Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density

P = power

G = antenna gain

R = distance

Conducted output power:	40.00	(dBm) EIRP
Tune up tolerance	1.00	(dB)
Number of carriers	2	(N)
	25179	(mW)
	25	(W)
Antenna gain:	0.0	(dBi)
Maximum antenna gain:	1.0	(numeric)
EIRP	25.2	(W)
ERP_	15.4	(W)
Distance:	50	(cm)
Duty Cycle:	100	(%)
Frequency:	3675	(MHz)
MPE Limit:	1.0	(mW/cm^2)
Power density:	0.80	(mW/cm^2)
	8.01	(W/m^2)
Margin	0.96	(dB)