

SAR Compliance Test Report

APPLICANT NAME & ADDRESS :

Woosim Systems Inc.
#501, 115, Gasan digital 2-ro, GeumCheon-gu Seoul, 08505 Rep.
of Korea

DATA & LOCATION OF TESTING

Dates of testing : 2016-10-11

Test Site : ESTECH Co., Ltd.
140-16, Eongmalli-ro, Majang-myeon,
Icheon-si, Gyeonggi-do, Korea

Test Device :

FCC ID (Printer) : QDDWSP-I450X
FCC ID (Module) : RYYWYSAAVKXY
MODEL : WSP-i450
APPLICANT : Woosim Systems Inc.

Test Report No. : ESTRSFC1610-001

FCC Rule Part(s) : CFR §2.1093

Applicant Type : Certification

Number of page : 22

Test results : The Tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced receipt in full, without written approval of the laboratory.

Date and Signatures : 2016-10-12

Report Prepared By : Engineer/ In-Ki Hong

Engineering Manager/ Keum Bum Lee

Table of Contents

1. SUMMARY FOR SAR TET REPORT -----	3
1.1 Body Worn Configuration -----	3
1.2 Measurement Uncertainty -----	3
1.3 Conducted power table for 802.11b/g/n -----	4
2. INTRODUCTION -----	5
3. DESCRIPTION OF THE DEVICE UNDER TEST -----	6
3.1 Antenna Description -----	6
3.2 Device Description -----	6
3.3 Battery Option -----	6
4. TEST CONDITIONS -----	7
4.1 Ambient Conditions -----	7
4.2 RF Characteristics of The Test Site -----	7
4.3 Test Signal, Frequencies, And Output Power -----	7
5. DESCRIPTION OF THE TEST EQUIPMENT -----	8
5.1 Test System Specifications -----	8
5.2 SAR Measurement Setup -----	8
5.3 DASY 4 E-Field Probe System -----	10
5.4 Phantom & Equivalent Tissues -----	11
6. DESCRIPTION OF THE TEST PROCEDURE -----	13
6.1 Definition of Reference Point -----	13
6.2 Test Configuration Positions -----	14
6.3 Scan Procedures -----	17
6.4 SAR Averaging Methods -----	17
7. MEASUREMENT UNCERTAINTY -----	18
8. SYSTEM VERIFICATION -----	19
8.1 Tissue Verification -----	19
8.2 Test System Validation -----	19
9. RESULTS -----	20
10. REFERENCES -----	21
APPENDIX A : Validation Test Data	
APPENDIX B : SAR Test Data	
APPENDIX C : SAR Tissue Data	
APPENDIX D : Calibration Certificates	
APPENDIX E : Test Setup Photo	
APPENDIX F : EUT Photo	

1. SUMMARY FOR TEST REPORT

FCC ID (Printer)	QDDWSP-I450X
FCC ID (module)	RYYWYSAAVKXY
Date of test	2016-10-11
Measurement performed by	In-Ki Hong
Technical Reviewer	Keum Bum Lee
EUT Type	Mobile Printer
Frequency	2412 – 2462 MHz
Duty Cycle	>98%
Battery Type	DC 7.4 V (Battery)

1.1 Body Worn Configuration (WLAN)

Max. SAR Measurement

Mode	Body Position	EUT Position	Frequency (MHz)	Channel	Power (dBm)	Scaled SAR(mW/g)
802.11g	Flat	Bottom	2437	6	23.37	0.0052

1.2 Measurement Uncertainty

Combine Standard Uncertainty	± 11.00 (k=1)
Extended Standard Uncertainty	± 22.00 (k=2, 95% CONFIDENCE LEVEL)

1.3 Conducted power table for 802.11b/g/n

Mode	Ch	802.11b/g/n (2.4GHz) Peak Conducted Power	
		dBm	mW
802.11b	ch 1-11	21.75	149.62
802.11g	ch 1-11	23.37	217.77
802.11n	ch 1-11	22.71	186.64

*Note : The RF Power was referred to the FCC Report RF140117C02

2. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable device.

The safety limits used for the environmental evaluation measurements are the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electronic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (IC NIRP) in Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields," IC NIRP Report No. 86 IC NIRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of rf energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1.).

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dV} \right)$$

Figure 2.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \sigma E^2 / \rho$$

Where:

σ = conductivity of the tissue-simulant material (S/m)

ρ = mass density of the tissue-simulant material (kg/m³)

E = Total RMS electric field strength (V/m)

3. DESCRIPTION OF THE DEVICE UNDER TEST

The FCC rules for evaluating portable devices for RF exposure compliance are contained in 47 CFR §2.1093. For purposes of RF exposure evaluation, a portable device is defined as a transmitting device designed to be used with any part of its radiating structure in direct contact with the user's body or within 20 cm of the body of a user or bystanders under normal operating conditions. This category of devices would include hand-held that incorporate the radiating antenna into the hand-piece and wireless transmitters that are carried next to the body. Portable services are evaluated with respect to SAR limits for RF exposure. The applicable SAR limit for portable transmitters used by consumers is 1.6 W/kg, which is averaged over any one gram of tissue defined as a tissue volume in the shape of a cube.

3.1 Antenna Description

Type	Chip Antenna
Location	the top of the device(Appendix E)

3.2 Device Description

Serial numbers	NONE
Exposure environment	Uncontrolled exposure
Device category	Portable device
Mode(s) of Operation	802.11b/g/n
Modulation Mode(s)	DSSS,OFDM
Duty Cycle	>98%
2.4GHz WLAN	2412 – 2462 MHz
test signal method	<input type="checkbox"/> Base station simulator <input checked="" type="checkbox"/> Internal test code

3.3 Battery Options

Standard Extended

Standard Capacity: Li-ion 7.4V/1800mAh

4. TEST CONDITIONS

4.1 Ambient Conditions

Ambient Temperature (°C)	23
Tissue simulating liquid temperature (°C)	23
Humidity (% R.H.)	44

4.2 RF Characteristics of The Test Site

This measurement were performed in a fully enclosed RF Shielded environment

4.3 Test Signal, Frequencies, And Output Power

The Mobile Computer was placed into simulated call mode

In all operation bands the measurements were performed on lowest, middle and highest channels.

The Mobile Computer was placed into simulated call mode was set to maximum power level during the all tests and at the beginning of the each test the battery was fully

DASY4 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement. These records were used to monitor stability of power output.

Fig. 4.1 SAR Measurement System

5. DESCRIPTION OF THE TEST EQUIPMENT

An SAR measurement system usually consists of a small diameter isotropic electric field probe, a multiple axis probe positioning system, a test device holder, one or more phantom models, the field probe instrumentation, a computer and other electronic equipment for controlling the probe and making the measurements. Other supporting equipment, such as a network analyzer, power meters and RF signal generators, are also required to measure the dielectric parameters of the simulated tissue media and to verify the measurement accuracy of the SAR system.

5.1 Test System Specifications

Test Equipment	Model	Serial Number	Cal. Date
DAE	DAE4	479	2016-01-25
E-Field Probe	EX3DV4	3882	2015-11-24
Dipole validation kit	D2450V2	741	2016-02-18
Network analyzer	8753ES	US39173718	2016-09-28
Signal generator	SMBV100A	256663	2016-01-11
RF Power meter	EPM-442A	GB37170412	2016-01-12
Power Sensor	8481A	3318A96476	2016-01-12
Power Sensor	8481A	3318A87063	2016-01-12
Dielectric Probe	85070D	US01440154	-
Power Amplifier	BBS3Q7ECK	NONE	2016-01-12
LP Filter	LA-30N	NONE	2016-09-22
Attenuator	8491B	21828	2016-01-11
Attenuator	50FH-010-5	74868	2016-01-11
Dual Directional Coupler	772D	3736A22424	2016-01-11

5.2 SAR Measurement Setup

Measurements are performed using the DASY4 dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG(SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Pentium IV computer, near-field probe, probe alignment sensor, and the SAM twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field(EMF) (see Fig. 5.1) A cell controller system contains the power supply, robot controller, teach pendant(Joystick), and a remote control used to drive the robot motors. The pc consists of the Intel Pentium IV 2.4 GHz computer with WindowsXP system and SAR measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.

5. DESCRIPTION OF THE TEST EQUIPMENT(continued)

Is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

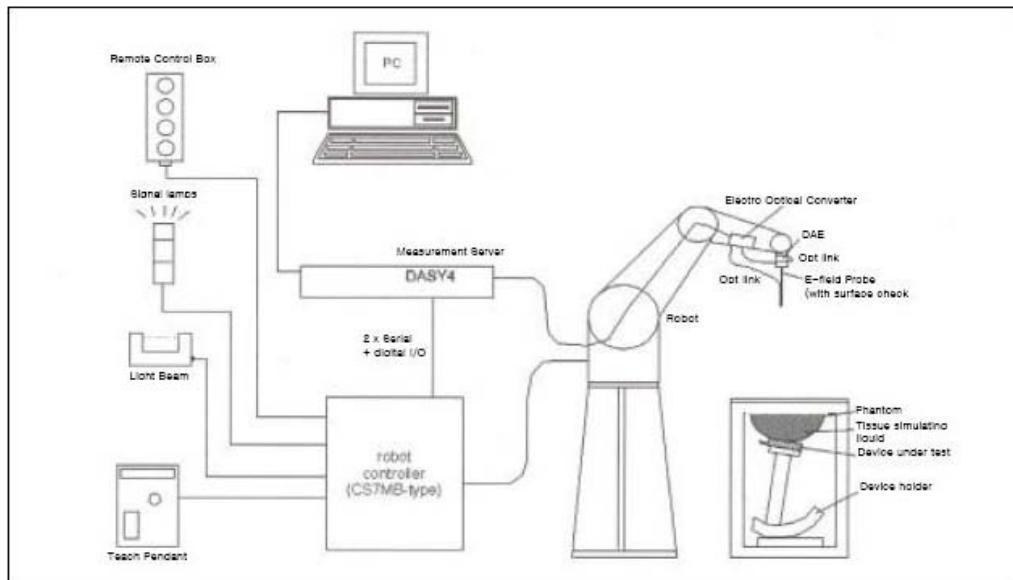


Fig. 5.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the Ethernet Card is accomplished through an optical downlink for data and status

information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

5.3 DASY4 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe ET3DV6, designed in the classical triangular configuration (see Fig.5.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box in the robot arm and provides an automatic detection transmitter, the other half to a synchronized receiver.

5. DESCRIPTION OF THE TEST EQUIPMENT(continued)

As the probe approach the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches coupling is zero. The distance of the coupling maximum to the surface is probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting (see Fig. 5.2). The approach is stopped at reaching the maximum.

Isotropic E-Field Probe for Dosimetric Measurements	
Construction	Symmetrical design with triangular core Interleafed sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycol)
Calibration	In air from 10 MHz to 3 GHz In brain and muscle simulating tissue at frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy $\pm 8\%$) Calibration for other liquids and frequencies upon request
Frequency	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Directivity	± 0.2 dB in brain tissue (rotation around probe axis) ± 0.3 dB in brain tissue (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm Tip length: 20 mm Body diameter: 12 mm Tip diameter: 3.9 mm Distance from probe tip to dipole centers: 2.7 mm

Fig. 5.2 Probe Specifications

5. DESCRIPTION OF THE TEST EQUIPMENT(continued)

5.4 Phantom & Equivalent Tissues

SAM Phantom

The SAM Twin Phantom V4.0 is constructed of the fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Head & Muscle simulation Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellulose(HEC) gelling agent and saline solution (see Fig 5.3). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been specified in IEEE1528(2003) are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations. The mixture characterizations used for the brain and muscle tissue simulation liquids are according to the data by C. Gabriel and G. Hartagrove. (see Fig. 5.3)

Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.8
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.9	55.2	0.97
900	41.5	0.97	55	1.05
915	41.5	0.98	55	1.06
1450	40.5	1.2	54	1.3
1610	40.3	1.29	53.8	1.4
1800–2000	40	1.4	53.3	1.52
2450	39.2	1.8	52.7	1.95
3000	38.5	2.4	52	2.73
5800	35.3	5.27	48.2	6

Fig.5.3 Head and body tissue parameters by the IEEE SCC-34/SC-2 in P1528

5. DESCRIPTION OF THE TEST EQUIPMENT(continued)

Ingredients (% by weight)	Frequency(MHz)											
	450		750		835		915		1 900		2 450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.2	51.7	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt(NaCl)	3.95	1.49	1.4	1.0	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	57	47.2	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	0.2	0.0	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.2	0.1	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7

Salt: 99 % Pure Sodium Chloride
 Water: De-ionized, 16 M resistivity
 DGBE: 99 % Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy) ethanol]
 Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Fig. 5.4 Composition of the Tissue Equivalent Matter

Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device enables the rotation of the accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note : A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations [12]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

6. DESCRIPTION OF THE TEST PROCEDURE

6.1 Definition of Reference Point

EAR Reference point

The point "M" is the reference point for the center of the mouth, "ERP" is the ear reference point. The ERP are 15mm posterior to the entrance to the ear canal(EEC) along the B-M line (Back-Mouth), as shown in figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the ERP is called the Reference Pivoting Line (see Figure 6.1) B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 6.1 Close-up side view of ERP

Handset Reference Points

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (see Fig. 6.2). The "test device reference point" was then located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

6. DESCRIPTION OF THE TEST PROCEDURE(continued)

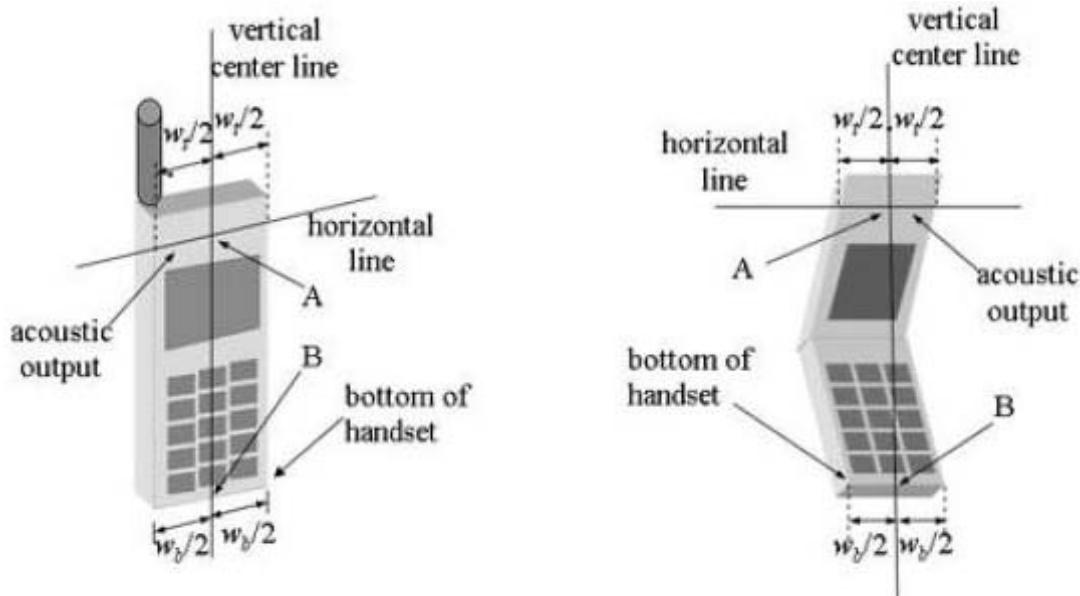


Figure 6.2 Handset Vertical Center & Horizontal Line Reference Points

6.2 Test Configuration Positions Positioning for Cheek/Touch

- 1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover. (If the phone can also be used with the cover closed, both configurations must be tested.)
- 2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width w_t of the handset at the level of the acoustic output (point A on Figures 6.2), and the midpoint of the width w_b of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 6.2). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 6.2), especially for clamshell handsets, handsets with lip pieces, and other irregularly-shaped handsets.
- 3) Position the handset close to the surface of the phantom touch that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6.3), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

6. DESCRIPTION OF THE TEST PROCEDURE(continued)

- 4) Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear.
- 5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- 6) Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF.
- 7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point

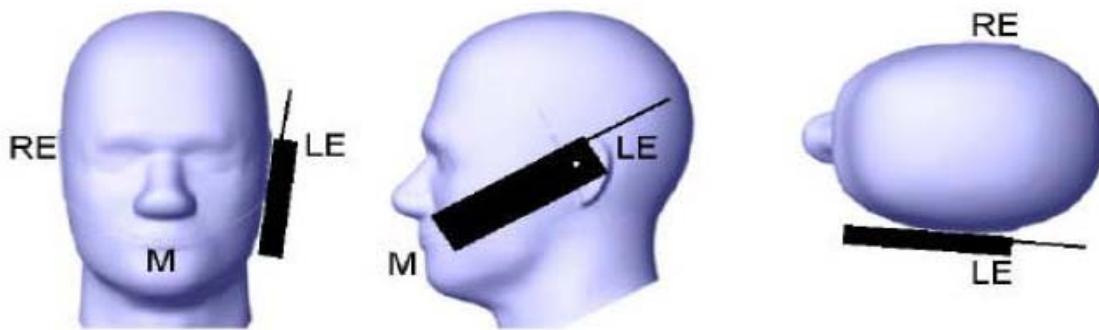


Figure 6.3 “Cheek” or “Touch” Position.

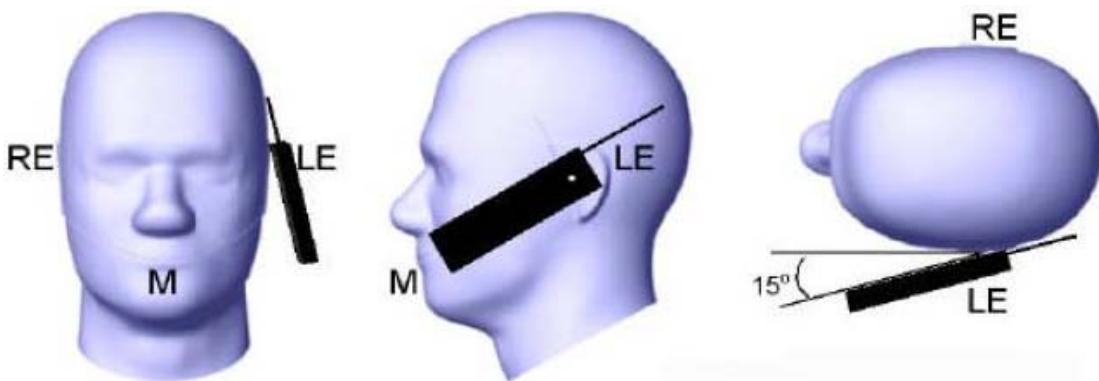


Figure 6.4 “Tilted” Position.

6. DESCRIPTION OF THE TEST PROCEDURE(continued)

Positioning for Ear / 15° Tilted

- 1) Repeat steps 1 to 7 of 6.2(Positioning for Cheek/Touch) to place the device in the “cheek position.”
- 2) While maintaining the orientation of the phone retract the phone parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.
- 3) Rotate the phone around the horizontal line by 15 degree.
- 4) While maintaining the orientation of the phone, move the phone parallel to the reference plane until any part of the phone touches the head. (In this position, point A will be located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the phone shall be reduced. The tilted position is obtained if any part of the phone is in contact of the ear as well as a second part of the phone is contact with the head.

Body Holder / Belt Clip Configurations

Body-worn operation configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied of available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance is tested with the accessory(ies), including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration. In all case SAR measurements are performed to investigate the worst case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operation requirements for meeting RF exposure compliance, operation instructing instructions and cautions statements are included in the user's manual.

6. DESCRIPTION OF THE TEST PROCEDURE(continued)

6.3 Scan Procedures

First coarse scans are used for quick determination of the field distribution. Nest cube scan, 5x5x7 points; spacing between each point 5x5x5 mm, is performed around the highest E-field value to determine the averaged SAR-distribution over 1g.

6.4 SAR Averaging Methods

The maximum SAR value is averaged over its volume using interpolation and extrapolation.

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the “Not a Knot” ?condition [W.Gander, Computermathematik, p. 141–150](x, y and z directions) [Numerical Recipes in C, Second Edition, p 123].

The extrapolation is based on least square algorithm [W.Gander, Computermathematik, p. 168–180]. Through the points in the first 30 mm in all z-axis, polynomials of order four are calculated. This polynomial is then used to evaluate the points between the surface and the probe tip. The points calculated from the surface, have a distance of 1mm from one another.

7. MEASUREMENT UNCERTAINTY

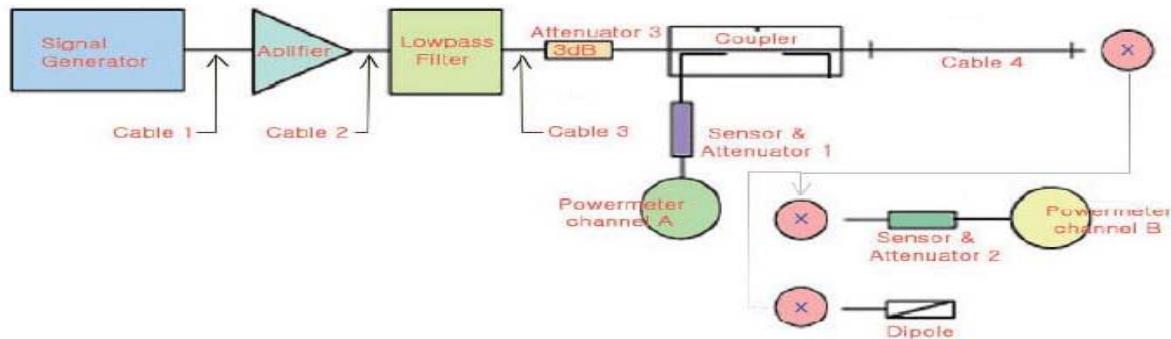
According to CENELEC [17], typical worst-case uncertainty of field measurements is 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to 3 dB.

ERROR Description	Uncertainty	Probability value \pm %	Divisor	ci 1	Standard unc.	vi or Ve _{ff}
	1g			(1g)		
MEASUREMENT SYSTEM						
Probe Calibration	$\pm 11.7 \%$	normal	1	1	$\pm 4.8 \%$	∞
Axial Isotropy	± 4.7	rectangular	$\sqrt{3}$	$(1-cp)^{1/2}$	$\pm 1.9\%$	∞
Hemispherical Isotropy	± 9.6	rectangular	$\sqrt{3}$	$(cp)^{1/2}$	$\pm 3.9\%$	∞
Boundary Effects	± 1.0	rectangular	$\sqrt{3}$	1	$\pm 0.6\%$	∞
Linearity	± 4.7	rectangular	$\sqrt{3}$	1	$\pm 2.7\%$	∞
Modulation Response	± 3.5	rectangular	$\sqrt{3}$	1	$\pm 2.0\%$	∞
System Detection Limits	± 1.0	rectangular	$\sqrt{3}$	1	$\pm 0.6\%$	∞
Readout Electronics	± 1.0	normal	1	1	$\pm 1.0\%$	∞
Response time	± 0.8	rectangular	$\sqrt{3}$	1	$\pm 0.5\%$	∞
Integration time	± 2.6	rectangular	$\sqrt{3}$	1	$\pm 1.5\%$	∞
RF Amnient Conditions	± 3.0	rectangular	$\sqrt{3}$	1	$\pm 1.7\%$	∞
Probe Positioner Mechanical Tolerance	± 0.4	rectangular	$\sqrt{3}$	1	$\pm 0.2\%$	∞
Probe Positioning with respect to Phantom Shell	± 2.9	rectangular	$\sqrt{3}$	1	$\pm 1.7\%$	∞
Extrapolation, Interpolation and Integration Algorithms for Max. SAR Evaluation	± 1.0	rectangular	$\sqrt{3}$	1	$\pm 0.6\%$	∞
Test Sample Related						
Test Sample Positioning	± 2.9	normal	1	1	$\pm 2.97\%$	145
Device Holder Uncertainty	± 3.6	normal	0.84	1	$\pm 3.69\%$	5
Output Power Validation – SAR drift measurement	± 5.0	rectangular	$\sqrt{3}$	1	$\pm 2.9\%$	∞
Phantom and Tissue						
Phantom Uncertainty (shape and thickness tolerances)	± 4.0	rectangular	$\sqrt{3}$	1	$\pm 2.3\%$	∞
SAR Correction	± 5.0	normal	1	1	$\pm 5.0\%$	∞
Liquid Conductivity – measurement uncertainty	± 5.0	normal	1	0.78	$\pm 3.9\%$	∞
Liquid Conductivity – temperature uncertainty	± 1.7	rectangular	$\sqrt{3}$	0.78	$\pm 0.77\%$	∞
Liquid Permittivity – measurement uncertainty	± 5.0	normal	1	0.23	$\pm 1.15\%$	∞
Liquid Permittivity – temperature uncertainty	± 0.3	rectangular	$\sqrt{3}$	0.23	$\pm 0.04\%$	∞
Combined Standard Uncertainty					$\pm 11.91 \%$	330
Coverage Factor for 95%					$K = 2$	
Expanded Standard Uncertainty					$\pm 23.82 \%$	

8. SYSTEM VERIFICATION

Tissue Verification

Table 8.1 Simulated Tissue Verification [5]


MEASURED TISSUE PARAMETERS			
Liquid Temperature (°C)	23	Liquid Depth(mm)	150
Date	2016-10-11		
Tissue	2450MHz Body		
	Target	Measured	
Dielectric Constant: ϵ	52.70	52.20	
Conductivity: σ	1.95	1.89	
Deviation (%)	ϵ : -0.95% σ : -3.08%		

Test System Validation

- Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at 2450MHz and 5GHz (Graphic Plots Attached)
- The results are nominalized to 1W input power

Table 8.2 System Validation [5]

SYSTEM DIPOLE VALIDATION TARGET & MEASURED						
Tissue	System Validation Kit:	Forward Power (W)	Targeted SAR1g (mW/g)	Measured SAR1g (mW/g)	Deviation (%)	Test Date
2450MHz Body	D2450V2(S/N :741)	1.0	51.2	49.6	-3.13%	2016-10-11

9. RESULTS

Ambient TEMPERATURE (C) : 23.0

Relative HUMIDITY (%) : 44

Mixture Type : 2.4GHz Body

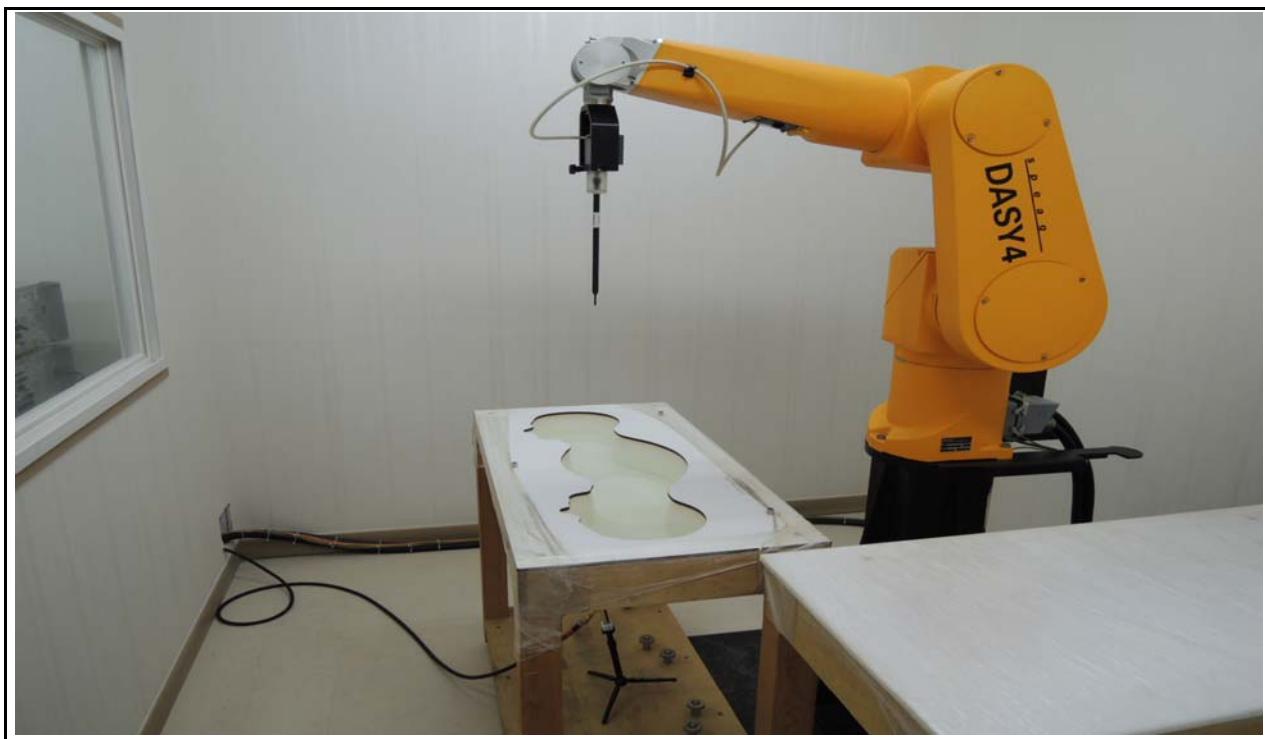
Model Name : WSP-i450

Measurement Results (802.11g Body SAR)

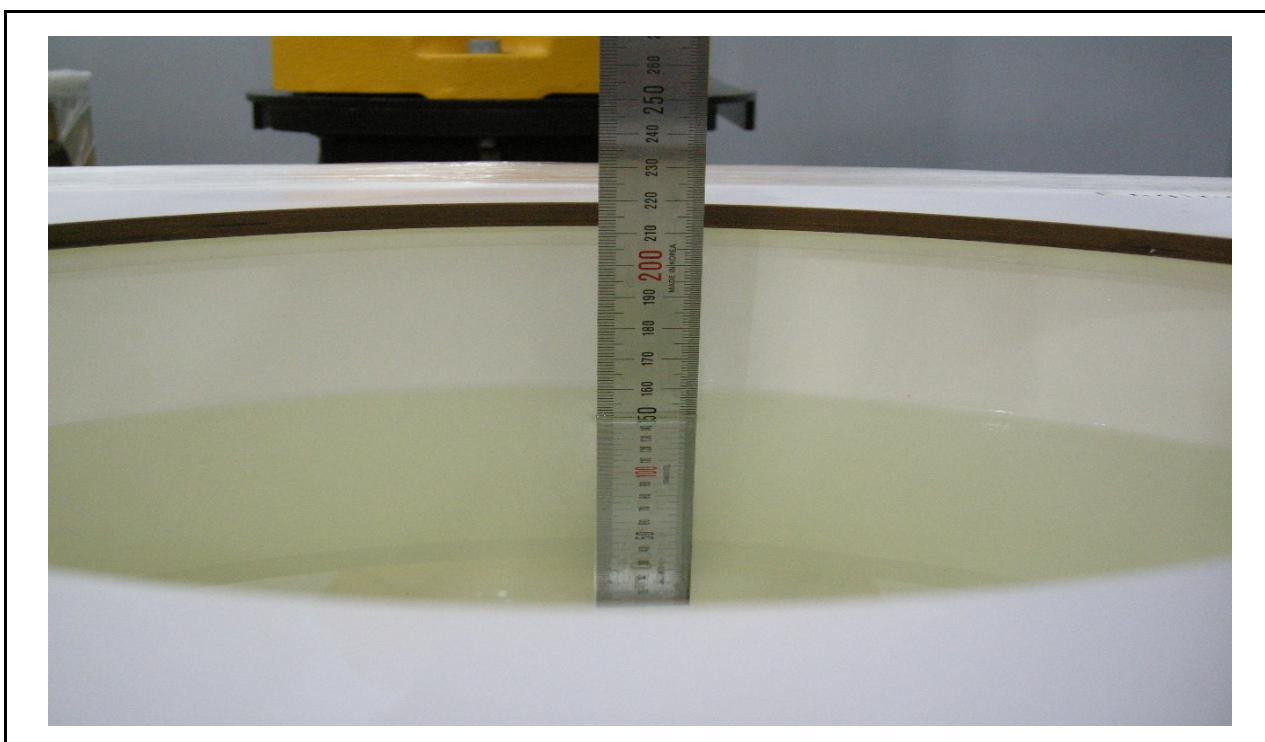
ANSI / IEEE C95.1 1992 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population	1.6 W/kg (W/kg) averaged over 1 gram
---	---

MEASUREMENT RESULTS (802.11g Body SAR)

Mode	Body/EUT Position	Frequency (MHz)	Channel	Power (dBm)	Power Drift (dBm)	1g SAR (W/Kg)	scaling Factor	Scaled SAR(mW/g)
802.11g	Flat/Front	2437	6	23.37	-0.28	0.0048	1.005	0.0048
802.11g	Flat/Rear	2437	6	23.37	-0.54	0.0043	1.005	0.0043
802.11g	Flat/Right	2437	6	23.37	0.43	0.0049	1.005	0.0049
802.11g	Flat/Left	2437	6	23.37	0.68	0.0052	1.005	0.0052
802.11g	Flat/Top	2437	6	23.37	0.28	0.0033	1.005	0.0033
802.11g	Flat/Bottom	2437	6	23.37	-0.82	0.0031	1.005	0.0032
802.11g	Flat/Front	2412	1	23.37	0.68	0.0034	1.005	0.0034
802.11g	Flat/Front	2462	11	23.37	0.96	0.0038	1.005	0.0038


10. REFERENCE

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 – IEEE Std. 1528-2013, Recommended Practice for Determining the Peak Spatial–Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 –124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hochschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.


- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009
- [23] FCC SAR Test Procedures for 2G–3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01–D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01v02r02
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03–D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz – 6 GHz, KDB Publications 865664 D01–D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01–D02
- [29] Anexo à Resolução No. 533, de 10 de Setembro de 2009.
- [30] IEC 62209–2, Human exposure to radio frequency fields from hand–held and body–mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

APPENDIX A : Validation Test Data

Dipole Validation

Liquid depth

Date: 2016-10-11

Test Laboratory: ESTECH

VALIDATION

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 741

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.89$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

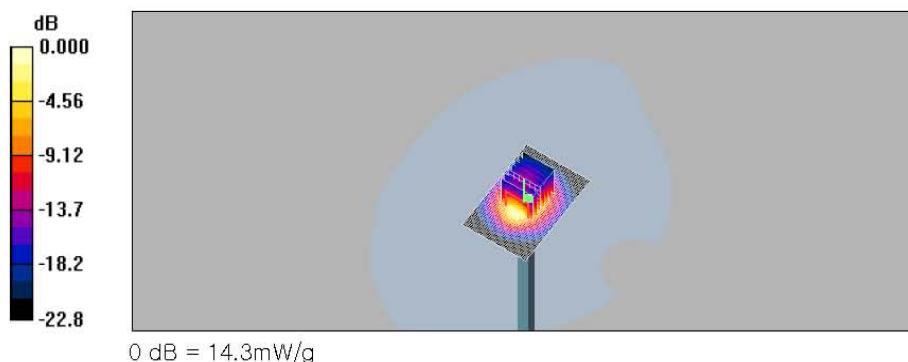
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 – SN3882; ConvF(7.02, 7.02, 7.02); Calibrated: 2015-11-24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn551; Calibrated: 2016-01-25
- Phantom: HSL1800_12_03_23; Type: TP-1263;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (41x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 14.6 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.0 V/m; Power Drift = -0.053 dB

Peak SAR (extrapolated) = 25.9 W/kg

SAR(1 g) = 12.4 mW/g

Maximum value of SAR (measured) = 14.3 mW/g

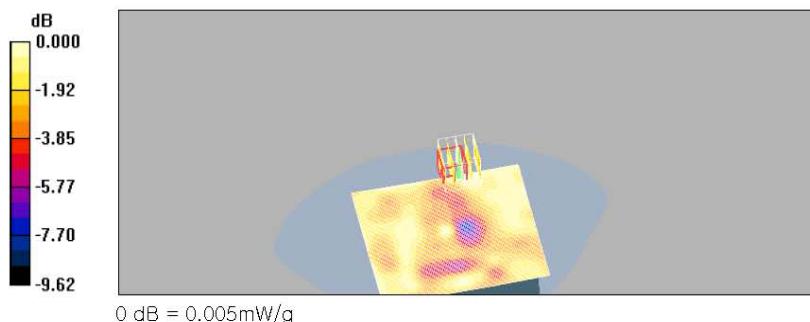
APPENDIX B : SAR Test Data

Date: 2016-10-11

Test Laboratory: ESTECH

WSP-i450_802.11g FRONT

DUT: WSP-i450; Type


Communication System: Wireless 2.4GHz; Frequency: 2442 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2442$ MHz; $\sigma = 1.87$ mho/m; $\epsilon_r = 52.3$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 – SN3882; ConvF(7.02, 7.02, 7.02); Calibrated: 2015-11-24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn551; Calibrated: 2016-01-25
- Phantom: HSL1800_12_03_23; Type: TP-1263;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (91x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.006 mW/g

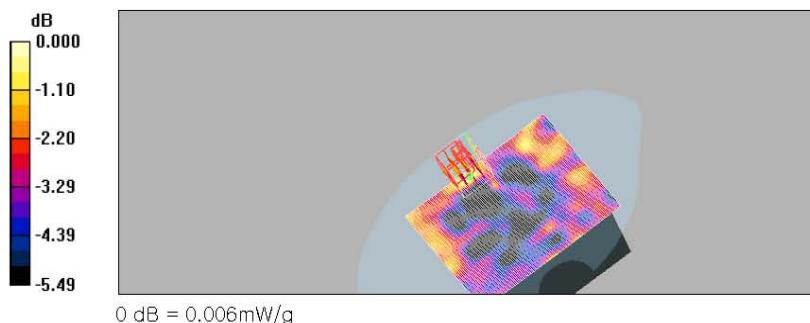
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 1.39 V/m; Power Drift = -0.284 dB
Peak SAR (extrapolated) = 0.007 W/kg
SAR(1 g) = 0.00479 mW/g
Maximum value of SAR (measured) = 0.005 mW/g

Date: 2016-10-11

Test Laboratory: ESTECH

WSP-i350_802.11g REAR

DUT: WSP-i450; Type


Communication System: Wireless 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.87$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 – SN3882; ConvF(7.02, 7.02, 7.02); Calibrated: 2015-11-24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn551; Calibrated: 2016-01-25
- Phantom: HSL1800_12_03_23; Type: TP-1263;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (91x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.005 mW/g

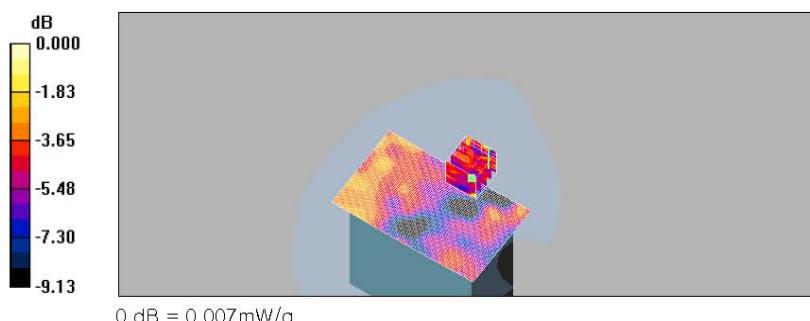
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 1.56 V/m; Power Drift = -0.539 dB
Peak SAR (extrapolated) = 0.007 W/kg
SAR(1 g) = 0.00425 mW/g
Maximum value of SAR (measured) = 0.006 mW/g

Date: 2016-10-11

Test Laboratory: ESTECH

WSP-i350_802.11g RIGHT

DUT: WSP-i450; Type


Communication System: Wireless 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.87$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 – SN3882; ConvF(7.02, 7.02, 7.02); Calibrated: 2015-11-24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn551; Calibrated: 2016-01-25
- Phantom: HSL1800_12_03_23; Type: TP-1263;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (101x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.004 mW/g

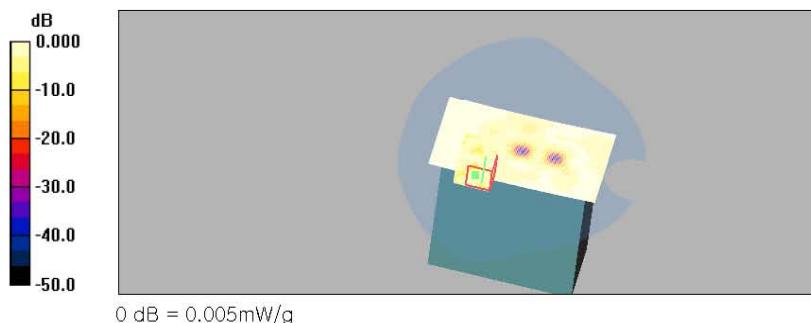
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 0.924 V/m; Power Drift = 0.280 dB
Peak SAR (extrapolated) = 0.007 W/kg
SAR(1 g) = 0.00325 mW/g
Maximum value of SAR (measured) = 0.007 mW/g

Date: 2016-10-11

Test Laboratory: ESTECH

WSP-i350_802.11g LEFT

DUT: WSP-i450; Type


Communication System: Wireless 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.87$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 – SN3882; ConvF(7.02, 7.02, 7.02); Calibrated: 2015-11-24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn551; Calibrated: 2016-01-25
- Phantom: HSL1800_12_03_23; Type: TP-1263;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (101x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.005 mW/g

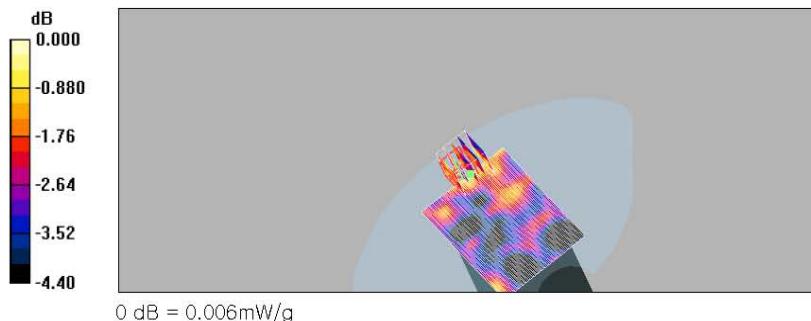
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 1.03 V/m; Power Drift = -0.818 dB
Peak SAR (extrapolated) = 0.005 W/kg
SAR(1 g) = 0.00314 mW/g
Maximum value of SAR (measured) = 0.005 mW/g

Date: 2016-10-11

Test Laboratory: ESTECH

WSP-i350_802.11g TOP

DUT: WSP-i450; Type


Communication System: Wireless 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.87$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 – SN3882; ConvF(7.02, 7.02, 7.02); Calibrated: 2015-11-24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn551; Calibrated: 2016-01-25
- Phantom: HSL1800_12_03_23; Type: TP-1263;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (91x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.005 mW/g

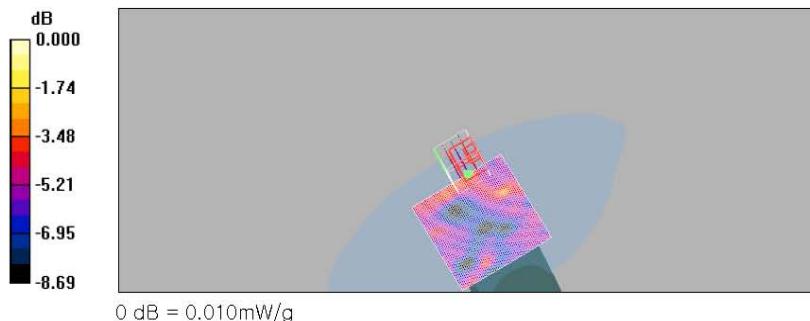
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 1.13 V/m; Power Drift = 0.433 dB
Peak SAR (extrapolated) = 0.006 W/kg
SAR(1 g) = 0.00486 mW/g
Maximum value of SAR (measured) = 0.006 mW/g

Date: 2016-10-11

Test Laboratory: ESTECH

WSP-i350_802.11g BOTTOM

DUT: WSP-i450; Type


Communication System: Wireless 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.87$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 – SN3882; ConvF(7.02, 7.02, 7.02); Calibrated: 2015-11-24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn551; Calibrated: 2016-01-25
- Phantom: HSL1800_12_03_23; Type: TP-1263;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (91x61x1): Measurement grid: dx=15mm, dy=15mm.
Maximum value of SAR (interpolated) = 0.005 mW/g

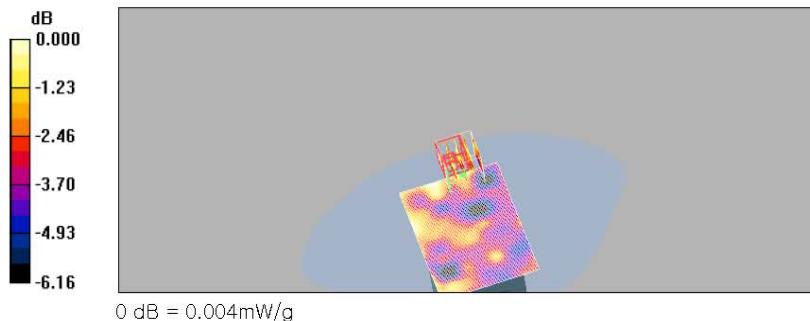
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 1.14 V/m; Power Drift = 0.675 dB
Peak SAR (extrapolated) = 0.010 W/kg
SAR(1 g) = 0.00521 mW/g
Maximum value of SAR (measured) = 0.010 mW/g

Date: 2016-10-11

Test Laboratory: ESTECH

WSP-i350_802.11g BOTTOM LOW

DUT: WSP-i450; Type


Communication System: Wireless 2.4GHz; Frequency: 2412 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2412$ MHz; $\sigma = 1.87$ mho/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 – SN3882; ConvF(7.02, 7.02, 7.02); Calibrated: 2015-11-24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn551; Calibrated: 2016-01-25
- Phantom: HSL1800_12_03_23; Type: TP-1263;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (91x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.004 mW/g

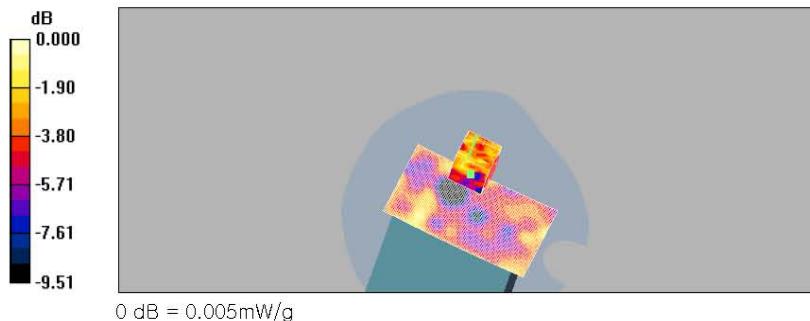
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 0.937 V/m; Power Drift = 0.680 dB
Peak SAR (extrapolated) = 0.004 W/kg
SAR(1 g) = 0.00338 mW/g
Maximum value of SAR (measured) = 0.004 mW/g

Date: 2016-10-11

Test Laboratory: ESTECH

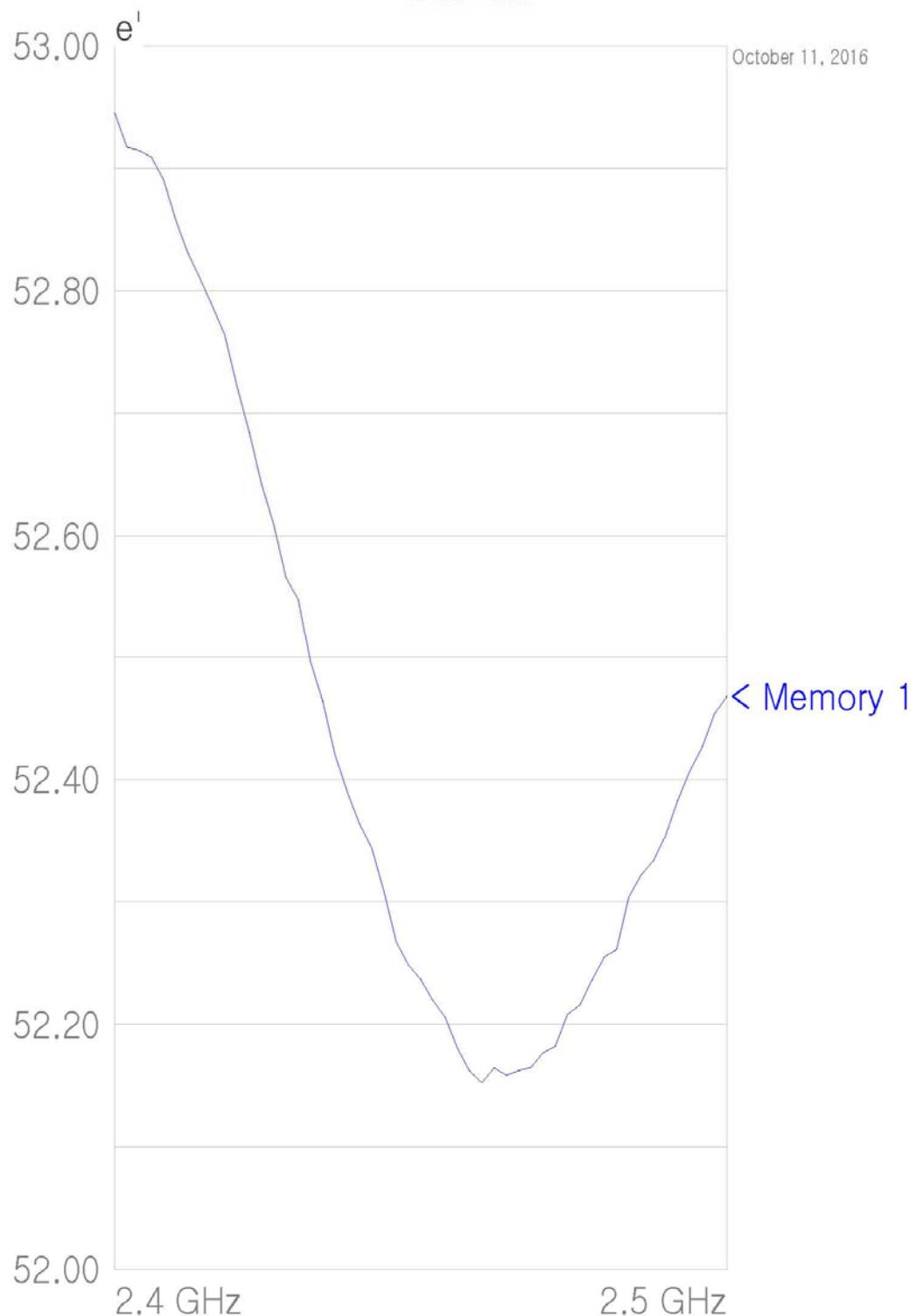
WSP-i350_802.11g BOTTOM HI

DUT: WSP-i450; Type


Communication System: Wireless 2.4GHz; Frequency: 2462 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2462$ MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 – SN3882; ConvF(7.02, 7.02, 7.02); Calibrated: 2015-11-24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn551; Calibrated: 2016-01-25
- Phantom: HSL1800_12_03_23; Type: TP-1263;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Area Scan (91x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.004 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 0.874 V/m; Power Drift = 0.834 dB
Peak SAR (extrapolated) = 0.007 W/kg
SAR(1 g) = 0.00376 mW/g
Maximum value of SAR (measured) = 0.005 mW/g

APPENDIX C : SAR Tissue Data

Title
SubTitle

Title
SubTitle

October 11, 2016

Frequency	e'	e''
2.40000000 GHz	52.9457	13.9877
2.401983461 GHz	52.9176	13.9764
2.403926921 GHz	52.9148	13.9788
2.405890382 GHz	52.9095	13.9614
2.407853843 GHz	52.8909	13.9306
2.409817303 GHz	52.8579	13.9184
2.411788795 GHz	52.8306	13.9104
2.413760288 GHz	52.8096	13.8867
2.415731780 GHz	52.7874	13.8798
2.417703272 GHz	52.7641	13.8631
2.419674764 GHz	52.7221	13.8438
2.421654321 GHz	52.6849	13.8222
2.423633878 GHz	52.6425	13.8114
2.425613435 GHz	52.6093	13.8076
2.427592991 GHz	52.5660	13.8019
2.429572548 GHz	52.5483	13.8011
2.431560202 GHz	52.4966	13.7684
2.433547856 GHz	52.4640	13.7795
2.435535511 GHz	52.4205	13.7706
2.437523165 GHz	52.3902	13.7864
2.439510819 GHz	52.3640	13.7819
2.441506604 GHz	52.3443	13.7765
2.443502388 GHz	52.3088	13.7765
2.445498173 GHz	52.2677	13.7838
2.447493958 GHz	52.2487	13.8081
2.449489743 GHz	52.2370	13.8380
2.451493691 GHz	52.2196	13.8489
2.453497640 GHz	52.2061	13.8510
2.455501589 GHz	52.1808	13.8760
2.457505537 GHz	52.1620	13.9002
2.459509486 GHz	52.1525	13.9314
2.461521632 GHz	52.1646	13.9647
2.463533778 GHz	52.1585	13.9839
2.465545923 GHz	52.1622	14.0018
2.467558089 GHz	52.1649	14.0363
2.469570215 GHz	52.1769	14.0662
2.471590592 GHz	52.1824	14.0970
2.473610968 GHz	52.2084	14.1316
2.475631345 GHz	52.2158	14.1752
2.477651722 GHz	52.2364	14.1940
2.479672098 GHz	52.2552	14.2228
2.481700739 GHz	52.2611	14.2534
2.483729380 GHz	52.3040	14.2887
2.485758021 GHz	52.3221	14.3110
2.487786662 GHz	52.3337	14.3340
2.489815303 GHz	52.3542	14.3608
2.491852243 GHz	52.3831	14.3879
2.493889182 GHz	52.4074	14.3942
2.495926121 GHz	52.4267	14.4110
2.497963061 GHz	52.4539	14.4366
2.500000000 GHz	52.4677	14.4492

Title
SubTitle

Title
SubTitle

October 11, 2016

Frequency	e'	e''
2.40000000 GHz	52.9457	13.9877
2.401983461 GHz	52.9176	13.9764
2.403926921 GHz	52.9148	13.9788
2.405890382 GHz	52.9095	13.9614
2.407853843 GHz	52.8909	13.9306
2.409817303 GHz	52.8579	13.9184
2.411788795 GHz	52.8306	13.9104
2.413760288 GHz	52.8096	13.8867
2.415731780 GHz	52.7874	13.8798
2.417703272 GHz	52.7641	13.8631
2.419674764 GHz	52.7221	13.8438
2.421654321 GHz	52.6849	13.8222
2.423633878 GHz	52.6425	13.8114
2.425613435 GHz	52.6093	13.8076
2.427592991 GHz	52.5660	13.8019
2.429572548 GHz	52.5483	13.8011
2.431560202 GHz	52.4966	13.7684
2.433547856 GHz	52.4640	13.7795
2.435535511 GHz	52.4205	13.7706
2.437523165 GHz	52.3902	13.7864
2.439510819 GHz	52.3640	13.7819
2.441506604 GHz	52.3443	13.7765
2.443502388 GHz	52.3088	13.7765
2.445498173 GHz	52.2677	13.7838
2.447493958 GHz	52.2487	13.8081
2.449489743 GHz	52.2370	13.8380
2.451493691 GHz	52.2196	13.8489
2.453497640 GHz	52.2061	13.8510
2.455501589 GHz	52.1808	13.8760
2.457505537 GHz	52.1620	13.9002
2.459509486 GHz	52.1525	13.9314
2.461521632 GHz	52.1646	13.9647
2.463533778 GHz	52.1585	13.9839
2.465545923 GHz	52.1622	14.0018
2.467558089 GHz	52.1649	14.0363
2.469570215 GHz	52.1769	14.0662
2.471590592 GHz	52.1824	14.0970
2.473610968 GHz	52.2084	14.1316
2.475631345 GHz	52.2158	14.1752
2.477651722 GHz	52.2364	14.1940
2.479672098 GHz	52.2552	14.2228
2.481700739 GHz	52.2611	14.2534
2.483729380 GHz	52.3040	14.2887
2.485758021 GHz	52.3221	14.3110
2.487786662 GHz	52.3337	14.3340
2.489815303 GHz	52.3542	14.3608
2.491852243 GHz	52.3831	14.3879
2.493889182 GHz	52.4074	14.3942
2.495926121 GHz	52.4267	14.4110
2.497963061 GHz	52.4539	14.4366
2.500000000 GHz	52.4677	14.4492

APPENDIX D : Calibration Certificates

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **Estech (Dymstec)**

Certificate No: **EX3-3882_Nov15**

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3882**

Calibration procedure(s) **QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6**
 Calibration procedure for dosimetric E-field probes

Calibration date: **November 24, 2015**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:	Name	Function	Signature
	Claudio Leubler	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: November 24, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3882_Nov15

Page 1 of 11

Calibration Laboratory of
 Schmid & Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalementage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not affect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z$: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the $NORM_{x,y,z}$ (no uncertainty required).

EX3DV4 – SN:3882

November 24, 2015

Probe EX3DV4

SN:3882

Manufactured: April 30, 2012
Calibrated: November 24, 2015

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3882

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.44	0.48	0.40	$\pm 10.1\%$
DCP (mV) ^B	102.3	100.7	103.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	169.6	$\pm 3.3\%$
		Y	0.0	0.0	1.0		157.6	
		Z	0.0	0.0	1.0		164.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3882

November 24, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3882

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^g (mm)	Unc (k=2)
2450	39.2	1.80	7.00	7.00	7.00	0.37	0.87	± 12.0 %
5200	36.0	4.66	4.80	4.80	4.80	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.66	4.66	4.66	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.52	4.52	4.52	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.16	4.16	4.16	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.22	4.22	4.22	0.45	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^f At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3882

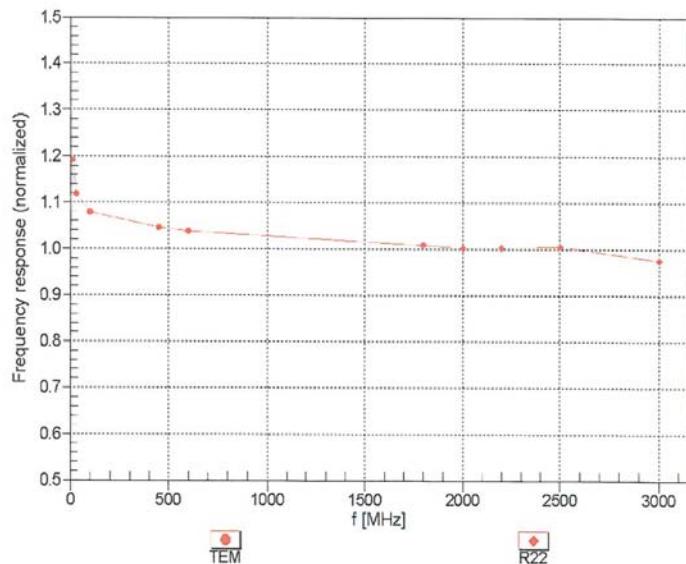
November 24, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3882

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^g (mm)	Unc (k=2)
2450	52.7	1.95	7.02	7.02	7.02	0.29	0.95	± 12.0 %
5200	49.0	5.30	4.17	4.17	4.17	0.50	1.90	± 13.1 %
5300	48.9	5.42	3.97	3.97	3.97	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.66	3.66	3.66	0.55	1.90	± 13.1 %
5600	48.5	5.77	3.49	3.49	3.49	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.73	3.73	3.73	0.60	1.90	± 13.1 %

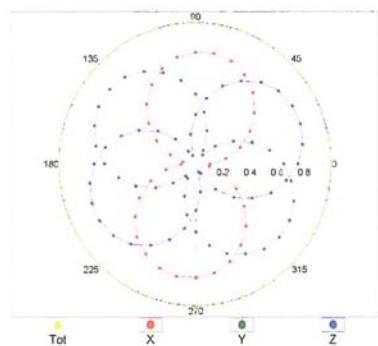
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

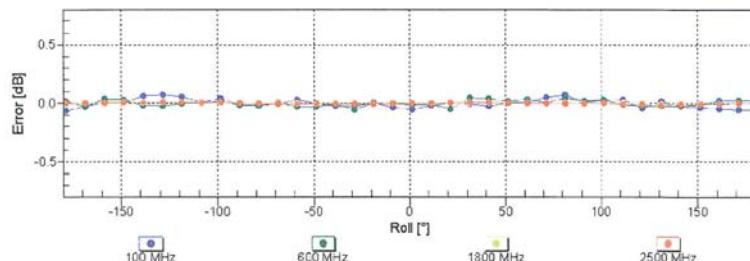
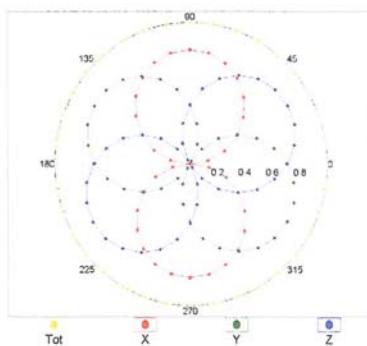

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3882

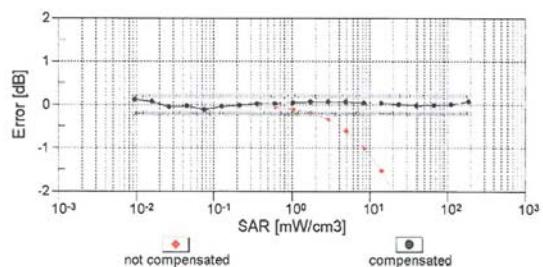
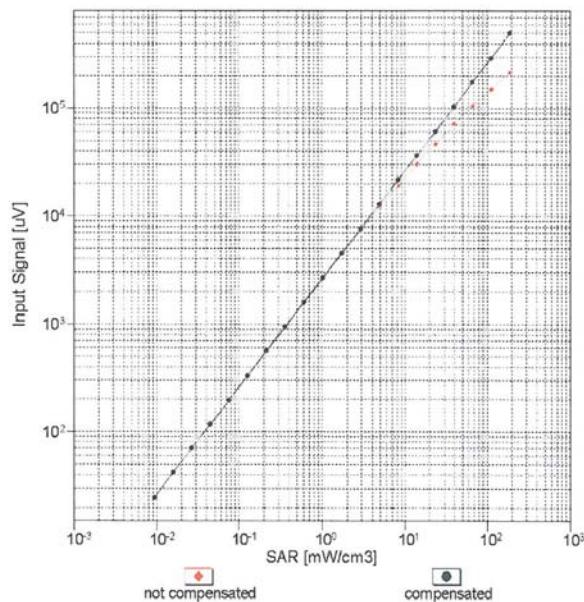
November 24, 2015


Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

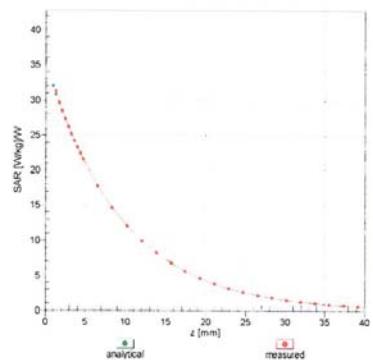
Receiving Pattern (ϕ), $\theta = 0^\circ$

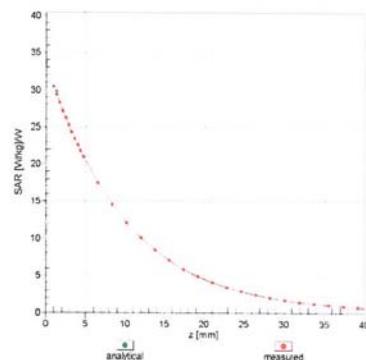
f=600 MHz, TEM

f=1800 MHz, R22

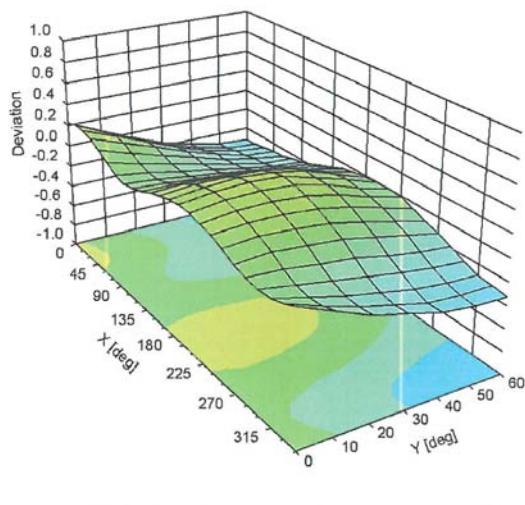
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)


Dynamic Range f(SAR_{head})
(TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

$f = 2450 \text{ MHz, WGLS R22 (H_convF)}$



$f = 2450 \text{ MHz, WGLS R22 (M_convF)}$

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\% (k=2)$

EX3DV4- SN:3882

November 24, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3882**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	31.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client **Estech (Dymstec)**

Certificate No: D2450V2-741_Feb16

CALIBRATION CERTIFICATE

Object	D2450V2 - SN: 741
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz
Calibration date:	February 18, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by: Name **Claudio Leubler** Function **Laboratory Technician**

Approved by: Name **Katja Pokovic** Function **Technical Manager**

Issued: February 19, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-741_Feb16

Page 1 of 8

Calibration Laboratory of
 Schmid & Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalementage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)
Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 5.4 $j\Omega$
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.4 Ω + 7.1 $j\Omega$
Return Loss	- 22.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

DASY5 Validation Report for Head TSL

Date: 18.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 741

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³

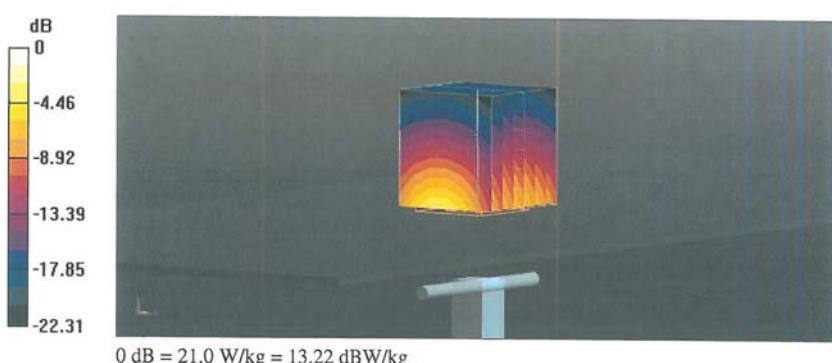
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

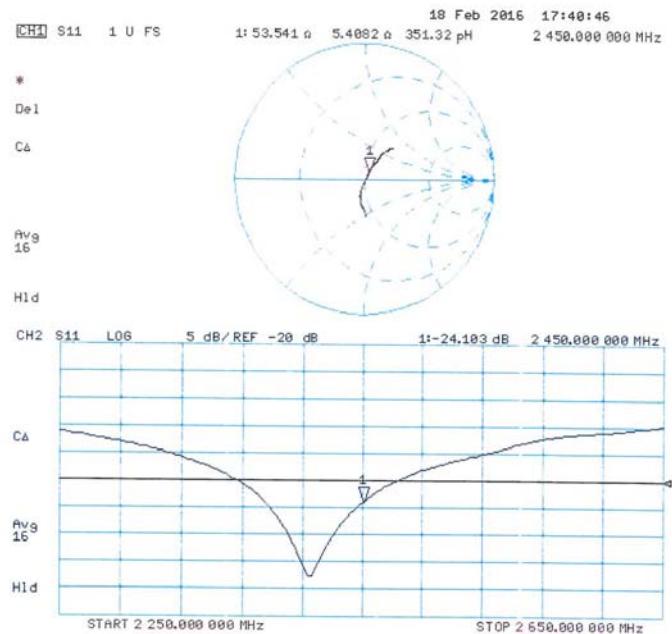
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 112.2 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 25.9 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 21.0 W/kg

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-741_Feb16

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 18.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 741

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2$ S/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

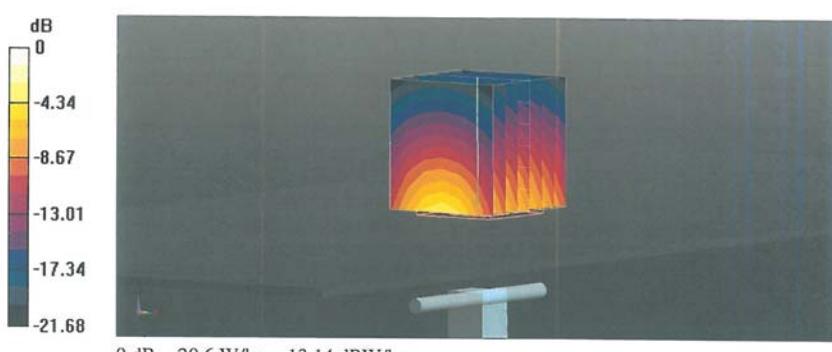
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

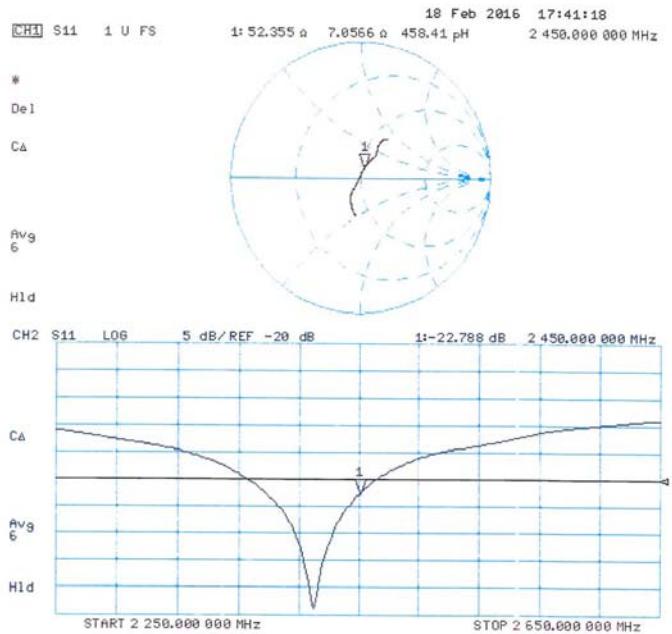
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.6 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 24.9 W/kg

SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.86 W/kg

Maximum value of SAR (measured) = 20.6 W/kg

Impedance Measurement Plot for Body TSL

APPENDIX E : Test Setup Photo

Front

Back

Top

Bottom

Right

Left

APPENDIX F : EUT Photo

Front

Back

Top

Bottom

Right

Left

