 mW/g


RE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.7 V/m; Power Drift = -0.075 dB

Peak SAR (extrapolated) = 0.555 W/kg

SAR(1 g) = 0.438 mW/g; SAR(10 g) = 0.331 mW/g

Maximum value of SAR (measured) = 0.463 mW/g

0 dB = 0.463 mW/g

Page: 22 of 60

Date/Time: 2007/7/26 16:33:32

LE Cheek CH128

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used : f = 824.2 MHz; $\sigma = 0.873$ mho/m; $\varepsilon_r = 42$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

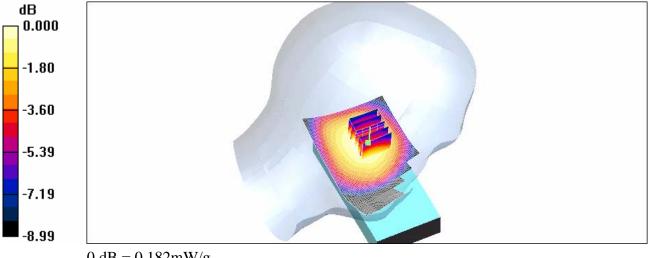
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.184 mW/g


LE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.2 V/m; Power Drift = -0.087 dB

Peak SAR (extrapolated) = 0.213 W/kg

SAR(1 g) = 0.174 mW/g; SAR(10 g) = 0.132 mW/g

Maximum value of SAR (measured) = 0.182 mW/g

0 dB = 0.182 mW/g

Page: 23 of 60

Date/Time: 2007/7/26 16:48:52

LE Cheek CH190

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used: f = 836.6 MHz; $\sigma = 0.877$ mho/m; $\varepsilon_r = 41.6$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

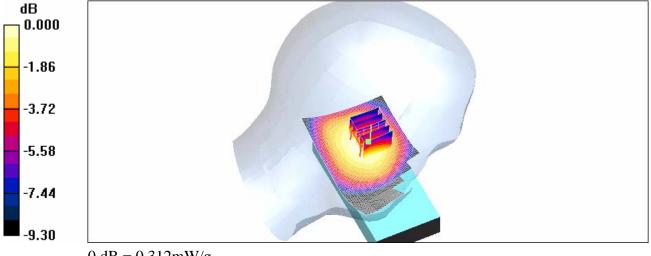
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.316 mW/g


LE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.8 V/m; Power Drift = -0.150 dB

Peak SAR (extrapolated) = 0.370 W/kg

SAR(1 g) = 0.300 mW/g; SAR(10 g) = 0.227 mW/g

Maximum value of SAR (measured) = 0.312 mW/g

0 dB = 0.312 mW/g

Page: 24 of 60

Date/Time: 2007/7/26 17:18:12

LE Cheek_CH251

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used : f = 848.8 MHz; σ = 0.895 mho/m; ε = 41.3; ρ =

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

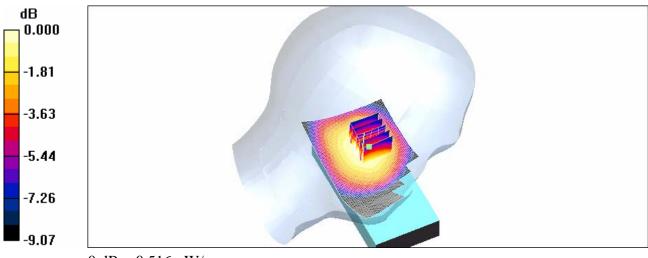
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.516 mW/g


LE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.7 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 0.608 W/kg

SAR(1 g) = 0.492 mW/g; SAR(10 g) = 0.372 mW/g

Maximum value of SAR (measured) = 0.516 mW/g

0 dB = 0.516 mW/g

Page: 25 of 60

Date/Time: 2007/7/26 20:09:44

LE Cheek_CH251_ repeated with Memory Card

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used : f = 848.8 MHz; σ = 0.895 mho/m; ε = 41.3; ρ =

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

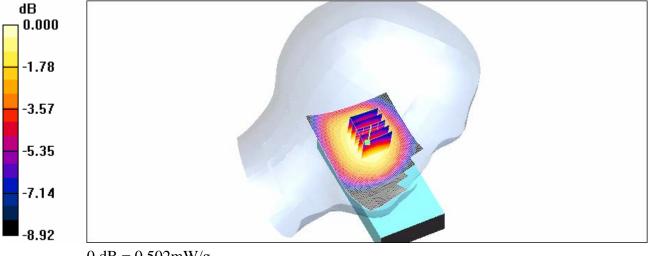
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.511 mW/g


LE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.5 V/m; Power Drift = -0.103 dB

Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.476 mW/g; SAR(10 g) = 0.357 mW/g

Maximum value of SAR (measured) = 0.502 mW/g

0 dB = 0.502 mW/g

Page: 26 of 60

Date/Time: 2007/7/26 20:28:34

LE Cheek_CH251_ repeated with Bluetooth active

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used : f = 848.8 MHz; σ = 0.895 mho/m; ε = 41.3; ρ =

 1000 kg/m^3

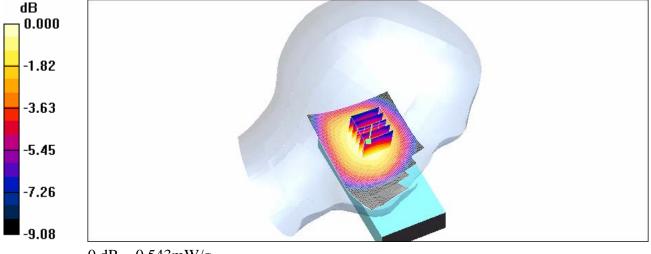
Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV3 SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2007/3/5
- Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.541 mW/g


LE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.9 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 0.643 W/kg

SAR(1 g) = 0.513 mW/g; SAR(10 g) = 0.386 mW/g

Maximum value of SAR (measured) = 0.543 mW/g

0 dB = 0.543 mW/g

Page: 27 of 60

Date/Time: 2007/7/26 19:46:09

RE Tilt_CH128

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used : f = 824.2 MHz; σ = 0.873 mho/m; ε = 42; ρ =

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

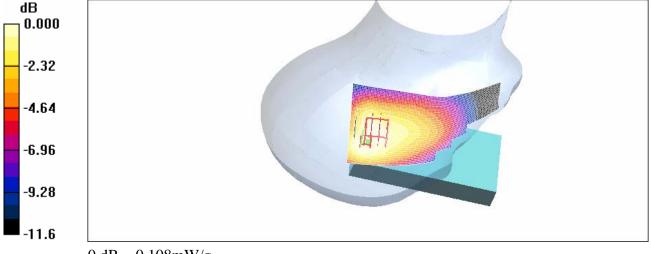
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.114 mW/g


RE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 0.166 W/kg

SAR(1 g) = 0.103 mW/g; SAR(10 g) = 0.070 mW/g

Maximum value of SAR (measured) = 0.108 mW/g

0 dB = 0.108 mW/g

Page: 28 of 60

Date/Time: 2007/7/26 19:31:28

RE Tilt_CH190

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used : f = 836.6 MHz; σ = 0.877 mho/m; ε = 41.6; ρ =

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

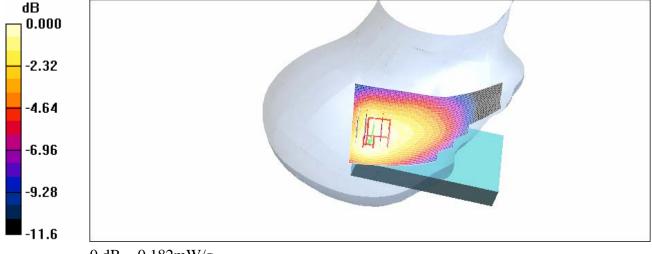
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.193 mW/g


RE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.6 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 0.276 W/kg

SAR(1 g) = 0.174 mW/g; SAR(10 g) = 0.120 mW/g

Maximum value of SAR (measured) = 0.182 mW/g

0 dB = 0.182 mW/g

Page: 29 of 60

Date/Time: 2007/7/26 19:15:35

RE Tilt CH251

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used : f = 848.8 MHz; σ = 0.895 mho/m; ε = 41.3; ρ =

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

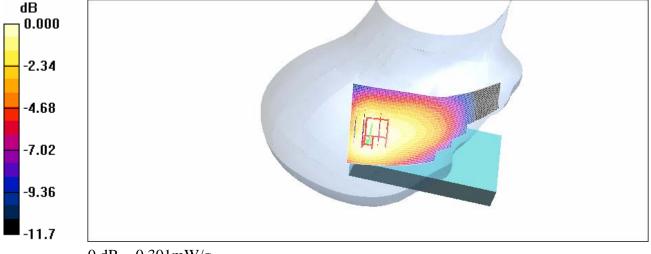
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.321 mW/g


RE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.4 V/m; Power Drift = -0.088 dB

Peak SAR (extrapolated) = 0.457 W/kg

SAR(1 g) = 0.287 mW/g; SAR(10 g) = 0.200 mW/g

Maximum value of SAR (measured) = 0.301 mW/g

0 dB = 0.301 mW/g

Page: 30 of 60

Date/Time: 2007/7/26 18:04:11

LE Tilt_CH128

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used : f = 824.2 MHz; σ = 0.873 mho/m; ε = 42; ρ =

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

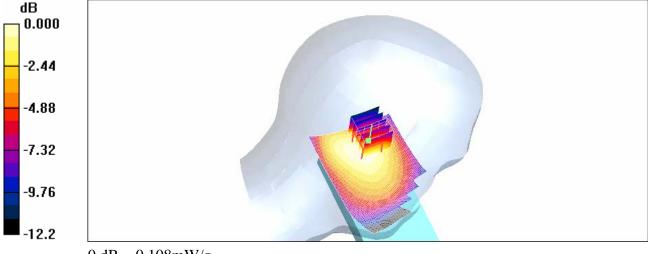
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.116 mW/g


LE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 0.156 W/kg

SAR(1 g) = 0.100 mW/g; SAR(10 g) = 0.071 mW/g

Maximum value of SAR (measured) = 0.108 mW/g

0 dB = 0.108 mW/g

Page: 31 of 60

Date/Time: 2007/7/26 17:48:34

LE Tilt CH190

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used: f = 836.6 MHz; $\sigma = 0.877$ mho/m; $\varepsilon_r = 41.6$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

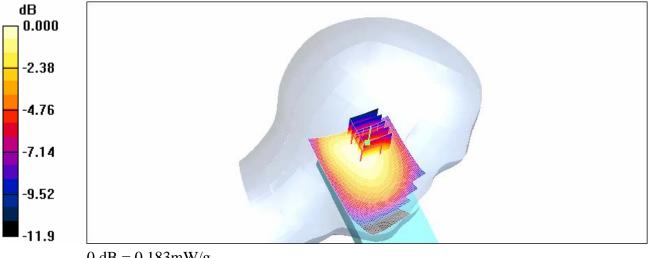
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.204 mW/g


LE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.261 W/kg

SAR(1 g) = 0.172 mW/g; SAR(10 g) = 0.125 mW/g

Maximum value of SAR (measured) = 0.183 mW/g

0 dB = 0.183 mW/g

Page: 32 of 60

Date/Time: 2007/7/26 17:33:24

LE Tilt CH251

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: Head 850 MHz Medium parameters used: f = 848.8 MHz; $\sigma = 0.895$ mho/m; $\varepsilon_r = 41.3$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

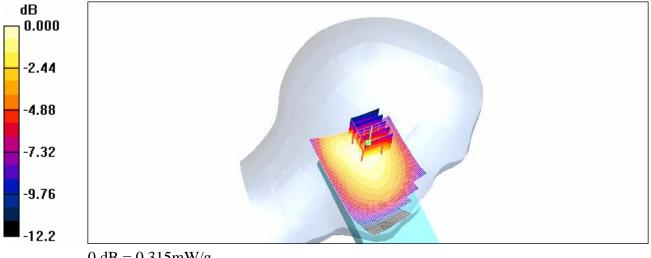
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.354 mW/g


LE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.7 V/m; Power Drift = -0.068 dB

Peak SAR (extrapolated) = 0.471 W/kg

SAR(1 g) = 0.297 mW/g; SAR(10 g) = 0.211 mW/g

Maximum value of SAR (measured) = 0.315 mW/g

0 dB = 0.315 mW/g

Page: 33 of 60

Date/Time: 2007/7/29 12:38:29

Body CH128

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:2

Medium: Muscle 850 MHz Medium parameters used : f = 824.2 MHz; $\sigma = 0.953$ mho/m; $\varepsilon_r = 56.3$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.63, 11.63, 11.63); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

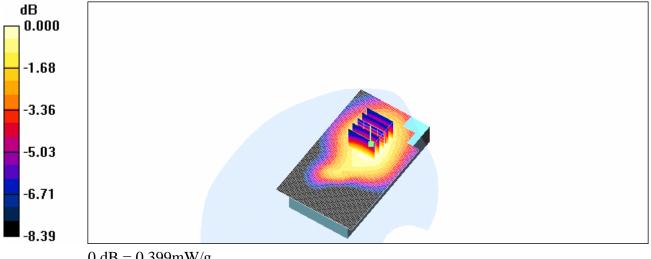
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.401 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.68 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 0.492 W/kg

SAR(1 g) = 0.380 mW/g; SAR(10 g) = 0.284 mW/g

Maximum value of SAR (measured) = 0.399 mW/g

0 dB = 0.399 mW/g

Page: 34 of 60

Date/Time: 2007/7/29 12:53:06

Body CH190

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium: Muscle 850 MHz Medium parameters used : f = 836.6 MHz; σ = 0.964 mho/m; ε_r = 56.2; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.63, 11.63, 11.63); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

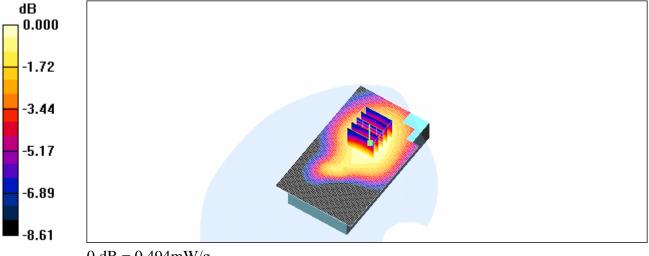
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.496 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.27 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 0.599 W/kg

SAR(1 g) = 0.467 mW/g; SAR(10 g) = 0.350 mW/g

Maximum value of SAR (measured) = 0.494 mW/g

0 dB = 0.494 mW/g

Page: 35 of 60

Date/Time: 2007/7/29 13:06:51

Body CH251

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: Muscle 850 MHz Medium parameters used : f = 848.8 MHz; $\sigma = 0.976$ mho/m; $\varepsilon_r = 56$; $\rho =$

 1000 kg/m^3

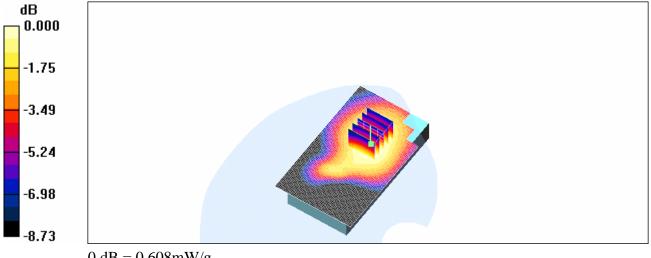
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3526; ConvF(11.63, 11.63, 11.63); Calibrated: 2006/8/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2007/3/5
- Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.614 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.05 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 0.738 W/kg

SAR(1 g) = 0.579 mW/g; SAR(10 g) = 0.432 mW/g

Maximum value of SAR (measured) = 0.608 mW/g

0 dB = 0.608 mW/g

Page: 36 of 60

Date/Time: 2007/7/29 16:09:13

Body CH251 repeated for EUT front to Phantom

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: Muscle 850 MHz Medium parameters used : f = 848.8 MHz; $\sigma = 0.976$ mho/m; $\varepsilon_r = 56$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.63, 11.63, 11.63); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

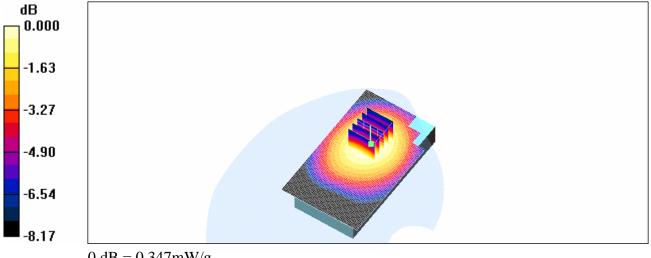
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.348 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.31 V/m; Power Drift = -0.120 dB

Peak SAR (extrapolated) = 0.429 W/kg

SAR(1 g) = 0.331 mW/g; SAR(10 g) = 0.248 mW/g

Maximum value of SAR (measured) = 0.347 mW/g

0 dB = 0.347 mW/g

Page: 37 of 60

Date/Time: 2007/7/29 16:37:04

Body CH251 repeated with Headset

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: Muscle 850 MHz Medium parameters used : f = 848.8 MHz; $\sigma = 0.976$ mho/m; $\varepsilon_r = 56$; $\rho =$

 1000 kg/m^3

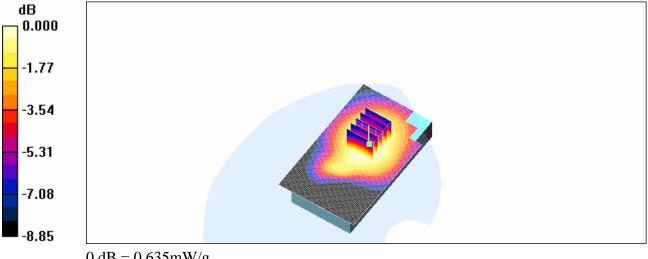
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3526; ConvF(11.63, 11.63, 11.63); Calibrated: 2006/8/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2007/3/5
- Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

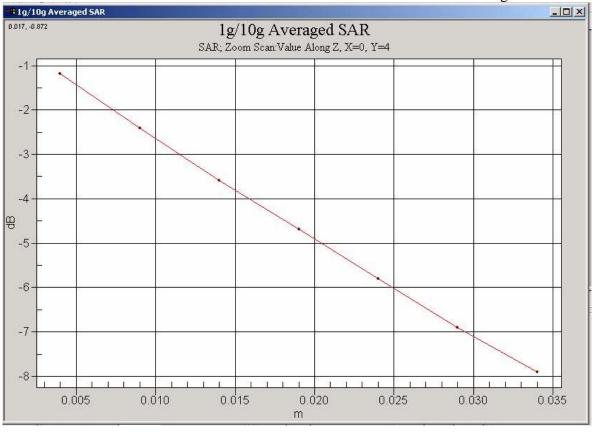
Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.638 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.37 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 0.780 W/kg


SAR(1 g) = 0.601 mW/g; SAR(10 g) = 0.448 mW/g

Maximum value of SAR (measured) = 0.635 mW/g

0 dB = 0.635 mW/g

Report No. : ES/2007/70002 Page : 38 of 60

Page: 39 of 60

Date/Time: 2007/7/29 17:22:06

Body CH251 repeated with Memory Card

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: Muscle 850 MHz Medium parameters used : f = 848.8 MHz; $\sigma = 0.976$ mho/m; $\varepsilon_r = 56$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.63, 11.63, 11.63); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

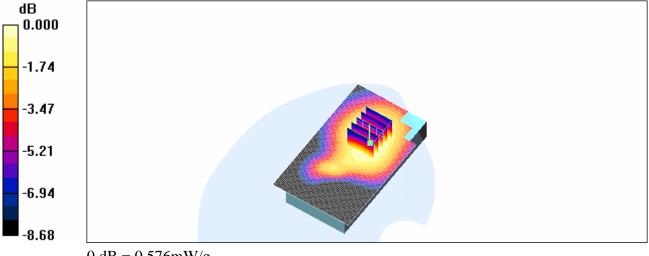
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.577 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.78 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 0.703 W/kg

SAR(1 g) = 0.547 mW/g; SAR(10 g) = 0.407 mW/g

Maximum value of SAR (measured) = 0.576 mW/

0 dB = 0.576 mW/g

Page: 40 of 60

Date/Time: 2007/7/29 17:52:42

Body CH251 repeated with Bluetooth active on

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: Muscle 850 MHz Medium parameters used : f = 848.8 MHz; $\sigma = 0.976$ mho/m; $\varepsilon_r = 56$; $\rho =$

 1000 kg/m^3

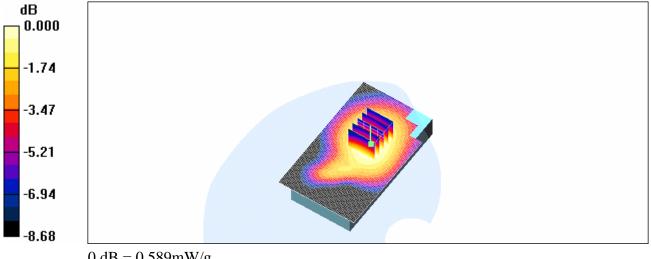
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3526; ConvF(11.63, 11.63, 11.63); Calibrated: 2006/8/25
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2007/3/5
- Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.587 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.80 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 0.727 W/kg

SAR(1 g) = 0.560 mW/g; SAR(10 g) = 0.417 mW/g

Maximum value of SAR (measured) = 0.589 mW/g

0 dB = 0.589 mW/g

Page: 41 of 60

Date/Time: 2007/7/29 16:55:41

Body_CH251_with headset for EGPRS mode DUT: A25; Type: GSM; IMEI:355634003036982;

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: Muscle 850 MHz Medium parameters used : f = 848.8 MHz; $\sigma = 0.975$ mho/m; $\varepsilon_r = 56$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

- Probe: EX3DV4 SN3578; ConvF(8.02, 8.02, 8.02); Calibrated: 2007/4/24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn679; Calibrated: 2007/4/20
- Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

•

Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.596 mW/g

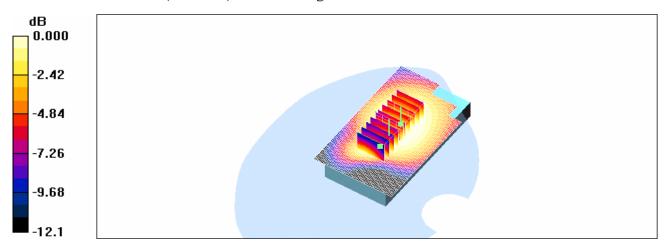
Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.72 V/m; Power Drift = 0.149 dB

Peak SAR (extrapolated) = 0.717 W/kg

SAR(1 g) = 0.564 mW/g; SAR(10 g) = 0.425 mW/g

Maximum value of SAR (measured) = 0.591 mW/g


Body/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.72 V/m; Power Drift = 0.149 dB

Peak SAR (extrapolated) = 0.640 W/kg

SAR(1 g) = 0.474 mW/g; SAR(10 g) = 0.336 mW/g

Maximum value of SAR (measured) = 0.523 mW/g

0 dB = 0.523 mW/g

Page: 42 of 60

Date/Time: 2007/7/24 21:44:32

RE Cheek CH512

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\varepsilon_r = 40.5$; $\rho =$

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

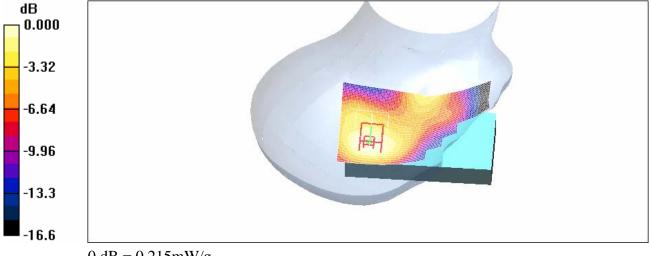
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.218 mW/g


RE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.35 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 0.325 W/kg

SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.118 mW/g

Maximum value of SAR (measured) = 0.215 mW/g

0 dB = 0.215 mW/g

Page: 43 of 60

Date/Time: 2007/7/24 21:59:34

RE Cheek CH661

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\varepsilon_r = 40.3$; $\rho =$

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

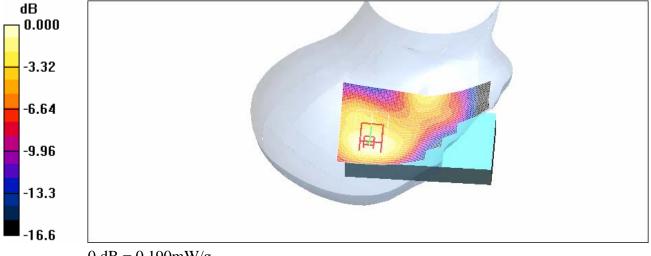
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.191 mW/g


RE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.54 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 0.291 W/kg

SAR(1 g) = 0.177 mW/g; SAR(10 g) = 0.103 mW/g

Maximum value of SAR (measured) = 0.190 mW/g

0 dB = 0.190 mW/g

Page: 44 of 60

Date/Time: 2007/7/24 22:14:00

RE Cheek_CH810

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; σ = 1.46 mho/m; ε = 40.2; ρ =

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

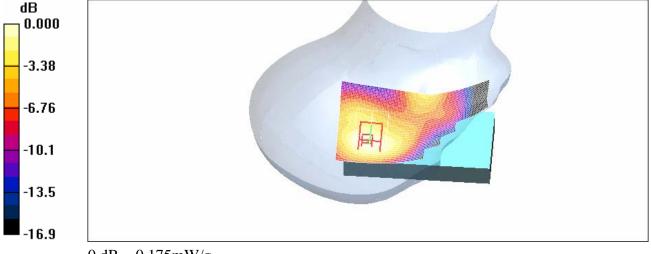
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.174 mW/g


RE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.03 V/m; Power Drift = -0.044 dB

Peak SAR (extrapolated) = 0.273 W/kg

SAR(1 g) = 0.164 mW/g; SAR(10 g) = 0.095 mW/g

Maximum value of SAR (measured) = 0.175 mW/g

0 dB = 0.175 mW/g

Page: 45 of 60

Date/Time: 2007/7/24 20:46:54

LE Cheek CH512

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\varepsilon_r = 40.5$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

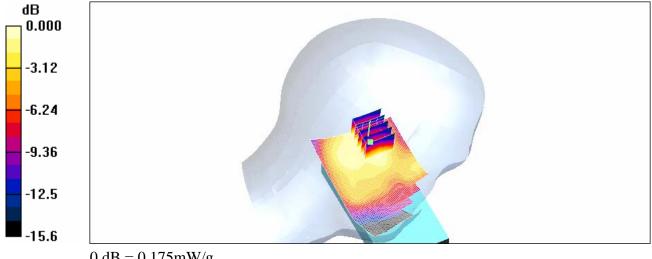
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.185 mW/g


LE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.44 V/m; Power Drift = -0.167 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.160 mW/g; SAR(10 g) = 0.095 mW/g

Maximum value of SAR (measured) = 0.175 mW/g

0 dB = 0.175 mW/g

Page: 46 of 60

Date/Time: 2007/7/24 20:02:04

LE Cheek CH661

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\varepsilon_r = 40.3$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

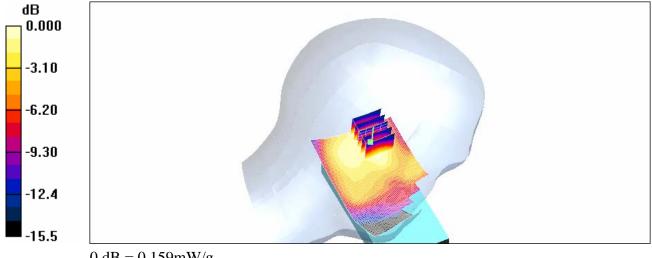
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.165 mW/g


LE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.52 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 0.241 W/kg

SAR(1 g) = 0.145 mW/g; SAR(10 g) = 0.085 mW/g

Maximum value of SAR (measured) = 0.159 mW/g

0 dB = 0.159 mW/g

Page: 47 of 60

Date/Time: 2007/7/24 20:17:38

LE Cheek CH810

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 40.2$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

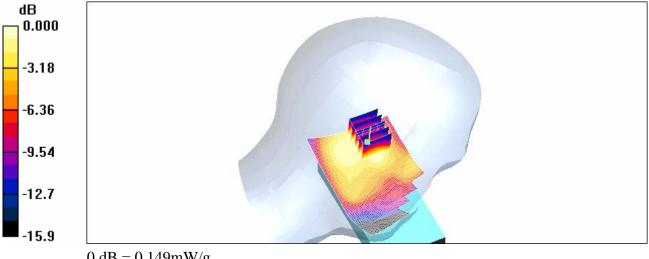
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Cheek/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.155 mW/g


LE Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.10 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 0.227 W/kg

SAR(1 g) = 0.136 mW/g; SAR(10 g) = 0.079 mW/g

Maximum value of SAR (measured) = 0.149 mW/g

0 dB = 0.149 mW/g

Page: 48 of 60

Date/Time: 2007/7/24 23:01:02

RE Tilt_CH512

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used : f = 1850.2 MHz; σ = 1.37 mho/m; ε = 40.5; ρ =

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

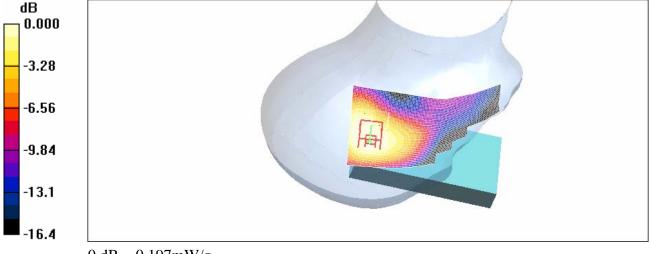
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.209 mW/g


RE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.0 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.312 W/kg

SAR(1 g) = 0.186 mW/g; SAR(10 g) = 0.112 mW/g

Maximum value of SAR (measured) = 0.197 mW/g

0 dB = 0.197 mW/g

Page: 49 of 60

Date/Time: 2007/7/24 22:46:13

RE Tilt_CH661

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε = 40.3; ρ =

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

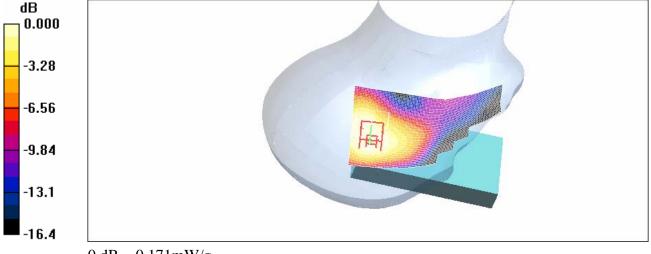
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.183 mW/g


RE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.2 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 0.279 W/kg

SAR(1 g) = 0.164 mW/g; SAR(10 g) = 0.098 mW/g

Maximum value of SAR (measured) = 0.171 mW/g

0 dB = 0.171 mW/g

Page: 50 of 60

Date/Time: 2007/7/24 22:31:59

RE Tilt CH810

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 40.2$; $\rho =$

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

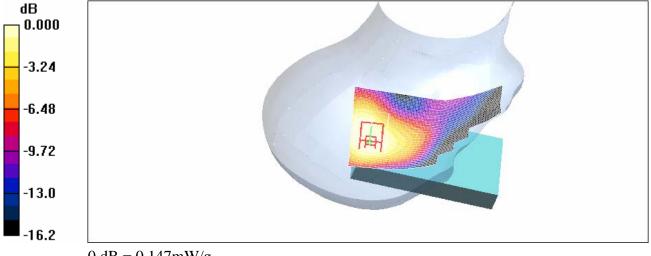
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

RE Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.155 mW/g


RE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.19 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 0.242 W/kg

SAR(1 g) = 0.140 mW/g; SAR(10 g) = 0.082 mW/g

Maximum value of SAR (measured) = 0.147 mW/g

0 dB = 0.147 mW/g

Page: 51 of 60

Date/Time: 2007/7/24 18:24:38

LE Tilt CH512

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\varepsilon_r = 40.5$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

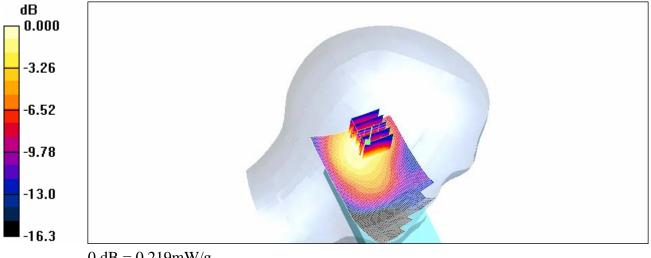
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Tilt/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.213 mW/g


LE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 0.326 W/kg

SAR(1 g) = 0.198 mW/g; SAR(10 g) = 0.117 mW/g

Maximum value of SAR (measured) = 0.219 mW/g

0 dB = 0.219 mW/g

Page: 52 of 60

Date/Time: 2007/7/24 18:08:52

LE Tilt_CH661

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε = 40.3; ρ =

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

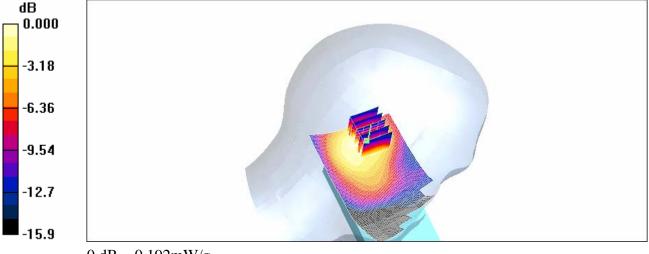
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Tilt/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.188 mW/g


LE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.50 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 0.290 W/kg

SAR(1 g) = 0.173 mW/g; SAR(10 g) = 0.102 mW/g

Maximum value of SAR (measured) = 0.192 mW/g

0 dB = 0.192 mW/g

Page: 53 of 60

Date/Time: 2007/7/24 18:52:59

LE Tilt CH810

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 40.2$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.61, 9.61, 9.61); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

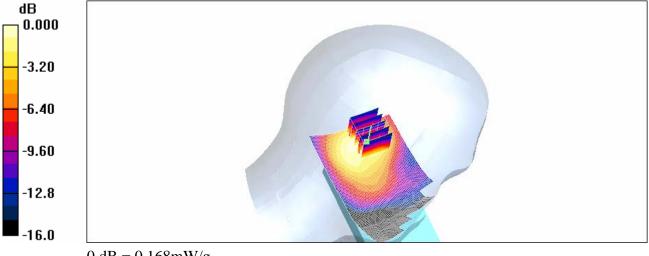
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

LE Tilt/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.161 mW/g


LE Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.71 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 0.258 W/kg

SAR(1 g) = 0.151 mW/g; SAR(10 g) = 0.088 mW/g

Maximum value of SAR (measured) = 0.168 mW/g

0 dB = 0.168 mW/g

Page: 54 of 60

Date/Time: 2007/7/29 19:36:33

Body CH512

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1850.2 MHz; Duty Cycle: 1:2

Medium: M1800 & 1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.52$ mho/m; $\varepsilon_r = 51.2$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.64, 9.64, 9.64); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

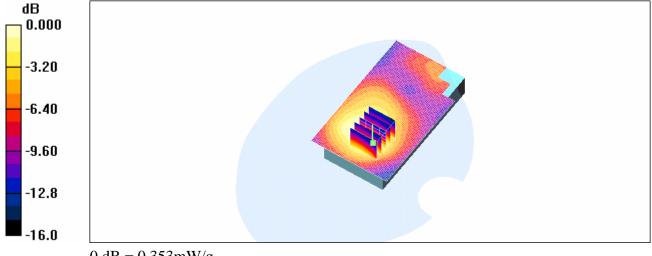
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.346 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = -0.069 dB

Peak SAR (extrapolated) = 0.528 W/kg

SAR(1 g) = 0.320 mW/g; SAR(10 g) = 0.188 mW/g

Maximum value of SAR (measured) = 0.353 mW/g

0 dB = 0.353 mW/g

Page: 55 of 60

Date/Time: 2007/7/29 19:52:08

Body CH661

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: M1800 & 1900 Medium parameters used : f = 1880 MHz; σ = 1.55 mho/m; ε _r = 51; ρ =

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.64, 9.64, 9.64); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

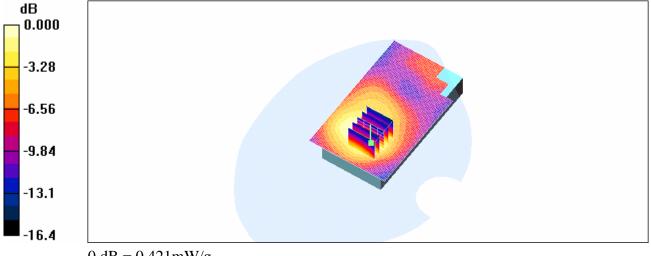
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.414 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.6 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 0.634 W/kg

SAR(1 g) = 0.382 mW/g; SAR(10 g) = 0.224 mW/g

Maximum value of SAR (measured) = 0.421 mW/g

0 dB = 0.421 mW/g

Page: 56 of 60

Date/Time: 2007/7/29 20:19:26

Body CH810

DUT: A25; Type: GSM;IMEI:355634003036982;

Communication System: GSM1900; Frequency: 1909.8 MHz; Duty Cycle: 1:2

Medium: M1800 & 1900 Medium parameters used: f = 1910 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 50.9$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(9.64, 9.64, 9.64); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

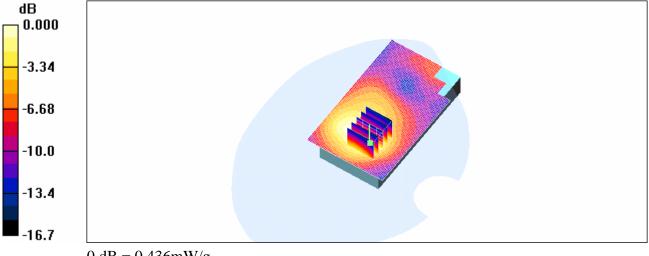
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.426 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.7 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 0.672 W/kg

SAR(1 g) = 0.397 mW/g; SAR(10 g) = 0.230 mW/g

Maximum value of SAR (measured) = 0.436 mW/g

0 dB = 0.436 mW/g

Page: 57 of 60

Date/Time: 2007/7/26 09:35:18

SAR System Performance Verification

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN:178

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: Head 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 40.9$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

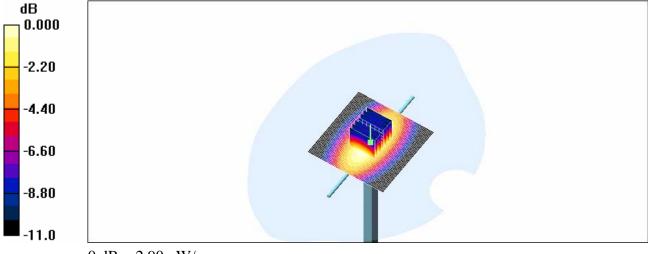
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.91 mW/g


Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.1 V/m; Power Drift = -0.059 dB

Peak SAR (extrapolated) = 4.15 W/kg

SAR(1 g) = 2.68 mW/g; SAR(10 g) = 1.71 mW/g

Maximum value of SAR (measured) = 2.90 mW/g

0 dB = 2.90 mW/g

Page: 58 of 60

Date/Time: 2007/7/29 05:16:48

SAR System Performance Verification

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN:178

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: Muscle 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 1.03$ mho/m; $\varepsilon_r = 55.5$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

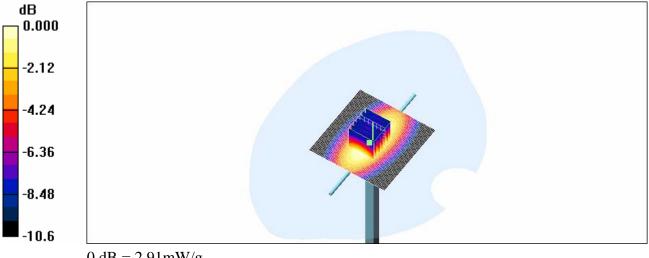
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.93 mW/g


Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.5 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 4.06 W/kg

SAR(1 g) = 2.7 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 2.91 mW/g

0 dB = 2.91 mW/g

Page: 59 of 60

Date/Time: 2007/7/24 01:32:35

SAR System Performance Verification

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 5d027

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.44$ mho/m; $\varepsilon_r = 40.2$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

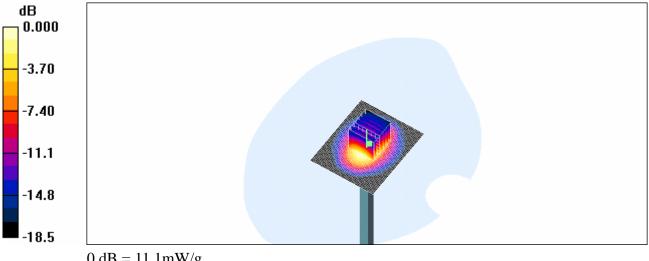
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin=250mw/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 13.0 mW/g


Pin=250mw/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.9 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.06 mW/g

Maximum value of SAR (measured) = 11.1 mW/g

0 dB = 11.1 mW/g

Page: 60 of 60

Date/Time: 2007/7/29 18:02:10

SAR System Performance Verification

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 5d027

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1800 & 1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.56$ mho/m; $\varepsilon_r = 50.9$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV3 - SN3526; ConvF(11.72, 11.72, 11.72); Calibrated: 2006/8/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

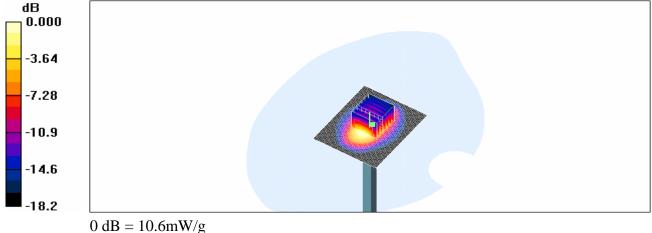
• Electronics: DAE4 Sn547; Calibrated: 2007/3/5

• Phantom: SAM2; Type: SAM 4.0; Serial: TP:1270

• Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin=250mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.7 mW/g


Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.9 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.42 mW/g; SAR(10 g) = 4.84 mW/g

Maximum value of SAR (measured) = 10.6 mW/g

