

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

TEST REPORT			
Report No	CTC20232065E09		
FCC ID:	QCI-IDNMOD1		
Applicant:	SMART Technologies Inc.		
Address:	3636 Research Road NW Ca	lgary, AB T2L 1Y1 Canada	
Manufacturer	SMART Technologies Inc.		
Address	3636 Research Road NW Ca	lgary, AB T2L 1Y1 Canada	
Product Name:	SMART QX/V4 NFC Module		
Trade Mark:	SMART		
Model/Type reference:	IDNMOD1		
Listed Model(s)	/		
Standard:	FCC CFR Title 47 Part 15 Sub	opart C Section 15.225	
Date of receipt of test sample:	Nov. 8, 2023		
Date of testing	Nov. 8, 2023 to Mar. 4, 2024		
Date of issue	Mar. 5, 2024		
Result:	PASS		
Compiled by: (Printed name + signature)	Jim Jiang	Jim Jiang	
Supervised by: (Printed name + signature)	Eric Zhang	Jim Jiang Zric zhang	
Approved by:	a) Totti Zhao		
(Printed name + signature)	Totti Zhao		
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample.			

it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	TEST	SUMMARY	3
1	.1.	Test Standards	3
1		REPORT VERSION	
1	.3.	TEST DESCRIPTION	3
1	.4.	TEST FACILITY	4
1	.5.	MEASUREMENT UNCERTAINTY	4
1	.6.	ENVIRONMENTAL CONDITIONS	5
1	.7.	EUT OPERATION STATE	5
2.	GEN	ERAL INFORMATION	6
2	.1.	CLIENT INFORMATION	6
2		GENERAL DESCRIPTION OF EUT	
2	.3.	Accessory Equipment Information	6
2	.4.	MEASUREMENT INSTRUMENTS LIST	7
3.	TEST	ITEM AND RESULTS	9
3	.1.	CONDUCTED EMISSION	9
3		RADIATED EMISSION	
3	.3.	20dB Bandwidth	69
3	.4.	FIELD STRENGTH OF THE FUNDAMENTAL	74
3		FREQUENCY STABILITY	
3	.6.	ANTENNA REQUIREMENT	94

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.225:</u> Operation within the band 13.110-14.010MHz. <u>ANSI C63.10-2013:</u> American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description
01	Mar. 5, 2024	Original

1.3. Test Description

FCC Part 15.225					
Test Item	Result	Test Engineer			
Conducted Emission	15.207	Pass	Seth Chen		
Radiated Emissions	15.209&15.225(d)	Pass	Jim Jiang		
Field Strength of the Fundamental	15.209&15.225(d)	Pass	Jim Jiang		
Occupied Bandwidth and 20dB Bandwidth	15.215	Pass	Jim Jiang		
Antenna requirement	15.203	Pass	Jim Jiang		
Frequency Stability	15.225(e)	Pass	Jim Jiang		

Note:

ΞN

N/A: Not applicable.

The measurement uncertainty is not included in the test result.

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 日 中国国家认证认可监督管理委员会

Address of the report laboratory

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C~27°C
Relative Humidity:	40%~60%
Air Pressure:	101kPa

1.7. EUT Operation State

The EUT has been tested under typical operating condition. The Applicant provides NFC Card to control the EUT for staying in continuous transmitting mode for testing.

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下 中国国家认证认可监督管理委员会

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	SMART Technologies Inc.	
Address:	3636 Research Road NW Calgary, AB T2L 1Y1 Canada	
Manufacturer:	SMART Technologies Inc.	
Address:	3636 Research Road NW Calgary, AB T2L 1Y1 Canada	

2.2. General Description of EUT

Product Name:	SMART QX/V4 NFC Module
Trade Mark:	SMART
Model/Type reference:	IDNMOD1
Listed Model(s):	/
Power supply:	DC5V 1A
Host Device Model:	IDX55-5, IDX65-5, IDQR65-A, IDX75-5, IDQR75-A, IDX86-5, IDQR86-A
Temperature Range:	-20℃ ~ +60℃
Hardware version:	В
Software version:	v1.4
RF Parameter	
Modulation:	ASK
Operation frequency:	13.56MHz
Antenna type:	PCB Antenna

2.3. Accessory Equipment Information

Equipment Information						
Name	Model	S/N	Manufacturer			
/	/	/	/			
Cable Information						
Name	Shielded Type	Ferrite Core	Length			
/	/	/	/			
Test Software Information	Test Software Information					
Name	Version	1	1			
/	/	/	/			

CTC Laboratories, Inc.

2.4. Measurement Instruments List

Tonscend JS0806-2 Test system					
Item	Test Equipment	Test Equipment Manufacturer		Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 12, 2024
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 12, 2024
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2024
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2024
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 12, 2024
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 12, 2024
10	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 14, 2024
11	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 14, 2024
12	Wideband Radio Communication Tester	R&S	CMW500	102257	May 25, 2024
13	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2024
14	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024
15	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 24, 2024

Radiated emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024
6	Loop Antenna	ETS	6507	1446	Dec. 12, 2024
7	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
8	Test Software	Test Software FARA		FA-03A2	/

CTC Laboratories, Inc.

EN 中国国家认证认可监督管理委员会

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 12, 2024
2	LISN	R&S	ENV216	101113	Dec. 12, 2024
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024
6	Test Software	R&S	EMC32	6.10.10	/

Note:

1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

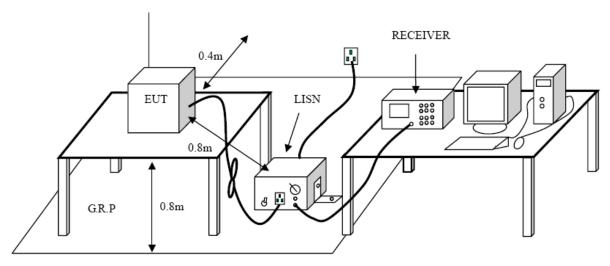
3. TEST ITEM AND RESULTS

3.1. Conducted Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

	Limit (d	BuV)		
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

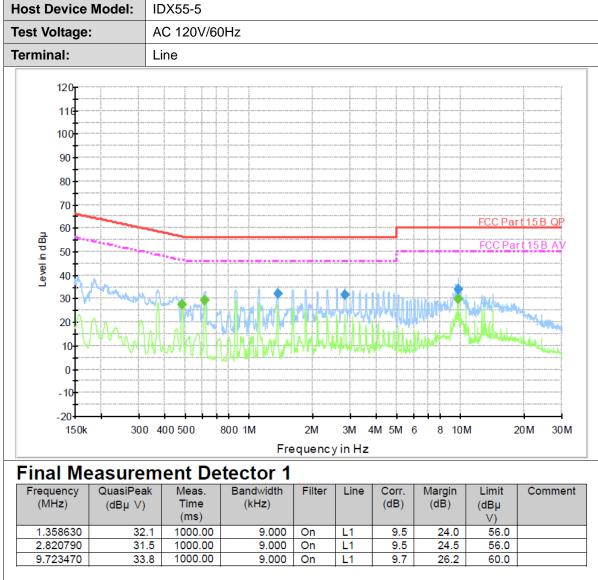
(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

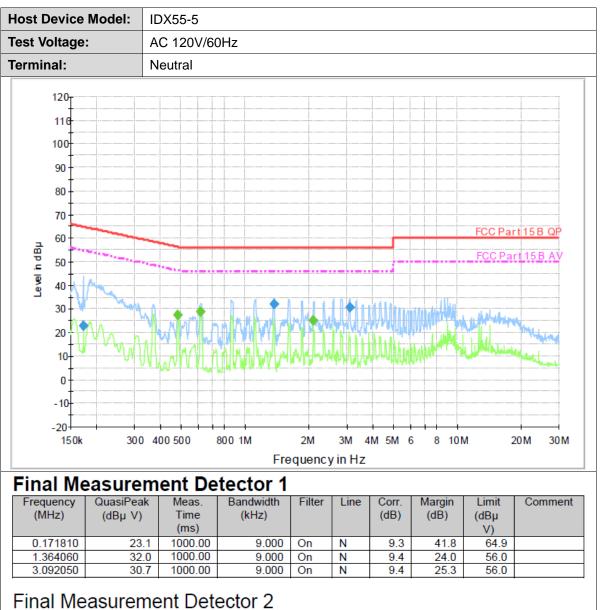
- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.


CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Test Mode

Please refer to the clause 1.7.

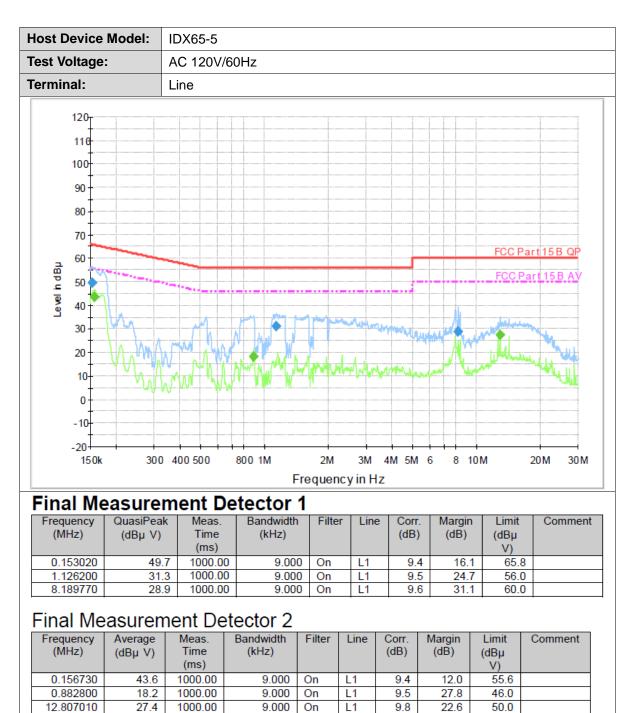
Test Results


Final Measurement Detector 2

	Frequency (MHz)	Average (dBµ ∨)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ ∨)	Comment
ſ	0.481210	27.5	1000.00	9.000	On	L1	9.5	18.8	46.3	
ſ	0.616350	29.4	1000.00	9.000	On	L1	9.5	16.6	46.0	
[9.723470	29.7	1000.00	9.000	On	L1	9.7	20.3	50.0	

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

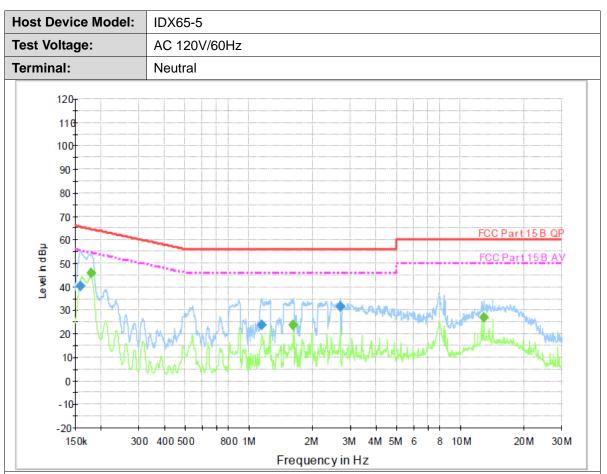

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.481210	27.3	1000.00	9.000	On	Ν	9.4	19.0	46.3	
0.616350	28.7	1000.00	9.000	On	Ν	9.4	17.3	46.0	
2.082610	25.2	1000.00	9.000	On	Ν	9.4	20.8	46.0	

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Emission Level = Read Level + Correct Factor


CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

ding, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

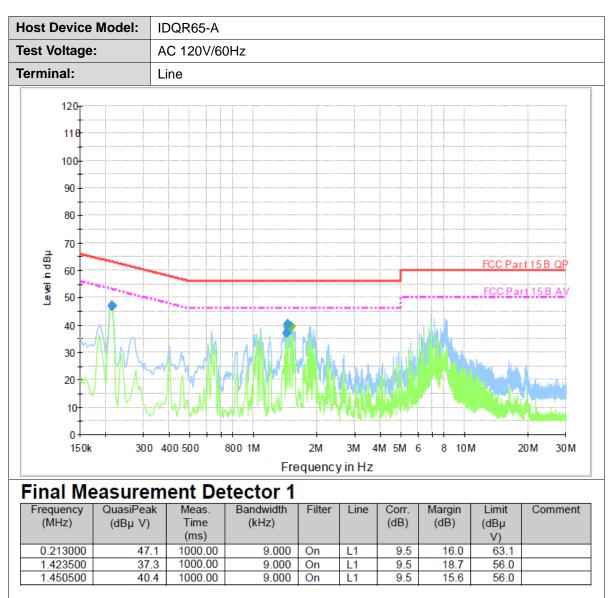
Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.158620	40.2	1000.00	9.000	On	Ν	9.3	25.3	65.5	
1.139770	23.9	1000.00	9.000	On	Ν	9.4	32.1	56.0	
2.688850	31.7	1000.00	9.000	On	Ν	9.4	24.3	56.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.178090	46.0	1000.00	9.000	On	N	9.3	8.6	54.6	
1.613060	23.8	1000.00	9.000	On	N	9.4	22.2	46.0	
12.807010	27.1	1000.00	9.000	On	Ν	9.6	22.9	50.0	

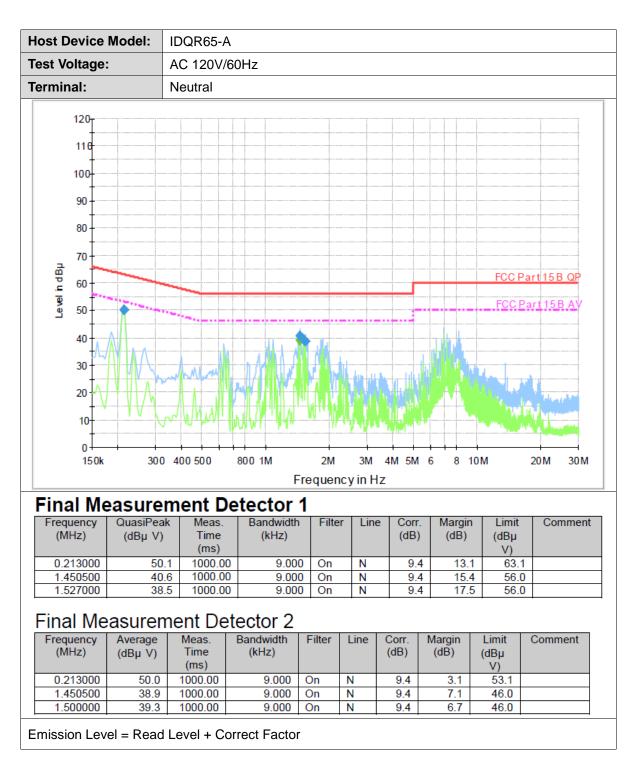
Emission Level = Read Level + Correct Factor


CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

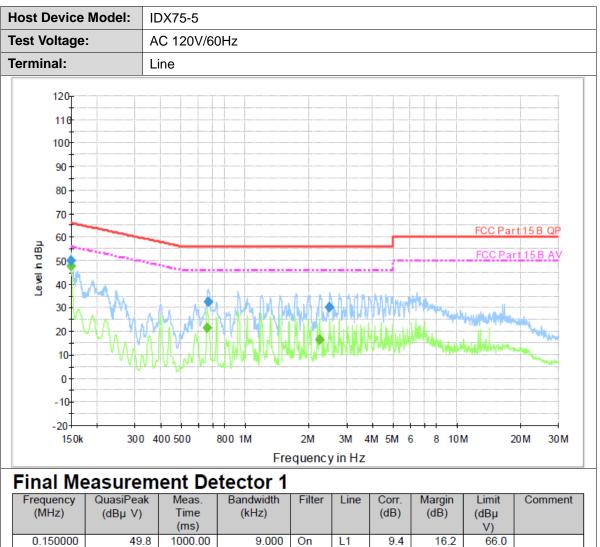
Final Measurement Detector 2


Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.213000	46.9	1000.00	9.000	On	L1	9.5	6.2	53.1	
1.450500	39.0	1000.00	9.000	On	L1	9.5	7.0	46.0	
1.500000	39.3	1000.00	9.000	On	L1	9.5	6.7	46.0	

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



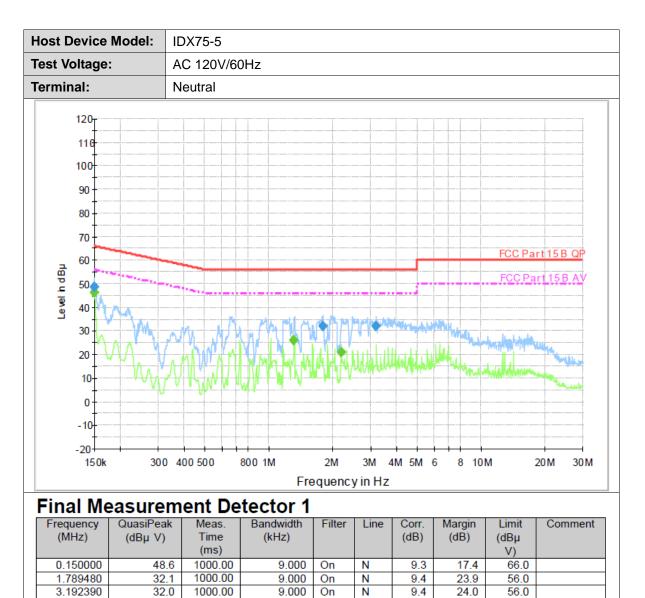
CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

0.667580	32.3	1000.00	9.000	On	L1	9.5	23.7	56.0	
2.492440	30.1	1000.00	9.000	On	L1	9.5	25.9	56.0	

Final Measurement Detector 2

dBµ V)	Time (ms)	(kHz)			(dB)	(dB)	(dBµ V)	
47.7	1000.00	9.000	On	L1	9.4	8.3	56.0	
21.6	1000.00	9.000	On	L1	9.5	24.4	46.0	
16.6	1000.00	9.000	On	L1	9.5	29.4	46.0	
	47.7	(ms) 47.7 1000.00 21.6 1000.00	(ms) 47.7 1000.00 9.000 21.6 1000.00 9.000	(ms) 47.7 1000.00 9.000 On 21.6 1000.00 9.000 On	(ms) On L1 47.7 1000.00 9.000 On L1 21.6 1000.00 9.000 On L1	(ms) 0 0 47.7 1000.00 9.000 On L1 9.4 21.6 1000.00 9.000 On L1 9.5	(ms) One L1 9.4 8.3 47.7 1000.00 9.000 On L1 9.4 8.3 21.6 1000.00 9.000 On L1 9.5 24.4	(ms) V) 47.7 1000.00 9.000 On L1 9.4 8.3 56.0 21.6 1000.00 9.000 On L1 9.5 24.4 46.0

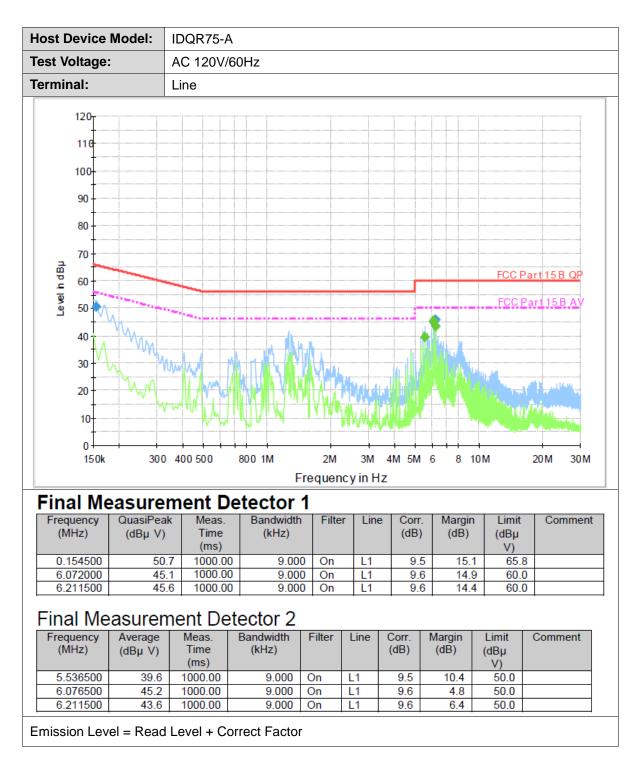

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

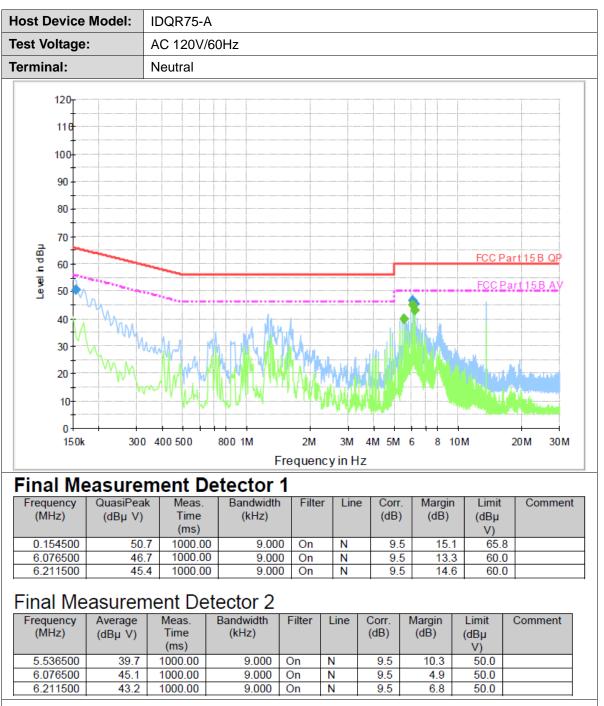
Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.150000	46.2	1000.00	9.000	On	Ν	9.3	9.8	56.0	
1.305460	26.3	1000.00	9.000	On	Ν	9.4	19.7	46.0	
2.176100	21.2	1000.00	9.000	On	Ν	9.4	24.8	46.0	


Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

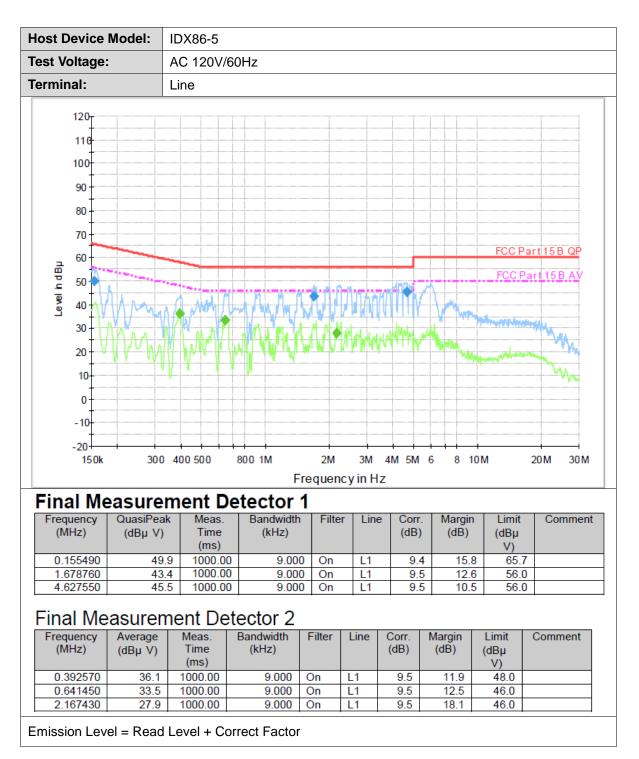
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



CTC Laboratories, Inc.

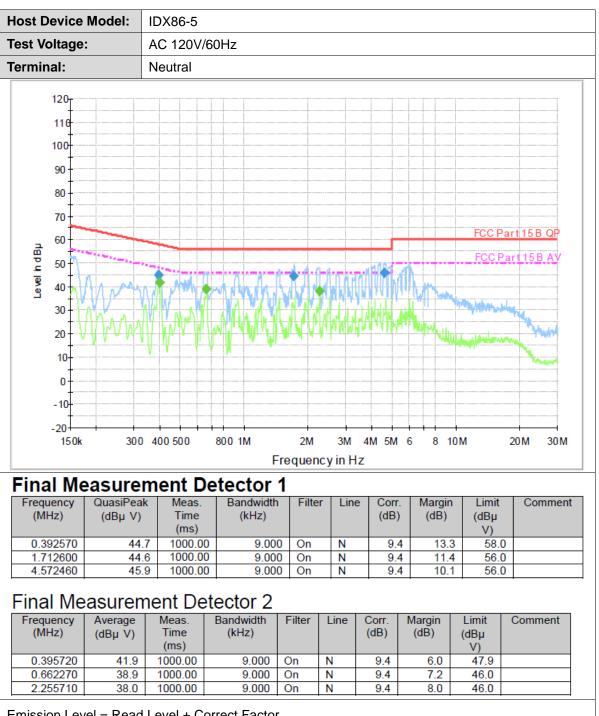
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel.: (86)755-27521059 可监督管理委员会 中国国家认证认 ΞŇ


Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

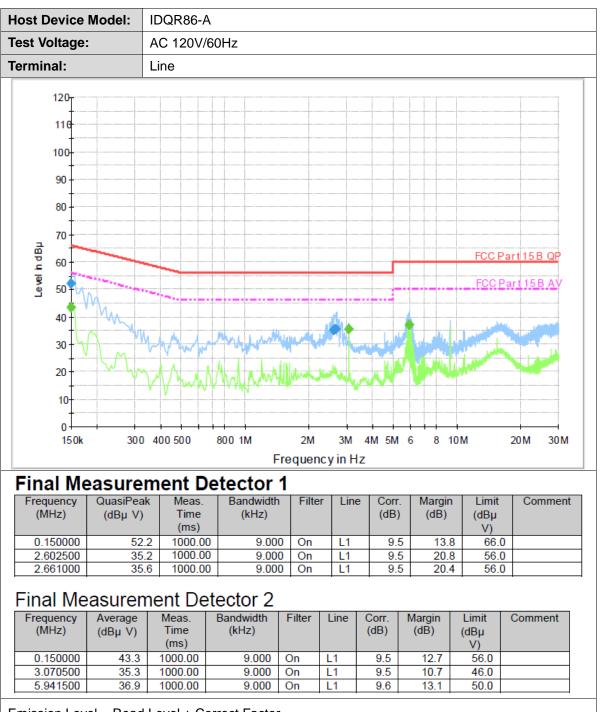
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059



CTC Laboratories, Inc.

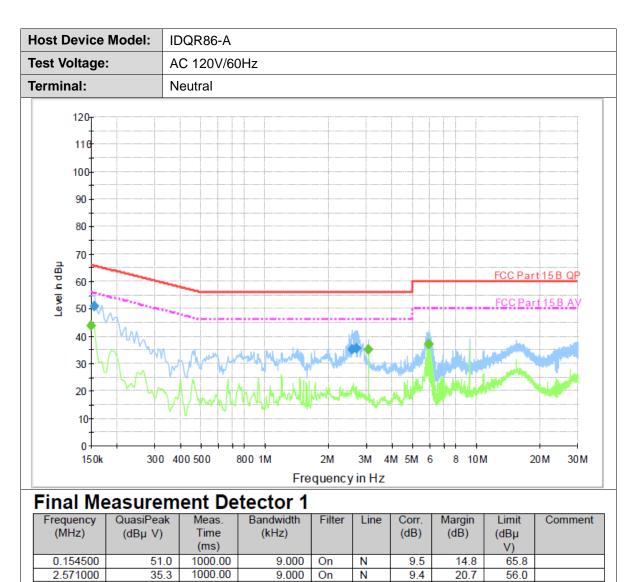
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel.: (86)755-27521059 可监督管理委员会 中国国家认证认 ΞŇ


Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China


Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Final	Measurement Detector 2	

1000.00

35.4

2.692500

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.150000	43.7	1000.00	9.000	On	Ν	9.5	12.3	56.0	
3.070500	35.1	1000.00	9.000	On	Ν	9.4	10.9	46.0	
5.941500	37.0	1000.00	9.000	On	Ν	9.5	13.0	50.0	

On

Ν

9.4

20.6

56.0

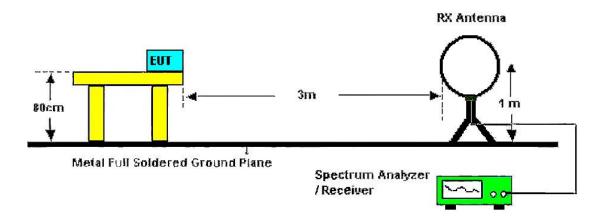
9.000

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

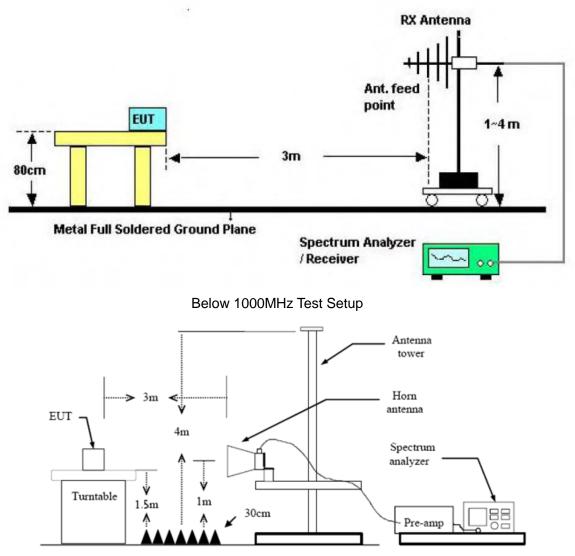
3.2. Radiated Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

	dBµV/m (at 3 meters)				
Frequency Range (MHz)	Peak	Average			
Above 1000	74	54			


Test Configuration

Below 30MHz Test Setup

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013

可监

- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.

CTC Laboratories, Inc.

- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;

(2) 9Hz - 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) 150kHz - 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(4) 30MHz - 1GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

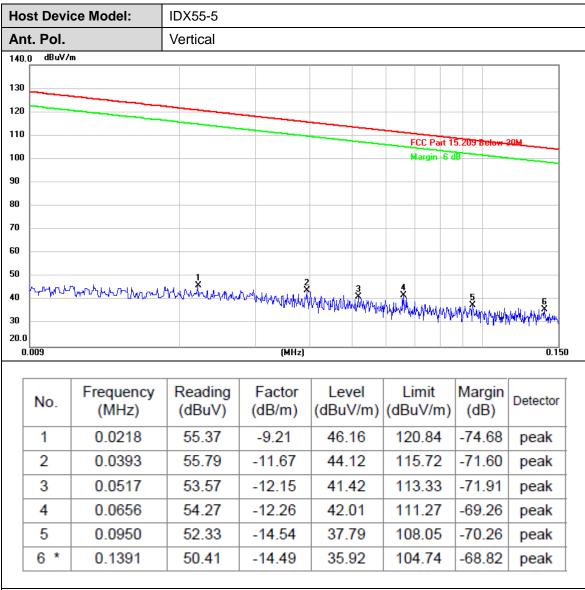
RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode

Please refer to the clause 1.7.

9 KHz~150 KHz

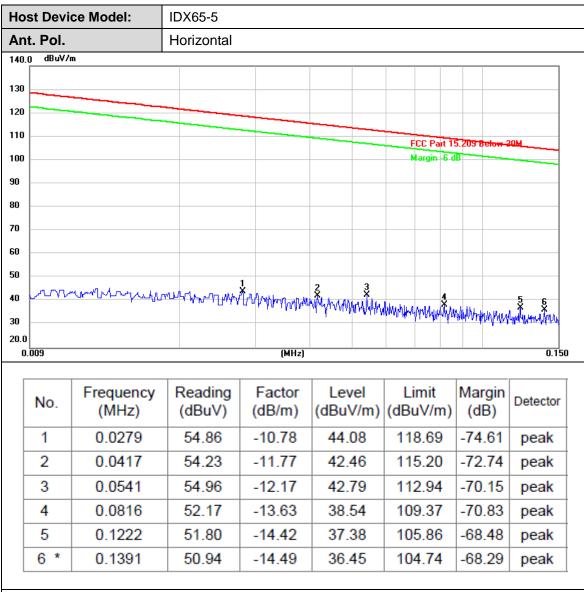
Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

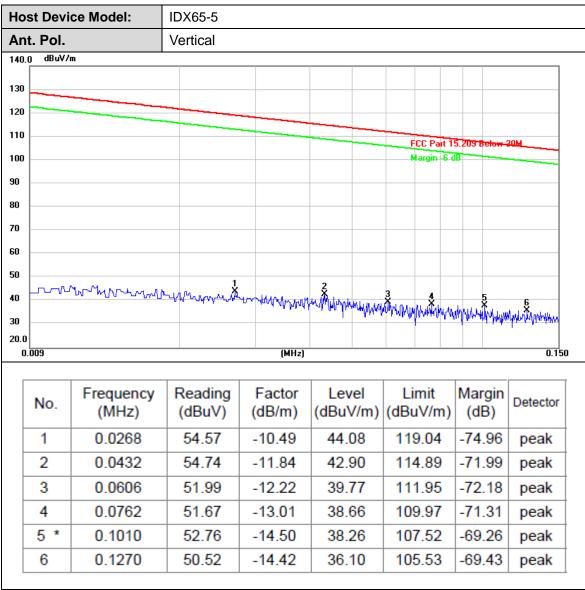
CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



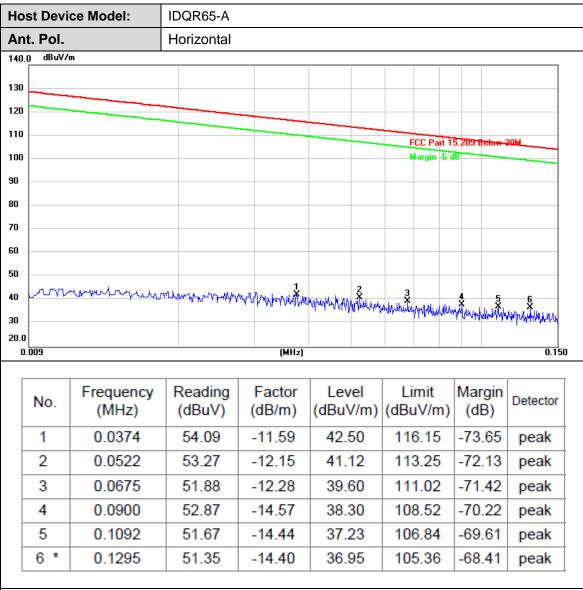
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



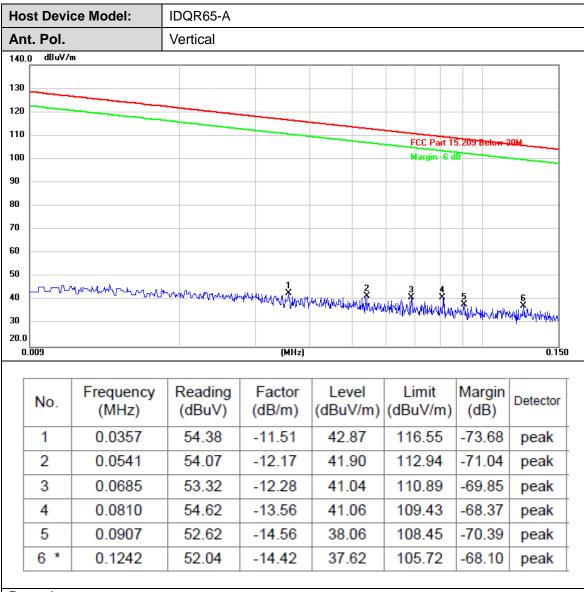
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

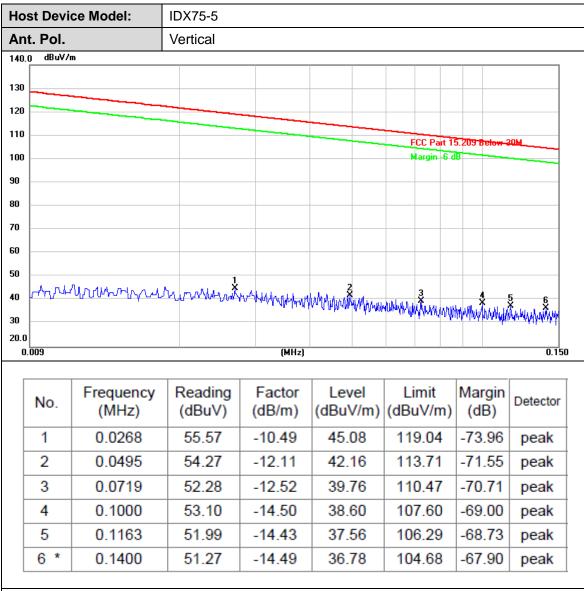


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

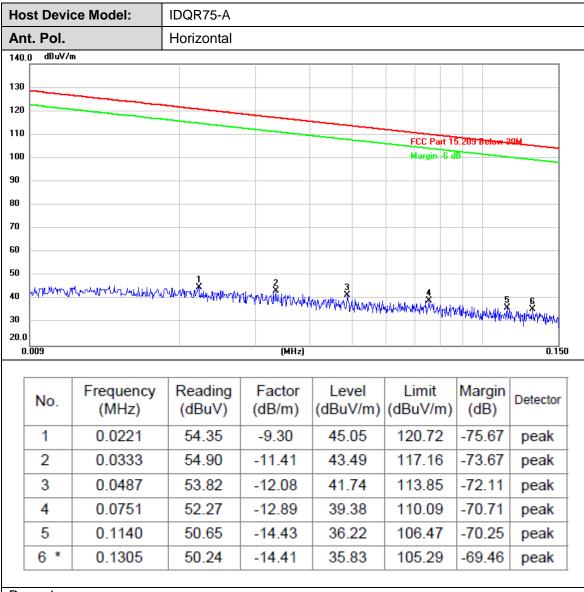
CTC Laboratories, Inc.


_		ce Model:	IDX75-5								
\n1	t. Pol.		Horizontal								
40.0) dBuV/r	n	i.			1					
30											
20											
10					_		FCC Part 15.209 Below 20M			20M	
00								Margin -6	dB		
0											
80											
'O											
50											
											I
50			1							_	
50 10	NUMMW	the when the when the	Withawring	Գուորայի պուլը	2		3				5 6
i0 10 10	_አ ብሥት _ጥ	the the subscripted	W. HALWARMA	a nontration	MM MUM	NewPrive	3 WWW	MW/MWW	munit	Ya nya wa	5
50 10 10 20.0	አበሥት V	the way the second second	Sha wana a	h www.	Z MM-MUHMM	NMINYH	3 WWW	MW/WWW	hvanan	Ya.nyiyy	5.
20.0	יאַן <i>וּעאיירע</i> 009	throme the successful	WWW.Augurton	ՌԴԴԽԴԱՆՔՆՆՆ (MHz)	AM MANN	NMWAYA	3 WWW	MW/MW	hvinanih	ya.nyy	5 § WW14/MY4/MU 0.15
20.0			1	(MHz)			 				
20.0		ռուսերին Frequency (MHz)	Reading (dBuV)		Lev	vel		۳۵۵۵۵ imit uV/m	Ma	argin JB)	
20.0	009	Frequency	Reading	(MHz) Factor	Lev	vel V/m)	L (dB	imit	Ma) (0	argin	0.15
20.0	009 No.	Frequency (MHz)	Reading (dBuV)	(мн ₂) Factor (dB/m)	Lev (dBu)	vel V/m) 26	L (dB 12	imit uV/m	Ma) (0	argin dB)	0.15
20.0	009 No. 1	Frequency (MHz) 0.0200	Reading (dBuV) 55.02	(MHz) Factor (dB/m) -8.76	Lev (dBu) 46.	vel V/m) 26 73	L (dB 12 11	imit uV/m 21.58	Ma) (0 -7:	argin dB) 5.32	0.15 Detector peak
20.0	No.	Frequency (MHz) 0.0200 0.0446	Reading (dBuV) 55.02 52.63	(MHz) Factor (dB/m) -8.76 -11.90	Lev (dBu) 46. 40.	vel V/m) 26 73 15	L (dB 12 11	imit uV/m 21.58 4.62	Ma ((-7; -7;	argin 1B) 5.32 3.89	Detector peak peak
20.0	009 No. 1 2 3	Frequency (MHz) 0.0200 0.0446 0.0641	Reading (dBuV) 55.02 52.63 52.40	(MHz) Factor (dB/m) -8.76 -11.90 -12.25	Lev (dBu) 46. 40. 40.	vel V/m) 26 73 15 35	L (dB 12 11 11	imit uV/m 21.58 4.62 1.47	Ma (0 -75 -75 -75 -75	argin dB) 5.32 3.89 1.32	Detector peak peak peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

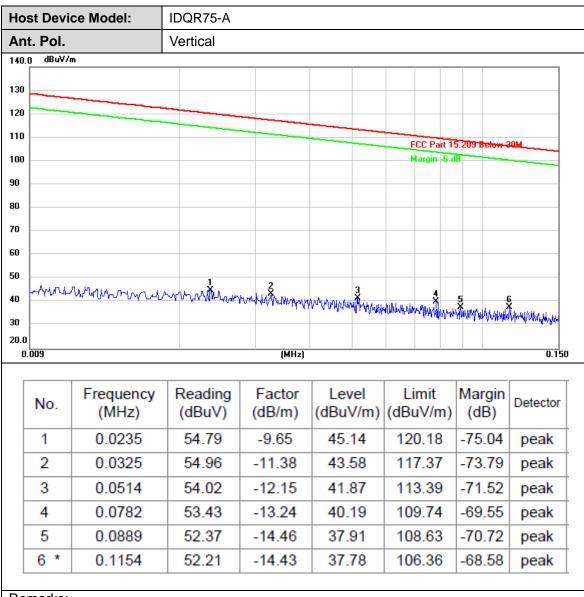
CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



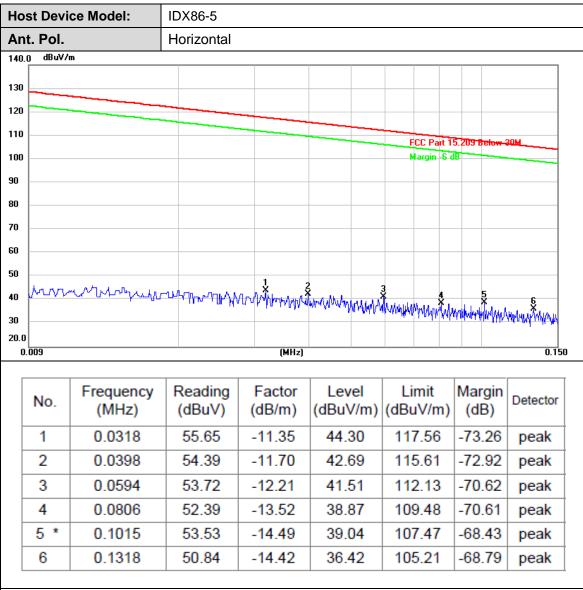
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



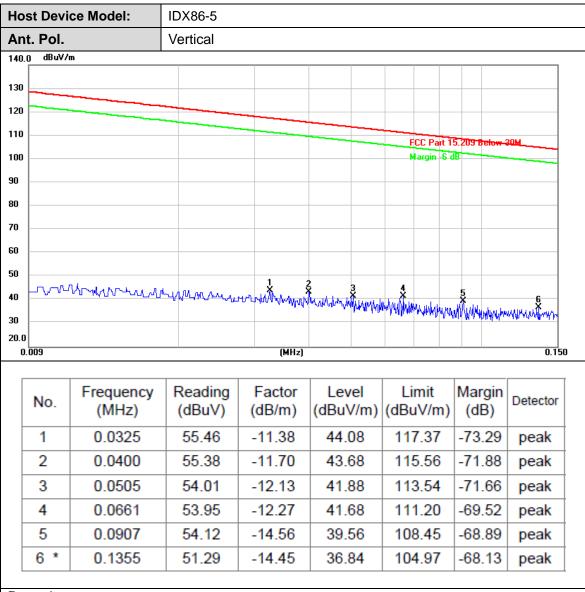
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



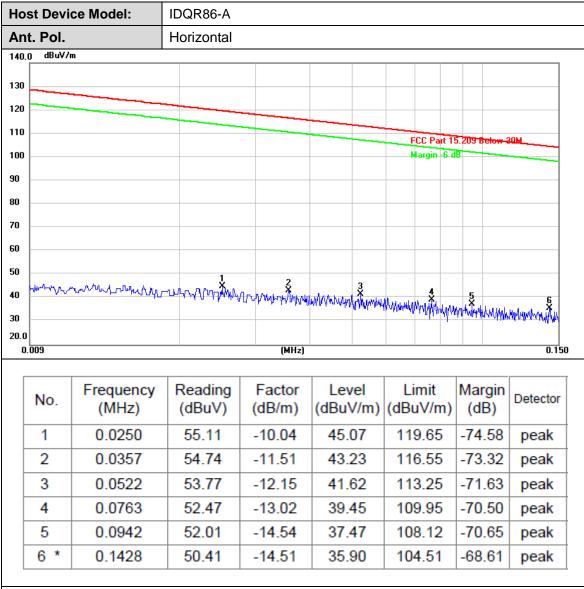
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



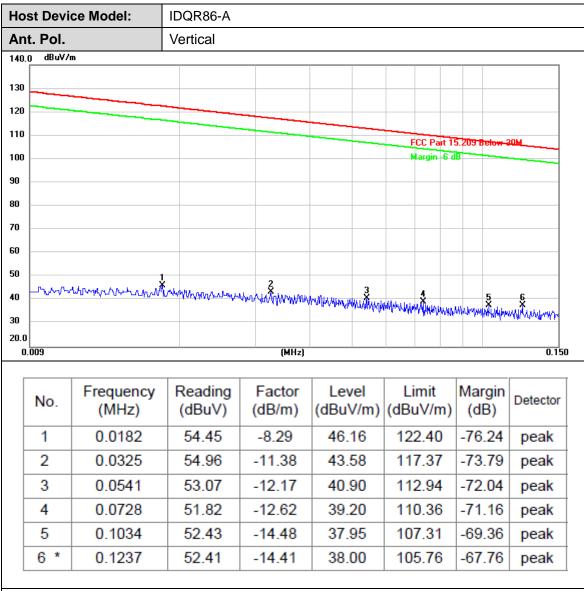
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



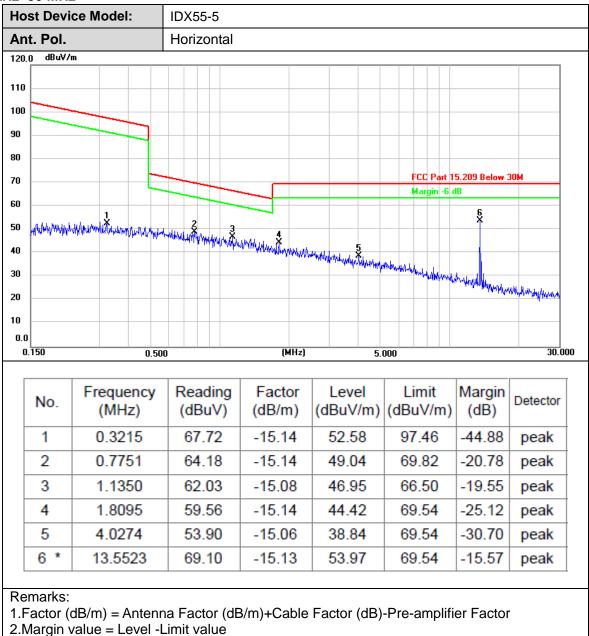
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

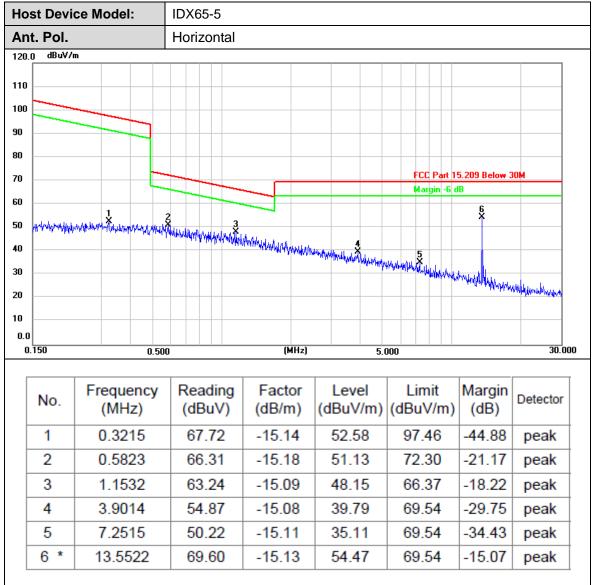


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

150 KHz~30 MHz

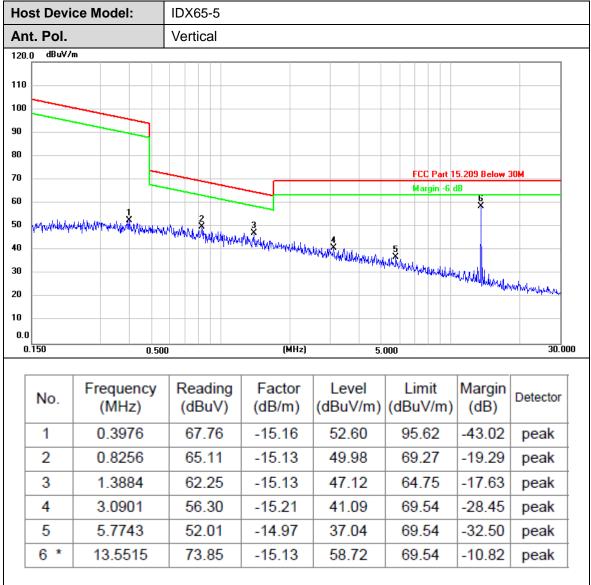
CTC Laboratories, Inc.


	evice	Model	l:	ID	X55	5-5													
Ant. Po	ol.			Ve	ertic	al													
120.0 dB	}uV/m																		_
110																			
100																			
90	_																		
80																			
70			-											FCC	Part	15.209 B	elow 3	30M	
			4					$\neg \Box$						Marg	in -6	dB			
60	1							-								Š			
50 <mark>//////</mark> /	White And the providence of the second se	with the state of	An Victoria Inc	Mundulu	hai ana		3 X	4											
40					ч њ. тр	4440AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MANNAM	WWW	Probables,	Willing	5 4.4.0				_				-
30											. Mar Andely	willpent	NAMANA	your	M. Labor	at di			
20																	Himeduate	vernifundate	N.
																- ANANAN MANANAN MANANAN MANANAN MANANAN MANANAN MANANAN MANANAN MANANAN MANANAN MANANA MANANA MANANA MANANA M Manananan mananana manana ma	Himschietz	verwymuna	м.
10																	deredueta	verhilpensigeth.	м.
20 10 0.0 0.150			0.5						(MHz)				000				uhi-edulete		<u>^.</u>
10 0.0																	dh-eduata		_
10 0.0 0.150			0.5	500					(MHz)		_eve	5.	000	imi		1		3	30.0
10 0.0		reque (MH	0.5 ency	500 F		ding		((MHz)		eve	5.	000	imi	t	Mar	gin		30.0
10 0.0 0.150		reque	0.5 ency z)	500 F	Read	ding uV)		Fact	(MHz) tor m)	L (dE	eve	5. !! 'm)	000 L (dB	imi	t /m)	Mar	gin 3)	3	0.0
10 0.0 0.150 No		reque (MH	0.5 ency z) 94	500 F (Read (dBi	ding uV) 49		Fact dB/r	(MHz) tor m) 30	L (dE	_eve 3uV/	5. :I (m) 9	000 L (dB 10	imi uV	t /m)	Mar (dE	gin 3) 49	Detect	0.0 0r
10 0.0 0.150 No 1		reque (MH 0.20	0.5 ency z) 94 62	500 F (Read (dBi	ding uV) 49 05	 (-	Fact dB/r	(MHz) tor m) 30	L (dE 5	_eve 3uV/ 52.69	5. (m) 9	000 (dB 10	imi uV	t /m) 18 8	Mar (dE -48.	gin 3) 49 99	Detect	0.00
10 0.0 0.150 No 1 2		reque (MH 0.20 0.68	0.5 ency z) 94 62 32	500 F (Read (dBi 67.	ding uV) 49 05 55	 (Fact dB/r 14.8	(MHz) tor m) 30 16 09	L (dE 5 4	-eve 3uV/ 52.69	5. (m) 9 9	000 (dB 10 70	imi uV 01.1	t /m) 18 8 7	Mar (dE -48. -20.	gin 3) 49 99 91	Detect peak peak	0.0 0r ((
No 10 0.0 0.150 No 1 2 3		reque (MH 0.20 0.68 1.15	0.5 ency z) 94 62 32 24	500 F (Read (dBi 67. 65.	ding uV) 49 05 55 07	 (Fact dB/r 14.8 15.1	(MH2) tor m) 30 16 09 13	L (dE 5 4 4	-eve 3uV/ 52.69	5. (m) 9 9 6 4	L (dB 10 70 60	imi uV/ 01.1 0.8 6.3	t /m) 18 8 7 9	Mar (dE -48. -20. -19.	gin 3) 49 99 91 25	Detect peak peak peak	00.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会



1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

		Mode	•		- •	65-A											
nt. P	ol.			H	loriz	onta	l										
20.0 dl	Bu¥/m																
10																	
00	_																
o																	
o																	
o 📃			-											FCC P	art 1	5.209 Below	30M
-			4		44			$\neg \Box$						Margir	n -6 o	IB	
0 1	,			2				_							\uparrow	e	
0 mini	run ana	hinan-tubulan	NAME AND	и.	WWW.LA	AL LAL	3 . X.					_			+	×	
o						(MAL HAND)	MMUANA	he survey	NWANN	·	5						
o 📃										o tralita	mananana	waters	Westin	My	4.h.i		
														1	NY 1041.		
_																, autoritation the fight which	WWWWWWWWW
0																, and a full and the full of the	hallantinantan
o																, whulun the physics	hallandara ana ang ang ang ang ang ang ang ang an
0 0.0																, wanilin Malifada	
0				500					MHz)			5.00				· · ···	Wilelykoningerigen 30.0
0 0.0			0.5	500				(1	MHz)				DO			1	30.0
0 0.0		Freque	o.ency	500	Rea	ding		(Fact	MHz)		evel	5.00		imit		Margin	30.0
0			o.ency	500	Rea (dB	iding suV)		(1	MHz)	Lo (dB	evel uV/n	5.00	DO L	imit uV/	m)	1	30.0
0		Freque	o.ency	500	Rea (dB	ding) ((Fact	or n)	Lo (dB	evel	5.00	DO L	imit	m)	Margin	30.0
0 0.0 0.150		Freque (MH	ency lz)	500	Rea (dB	iding suV)	g (((Fact dB/n	or n)	L0 (dB	evel uV/n	5.00	00 L (dB 10	imit uV/	m)	Margin (dB)	30.0 Detector peak
0 0.0 0.150		Freque (MH 0.18 0.55	0.9 ency z) 04 22	500	Rea (dB 67	ding auV) .90 .52) (i -	Fact dB/n 14.6	мн ₂) or n) 9	L0 (dB 5(5	evel uV/n 3.21 1.33	5.00	u (dB 10 7:	imit uV/)2.4 2.76	m) 8	Margin (dB) -49.27 -21.43	30.0 Detector peak peak
0 0.0 0.150		Freque (MH 0.18 0.55 1.20	0.9 ency lz) 04 22 96	500	Rea (dB 67 66 61	ding auV) .90 .52 .96	g ((- -	Fact dB/n 14.6 15.1	or n) 9 0	L0 (dB 5; 5 4	evel uV/n 3.21 1.33 3.86	5.00	00 (dB 10 7:	imit uV/ 2.76 5.95	m) 8	Margin (dB) -49.27 -21.43 -19.09	30.0 Detector peak peak peak
0 0.0 0.150		Freque (MH 0.18 0.55	0.9 ency lz) 04 22 96	500	Rea (dB 67 66 61	ding auV) .90 .52	g ((- -	Fact dB/n 14.6	or n) 9 0	L0 (dB 5; 5 4	evel uV/n 3.21 1.33	5.00	00 (dB 10 7:	imit uV/)2.4 2.76	m) 8	Margin (dB) -49.27 -21.43	30.0 Detector peak peak peak
0 0.0 0.150		Freque (MH 0.18 0.55 1.20	0.9 ency z) 04 22 96 30	500	Rea (dB 67 66 61 58	ding auV) .90 .52 .96		Fact dB/n 14.6 15.1	or n) 9 0 7	L0 (dB) 5; 5; 40 4;	evel uV/n 3.21 1.33 3.86	5.00	L (dB 10 7: 6:	imit uV/ 2.76 5.95	m) 8	Margin (dB) -49.27 -21.43 -19.09	30.0 Detector peak peak peak peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

	st Devi		•	IDQ	R65-	-A									
٩n	t. Pol.			Vert	ical										
120.	0 dBuV/i	n													
110															
100															
90															
80															
70			<u> </u>										_	5.209 Below 3	30M
50						_						Margi	in -6 (1B	
,0		1		2										6	Whitewarder
50	han terhingan and	64MMMMMMMMMM	en Marine Marine M	Merrilling.	Amaria	inter an	at a c	4		_				Ť	
40						ar daada	authorythe	WWW	Why Walnut	ال		5			
30										ALL HALL HALL	AMANIN	Withhere	MAN	dist	
20														an a routine the the	Whiteman
															L. Addantation of
10 0.0															
10 0.0	150		0.500					MHz)			.000				30.0
10 0.0		Freque (MH	0.500 ency	Re	adir BuV	ng		MHz)	Lev (dBu)	5. /el	.000	Limi	t	Margin	
10 0.0	150	Freque	0.500 ency z)	Re (d	adir	ng /)	Fact	^{nHz)} or n)	Lev	vel V/m)	.000	Limi	t /m)	Margin	30.0
10 0.0	150 No.	Freque (MH	0.500 ency (z) 01	Re (d	adir BuV	ng /) }	Fact (dB/r	or n)	Lev (dBu	vel V/m) 31	.000 (dE	Limi BuV/	t /m) 2	Margin (dB)	30.0 Detector
10 0.0	150 No.	Freque (MH	0.500 ency z) 01 75	Re (d	adir BuV 7.46	ng /) 3	Fact (dB/n -15.1	чн ₂) or n) 5	Lev (dBu) 52.	vel V/m) 31 60	.000 (dE 9	Limi 3uV/	t /m) 2 3	Margin (dB) -44.41	30.0 Detector peak
10 0.0	150 No. 1 2	Freque (MH 0.35 0.60	0.500 ency z) 01 75 96	Re (d	adir BuV 7.46	ng /) 3	Fact (dB/n -15.1 -15.1	or n) 5 8	Lev (dBu) 52. 51.	vel V/m) 31 60 46	.000 (dE ??	Limi 3uV/ 96.7: 71.9	t /m) 2 3	Margin (dB) -44.41 -20.33	30.0 Detector peak peak
10 0.0	150 No. 1 2 3	Freque (MH 0.35 0.60 0.99	0.500 ency z) 01 75 96 12	Re (d 6 6	adir BuV 7.46 6.78 2.52	ng /) 3 2	Fact (dB/r -15.1 -15.1 -15.0	or n) 5 8 6 7	Lev (dBu) 52. 51. 47.	vel V/m) 31 60 46 45	.000 (dE 7 6	Limi 3uV/ 96.7: 71.9 57.6	t /m) 2 3 1 4	Margin (dB) -44.41 -20.33 -20.15	30.0 Detector peak peak peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

	evice	Mode	l:		ID)	<75∙	-5													
nt. Po	ol.				Ho	rizo	onta	l												
20.0 dB	3uV/m			_																
0																				_
)0					_											++				_
)		-																		_
)																				_
															FCC F	art 1	5.209	Below 3	вом	
			'	-		-									Margi	n -6	dB			
)		1 X		2		3			-								6 X	ł		
) HUMAN	Hindola da	mhhililika	Mullaha	V II44	hhapph	HIL HIL	human		4							+				
)							ראי עייר ווי	WWWW	Helenalli	MANANA		Willia		5 X						_
)												i	HALMAN	edistration).	harry	w.	HALL A			
.																	a ayan	WHY WHY	how when	have
	unding danak da																er official	un alle and a second	hinning	Kin Ma
)																		aniilii anii	hadenandela	4n.n
																		uniili anii	had a north of the second s	30.0
).0				.500						(MHz)				000				uniikatida 	lmhurrail(A)	_
0.150	F		0.	.500						(MHz)			5.	000						30.0
).0	F	reque (MH	o. ency	.500	Re		ling	3		(MHz)		Leve	5. 2	000	_imit		Ma	rgin B)	Detec	30.0
0.150	F	reque	o ency Iz)	.500	Re (c	ead	ling ıV))	Fac	(MH2) tor m)	(d	Leve	5. el /m)	ooo l (dE	_imit	: m)	Ma (d	rgin		30.0
0.0 0.150 No	F	reque (MH	ency z)	.500	Re (c	ead	ling ıV) 06	3	Fac dB/	(MHz) tor m) 15	(d	Leve	5. 21 /m) 1	000 l (dE 9	_imit BuV/	: m)	Ma (d -42	rgin B)	Deteo	30.0 ctor
0.0 0.150 No 1	F	reque (MH 0.34	0. ency lz) 46 92	.500	Re (0	ead dBu 69.(ding ıV) D6 33		Fac dB/	(мн ₂) tor m) 15 19	(d	Leve BuV	5. 21 /m) 1 4	000 (dE 9 7	_imit 3uV/	: m) 3	Ma (d -42 -20	rgin B)	Detec	30.0 ctor
0 0.150 No 1 2	F	reque (MH 0.34 0.52	ency z) 46 92 25	.500	Re (0 6	ead dBu 69.0	ling ı∨) 06 33 66		Fac dB/ -15.	(MHz) tor m) 15 19 14	(d	Leve BuV 53.9	5. /m) 1 4 2	000 (dE 9 7 6	_imit 3uV/ 6.80 3.13	: m) 3	Ma (d -42 -20 -18	rgin B) 2.95	Detec	30.0 ctor ak ak
0.0 0.150 No 1 2 3	F	reque (MH 0.34 0.52 0.81	0. ency lz) 46 92 25 95	.500	Re (0 6 6	ead dBu 69.0 67.3	ling ıV) 06 33 66 06		Fac dB/ 15.	(мн ₂) tor m) 15 19 14 14	(d	Leve BuV 53.9 52.1	5. 2 5. 2 2	000 (dE 9 7 6 6	_imit 3uV/ 6.86 3.13	t m) 3 1	Mai (d -42 -20 -18 -24	rgin B) 2.95 0.99	Detec pea pea	30.0 stor ik ik ik

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

	ce Model	•	IDX.	75-5										
nt. Pol.			Vert	tical										
0.0 dBuV/	m													
o														
0									_					
									_					
													5.209 Below (
		<u> </u>				~					Margin	-6 d	B	
	1 X	į	2										- K	
where where we have the	deepperturing a filler	han the state of t	Whenthe	Mahana Na	dil AL -	3 X	4							
				** 1 1799 8	THAT	249447214/a/fra	Mehodelly	Wallan		5				
								Alter March	19million,	Hiphlynn	ALL .			
											TH MUL	the state	an call	
											"PH VILLA	historia,	the work halowing	Persentation the real
	dagaran tin										"PI VULA	Nd India	HANNIN MARY	Pendulyminterse
											- Par Mukuk	Aldrewice,	the work the second	howman
.0													Hin Will Mirrian	
		0.500					(MHz)			.000			Handrid Handran	hundarmjapatina 30.0
.0		0.500)				(MHz)		5.	.000				30.0
.0	Freque	0.500	Re	eadir	ng	Fac	(MHz)	Lev	5. vel	.000 L	imit		Margin	
.0 0.150 No.	Freque (MH	0.500 ency z)	Re (d	eadir IBuV	ng /)	Fac (dB/	(MHz) tor m)	Lev (dBu\	5. vel //m)	.000 L (dB	imit uV/r	m)	Margin (dB)	30.0
.0 0.150 No.	Freque (MH: 0.353	0.500 ency z) 37	Re (d	eadir BuV	ng /) 3	Fac (dB/ -15.	(MHz) tor m) 15	Lev (dBu\ 54.2	5. rel //m) 23	000 L (dB	imit uV/r 6.63	m)	Margin (dB) -42.40	30.0
.0 0.150 No.	Freque (MH	0.500 ency z) 37	Re (d	eadir IBuV	ng /) 3	Fac (dB/	(MHz) tor m) 15	Lev (dBu\	5. rel //m) 23	000 L (dB	imit uV/r	m)	Margin (dB)	30.0
.0 0.150 No.	Freque (MH: 0.353	0.500 ency z) 37	Re (d	eadir BuV	ng /) 3	Fac (dB/ -15.	(MH2) tor m) 15 18	Lev (dBu\ 54.2	vel //m) 23 56	.000 L (dB 9 7	imit uV/r 6.63	m)	Margin (dB) -42.40	30.0 Detector peak peak
0 0.150 No. 1 2 3	Freque (MH: 0.353 0.579 1.333	0.500 ency z) 37 92 78	Re (d	eadir BuV 9.38 8.74	ng /) 3 4 7	Fac (dB/ -15. -15. -15.	(мнг) tor m) 15 18 12	Lev (dBu\ 54.1 53.9 47.1	rel //m) 23 56 15	.000 L (dB 9 7 6	imit uV/r 6.63 2.35 5.08	m)	Margin (dB) -42.40 -18.79 -17.93	30.0 Detector peak peak peak
0.0 0.150 No. 1 2 3 4	Freque (MH: 0.353 0.579 1.333 2.370	0.500 ency z) 37 92 78 08	Re (d 6 6	eadir BuV 9.38 8.74 2.27 9.13	ng /) 3 4 7 3	Fac (dB/ -15. -15. -15. -15.	(MH2) tor m) 15 18 12 18	Lev (dBu\ 54.2 53.9 47.7 43.9	rel //m) 23 56 15 95	.000 L (dB 9) 7. 6) 6)	imit uV/r 6.63 2.35 5.08 9.54	m)	Margin (dB) -42.40 -18.79 -17.93 -25.59	30.0 Detector peak peak peak peak
0 0.150 No. 1 2 3	Freque (MH: 0.353 0.579 1.333	0.500 ency z) 37 92 78 08	Re (d 6 6	eadir BuV 9.38 8.74	ng /) 3 4 7 3	Fac (dB/ -15. -15. -15.	(MH2) tor m) 15 18 12 18	Lev (dBu\ 54.1 53.9 47.1	rel //m) 23 56 15 95	.000 L (dB 9) 7. 6) 6)	imit uV/r 6.63 2.35 5.08	m)	Margin (dB) -42.40 -18.79 -17.93	30.0 Detector peak peak peak

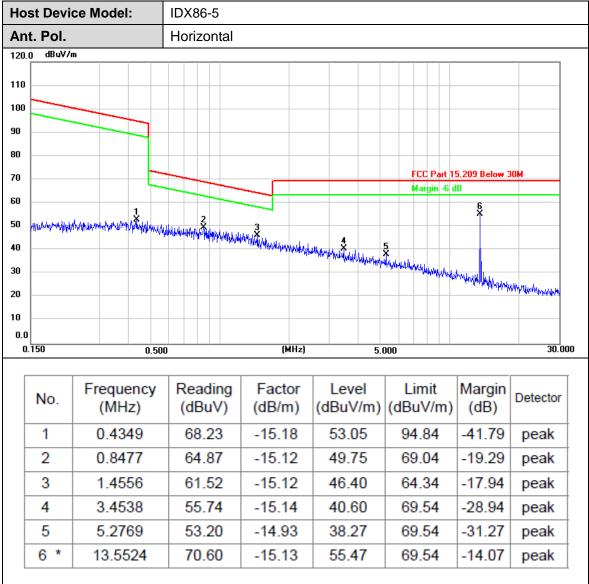
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

	ice Model:	IDQR75-A					
nt. Pol.		Horizontal					
0.0 dBuV/	/m						
0							
0							_
					FCC Part 1	5.209 Below 3	30M
	<u> </u>				Margin -6 o	IB	
	1.					6	
alter working	https://www.kartputok		4			×	
		WANKOW	and the second second second	When have a	5		
					white the full and and and		
					a mixe with	"""WAANNING WAANNA	
						1.1.10	WHY My Marke
							WWW.Andrasha
							WWW.Andpasto
.0							
	0.500		(MHz)		000		30.0
.0 0.150	0.500		(MHz)	5.	000	1	30.0
.0	0.500 Frequency	Reading	(MHz) Factor	5. Level	000 Limit	Margin	
.0 0.150 No.	0.500 Frequency (MHz)	Reading (dBuV)	(MHz) Factor (dB/m)	5. Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	30.0
.0 0.150	0.500 Frequency	Reading	(MHz) Factor	5. Level	000 Limit	Margin	30.0
.0 0.150 No.	0.500 Frequency (MHz)	Reading (dBuV)	(MHz) Factor (dB/m)	5. Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	30.0
0 0.150 No. 1 2	0.500 Frequency (MHz) 0.2630 0.6972	Reading (dBuV) 67.28 65.31	(MH2) Factor (dB/m) -14.99 -15.16	Level (dBuV/m) 52.29 50.15	Limit (dBuV/m) 99.20 70.74	Margin (dB) -46.91 -20.59	30.0 Detector peak peak
0 0.150 No. 1 2 3	0.500 Frequency (MHz) 0.2630 0.6972 1.2157	Reading (dBuV) 67.28 65.31 62.09	(MHz) Factor (dB/m) -14.99 -15.16 -15.10	Level (dBuV/m) 52.29 50.15 46.99	Limit (dBuV/m) 99.20 70.74 65.91	Margin (dB) -46.91 -20.59 -18.92	30.0 Detector peak peak peak
0 0.150 No. 1 2 3 4	0.500 Frequency (MHz) 0.2630 0.6972 1.2157 2.3835	Reading (dBuV) 67.28 65.31 62.09 58.18	(MHz) Factor (dB/m) -14.99 -15.16 -15.10 -15.18	Level (dBuV/m) 52.29 50.15 46.99 43.00	Limit (dBuV/m) 99.20 70.74 65.91 69.54	Margin (dB) -46.91 -20.59 -18.92 -26.54	30.0 Detector peak peak peak peak
0 0.150 No. 1 2 3	0.500 Frequency (MHz) 0.2630 0.6972 1.2157	Reading (dBuV) 67.28 65.31 62.09	(MHz) Factor (dB/m) -14.99 -15.16 -15.10	Level (dBuV/m) 52.29 50.15 46.99	Limit (dBuV/m) 99.20 70.74 65.91	Margin (dB) -46.91 -20.59 -18.92	30.0 Detector peak peak peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



	Devic	e Mod	lel:		ID(QR	75-A	<u>۱</u>												
Ant. P	ol.				Ve	ertic	al													
20.0	dBu¥/m																			_
10																				
h																				
00				_																
0				╉											_					
0 -																				-
o																		9 Below		
o 📃									~						Mar	gin -	5 dB			-
0	an tan a ka	udura whit	hilfer		2			2										6 X		
0 Milita	ryrwiten er		an a	rs may	muna	Million	MANANA	MAN		4										
0 -				_					A hall dead	Metalik	thruth	HANNAM	Wan	5 X						
0												[antipalana	WMA	hau	A			
																	THMM	Harry	a da ser se	
0 –																	~~~WAANV	Willneinheimy	the hashes been a stand	hu.
0																	~~~WAAV	Willowshing	4 Martin Martin	h
																		UN Underheiser	4. Alleydar shirol	hr
o				0.50						(MHz)				.000				HUMantanina)		k. 30.0
0 0.0					0					(MHz)			5.	.000				iH]Undurkainay		
0 0.0 0.150		Freq	ueno	0.50	0 R	lead	ding]	Fact	(MHz)		Leve	5. \$.000	Lim	nit	M	argin		30.0
0 0.0		Freq		0.50	0 R	lead]		(MHz)			5. \$.000	Lim	nit	M		3	30.0
0 0.0 0.150	0.	Freq (M	ueno	0.50	R (lead	ding uV)) (Fact	(MHz) tor m)	l (dE	Leve	5. el /m)	000 (d[Lim	nit //m) M	argin		30.0
0 0.0 0.150	0.	Freq (M	ueno Hz)	0.50	0 R (eac dBi	ding uV) 94) (Fact (dB/r	(MHz) tor m) 15	l (dE	Leve BuV/	5. el /m) 9	000 (dE	Lim 3u\ 96.8	nit //m 36) M) (4	argin dB) 3.07	Detect	30.0 Cor
0 0.0 0.150	0.	Freq (M 0.3	ueno Hz) 3446	0.50	0 R (eac dBi 68.	ding uV) 94 74) (Fact (dB/r -15.1	[мнг) tor m) 15	l (dE e	Leve BuV/ 53.79	5. /m) 9 6	.000 (dE	Lim Bu\ 96.8	nit //m 36) M (-4 -2	argin dB) 3.07	Detect peak	30.0 Cor
0 0.0 0.150 N(1 2 3	0.	Freq (M 0.3 0.5 1.2	ueno Hz) 9446 9792	0.50 Cy	R	eac dBi 68. 66.	ding uV) 94 74 40) (-	Fact (dB/r -15.1 -15.1	(MHz) tor m) 15 18	l (dE €	Leve BuV/ 53.79 51.50	5. /m) 9 6 0	000 (dE	Lim 3u\ 96.8 72.3	iit //m 36 35 91) M (-4 -2 -1	argin dB) 3.07 0.79 8.61	Detect peak peak	30.0 Cor K
0 0.0 0.150	0.	Freq (M 0.3 0.5 1.2	ueno Hz) 3446	0.50 Cy	R	eac dBi 68.	ding uV) 94 74 40) (-	Fact (dB/r -15.1	(MHz) tor m) 15 18	l (dE €	Leve BuV/ 53.79	5. /m) 9 6 0	000 (dE	Lim Bu\ 96.8	iit //m 36 35 91) M (-4 -2 -1	argin dB) 3.07	Detect peak	30.0 Cor K
0 0.0 0.150 N(1 2 3	0. 2 3	Freq (M 0.3 0.5 1.2 2.1	ueno Hz) 9446 9792	0.50 Cy	0 R ((eac dBi 68. 66.	ding uV) 94 74 40 01) (- -	Fact (dB/r -15.1 -15.1	(MHz) tor m) 15 18 10 17	l (dE € 4	Leve BuV/ 53.79 51.50	5. 21 7(m) 9 6 0 4	000 (dl ; ; ;	Lim 3u\ 96.8 72.3	iit //m 36 35 91) Mi (-4 -2 -1 -2	argin dB) 3.07 0.79 8.61	Detect peak peak	30.0 Cor K K

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

	st Devi	ce Model	l:	IDX86	-5								
An	t. Pol.			Vertic	al								
120.0) dBuV/r	m				1	1	1 1					
110													
100													
90											_		
80													
70											_	209 Below 3	30M
60										4 argin	-6 dB	6	
50	or manual and the	1 LANNA Anatolian	2	1.0		3 Alleyhyddirwyddirwyddirucu						1	
40		1. 11. m.	a na	hallandersel	MUNIMUMAN	May Humphan Malance			5				
30							···· · · · · · · · · · · · · · · · · ·	dinini Upanyi	Minhalanda	Annue,	Www.ul 1	Wal na h	
20												united and with the	Mr. March March an
													1.11.11.11.14
10													
10 0.0													
10 0.0			0.500			(MHz)			000				30.0
10 0.0		Freque (MH	0.500 ency		ding		Lev (dBu\	 /el	000 L	imit		Margin (dB)	
10 0.0	150	Freque	0.500 ency z)	Read	ding uV)	(MHz) Factor	Lev	vel V/m)	000 L (dB	imit	n)	Margin	30.0
10 0.0	150 No.	Freque (MH	0.500 ency (z) 02	Read (dB	ding uV) 01	(MHz) Factor (dB/m)	Lev (dBu\	5. vel V/m) 88	000 L (dBi 98	imit uV/r	n)	Margin (dB)	30.0 Detector
10 0.0	150 No. 1	Freque (MH	0.500 ency z) 02 00	Read (dB)	ding uV) 01 16	(MHz) Factor (dB/m) -15.13	Lev (dBu) 52.0	vel V/m) 88 97	000 (dB) 98 72	imit uV/r 3.06	n)	Margin (dB) -45.18	30.0 Detector peak
10 0.0	150 No. 1 2	Freque (MH 0.30 0.57	0.500 ency z) 02 00 24	Read (dB) 68. 66.	ding uV) 01 16 42	(MHz) Factor (dB/m) -15.13 -15.19	Lev (dBu) 52.0 50.9	vel V/m) 88 97 31	000 (dB) 98 72 65	imit uV/r 3.06 2.49	n) -	Margin (dB) -45.18 -21.52	30.0 Detector peak peak
10 0.0	150 No. 1 2 3	Freque (MH 0.30 0.57 1.30	0.500 ency (z) 02 00 24 01	Read (dB) 68. 66. 61.	ding uV) 01 16 42 21	(мнг) Factor (dB/m) -15.13 -15.19 -15.11	Lev (dBu) 52.0 50.0 46.0	vel V/m) 88 97 31 00	000 (dB) 98 72 68 69	imit uV/r 3.06 2.49 5.31	n) - -	Margin (dB) -45.18 -21.52 -19.00	30.0 Detector peak peak peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

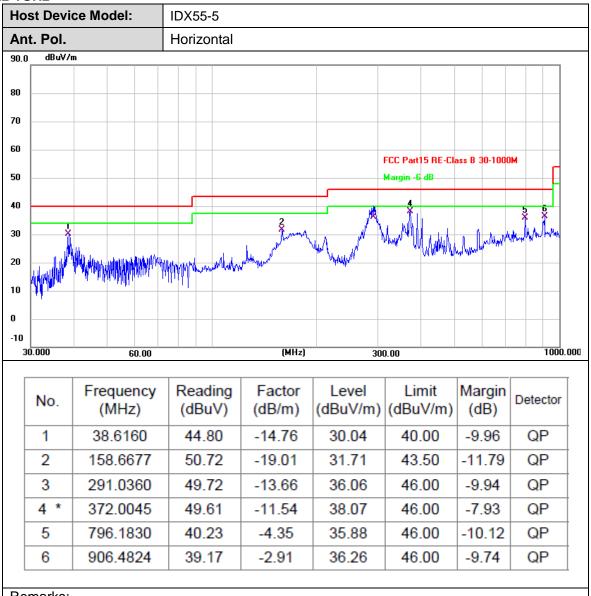
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

	Devic	e Mode): 			QR	86-/	A												
Ant. P	Pol.				Ho	rizo	onta	al												
120.0	dBuV/m						, ,												1	
110																				
100			_													_				
90 —																_				_
80																_				_
70						_									_	_		Below	30M	
60							\Box								Marg	jin -E	dB			_
			ţ			2												6 X		
50 <mark></mark>	hyt-th/thpa/h	NHUM-MANYUHUU	mphilul	madya	VIIIVII	HIM	Man Mark	MALAU	3 X											
40									TRANSMIN	4.MANANANANANANANANANANANANANANANANANANA MANANANAN	White	miniation	den e		2	_				
30													and the second sec	MANAN	honey	WANA		a 10.		
20																		month/which	handrahan	W.M
		Apile Martinetia																n nallte hander	hannaladana	HV4HM
																		munihikiyin	handrahan	ww.
10).500						(MHz)				000				PUNIN/WWW	handahan	30.0
10 0.0			0).500						(MHz)			5.	000						
10 0.0 0.150		Frequ	ienc).500	R	ead	din	g	Fac	(MHz)		Leve	5. el	000	_im	it	Ma	argin		30.0
10 0.0			ienc).500	R		din	g		(MHz)			5. el	000	_im	it	Ma			30.0
10 0.0 0.150	0.	Frequ	ienc Iz)).500	R ((ead	din uV))	Fac	(MHz) ctor /m)	(d	Leve	5. el /m)	ooo l (dE	_im	it //m	Ma) (argin		30.0
10 0.0 0.150	0.	Frequ (Mi	ienc Hz) 349).500	R(((eac dBi	din uV) 23)	Fac (dB/	(MHz) ctor /m) .18	(d	Leve BuV	5. el /m) 5	000 (dE 9	_im 3uV	it //m 34) Ma) (1 -4	argin dB)	Dete	30.0 ctor
10 0.0 0.150	0. 1 2	Frequ (MI	ienc Hz) 349 477).500	R) ((ead dBi	din uV) 23 37)	Fac (dB/	(мн ₂) ctor /m) .18 .12	(d	Leve BuV	5 /m) 5 5	000 (dE 9 	Lim BuV 94.8	it //m 34	Ma) (1 -4 -1	argin dB) 2.79	Dete	30.0 ctor ak ak
10 0.0 0.150 No 1 2	0. 2 }	Frequ (Mi 0.43	ienc Hz) 349 477 556).500	R(((eac dBi 67.	din uV) 23 37 02)	Fac (dB/ -15.	(MHz) ctor /m) .18 .12 .12	(d	Leve BuV 52.0 49.2	5 5 5 0	000 (dE 9 6 6	_im 3uV 94.8	it //m 34 34	Ma) ((-4 -1 -1	argin dB) 2.79 9.79	Deter pea	30.0 ctor ak ak ak
10 0.0 0.150 No 1 2 3	0. 1 2 3	Frequ (Mi 0.43 0.84	ienc Hz) 349 477 556 901).500	R(((ead dBi 67 64	din uV) 23 37 02 62))	Fac (dB/ -15. -15.	(мн ₂) ctor /m) .18 .12 .12 .12 .21	(d	Leve BuV 52.0 49.2 45.9	5. 5 5 0 1	000 (dE 9 6 6 6	Lim BuV 94.8 9.0	it //m 34 34 34) Ma (4 -4 -1 -1 -2	argin dB) 2.79 9.79 8.44	Deter pea pea	30.0 ctor ak ak ak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

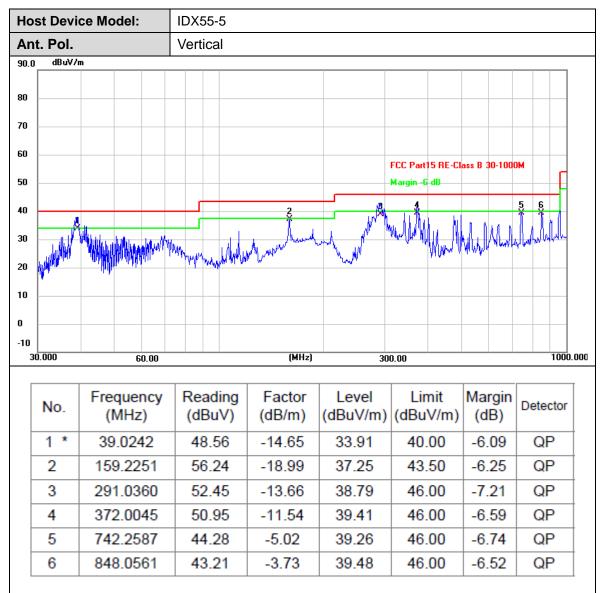
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn


	st Devi	ce Model	:	IDQ	R86	6-A									
Ant	. Pol.			Vert	tica										
120.0	dBu¥∕r	n													
110															
100										_					
90															
80															
70												FCC F	art 1	5.209 Below (30M
60				┿╍┿╍	+-+	_						Margi	n -6 (1B	
E0	a alla	1 	3											6 X	Moralyan
50	ph-padmilitinger	e-ellerand and an and a state of the state o	invitentintelle	white Manual	he way	HALLYAR.	Walatina .		4						
40								when	Webshaluhaluh	WANNOW	A MALLIN .	5			
30										· ·		ng ayaha	the production of the second	WWWWWWWW	JLL I II
20														The country of the	WIT WYWYWY MAL
10															
0.0	150		0 500					40-)			000				
0.0	150		0.500	D			(1	MHz)		5	.000				30.0
0.0	¹⁵⁰ No.	Freque (MH	ency	Re	adi Bu'	<u> </u>	Fact (dB/n	or	Lev (dBu)	/el	L	.imit		Margin (dB)	
0.0			ency z)	Re (d		V)	Fact	or n)	Lev	vel √/m)	L (dB		m)	· ·	30.0
0.0	No.	(MH	ency z) 01	Re (d	Bu	V) 6	Fact (dB/n	or n) 5	Lev (dBu)	/el √/m) 31	L (dB 9	uV/	m) 2	(dB)	30.0 Detector
0.0	No. 1	(MH 0.350	ency z) 01 11	Re (d 6	Bu' 7.4	V) 6 4	Fact (dB/n -15.1	or n) 5 9	Lev (dBu) 52.	vel V/m) 31 55	L (dB 9	6.72	m) 2 2	(dB) -44.41	30.0 Detector peak
0.0	No. 1 2	(MH 0.350 0.56	ency z) 01 11 69	Re (d 6	Bu` 7.4 5.7	V) 6 4 8	Fact (dB/n -15.1 -15.1	or n) 5 9	Lev (dBu\ 52. 50.	vel V/m) 31 55 70	L (dB 9 7 6	6.72 2.62	m) 2 2 1	(dB) -44.41 -22.07	30.0 Detector peak peak
0.0	No. 1 2 3	(MH 0.350 0.56 1.110	ency z) 01 11 69 01	Re (d 6 6 5	Bu` 7.4 5.7 1.7	V) 6 4 8 0	Fact (dB/n -15.1 -15.1 -15.0	or n) 5 9 8	Lev (dBu' 52. 50. 46.	vel V/m) 31 55 70 59	L (dB 9 7. 6 6	6.72 2.62 6.64	m) 2 2 4	(dB) -44.41 -22.07 -19.94	30.0 Detector peak peak peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

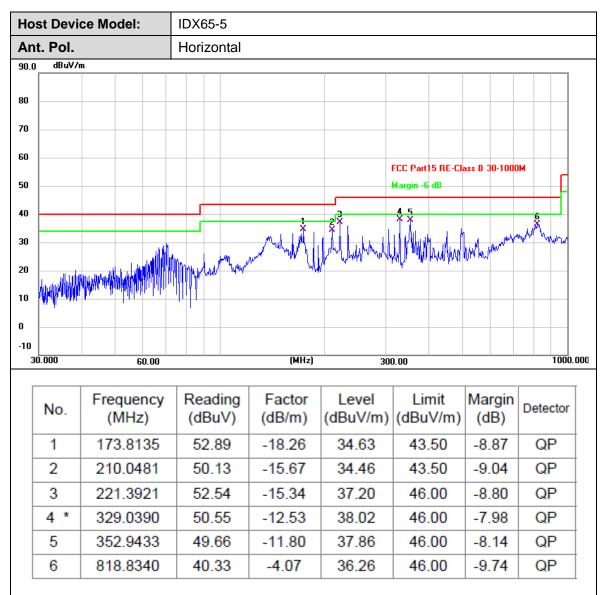
30MHz-1GHz


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

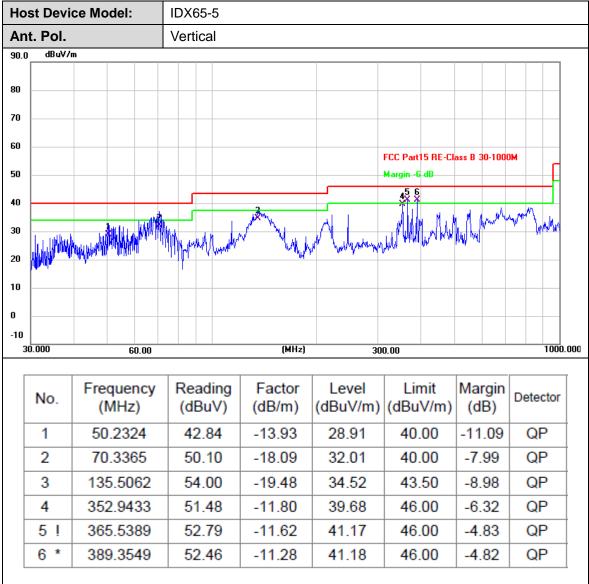
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059



1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

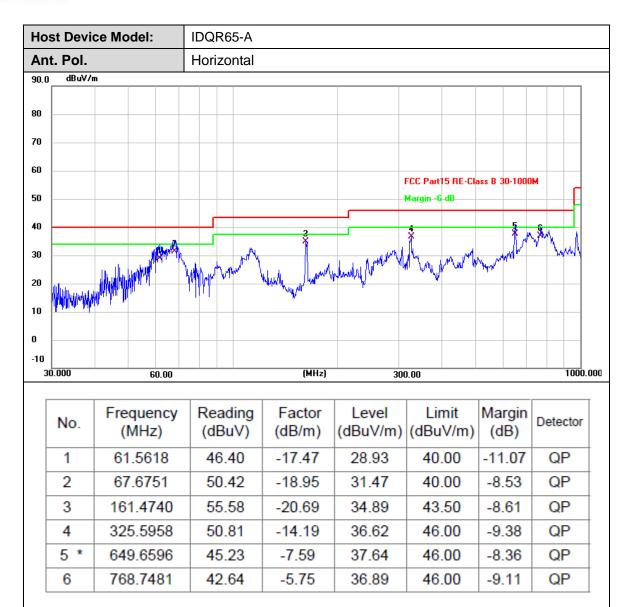
CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

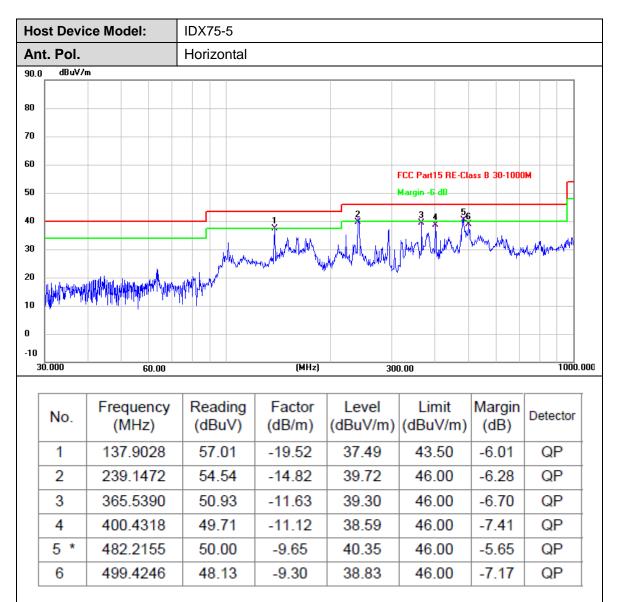

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



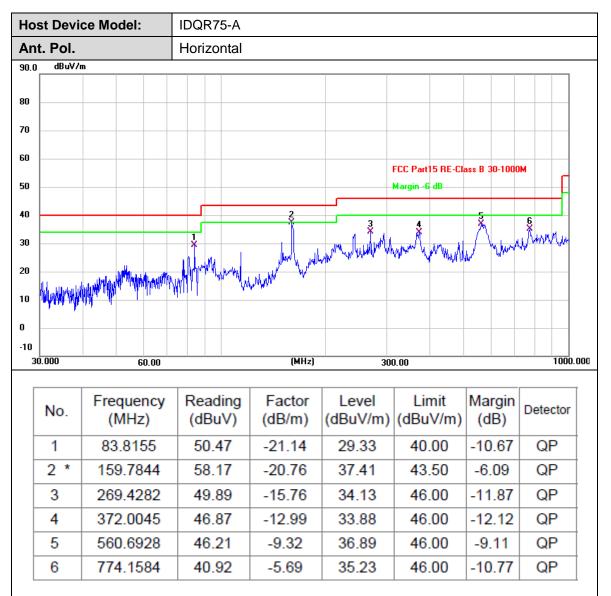
Но	st Devi	ce Model:	IDQR65-A						
An	t. Pol.		Vertical						
90.0) dBuV/i	n				1			
80									
70									
60						FCC Part15 RE-Cla	ass B 30-100(ы П	
50						Margin -6 dB			
40		Here A	3 4			н	<u>\$</u>	MM.	
30	Multin	. Marting and the state of the state	my Culling	uta eta	Murahmy	than monthly	Know my Alim	" Wywill	
20		a hit. It.	Γ.Υ.Υ.	Anutor the second	within a man and a ma	V -			
10									
0									
-10									
3	0.000	60.00		(MHz)	30	0.00		1000.	.000
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	60.0691	50.29	-17.27	33.02	40.00	-6.98	QP	
	2 *	68.6310	52.86	-19.31	33.55	40.00	-6.45	QP	
	3	91.8163	55.97	-19.15	36.82	43.50	-6.68	QP	
	4	102.0014	53.90	-17.74	36.16	43.50	-7.34	QP	
	5	651.9417	46.40	-7.57	38.83	46.00	-7.17	QP	
	6	979.1804	45.92	-3.23	42.69	54.00	-11.31	QP	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

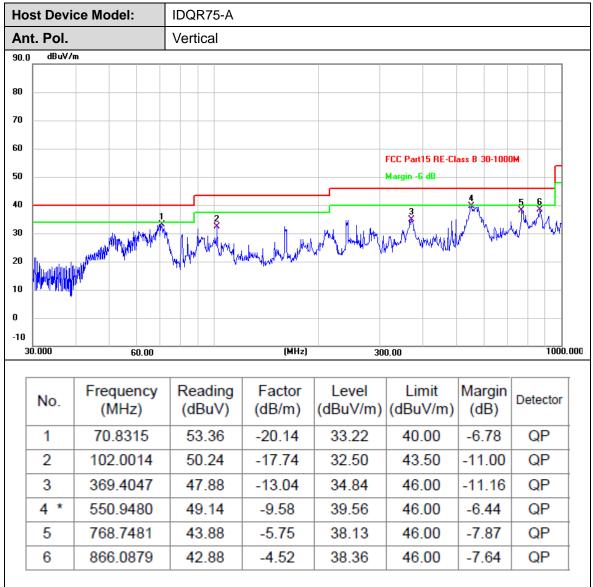
CTC Laboratories, Inc.



	st Devi	ce Model:	IDX75-5					
An	t. Pol.		Vertical					
90.0) dBu¥/i	m						
80								
70								
60						FCC Part15 RE-Cl	ass B 30-100(
50						Margin -6 dB		
40				*	2	Indundra	5 	A. n. 1
30			N. Marrie	My ho March 1		MANM	VY WWW	motorial
20		and resident states of the	Man My water	Ŵ	R. Marine . WARK MAR	Ý		
0								
) 10								
) 10	0.000	60.00		(MHz)	30	0.00		1000.0
10	0.000 No.	60.00 Frequency (MHz)	Reading (dBuV)	^(MH₂) Factor (dB/m)	Level	0.00 Limit (dBuV/m)	Margin (dB)	1000.0
) 10		Frequency		Factor	Level	Limit	-	
) 10	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	(dB)	Detector
) 10	No. 1 !	Frequency (MHz) 137.4202	(dBuV) 58.94	Factor (dB/m) -19.52	Level (dBuV/m) 39.42	Limit (dBuV/m) 43.50	(dB) -4.08	Detector QP
10 0 -10 3	No. 1 ! 2	Frequency (MHz) 137.4202 233.3487	(dBuV) 58.94 54.94	Factor (dB/m) -19.52 -14.99	Level (dBuV/m) 39.42 39.95	Limit (dBuV/m) 43.50 46.00	(dB) -4.08 -6.05	Detector QP QP
) •10	No. 1 ! 2 3	Frequency (MHz) 137.4202 233.3487 451.1350	(dBuV) 58.94 54.94 48.66	Factor (dB/m) -19.52 -14.99 -10.28	Level (dBuV/m) 39.42 39.95 38.38	Limit (dBuV/m) 43.50 46.00 46.00	(dB) -4.08 -6.05 -7.62	Detector QP QP QP

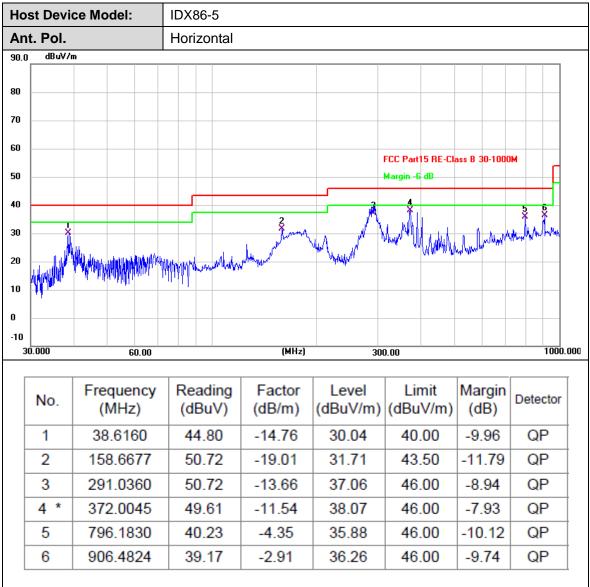
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

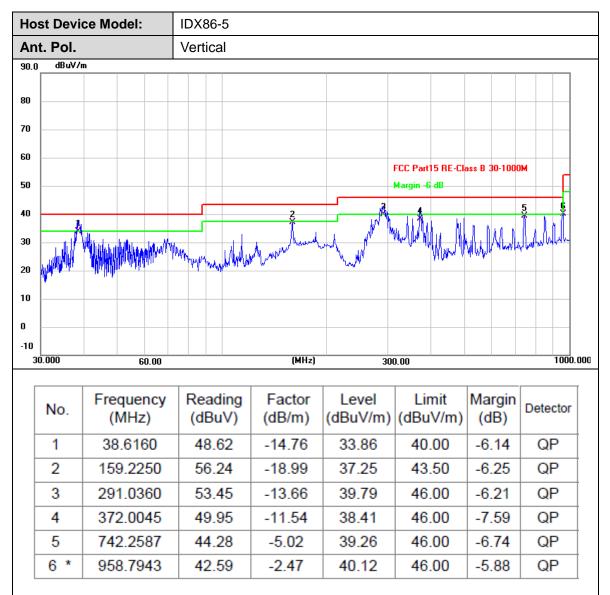
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.



1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

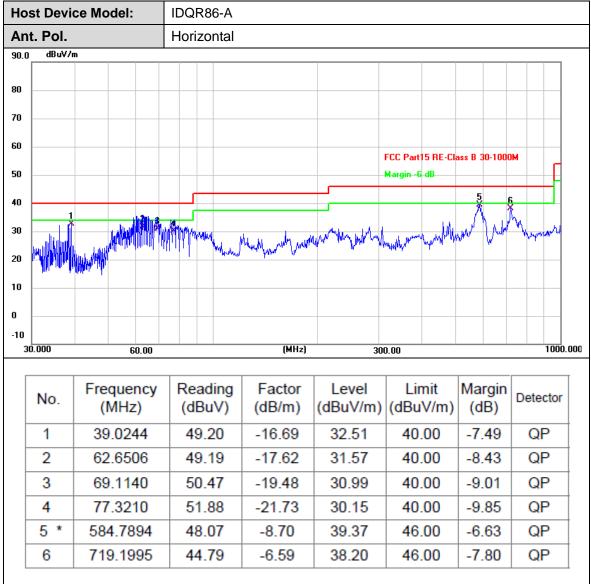
CTC Laboratories, Inc.



1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn



1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

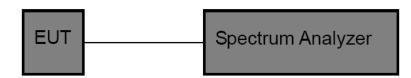
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Host Device Model:			IDQR86-A										
Ant. Pol.				Vertical									
90.	0 dBuV/r	n											
80													
70													
60										FCC Part	15 BE-CI	ass B 30-1000	
50										-Margin-6			
40	- Li		din ih, a								×	5	6
30	-		Beliet AN	hihi	h,Y	W	Ymry.	ด เป็นไป	Anone & watth	the terms	M. ALAMA	HAWK LOWNW	Whenter
20		MM, allia i - i		II.			Ϋ́Υ	And Wallington	de . M. Makalas	""WUQU"			
10						_							
0													
-10													
								(411-)					1000 0
,	30.000	6	0.00					(MHz)	3	00.00			1000.0
	30.000 No.	Frequer (MHz	ncy			adi 3u\	ng √)	(MHz) Factor (dB/m)	ع Level (dBuV/m)	Lir		Margin (dB)	1000.0 Detector
		Freque	ncy :)	((dE		V)	Factor	Level	Lir	V/m)	-	
	No.	Frequer (MHz	ncy :) 62	((dE 46	3u\	√) 4	Factor (dB/m)	Level (dBuV/m)	Lir (dBu	V/m) .00	(dB)	Detector
	No. 1	Frequer (MHz 38.346	ncy :) 32 00	((dE 46 51	3u\ 6.94	√) 4 3	Factor (dB/m) -16.88	Level (dBuV/m) 30.06	Lir (dBu 40.	V/m) 00 00	(dB) -9.94	Detector QP
	No. 1 2 *	Frequer (MHz 38.346 60.280	ncy :) 32 00 47	((dE 46 51 54	3u\ 3.94	√) 4 3 8	Factor (dB/m) -16.88 -17.30	Level (dBuV/m) 30.06 33.93	Lir (dBu 40.	V/m) 00 00 50	(dB) -9.94 -6.07	Detector QP QP
	No. 1 2 * 3	Frequer (MHz 38.346 60.280 89.904	ncy :) 62 00 47		(dE 46 51 54 48	3u\ 5.94 .23	√) 4 3 8 7	Factor (dB/m) -16.88 -17.30 -19.55	Level (dBuV/m) 30.06 33.93 34.73	Lir (dBu 40. 40. 43.	V/m) 00 00 50 00	(dB) -9.94 -6.07 -8.77	Detector QP QP QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.


3.3. 20dB Bandwidth

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.215

Intentional radiators must be designed to ensure that the 20dB emission bandwidth in the specific band. 13.553~13.567MHz.

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - 20dB bandwidth:
 - (1) Set RBW \geq 1% of the 20dB bandwidth.
 - (2) Set the video bandwidth (VBW) \ge RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

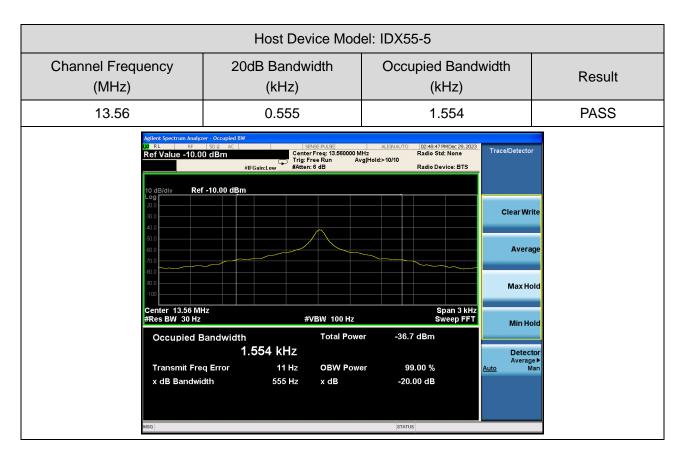
Occupied Bandwidth:

- (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
- (2) Set the video bandwidth (VBW) \ge 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.)

Test Mode

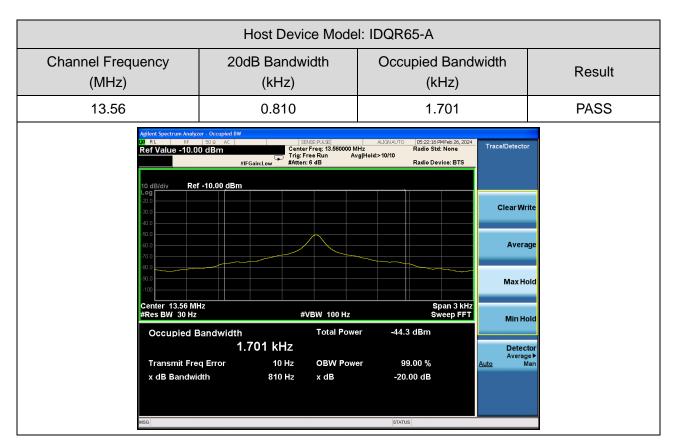
Please refer to the clause 1.7.

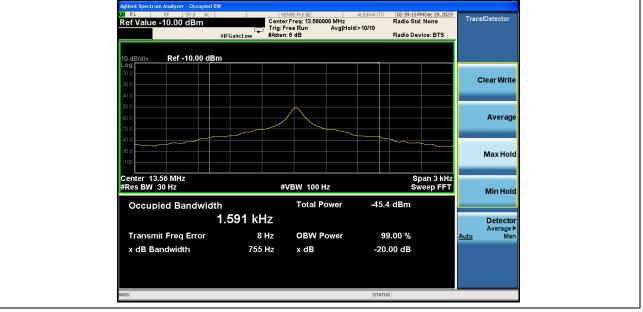
中国国家认证认


Test Results

CTC Laboratories, Inc.

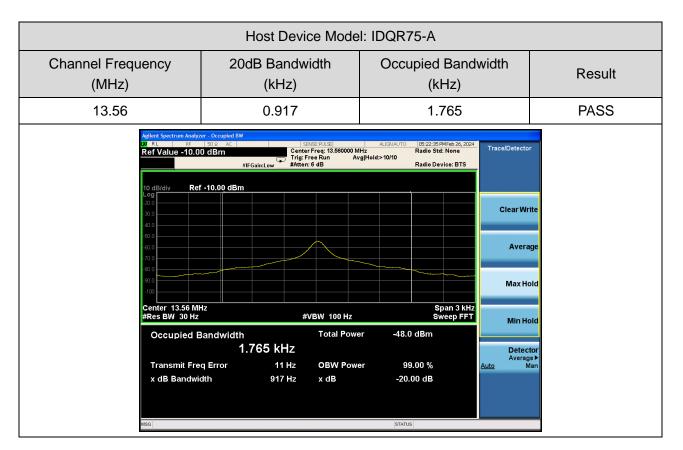
Accreditation Administration of the People's Republic of China : http://yz.cnca.cn


EN


	Host Dev	vice Model:	IDX65-5		
Channel Frequency (MHz)	20dB Bandw (kHz)	vidth	Occupied Bandy (kHz)	vidth Re	sult
13.56	0.563		1.582	PA	SS
Ref Value -10.00	soo AC Cent dBm #FGaint.ow FAtter 10.00 dBm 10.00 dBm 10	EVEN 12.65000 MHz Free Run AvgHo n: 6 dB EVEW 100 Hz Total Power x dB	ALISYAUTO 02:54:06 PMDec 29, 2023 Radio Std: None Radio Device: BTS Span 3 kHz Sweep FFT -47.3 dBm 99.00 % -20.00 dB	Trace/Detector Clear Write Average Max Hold Min Hold Auto	
MSG			STATUS		

ΕN

Host Device Model: IDX75-5						
Channel Frequency (MHz)	20dB Bandwidth (kHz)	Occupied Bandwidth (kHz)	Result			
13.56	0.755	1.591	PASS			
Agilent Spectrum Analy						

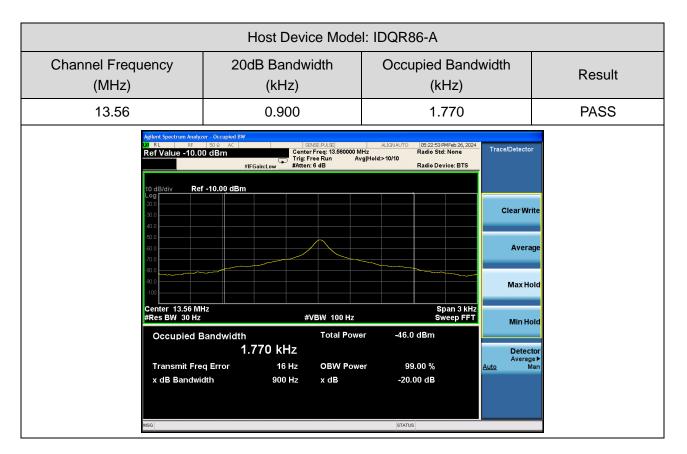

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and 中国国家认证认可监督管理委员会

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

EN

Host Device Model: IDX86-5							
Channel Frequency (MHz)	20dB Bandwidth (kHz)	Occupied Bandwidth (kHz)	Result				
13.56	0.702	1.601	PASS				
Agilent Spectrum Analyzer - Occupied BW ISENSE:PULSE ALIGNAUTO 102:51:13PMDec:29,2023 W R L RF SD Q AC Center Freq:13,560000 MHz Radio Std: None Trig: Free Run AvglHold>10/10 Trig: Free Run AvglHold>10/10 Trace/Detector							

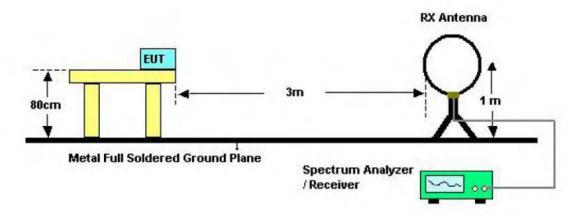


CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and 中国国家认证认可监督管理委员会

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

3.4. Field Strength of the Fundamental


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.225(a)(b)(c)

Fundamental frequency(MHz)	Field strength of fundamental (uV/m @30m)	Field strength of fundamental (dBuV/m @3m)
13.553-13.567	15848	124.0
13.410-13.553&13.567-13.710	334	90.5
13.110-13.410&13.710-14.010	106	80.5

Note: Limit dBuV/m @3m =Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.

Test Configuration

Below 30MHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.

2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

Test Mode

Please refer to the clause 1.7.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Test Result

	st Devi	ce Moo	lel:	IDX55	-5							
Ant	t. Pol.			Horizo								
Rer	nark:			No rep prescr			issio	on whic	h mo	re than 20 o	dB below	the
40.0) dBu¥/	m	i			1					1	
30												
20												
10												
00												
0												
80											FCC Part Margin -6	
0									L			
0							4					
10							Ā					
10							111	_	_			
				1	3	X	11	X	6 X			
10	conditional Marcalina	b-b-h-h-h-h-h-h-h-h-h-h-h-h-h-h-h-h-h-h	nstruktfalmskaarne	1	2	Å	1	waynaya walka	6 M	-	mathematication	Mat/Halt/Af-Indiates
:0 :0.0		5-10-1-0-000 13.20	13.29	13.38	2 13.	47 ()	(Hz)	13.65	6		manhamanadaaad	
10 20.0					an configura de	47 ()						
:0 :0.0	3.110	13.20 Freq	13.29 uency	13.38 Read	13. ding	Fact	(Hz)	13.65	el	13.74 13 Limit	.83 13. Margin	92 14.0
:0 :0.0		13.20 Freq	13.29	13.38	13. ding		(Hz)	13.65	el	13.74 13	.83 13. Margin	92 14.0
0 0.0	3.110	13.20 Freq (N	13.29 uency	13.38 Read	13. ding µV)	Fact	(Hz) Or 1)	13.65	el //m)	13.74 13 Limit	.83 13. Margin	92 14.0 Detector
10 20.0	No.	Freq (N 13.20	13.29 uency IHz)	13.38 Read (dBu	13. ding uV) 78	Fact (dB/n	(Hz) or n) D	13.65 Lev (dBuV	el //m) 38	13.74 13 Limit (dBuV/m)	83 13. Margin (dB)	92 14.0 Detector peak
10 20.0	No.	Freq (N 13.20	13.29 Juency 1Hz) 3475	13.38 Read (dBu 16.	13. ding ⊿V) 78 45	Facto (dB/n 16.6	(Hz) or n) D	13.65 Lev (dBuV 33.3	el //m) 38)5	13.74 13 Limit (dBuV/m) 80.50	83 13. Margin (dB) -47.12	92 14.0 Detector peak peak
10 20.0	No.	Freq (N 13. 13. 13.	13.29 Juency 1Hz) 3475 4275	13.38 Read (dBu 16. 18.	13. ding µV) 78 45 58	Facto (dB/n 16.6 16.6	(Hz) or n) 0 0	13.65 Lev (dBuV 33.3 35.0	el //m) 38)5	13.74 13 Limit (dBuV/m) 80.50 90.50	83 13. Margin (dB) -47.12 -55.45	92 14.0 Detector peak peak peak
30 20.0	No.	Freq (N 13. 13. 13. 13.	13.29 Juency 1Hz) 3475 4275 4853	13.38 Read (dBu 16. 18. 20.	13. ding ↓V) 78 45 58 98	Fact (dB/n 16.6 16.6	(Hz) or n) 0 0 0	13.65 Lev (dBuV 33.3 35.0 37.1	el //m) 38)5 18	13.74 13 Limit (dBuV/m) 80.50 90.50 90.50	Margin (dB) -47.12 -55.45 -53.32	92 14.0 Detector peak peak peak peak

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

EN

но	st Devi	ce Model:	IDX5	IDX55-5								
An	t. Pol.		Vertio	cal								
Re	mark:			port fo ribed l		nissio	on whic	ch mo	re than 20 d	B below t	the	
140.	.0 dBu¥/i	m			1		1					
130												
120						₽						
110												
100						$\parallel \mid$						
90						┥╢┝━						
30										FCC Part Margin -6		
70				-								
50						3						
50						\mathbb{A}^{-}						
10				1 X	2 X	\mathbb{H}	4 ×	5	6			
	1											
	1	ahanyapantanjarinakananjakaankanan	wanter a descent	MA ^{r w} WWW.	and the second	<u>" </u>	WARNER AND A	AND A CONTRACTOR	ale to have a first and the second second	an a	dadaamang tallaha	
20.0		สมาระทั่งทุก _{สร้} มหรือส่วงก 13.20 13.29	13.38	13.		MHz)	13.6		13.74 13.8			
20.0 20.0			13.38			MHz)	13.6 Lev	s /el			92 14.0	
20.0	3.110	Frequency	13.38 Rea (dB	13. Iding	⁴⁷ (۱ Fact	MHz) COR m)	13.6 Lev	₅ vel V/m)	13.74 13.8 Limit	33 13.9 Margin	92 14.0	
0.0	<u>3.110</u>	Frequency (MHz)	13.38 7 Rea (dB	13. Iding BuV)	47 (Fact (dB/n	MHz) cor m)	13.6 Lev (dBu'	∞ vel V/m) 08	13.74 13.6 Limit (dBuV/m)	Margin (dB)	92 14.0	
0.0	No.	Frequency (MHz) 13.4250	13.38 7 Rea (dB 18 19	13. Iding BuV) .48	47 (Fact (dB/n 16.6	MH2) (or (n) (0)	13.6 Lev (dBu' 35.	s vel V/m) 08 83	13.74 13.8 Limit (dBuV/m) 90.50	³³ 13.9 Margin (dB) -55.42	Detector	

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

34.59

33.16

90.50

80.50

-55.91

-47.34

peak

peak

17.99

16.56

2.Margin value = Level -Limit value

13.6928

13.7721

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

EN

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Hc	ost Devi	ce Model:		IDX65	5-5						
Ar	nt. Pol.			Horiz	ontal						
Re	mark:				port fo ribed I		sion whi	ch mo	re than 20 d	B below t	the
140	.0 dBuV/r	n									
130											
120	I										
110	I										
100	I										
90											
80										FCC Part Margin -6	
70					1						
60						4					
60 50						Å					
			 	1	2	3	5	6			
50 40	awinandahi		Walteria	1	2	3	5			ny Maryaraharanga	
50 40 30 20.	"				2 dura de la constante	and the second	5				
50 40 30 20.				1 X 13.38	2 4 13	and the second	z) 13.0				
50 40 30 20.	13.110 1	3.20 13.29	9	13.38	13.	and the second	-	55		83 13.9	92 14.0
50 40 30 20.	"		9 Cy		13. ding	47 (MH:	Le	vel	13.74 13.	83 13.9 Margin	92 14.0
50 40 30 20.	13.110 1	Frequent	9 Cy	13.38 Rea	13. ding uV)	47 (MH	Le	vel V/m)	13.74 13.	83 13.9 Margin	92 14.0
50 40 30 20.	No.	3.20 13.29 Frequence (MHz)	9 cy 9	13.38 Rea (dB	ding uV)	47 (мн Factor (dB/m)	Le (dBu	vel V/m) 71	13.74 13. Limit (dBuV/m)	⁸³ 13.9 Margin (dB)	Detector

4

5

6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

16.60

56.62

37.47

36.49

40.02

20.87

19.89

2.Margin value = Level -Limit value

13.5591

13.6425

13.6950

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

-67.38

-53.03

-54.01

peak

peak

peak

124.00

90.50

Но	st Devi	ce Model:		IDX	65-5								
An	t. Pol.			Vert	ical								
Re	mark:				eport fo cribed l		missi	on whi	ch mo	ore t	han 20 d	B below	the
140.	.0 dBuV/	m											
130													
120													
110													
100													
90							_ -						
80												FCC Part Margin -6	
70												maryin -o	
60							4						
50							A						
40					2	3	\square	5	6				
30	NuterrandMay	halhan propertiestan tereta da acam	krownania h	A.M.M.M.	2 		rd h	Wardown Willy	www.	Winter	en frankterstaar	The state of the	dansameriatahata
20.0													
- 1	3.110	13.20 13.2	9	13.38	3 13.	4/	(MHz)	13.0	5	13.7	74 13.8	33 13.9	92 14.0
	No.	Frequen (MHz)	- 1		ading BuV)	Fac (dB/		Lev (dBu)		I	Limit BuV/m)	Margin (dB)	Detector
	1 *	13.353			, 7.28	16.		33.		-	80.50	-46.62	peak
	2	13.427	5	17	7.85	16.	6 0	34.	45		90.50	-56.05	peak
ŀ	3	13.486	2	19	9.59	16.	6 0	36.	19		90.50	-54.31	peak
ľ	4	13.561	7	4	1.87	16.	60	58.	47	1	24.00	-65.53	peak

5

6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

35.90

34.59

90.50

90.50

-54.60

-55.91

peak

peak

19.30

17.99

2.Margin value = Level -Limit value

13.6446

13.6928

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ho	st Devi	ce Model:		IDQR65-A									
An	t. Pol.			Hor	izontal								
Re	mark:				eport fo		emissi	on whi	ch mo	ore that	an 20 d	B below	the
140.	0 dBuV/r	n											
130													
120							_₽						
110													
100													
3 0													
BO					_							FCC Part	
70												Margin -6	dB
60													
50							Å						
40						2	11	-					
				1	2	Å	$\int $, and a second sec	6 X		<i>N</i>		
30 20.0		-toothoonicalitertoodealtabati	Matria	and the second	Constraint and the second	en and	,	w.weeks.	144,187	- Arendahi	and the second	nathhallis Andreas and a	waynikation valikaanan ti
	1	3.20 13.2	9	13.3	8 13	.47	(MHz)	13.	65	13.74	13.8	33 13.	92 14.0
Г		-		_		-							
	No.	Frequen (MHz)	-	1	ading BuV)	⊢ao (dB	ctor /m)	Le (dBu			imit uV/m)	Margin (dB)	Detector
ŀ	1 *	13.345	8	1	6.87	16.	60	33	.47	80	0.50	-47.03	peak
ľ	2	13.432	1	1	8.43	16.	60	35	.03	90).50	-55.47	peak
ľ	3	13.485	3	2	0.58	16.	60	37	.18	90	0.50	-53.32	peak
- F								-		-			-

4

5

6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

16.60

57.63

37.38

36.15

41.03

20.78

19.55

2.Margin value = Level -Limit value

13.5600

13.6455

13.6986

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

EN

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

-66.37

-53.12

-54.35

peak

peak

peak

124.00

90.50

Но	st D	evid	ce Moo	del:		IDC	R65-A									
An	it. Po	ol.				Ver	tical									
Re	mar	k:					report f			ssic	on whi	ch mo	re th	nan 20 d	B below t	he
140	.0 dE	3uV/m	1													
130																
120									[
110																
100																
90																
BO										L					FCC Part 1	
70												[Margin -6	dB
60										4						
50]	Ń						
40									(
30	thelatert	er old set a	hanpalantari	مر المرجم ف	del tatolica del	1 ×	2	X	unawal	5	5. 	6 X		with store of	19-49-49-49-49-49-49-49-49-49-49-49-49-49	hter target and the star
20.0				41.14.446										ala manana	فيعربن لمرالطهما ليرا	anna mar ann an
1	3.110	1	3.20	13.2	29	13.3	18 1	3.47	(Mł	lz)	13.0	65	13.74	4 13.6	33 13.9	2 14.01
	No).	Freq (N	quen (IHz)			eading IBuV)		Facto dB/m		Le (dBu			Limit 3uV/m)	Margin (dB)	Detector
	1	*	13.	351	2	1	7.01		16.60		33.	.61	8	30.50	-46.89	peak

16.60

16.60

16.60

16.60

16.60

34.45

36.19

58.19

34.90

34.59

90.50

90.50

124.00

90.50

90.50

-56.05

-54.31

-65.81

-55.60

-55.91

peak

peak

peak

peak

peak

Page 80 of 94

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
2.Margin value = Level -Limit value

13.4275

13.4862

13.5609

13.6446

13.6928

17.85

19.59

41.59

18.30

17.99

2

3

4

5

6

Remarks:

CTC Laboratories, Inc.

Но	st Devi	ce Model:	IDX	75-5					
An	t. Pol.		Hor	izontal					
Re	mark:			report fo scribed li		on which mo	re than 20 d	B below 1	he
140.	.0 dBuV/n	n							
130									
120									
110									
100									
90									
80				_				FCC Part Margin -6	
70									
60					4				
50					\wedge				
40			1	2	3	5 6			
30	colutions Marry No.	-to-lportunite/ratedlife/whi	almonth and the	2 And And And And And And And And And And	M Martin	5	-	where where we have a second	www.www.
20.0 1	, 	3.20 13.29		8 13.	47 (MHz)	13.65	13.74 13.8	3 13.9	32 14.0 1
Γ		_							
	No.	Frequence (MHz)	-	ading BuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
ľ	1 *	13.3490	1	6.37	16.60	32.97	80.50	-47.53	peak
ľ	2	13.4283	1	7.48	16.60	34.08	90.50	-56.42	peak
ľ	3	13.4853	1	9.08	16.60	35.68	90.50	-54.82	peak

5

6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

36.97

36.15

20.37

19.55

2.Margin value = Level -Limit value

13.6425

13.6986

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)755-27521011 Http://www.s2-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

-53.53

-54.35

peak

peak

90.50

Но	st Devi	ce Model:	ID)	IDX75-5									
An	t. Pol.		Ve	rtical									
Re	mark:			report fo		sion wł	ich mo	re than 20 d	B below t	the			
140.	.0 dBuV/n	m		1									
130													
120													
110							_						
100													
90													
80									FCC Part 1				
70									Margin -6	dB			
60					3								
50					Ň	l							
40													
				1	2 Marine		5 mm	6 X	n-stangenburkenburk				
30 20.0	the second states and s I	sharpatalasportalizarabilizarabiliz	~*************	Kotapolovital "Westerne	APR NO.	Marchant	"Arte and the	alatihikang ^{yang} saktaning a	an a	discussions intervaluation			
		13.20 13.29		.38 13.	47 (MH:	z) 13	.65	13.74 13.8	33 13.9	32 14 .0			
г		1						1	1				
	No.	Frequency (MHz)	-	eading dBuV)	Factor (dB/m)		evel uV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	13.4214		18.32	16.60	34	1.92	90.50	-55.58	peak			
	2	13.4853		18.23	16.60	34	1.83	90.50	-55.67	peak			
	3	13.5617		42.37	16.60	58	3.97	124.00	-65.03	peak			
- F													

4

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

16.60

35.13

34.77

33.16

18.53

18.17

16.56

2.Margin value = Level -Limit value

13.6410

13.6950

13.7721

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

-55.37

-55.73

-47.34

peak

peak

peak

90.50

90.50

Hos	st Devi	ce Model:		IDQR75-A									
Ant	. Pol.			Horiz	ontal								
Ren	nark:				port fo		nissio	on whi	ch mo	ore that	an 20 dl	B below	the
140.0) dBuV/n	n											
130													
120													
110													
100													
90													
80												FCC Part	
70												Margin -6	dB
60							*						
60 50							*						
60 50 40				1	2	3		5	6				
60 50 40 30	caletto with marris		whenever	1	- Autor Margaret	3 W ^A M _M Jum	Å	5		handresterte	nt for the second	and a start and a start and a start a s	
60 50 40 30 20.0				1	2 4 13	Indian	4 X (MHz)		1.494	13.74	13.8		
60 50 40 30 20.0						Indian		kan alama panana	1.494				
60 50 40 30 20.0 13.			29 ICY	13.38 Rea		Indian	(MHz)	13.0 Lev	vel	13.74			92 14.0
60 50 40 30 20.0 13.	.110 1	3.20 13.2 Frequen	29 ICY)	13.38 Rea (dB	13. Iding	.47 Fac	(MH₂) tor m)	13.0 Lev	vel V/m)	13.74 L (dB	13.8 imit	¹³ 13.9 Margin	92 14.0

3

4

5

6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

16.60

16.60

35.18

56.63

34.97

34.52

90.50

124.00

90.50

90.50

-55.32

-67.37

-55.53

-55.98

peak

peak

peak

peak

18.58

40.03

18.37

17.92

2.Margin value = Level -Limit value

13.4853

13.5600

13.6425

13.6958

CTC Laboratories, Inc.

Host Devi	ce Model:	IDQR75-A					
Ant. Pol.		Vertical					
Remark:		No report for prescribed I	or the emission imit.	on which mo	re than 20 d	B below t	he
140.0 dBuV/	m						
130							
120							
110							
100							
90							
80						FCC Part 1	
70						Margin -6	dB
60			3				
50			Â				
40							
	sharanaan waalinaa hiinaa h		2	4 5 X	6	n-alangenteranalaring	
20.0	an bhaile a straighteachaile an an thair an	n nangangan nangan	a vere	NUMBER OWNERS IN	and and a second se	rr-yzynyt-trit-rragenswy	0.244-269/102102114714714/101
13.110	13.20 13.29	13.38 13	.47 (MHz)	13.65	13.74 13.8	3 13.9	14.01
			1				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	13.4250	17.48	16.60	34.08	90.50	-56.42	peak
2	13.4832	19.15	16.60	35.75	90.50	-54.75	peak

3

4

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

16.60

16.60

59.12

35.13

34.77

33.16

124.00

90.50

90.50

80.50

-64.88

-55.37

-55.73

-47.34

peak

peak

peak

peak

42.52

18.53

18.17

16.56

2.Margin value = Level -Limit value

13.5600

13.6410

13.6950

13.7721

Но	st Devi	ce Model:	IDX	IDX86-5						
An	t. Pol.		Ho	rizontal						
Re	mark:			report fo scribed li		ion whi	ch mo	re than 20 d	B below t	the
140.	.0 dBu¥/ı	n								
130										
120					D					
110										
100										
90										
80									FCC Part Margin -6	
70										
60					3					
50					A					
40				1 X	2	4	5	6		
30 20.0	colulines the orthogoant	ad so to many distribution of the devices	rson Mulada	an and the second second	WWW. And a	Alter and a second	A AND A AND A AND A	- www.anderson.of Physical Sociale	antha Martinal Analashi	and the second
	1	13.20 13.29	13.3		47 (MHz)	13.0	65	13.74 13.8	33 13.9	92 14.01
	No.	Frequency (MHz)		eading JBuV)	Factor (dB/m)	Le (dBu		Limit (dBuV/m)	Margin (dB)	Detector
	1	13.4268	1	7.72	16.60	34	.32	90.50	-56.18	peak
	2	13.4853	1	9.08	16.60	35	.68	90.50	-54.82	peak
	3	13.5592	3	39.52	16.60	56	.12	124.00	-67.88	peak
	4	13.6437	1	9.76	16.60	36	.36	90.50	-54.14	peak

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

35.59

33.38

90.50

80.50

-54.91

-47.12

peak

peak

18.99

16.78

2.Margin value = Level -Limit value

13.6995

13.7812

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

 Fax: (86)755-27521011
 Http://www.sz-ctc.org.cn

 For anti-fake verification, please visit the official website of Certification and

 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Hc	ost Devi	ce Model:	IDX86-5	IDX86-5							
Ar	nt. Pol.		Vertical	Vertical							
Re	emark:		No report for prescribed		on which mo	re than 20 d	B below t	the			
140	.0 dBuV/i	m									
130	ı										
120				<u> </u>							
110	ı										
100											
90				<u> </u>							
30							FCC Part Margin -6				
70					_						
50				3							
50											
40			1	2	4 5	C					
30	enter and the	when man the state of the second state of the	NON THE TAKEN THE TAK	ANT HARRING AND	Martin Martin	ale patient When the advertise	tr-sharepetrikatikaren	hendermarketerheite			
20.0								1			
		13 20 13 29	13 38 13	147 (MHz)	13.65	13.74 13.6	3 13 9	14 01			
		13.20 13.29	13.38 13	3.47 (MHz)	13.65	13.74 13.8	33 13.9	92 14.01			
		Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level	13.74 13.6 Limit (dBuV/m)	^{13 13.9} Margin (dB)	Detector			
	13.110	Frequency	Reading	Factor	Level	Limit	Margin				
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	No.	Frequency (MHz) 13.4295	Reading (dBuV) 18.35	Factor (dB/m) 16.60	Level (dBuV/m) 34.95	Limit (dBuV/m) 90.50	Margin (dB) -55.55	Detector peak			

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

17.47

16.56

2.Margin value = Level -Limit value

13.6966

13.7721

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

90.50

80.50

-56.43

-47.34

peak

peak

34.07

Hos	st Devi	ce Model:	II	DQR	86-A								
Ant	t. Pol.		ŀ	loriz	ontal								
Rer	nark:			No report for the emission which more than 20 dB below the prescribed limit.									
140.0) dBuV/ı	n											
130													
20													
110													
100													
90													
BO												FCC Part 1	
70					J							Margin -6	dB
50													
50							Å						
40							$ \rangle$						
					1 X	2		4	5		6 X		va y harrynynynanan
20.0	ctures for the states	erre-redecidedersetten met	dealers broots	May 1 and 1 and 1	Mar Magent	nth Nyersendo	m	Married Married	- Anthony	w/weeks	anni ^{ne re} ndraes <mark>a</mark> er-le ⁱ e	when when the second of the	volpharrynystations
13	3.110 1	13.20 13.29) .	13.38	13	.47	(MHz)	13.0	55	13.74	13.8	3 13.9	12 14.0
Г	_					_							
	No.	Frequence (MHz)	cy	Rea (dB	ding uV)		ctor /m)	Lev (dBu			₋imit 3uV/m)	Margin (dB)	Detector
	1	13.4283	3	16.	98	16	.60	33.	58	9	0.50	-56.92	peak
	0	40,4000	<u> </u>	40	40	40	00	0.4	70	0	0.50	FF 00	

2	13.4832	18.10	16.60	34.70	90.50	-55.80	peak
3	13.5591	40.02	16.60	56.62	124.00	-67.38	peak
4	13.6455	18.78	16.60	35.38	90.50	-55.12	peak
5	13.6986	17.05	16.60	33.65	90.50	-56.85	peak
6 *	13.7759	16.86	16.60	33.46	80.50	-47.04	peak
			-				

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Но	st Devi	ce Model:	IDQR86-A							
An	nt. Pol.		Vertical							
Re	mark:		No report for the emission which more than 20 dB below the prescribed limit.							
140	.0 dBuV/	m								
130										
120										
110										
100										
90										
80							FCC Part 1			
70							Margin -6	dB		
60				X						
50				<u> </u>						
40										
30			1 2 White Alexander Alexander	Mar Mar Mar	www.	alle findet men te Manual te contanen.				
30 20.0		kalkangeppender-antologister-shounderbeitetete	Here was here and the second	(MA) 10/07/11	Monday (1994030)	New Addies of the Addies of the Solution	lennand die kerken die	ann a la faith ann an ta tha ann an ta th		
		13.20 13.29	13.38 13	.47 (MHz)	13.65	13.74 13.8				
[No. Frequency (MHz)		Reading	Factor	Level	Limit	Margin			
			(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)		Detector		
ŀ	1 *	13.3503	16.35	16.60	32.95	80.50	-47.55	peak		
ŀ	2	13.4295	18.35	16.60	34.95	90.50	-55.55	peak		

3

4

5

6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16.60

16.60

16.60

16.60

35.34

59.62

35.21

34.07

90.50

124.00

90.50

90.50

-55.16

-64.38

-55.29

-56.43

peak

peak

peak

peak

18.74

43.02

18.61

17.47

2.Margin value = Level -Limit value

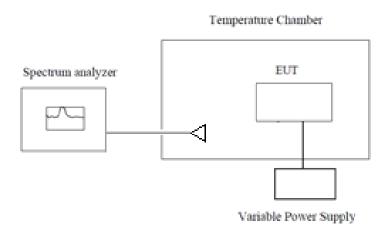
13.4878

13.5600

13.6437

13.6966

CTC Laboratories, Inc.



3.5. Frequency Stability

Limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%(\pm 100$ ppm) of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Configuration

Test Procedure

1. The equipment under test was connected to an external power supply.

2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.

3. The EUT was placed inside the temperature chamber.

4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°C operating frequency as reference frequency.

5. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.

6. Repeat step measure with 10° increased per stage until the highest temperature of +60° reached.

Test Mode

Please refer to the clause 1.7.

中国国家认证认

Test Result

	Host Device Model: IDX55-5									
Test Env	Test Environment		Deviation(ppm)	Limit(ppm)	Result					
Voltage	Temperature(°C)	Reading(MHz)	Deviation(ppin)	Linit(ppin)	Result					
	-20	13.560234	17.257	±100	Pass					
	-10	13.560210	15.487	±100	Pass					
	0	13.560254	18.732	±100	Pass					
	10	13.560197	14.528	±100	Pass					
Vnom	20	13.560153	11.283	±100	Pass					
	30	13.560202	14.897	±100	Pass					
	40	13.560133	9.808	±100	Pass					
	50	13.560138	10.177	±100	Pass					
	60	13.560146	10.767	±100	Pass					
85% Vnom	20	13.560171	12.611	±100	Pass					
115% Vnom	20	13.560142	10.472	±100	Pass					

	Host Device Model: IDX65-5									
Test Env	vironment	Frequency	Deviation(ppm)	Limit(ppm)	Result					
Voltage	Voltage Temperature(°C)		Deviation(ppin)	Linit(ppin)	Result					
	-20	13.560147	10.841	±100	Pass					
	-10	13.560125	9.218	±100	Pass					
	0	13.560134	9.882	±100	Pass					
	10	13.560210	15.487	±100	Pass					
Vnom	20	13.560178	13.127	±100	Pass					
	30	13.560230	16.962	±100	Pass					
	40	13.560175	12.906	±100	Pass					
	50	13.560152	11.209	±100	Pass					
	60	13.560131	9.661	±100	Pass					
85% Vnom	20	13.560189	13.938	±100	Pass					
115% Vnom	20	13.560166	12.242	±100	Pass					

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

		Host Device Mod	lel: IDQR65-A		
Test Env	Test Environment		Deviation(ppm)	Limit(ppm)	Result
Voltage	Temperature(°C)	Reading(MHz)	Deviation(ppin)	Linit(ppin)	Result
	-20	13.560204	15.044	±100	Pass
	-10	13.560172	12.684	±100	Pass
	0	13.560165	12.168	±100	Pass
	10	13.560197	14.528	±100	Pass
Vnom	20	13.560200	14.749	±100	Pass
	30	13.560223	16.445	±100	Pass
	40	13.560146	10.767	±100	Pass
	50	13.560178	13.127	±100	Pass
	60	13.560135	9.956	±100	Pass
85% Vnom	20	13.560214	15.782	±100	Pass
115% Vnom	20	13.560180	13.274	±100	Pass

	Host Device Model: IDX75-5									
Test Env	Test Environment		Deviation(ppm)	Limit(ppm)	Result					
Voltage	Temperature(°C)	Reading(MHz)	Deviation(ppin)	Linii(ppin)	Result					
	-20	13.560212	15.634	±100	Pass					
	-10	13.560148	10.914	±100	Pass					
	0	13.560159	11.726	±100	Pass					
	10	13.560112	8.260	±100	Pass					
Vnom	20	13.560137	10.103	±100	Pass					
	30	13.560170	12.537	±100	Pass					
	40	13.560232	17.109	±100	Pass					
	50	13.560211	15.560	±100	Pass					
	60	13.560194	14.307	±100	Pass					
85% Vnom	20	13.560120	8.850	±100	Pass					
115% Vnom	20	13.560174	12.832	±100	Pass					

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

		Host Device Mod	lel: IDQR75-A		
Test Env	Test Environment		Deviation(ppm)	Limit(ppm)	Result
Voltage	Temperature(°C)	Reading(MHz)	Deviation(ppin)	Linit(ppin)	Result
	-20	13.560165	12.168	±100	Pass
	-10	13.560211	15.560	±100	Pass
	0	13.560140	10.324	±100	Pass
	10	13.560219	16.150	±100	Pass
Vnom	20	13.560171	12.611	±100	Pass
	30	13.560193	14.233	±100	Pass
	40	13.560164	12.094	±100	Pass
	50	13.560185	13.643	±100	Pass
	60	13.560224	16.519	±100	Pass
85% Vnom	20	13.560148	10.914	±100	Pass
115% Vnom	20	13.560186	13.717	±100	Pass

	Host Device Model: IDX86-5									
Test Env	Test Environment		Deviation(ppm)	Limit(ppm)	Result					
Voltage	Voltage Temperature(°C)		Deviation(ppin)	Linit(ppin)	Result					
	-20	13.560219	16.150	±100	Pass					
	-10	13.560185	13.643	±100	Pass					
	0	13.560128	9.440	±100	Pass					
	10	13.560163	12.021	±100	Pass					
Vnom	20	13.560112	8.260	±100	Pass					
	30	13.560227	16.740	±100	Pass					
	40	13.560188	13.864	±100	Pass					
	50	13.560190	14.012	±100	Pass					
	60	13.560137	10.103	±100	Pass					
85% Vnom	20	13.560152	11.209	±100	Pass					
115% Vnom	20	13.560123	9.071	±100	Pass					

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

	Host Device Model: IDQR86-A									
Test En	Test Environment		Deviation(ppm)	Limit(ppm)	Result					
Voltage	Voltage Temperature(°C)		Deviation(ppin)	Linii(ppin)	Result					
	-20	13.560188	13.864	±100	Pass					
	-10	13.560245	18.068	±100	Pass					
	0	13.560204	15.044	±100	Pass					
	10	13.560189	13.938	±100	Pass					
Vnom	20	13.560147	10.841	±100	Pass					
	30	13.560223	16.445	±100	Pass					
	40	13.560152	11.209	±100	Pass					
	50	13.560167	12.316	±100	Pass					
	60	13.560218	16.077	±100	Pass					
85% Vnom	20	13.560156	11.504	±100	Pass					
115% Vnom	20	13.560172	12.684	±100	Pass					

3.6. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

The EUT's antenna is coil antenna. The antenna's gain is 0dBi and meets the requirement. And the antenna can't be replaced by the user, which in accordance to section 15.203.