

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 1 / RSS 210 Issue 7 FCC Part 15, Subpart E on the **Redline** Communications Transmitter Model: AN-80i (5.4 GHz) PMP

UPN: FCC ID:	4310A-AN80IA QC8-AN80IA
GRANTEE:	Redline Communications 675 Campbell Technology Parkway Campbell, CA 95008
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Ave Sunnyvale, CA 94086
REPORT DATE:	June 7, 2007
FINAL TEST DATE:	May 23, 2007

AUTHORIZED SIGNATORY:

Juan man

Juan Martinez Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	June 15, 2007	Initial Release	David Guidotti

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	8
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	9
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	14
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS	
CONDUCTED EMISSIONS RADIATED EMISSIONS	14 14
CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS	14 14 15
CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS	14 14 15 16
CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	14 14 15 16 16
CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	14 14 15 16 16 17
CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS FCC 15.407 (A) OUTPUT POWER LIMITS	14 15 16 16 17 17
CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS FCC 15.407 (A) OUTPUT POWER LIMITS OUTPUT POWER AND SPURIOUS LIMITS –UNII DEVICES	14 14 15 16 16 17 17 18
CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS FCC 15.407 (A) OUTPUT POWER LIMITS	14 15 16 16 17 17 17 18 18 19

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	3

SCOPE

An electromagnetic emissions test has been performed on the Redline Communications model AN-80i (5.4 GHz) PMP pursuant to the following rules:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Redline Communications model AN-80i (5.4 GHz) PMP and therefore apply only to the tested sample. The sample was selected and prepared by Medhat Fawzy of Redline Communications

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Redline Communications model AN-80i (5.4 GHz) PMP complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.47 – 5.725 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments		Result (margin)
15.407(a) (2)		26dB Bandwidth	Class II change (adding new antenna)		N/A
15.407(a) (2)	A9.2(2)	Output Power	Class II change (adding new antenna)		N/A
15.407(a) (2))	A9.2(2)	Power Spectral Density	Class II change (adding new antenna)		N/A
	A9.5b	Peak Spectral Density	Class II change (adding new antenna)	Shall not exceed the average value by more than 3dB	N/A
15.407(a) (2))	A9.4	Dynamic frequency selection / Transmit power control	Refer to separate test report		Complies

General requirements for all bands

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
	A9.5a	Modulation	OFDM	Digital modulation is required	Complies
	RSS-GEN	99% bandwidth	Class II change (adding new antenna)		N/A
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	53.2dBµV/m (457.1µV/m) @ 5375.0MHz		Complies (- 0.8 dB)
15.407(a)(6)	-	Peak Excursion Ratio	Class II change (adding new antenna)	< 13dB	N/A
	A9.5c	Channel Selection	Class II change (adding new antenna)	Device shall be tested on the top, bottom and center channels in each band	N/A
15.407 (c)	A9.5d	Operation in the absence of information to transmit	Class II change (adding new antenna)	Device shall automatically discontinue operation in the absence of information to transmit	N/A
15.407 (g)	A9.5e	Frequency Stability	Class II change (adding new antenna)		N/A
	A9.9g	User Manual information	Class II change (adding new antenna)		N/A

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Class II change (adding new antenna)	•	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	48.0dBµV/m (251.2µV/m) @ 1200.0MHz		Complies (- 6.0 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	Class II change (adding new antenna)		N/A
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual	Class II change (adding new antenna)	Statement required regarding non- interference	
	RSP 100 RSS GEN 7.1.5	User Manual	Class II change (adding new antenna)	Statement required regarding detachable antenna	

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$\pm 2.4 \\ \pm 3.0 \\ \pm 3.6 \\ \pm 6.0$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Redline Communications model AN-80i (5.4 GHz) PMP is a Point to Point and/or Point to Multi-Point 5GHz radio operating in the range 5470-5725 GHz that is designed to provide wireless network and internet service. The EUT is normally pole mounted, but the EUT was treated as table-top equipment during testing. The electrical rating of the EUT is 48Vdc Volts , 5 Amps.

The sample was received on May 23, 2007 and tested on May 23, 2007. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Redline	AN-80i	Accesspoint	-	QC8-AN80IA

OTHER EUT DETAILS

List any items from the test log.

ANTENNA SYSTEM

The EUT antenna is a 17.5 dBi sector antenna and a 9dBi OMNI antenna with standard N-Type connectors. Other Family sector antennas with smaller gain 16.6 and 15 dBi will be listed in the report. The radio and antennas will be professionally installed as required per 15.203 for non-standard connectors.

ENCLOSURE

The EUT enclosure is primarily constructed of aluminum. It measures approximately 25cm W by 15cm D by 5cm H.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

No local support equipment was used during emissions testing.

The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	PP02X	Laptop	07898349890344	DoC
Cincon	TR60A-POE-L	POE	N/A	N/A

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To		Cable(s)	
TOIL	Connected 10	Description	Shielded or Unshielded	Length(m)
EUT Ethernet	POE	Cat5	Shielded	30.0
Laptop Ethernet	POE	Cat5	Unshielded	1.0
RF	Antenna	Coaxial	Shielded	0.5

EUT OPERATION

During emissions testing the EUT was transmitting at maximum power on low, middle, and high channels.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on May 23, 2007 at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

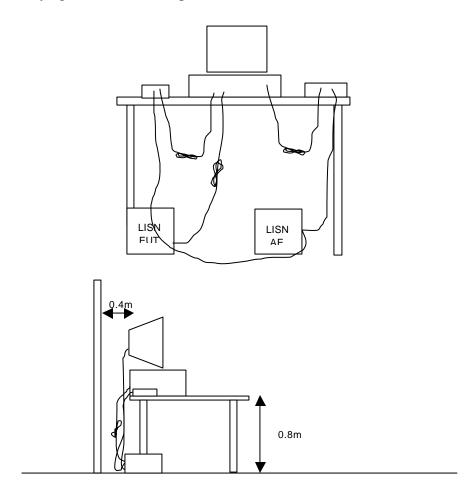
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 and RSS 212 specify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

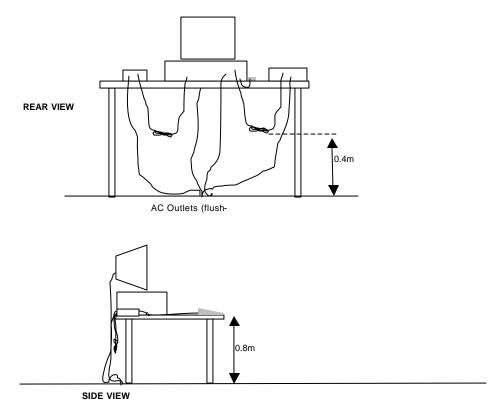

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.


RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Typical Test Configuration for Radiated Field Strength Measurements

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi.

Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER AND SPURIOUS LIMITS – UNII DEVICES

The table below shows the limits for output power and output power density defined by FCC Part 15 Subpart E. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	50mW (17 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5470 - 5725	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

The peak excursion envelope is limited to 13dB.

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3}$ microvolts per meter

where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

1 Page

EXHIBIT 2: Test Measurement Data

17 Pages

EMC Test Data

Client:	Redline Communications	Job Number:	J68022
Model:	AN-80i (5.4 GHz) PMP	Test-Log Number:	T68072
		Project Manager:	Dean Eriksen
Contact:	Medhat Fawzy		
Emissions Spec:	FCC 15.247, RSS-210	Class:	Radio
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

Redline Communications

Model

AN-80i (5.4 GHz) PMP

Date of Last Test: 5/23/2007

	iott			C Toot Dat
	Redline Communication	ns	LIVI Job Number:	C Test Dat
	AN-80i (5.4 GHz) PMP	15	Test-Log Number:	
			Project Manager:	
	Medhat Fawzy FCC 15.247, RSS-210		Class:	Radio
Immunity Spec:			Environment:	-
provide wireless netwo	rk and internet service.	General Description ti-Point 5GHz radio operating The EUT is normally pole mo of the EUT is 48Vdc Volts , 5	i in the range 5470-5725 (punted, but the EUT was tr	0
		Equipment Under Tes	st	
Manufacturer	Model	Description	Serial Number	FCC ID
Redline	AN-80i	Accesspoint	-	QC8-AN80IA
sector antennas with sr	17.5 dBi sector antenna	enna (Intentional Radia and a 9dBi OMNI antenna wi dBi will be listed in the report rd connectors.	ith standard N-Type conn	5

Elliott

EMC Test Data

Client:	Redline Communications	Job Number:	J68022
Model:	AN-80i (5.4 GHz) PMP	T-Log Number:	T68072
		Project Manager:	Dean Eriksen
Contact:	Medhat Fawzy		
Emissions Spec:	FCC 15.247, RSS-210	Class:	Radio
Immunity Spec:	-	Environment:	-
, , , , , , , , , , , , , , , , , , ,			

Test Configuration #1

The following information was collected during the test sessions(s).

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-

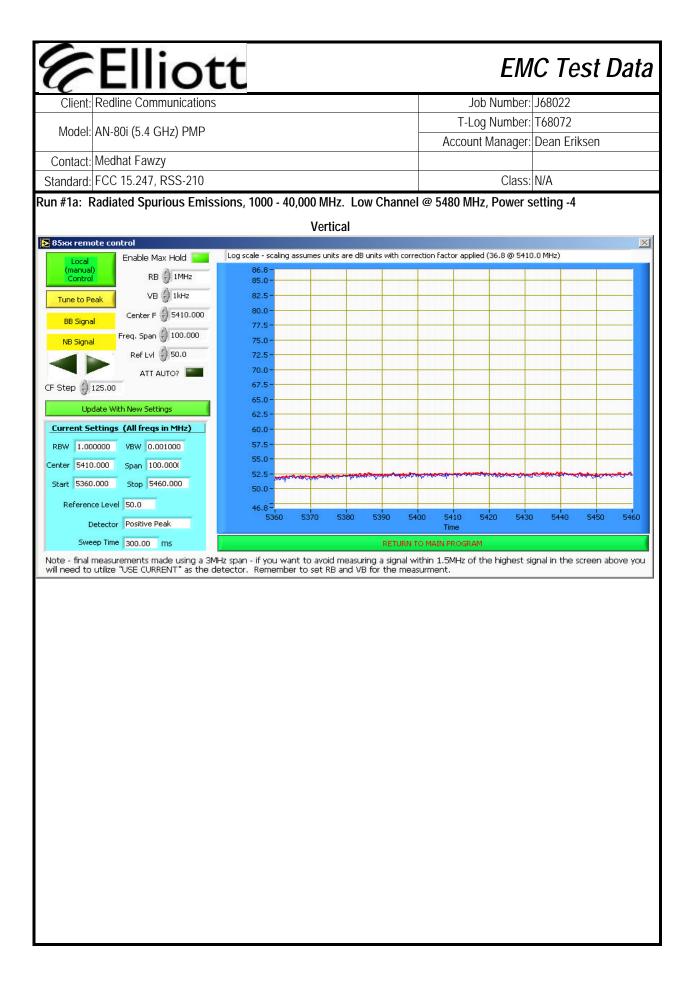
Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	PP02X	Laptop	07898349890344	DoC
Cincon	TR60A-POE-L	POE	N/A	N/A

Cabling and Ports

Port	Connected To		Cable(s)	
		Description	Shielded or Unshielded	Length(m)
EUT Ethernet	POE	Cat5	Shielded	30.0
Laptop Ethernet	POE	Cat5	Unshielded	1.0
RF	Antenna	Coaxial	Shielded	0.5

EUT Operation During Emissions Tests

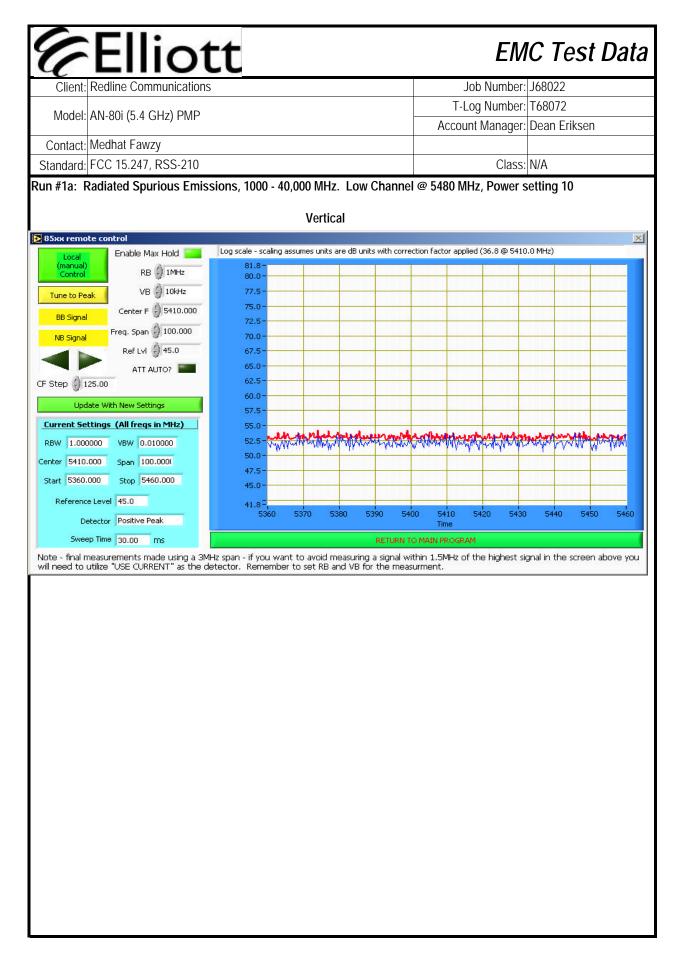

During emissions testing the EUT was transmitting at maximum power on low, middle, and high channels .

T-Log Number: T Account Manager: D Class: F ions on testing of the EUT e dc	ean Eriksen adio
Class: F Class: F class: F class: F class: F	adio
ions on testing of the EUT e dc	
ions on testing of the EUT e dc	
on testing of the EUT e dc	with respect
e dc	with respect
e dc	with respect
dc	
dc	
od omissions tosting	
eu eniissions testing	
un description.	
tion of the EUT and eximized by orientation	
226	
1200.0IVIH2	(-8.10B)
	vimized by orientation vesult Marc Pass 45.9dBµ ¹ 1200.0MHz

	Ellic			1	ob Numbor	1/0022
Client: R	edline Commun	cations			ob Number: og Number:	
Model: A	N-80i (5.4 GHz)	PMP			0	Dean Eriksen
Contact: M	ledhat Fawzy			710000	nt munuger.	
	CC 15.247, RSS	5-210			Class:	Radio
		Receiver R	adiated Em	issions	5	
est Speci	fic Details					
Ot	, ,	ective of this test session is ation listed above.	s to perform final quali	ification testi	ng of the EU ⁻	F with respec
	of Test: 5/23/20		Config. Used			
	ngineer: Rafael ' ocation: SVOAT		Config Change EUT Voltage			
			Ŭ			
	est Configura nd any local supp	I tion port equipment were locate	d on the turntable for	radiated emi	ssions testin	g .
The test dis	tance and extra	polation factor (if applicable	e) are detailed under e	each run deso	cription.	
measureme	ent antenna. Ma	ndicates that the emissions ximized testing indicated the a, and manipulation of the	hat the emissions wer	e maximized		
mbiont C	onditions:	Temperature:	17 °C			
		Rel. Humidity:	67 %			
Summary of	of Results					
		Test Performed	Limit	Result	Ма	
Summary o		Test Performed , 1000 - 18000 MHz,	Limit RSS-210	Result Pass	48.0dl	rgin 3µV/m V/m) @

Client: Redline Communications Job Number: J68022 Model: AN-80i (5.4 GHz) PMP T-Log Number: T68072 Contact: Medhat Fawzy Image: Dean Erikse Contact: Medhat Fawzy Class: Radio Standard: FCC 15.247, RSS-210 Class: Radio um #1: Maximized Readings, 1000 - 18000 MHz Class: Radio enter channel, Rx mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 requency Range Test Distance Limit Distance Extrapolation Factor 1199.970 48.0 V 54.0 -6.0 AVG 292 1.0 1199.970 50.8 V 74.0 -23.2 PK 292 1.0 Image: Cliphone Factor 1190.240 35.0 H 54.0 -19.0 AVG 8 1.0 Image: Cliphone Factor 1190.240 35.5 H 74.0 -28.5
Model: AN-801 (5.4 GH2) PMP Account Manager: Dean Erikse Contact: Medhat Fawzy Class: Radio Standard: FCC 15.247, RSS-210 Class: Radio un #1: Maximized Readings, 1000 - 18000 MHz Class: Radio enter channel, Rx mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0.0 requency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0.0 requency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0.0 requency Level Pol RSS-210 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1199.970 48.0 V 54.0 -6.0 AVG 292 1.0 1199.970 50.8 V 74.0 -28.5
Standard: FCC 15.247, RSS-210 Class: Radio un #1: Maximized Readings, 1000 - 18000 MHz Enter channel, Rx mode Extrapolation Factor Image: Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 requency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 0.0 requency Level Pol RSS-210 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1199.970 48.0 V 54.0 -6.0 AVG 292 1.0 1.0 1199.970 50.8 V 74.0 -23.2 PK 292 1.0 1.0 1190.240 35.0 H 54.0 -19.0 AVG 8 1.0 1.0 1190.240 45.5 H 74.0 -28.5 PK 8 1.0 1.0 1.0 5785.290
Image: senter channel, Rx mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 requency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 requency Level Pol RSS-210 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1199.970 48.0 V 54.0 -6.0 AVG 292 1.0 1199.970 50.8 V 74.0 -23.2 PK 292 1.0 1190.240 35.0 H 54.0 -19.0 AVG 8 1.0 1190.240 45.5 H 74.0 -28.5 PK 8 1.0 5785.290 38.5 H 54.0 -15.5 AVG 53 1.0 1188.950 34.6 V 54.0 -19.4 AVG 346 1.0
Enter channel, Rx mode Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 18000 MHz 3 3 0.0 requency Level Pol RSS-210 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 1199.970 48.0 V 54.0 -6.0 AVG 292 1.0 1199.970 50.8 V 74.0 -23.2 PK 292 1.0 1190.240 35.0 H 54.0 -19.0 AVG 8 1.0 1190.240 45.5 H 74.0 -28.5 PK 8 1.0 5785.290 38.5 H 54.0 -15.5 AVG 53 1.0 1188.950 34.6 V 54.0 -19.4 AVG 346 1.0 1188.950 45.1 V 74.0 -28.9 PK 346
1000 - 18000 MHz 3 3 0.0 equency Level Pol RSS-210 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1199.970 48.0 V 54.0 -6.0 AVG 292 1.0 1199.970 50.8 V 74.0 -23.2 PK 292 1.0 1190.240 35.0 H 54.0 -19.0 AVG 8 1.0 1190.240 45.5 H 74.0 -28.5 PK 8 1.0 1190.240 45.5 H 74.0 -28.5 PK 8 1.0 190.240 45.5 H 74.0 -24.8 PK 53 1.0 785.290 38.5 H 54.0 -15.5 AVG 346 1.0 188.950 34.6 V 54.0 -19.4 AVG 346
1000 - 18000 MHz 3 3 0.0 requency Level Pol RSS-210 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1199.970 48.0 V 54.0 -6.0 AVG 292 1.0 1199.970 50.8 V 74.0 -23.2 PK 292 1.0 1190.240 35.0 H 54.0 -19.0 AVG 8 1.0 1190.240 45.5 H 74.0 -28.5 PK 8 1.0 5785.290 38.5 H 54.0 -15.5 AVG 53 1.0 5785.290 49.2 H 74.0 -24.8 PK 53 1.0 1188.950 34.6 V 54.0 -19.4 AVG 346 1.0 1188.950 45.1 V 74.0 -28.9 PK 346
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 199.970 48.0 V 54.0 -6.0 AVG 292 1.0 199.970 50.8 V 74.0 -23.2 PK 292 1.0 190.240 35.0 H 54.0 -19.0 AVG 8 1.0 190.240 45.5 H 74.0 -28.5 PK 88 1.0 190.240 45.5 H 74.0 -28.5 PK 8 1.0 785.290 38.5 H 54.0 -15.5 AVG 53 1.0 785.290 49.2 H 74.0 -24.8 PK 53 1.0 188.950 34.6 V 54.0 -19.4 AVG 346 1.0 188.950 45.1 V 74.0 -28.9 PK 346 1.0 785.290 38.3 V 54.0 -1
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 199.970 48.0 V 54.0 -6.0 AVG 292 1.0 199.970 50.8 V 74.0 -23.2 PK 292 1.0 190.240 35.0 H 54.0 -19.0 AVG 8 1.0 190.240 45.5 H 74.0 -28.5 PK 88 1.0 190.240 45.5 H 74.0 -28.5 PK 8 1.0 785.290 38.5 H 54.0 -15.5 AVG 53 1.0 785.290 49.2 H 74.0 -24.8 PK 53 1.0 188.950 34.6 V 54.0 -19.4 AVG 346 1.0 188.950 45.1 V 74.0 -28.9 PK 346 1.0 785.290 38.3 V 54.0 -1
1199.970 48.0 V 54.0 -6.0 AVG 292 1.0 1199.970 50.8 V 74.0 -23.2 PK 292 1.0 1199.970 50.8 V 74.0 -23.2 PK 292 1.0 1190.240 35.0 H 54.0 -19.0 AVG 8 1.0 1190.240 45.5 H 74.0 -28.5 PK 8 1.0 5785.290 38.5 H 54.0 -15.5 AVG 53 1.0 5785.290 49.2 H 74.0 -24.8 PK 53 1.0 1188.950 34.6 V 54.0 -19.4 AVG 346 1.0 1188.950 45.1 V 74.0 -28.9 PK 346 1.0 5785.290 38.3 V 54.0 -15.7 AVG 202 1.0 5785.290 48.6 V 74.0 -25.4 PK 202 1.0
199.970 50.8 V 74.0 -23.2 PK 292 1.0 190.240 35.0 H 54.0 -19.0 AVG 8 1.0 190.240 45.5 H 74.0 -28.5 PK 8 1.0 190.240 45.5 H 74.0 -28.5 PK 8 1.0 785.290 38.5 H 54.0 -15.5 AVG 53 1.0 785.290 49.2 H 74.0 -24.8 PK 53 1.0 188.950 34.6 V 54.0 -19.4 AVG 346 1.0 188.950 45.1 V 74.0 -28.9 PK 346 1.0 785.290 38.3 V 54.0 -15.7 AVG 202 1.0 785.290 48.6 V 74.0 -25.4 PK 202 1.0
190.240 35.0 H 54.0 -19.0 AVG 8 1.0 190.240 45.5 H 74.0 -28.5 PK 8 1.0 785.290 38.5 H 54.0 -15.5 AVG 53 1.0 785.290 49.2 H 74.0 -24.8 PK 53 1.0 188.950 34.6 V 54.0 -19.4 AVG 346 1.0 188.950 45.1 V 54.0 -19.4 AVG 346 1.0 188.950 45.1 V 74.0 -28.9 PK 346 1.0 785.290 38.3 V 54.0 -15.7 AVG 202 1.0 785.290 48.6 V 74.0 -25.4 PK 202 1.0
190.240 45.5 H 74.0 -28.5 PK 8 1.0 785.290 38.5 H 54.0 -15.5 AVG 53 1.0 785.290 49.2 H 74.0 -24.8 PK 53 1.0 188.950 34.6 V 54.0 -19.4 AVG 346 1.0 188.950 45.1 V 74.0 -28.9 PK 346 1.0 785.290 38.3 V 54.0 -15.7 AVG 202 1.0 785.290 48.6 V 74.0 -28.4 PK 202 1.0
785.290 38.5 H 54.0 -15.5 AVG 53 1.0 785.290 49.2 H 74.0 -24.8 PK 53 1.0 188.950 34.6 V 54.0 -19.4 AVG 346 1.0 188.950 45.1 V 74.0 -28.9 PK 346 1.0 785.290 38.3 V 54.0 -15.7 AVG 202 1.0 785.290 48.6 V 74.0 -25.4 PK 202 1.0
188.950 34.6 V 54.0 -19.4 AVG 346 1.0 188.950 45.1 V 74.0 -28.9 PK 346 1.0 785.290 38.3 V 54.0 -15.7 AVG 202 1.0 785.290 48.6 V 74.0 -25.4 PK 202 1.0
188.950 45.1 V 74.0 -28.9 PK 346 1.0 785.290 38.3 V 54.0 -15.7 AVG 202 1.0 785.290 48.6 V 74.0 -25.4 PK 202 1.0
785.290 38.3 V 54.0 -15.7 AVG 202 1.0 785.290 48.6 V 74.0 -25.4 PK 202 1.0
785.290 48.6 V 74.0 -25.4 PK 202 1.0
350 410 34.6 V 54.0 -19.4 AVG 251 1.0
1350.410 47.5 V 74.0 -26.5 PK 251 1.0
1557.530 41.9 V 54.0 -12.1 AVG 302 1.0
557.530 55.1 V 74.0 -18.9 PK 302 1.0

					b Number: J68022	
					og Number: T68072	
		4 GHz) PMP			it Manager: Dean Eri	iksen
	Medhat Fa	wzy 17, RSS-210			Class: N/A	
Stanuaru.	100 15.24	1, 103-210			Class. IV/A	
		Radiated Em	issions (17dE	Bi anter	nna)	
est Spec	cific Deta	ails				
•	- Obioctivo:	The objective of this test session specification listed above.	n is to perform final quali	ification testir	ng of the EUT with re	spect to th
		5/23/2007 12:04	Config. Used			
		Juan Martinez SVOATS #2	Config Change EUT Voltage			
						
ne EUT an Ipport equi	id all local s ipment was	support equipment were located s located approximately 30 meters				
he EUT an upport equi roundplane	id all local s ipment was e.	support equipment were located	ers from the EUT with all	I/O connecti	ons running on top o	
upport equi roundplane or radiated	id all local s ipment was e.	support equipment were located s located approximately 30 meters testing the measurement anter	ers from the EUT with all	I/O connecti	ons running on top o	
he EUT an upport equi roundplane or radiated	id all local s ipment was e. I emissions	support equipment were located s located approximately 30 meter testing the measurement anter ns: Temperature: Rel. Humidity:	ers from the EUT with all ana was located 3 meter 17 °C	I/O connecti	ons running on top o	
he EUT an upport equi roundplane or radiated	d all local s ipment was a. I emissions Conditio	support equipment were located s located approximately 30 meter testing the measurement anter ns: Temperature: Rel. Humidity:	ers from the EUT with all ana was located 3 meter 17 °C	I/O connecti	ons running on top o JT. Result / Margin	
he EUT an upport equi roundplane or radiated mbient (Summary	d all local s ipment was e. I emissions Conditio v of Resu	support equipment were located s located approximately 30 meter testing the measurement anter ns: Temperature: Rel. Humidity:	ers from the EUT with all ana was located 3 meter 17 °C 67 %	I/O connecti	ons running on top o	f the



	Redline C		Dtt cations							Jo	b Numl	ber	: J6802	22			
Model	AN-80i (5.	4 GHz) I	OMP							T-Lo	g Numl	ber	: T680	72			
									Ac	count	Manag	jer	: Dean	Erik	sen		
	Medhat Fa		.210								Cla	221	: N/A				—
	Continued		210								OIC	155					
					Horizo	ntal											
85xx remo				scale - scaling a	scumes unit	c are d	B upite	with corre	action fact	or applie	പ (36 8 ത	541	10.0 MH=)				1
Local (manual)		e Max Hold RB () 1MH		89.6 -	issumes anic	sareu	D driics	WICH COIL	ectonnact		0 (30.0 @	541	10.014112)		P		-
Control				87.5-													
Tune to Pe		er F () 541		85.0-													
BB Signal				80.0-						20	-		_				_
NB Signal		oan 👌 100.		77.5-		-	-			0	-	-					-
		LVI 💮 52.8		75.0-													-
Step 🎒 1		TT AUTO?		72.5-													
			_	67.5-		-					-	-			-		- 2
	date With New :	nonuna Tra		65.0-				_				-			-		-
RBW 1.000	ttings (All fr	0.001000	<u>,</u>	62.5-	-												_
enter 5410.		100.0000		57.5-													
Start 5360.		5460.000	-	55.0-							-	-			-		-
		5460.000		52.5-			and the second	-				-					-
	e Level 52.8		-	49.6 5360	5370	5380	53	90 54	100 54	10	5420	543	30 54	40	5450) 5	460
	etector Positiv							DETUDAL									
		10	ng a 3MHz spa	n - if vou war	nt to avoid	measu		177	- 20	122	S 31 W	est :	sianal in	the s	creen	above	e vo
vill need to (utilize "USE C	URRENT"	as the detecto	or. Rémember	r to set RB	and ∖	/B for	the mea	isurment.		-		-				20033
nd Edge	Signal Rad	diated Fie	eld Strength														
equency	Level	Pol		9/15E	Detect	.or	Azi	muth	Heig	ht (Comme	nts	ò				
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/	<u> </u>		jrees	mete								
375.000	53.2	V	54.0	-0.8	AVG	i		60	1.0		Power s						
	63.6 52.0	V H	74.0 54.0	-10.4 -2.0	PK AVG			60 0	1.0		Power s	ett	.ing -4				
375.000 448.200		H	74.0	-10.8	PK	1		0	1.0								

Model:	Redline Co	ommunio	Dtt cations					Job Number:	
	AN-80i (5.	4 GHz) F	PMP					T68072	
	•						Accou	int Manager:	Dean Eriksen
	Medhat Fa	5	210					Class	N1/A
Standard: Run #1a: (FCC 15.24	17, RSS-	-210					Class:	N/A
Other Spuri Frequency MHz 10959.790 10959.790 16440.590 16440.590 10958.820 10958.820 16439.270	ous Radiat Level dBµV/m 34.4 44.7 36.4 47.4 34.7 45.5 36.5	ed Emiss Pol V/h V V V V V H H H		9 / 15E Margin -19.6 -29.3 -17.6 -26.6 -19.3 -28.5 -17.5	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	Azimuth degrees 343 343 269 269 269 327 327 327 25	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments	
16439.270	46.7	Н	74.0	-27.3	PK	25	1.0		
	27dBm/Mł	Hz (~68d e measu	lBuV/m). rement calc						e limit was set to - minus the band ed
Note 2:	27dBm/Mł Band-edge delta mark	Hz (~680 e measu ker meas	IBuV/m). rement calc surement.	culated from	the fundame	ental field stre	ength (peak	or average)	
Note 2: Run #1b: F	27dBm/Mł Band-edge delta mark	Hz (~680 e measu ker meas	IBuV/m). rement calc surement. s Emissions	culated from	the fundame	ental field stre	ength (peak	or average)	minus the band ed
Note 2: Run #1b: F Frequency MHz	27dBm/MI Band-edge delta mark Radiated S Level dBµV/m	Hz (~68d e measu er meas purious Pol v/h	IBuV/m). rement calc surement. Emission 15.20 Limit	ulated from s, 1000 - 40 9 / 15E Margin	o the fundame 0,000 MHz. C Detector Pk/QP/Avg	ental field stre center Chan Azimuth degrees	ength (peak nel @ 5595 Height meters	or average) MHz, Powe	minus the band ed
Note 2: Run #1b: F Frequency MHz 11190.310	27dBm/Mł Band-edge delta mark Radiated S Level dBµV/m 35.1	Hz (~68d e measu cer meas Epurious Pol V/h H	IBuV/m). rement calc surement. Emissions 15.20 Limit 54.0	s, 1000 - 40 9 / 15E Margin -18.9	o the fundame 0,000 MHz. C Detector Pk/QP/Avg AVG	ental field stre center Chan Azimuth degrees 353	ength (peak nel @ 5595 Height neters 1.0	or average) MHz, Powe	minus the band ed
Note 2: Run #1b: F Frequency MHz 11190.310 11190.310	27dBm/Mł Band-edge delta mark Radiated S Level dBµV/m 35.1 46.5	Hz (~68d e measu cer meas purious Pol V/h H H	IBuV/m). rement calc surement. E Emissions 15.20 Limit 54.0 74.0	s, 1000 - 40 5, 1000 - 40 9 / 15E Margin -18.9 -27.5	o the fundame 0,000 MHz . C Detector Pk/QP/Avg AVG PK	ental field stre center Chan Azimuth degrees 353 353	ength (peak nel @ 5595 Height neters 1.0 1.0	or average) MHz, Powe	minus the band ed
Note 2: Run #1b: F Frequency MHz 11190.310 11190.310 16785.460	27dBm/Mł Band-edge delta mark Radiated S Level dBμV/m 35.1 46.5 38.6	Hz (~68d e measu er meas purious purious Pol V/h H H H	IBuV/m). rement calc surement. Emissions 15.20 Limit 54.0 74.0 54.0	s, 1000 - 40 s, 1000 - 40 9 / 15E Margin -18.9 -27.5 -15.4	o the fundame 0,000 MHz. C Detector Pk/QP/Avg AVG PK AVG AVG	ental field stre center Chan Azimuth degrees 353 353 15	ength (peak nel @ 5595 Height neters 1.0 1.0 1.0	or average) MHz, Powe	minus the band ed
Note 2: Run #1b: F Frequency MHz 11190.310 16785.460 16785.460	27dBm/Mł Band-edge delta mark Radiated S Level dBμV/m 35.1 46.5 38.6 48.8	Hz (~680 e measu er measu er meas purious Pol V/h H H H H	IBuV/m). rement calc surement. 5 Emissions 15.20 Limit 54.0 74.0 54.0 74.0	s, 1000 - 40 9 / 15E Margin -18.9 -27.5 -15.4 -25.2	o the fundame 0,000 MHz . C Detector Pk/QP/Avg AVG PK AVG PK	ental field stre center Chan Azimuth degrees 353 353 15 15	ength (peak nel @ 5595 Height meters 1.0 1.0 1.0 1.0	or average) MHz, Powe	minus the band ed
Note 2: Run #1b: F Frequency MHz 11190.310 11190.310 16785.460 16785.460 11191.040	27dBm/MI Band-edge delta mark Radiated S Level dBμV/m 35.1 46.5 38.6 48.8 35.0	Hz (-680 e measu ser meas purious Pol V/h H H H H H V	IBuV/m). rement calc surement. Emissions 15.20 Limit 54.0 74.0 54.0 74.0 54.0	s, 1000 - 40 9 / 15E Margin -18.9 -27.5 -15.4 -25.2 -19.0	0,000 MHz. C Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	ental field stre center Chan Azimuth degrees 353 353 15 15 67	ength (peak nel @ 5595 Height meters 1.0 1.0 1.0 1.0 1.0 1.0	or average) MHz, Powe	minus the band ed
Frequency	27dBm/Mł Band-edge delta mark Radiated S Level dBμV/m 35.1 46.5 38.6 48.8	Hz (~680 e measu er measu er meas purious Pol V/h H H H H	IBuV/m). rement calc surement. 5 Emissions 15.20 Limit 54.0 74.0 54.0 74.0	s, 1000 - 40 9 / 15E Margin -18.9 -27.5 -15.4 -25.2	o the fundame 0,000 MHz . C Detector Pk/QP/Avg AVG PK AVG PK	ental field stre center Chan Azimuth degrees 353 353 15 15	ength (peak nel @ 5595 Height meters 1.0 1.0 1.0 1.0	or average) MHz, Powe	minus the band ed

	Ellic ne Communi	cations				J	ob Number:	J68022
Model: AN-8	0i (5.4 GHz)	PMP					og Number:	
						Accou	nt Manager:	Dean Eriksen
Contact: Medh	-							
Standard: FCC	15.247, RSS	-210					Class:	N/A
n #1c: Radiat	ed Spurious	Emissions	s, 1000 - 40	,000 MHz. H	igh Channe	I @ 5715 N	Hz, Power s	setting of 1
her Spurious R				· · ·		1	1.	
equency Lev			9 / 15E	Detector	Azimuth	Height	Comments	
MHz dBµ		Limit	Margin	Pk/QP/Avg	degrees	meters		
429.830 35		54.0 74.0	-18.1	AVG PK	278 278	1.0 1.0		
429.830 47 143.610 40		74.0 54.0	-26.9 -13.4	PK AVG	360	1.0		
143.610 40 143.610 50	-	54.0 74.0	-13.4 -23.3	PK	360	1.0	}	
429.290 35		54.0	-23.3	AVG	28	1.0		
429.290 46		74.0	-27.7	PK	28	1.0	<u> </u>	
145.020 40		54.0	-13.5	AVG	282	1.0		
145.020 52		74.0	-21.5	PK	282	1.0	1	
For A	missions in r	estricted har	nds the limi	it of 15 209 w	as used En	r all other e	missions the	e limit was set to -

1 El	liott			EMC Test Da		
Client: Redline C			J	bb Number: J68022		
Model: AN-80i (5.	4 GHz) PMP			og Number: T68072		
	-		Accour	it Manager: Dean Eriksen		
Contact: Medhat Fa			Class: N/A			
	Radiated En	nissions (9dB	i anten	na)		
Test Specific Det Objective:				·		
Date of Test: Test Engineer: Test Location:		Config. Used: Config Change: EUT Voltage:	None			
	support equipment were located is located approximately 30 mete			-		
For radiated emission	s testing the measurement anter	nna was located 3 meters	from the EL	JT.		
Ambient Conditio	DNS: Temperature: Rel. Humidity:					
Summary of Resi	uits					
Summary of Resu	Test Performed	Limit	Pass / Fail	Result / Margin		
1a - c		Limit FCC Part 15.209 / 15.407	Pass / Fail Pass	Result / Margin 52.1103.6 @ 5437.85MHz (-1.9dB)		

Client:	Redline C	ommunic	alions					Job Number: Log Number:			
Model:	AN-80i (5.	.4 GHz) F	PMP					0	Dean Eriksen		
Contact:	Medhat Fa	awzy					7.0000		D out 2		
Standard:	FCC 15.24	47, RSS-	210					Class:	N/A		
un #1a: (Continued						I		1		
					Horizontal						
85xx remo		e Max Hold	Log	scale - scaling a	assumes units are o	B units with corre	ection factor ap	plied (36.8 @ 541	0.0 MHz)		
Local (manual) Control		RB 쉬 1MH	_	86.2-							
		VB () зкн:	100 M	82.5-							
Tune to Pe		er F () 5410		80.0-							<u></u>
BB Signal				77.5-							
NB Signal		pan 🌖 100.	000	75.0-			2				
		Lvl		72.5-							
T Chan Al		TT AUTO?	-	67.5-							
CF Step 🎒 1				65.0-							
Upd	late With New :	Settings		62.5-						-	
Current Se	ttings (All fr	eqs in MHz		60.0-							
RBW 1.000	0000 VBW	0.001000		57.5-							
Center 5410	.000 Span	100.0000		52.5-	-		-				
Start 5360.	000 Stop	5460.000		50.0-		and a start of the second	0000000000000	Man Manager		Marcan.	-
Referenc	e Level 49.4			46.2-							
De	etector Positi	ve Peak		5360	5370 5380	5390 54	00 5410 Time	5420 543	0 5440) 545	0 546
Swee	ep Time 300.0	00 ms				RETURN T	O MAIN PROGR	RAM			
					nt to avoid meas			of the highest s	ignal in th	ie screer	i above yi
will need to (utilize "USE C	URRENT" a	is the detecto	or. Remembe	r to set RB and ۱	VB for the mea:	surment.				
and Edge	Signal Rad	diated Fie	eld Strength								
requency	Level	Pol		9/15E	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5499.050	95.1	V	54.0	41.1	AVG	171	0.0	Fundament	tal		
5499.050	103.6	V	74.0	29.6	PK	171	0.0	Fundament			
5437.800	52.1	V	54.0	-1.9	AVG	360	1.0	5480 MHz		<u> </u>	
5437.800	63.3	V	74.0	-10.7	PK	360	1.0	5480 MHz		ge	
5486.250	80.5	H	54.0	26.5	AVG	230	0.0	Fundament			
5486.250	89.4	H H	74.0	15.4	PK AVG	230	0.0	Fundament		20	
5395.700 5395.700	52.0 63.3	H	54.0 74.0	-2.0 -10.7	PK	180 180	1.0 1.0	5480 MHz 5480 MHz		<u> </u>	
JJ7J.1UU	00.0	11	74.0	-10.7	I IN	100	1.0	JHOU IVITIZ	Danaca	yc	

4	EI	110	ott					EMC Test L)a
	Redline Co						~	lob Number: J68022	
Model	AN-80i (5.	л сп ²) (T-L	og Number: T68072	
MOUEI.	AN-001 (0.	4 GHZ) I					Accou	nt Manager: Dean Eriksen	
Contact:	Medhat Fa	awzy							
Standard:	FCC 15.24	47, RSS-	210					Class: N/A	
Run #1a: (Continued								
Other Spuri					T - T			1-	
Frequency	Level	Pol		9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters		
10959.800 10959.800	35.1 45.4	V	54.0 74.0	-18.9 -28.6	AVG PK	259 259	1.0 1.0		
16438.940	45.4 36.8	V	74.0 54.0	-20.0	AVG	179	1.0		
16438.940	47.6	V	74.0	-26.4	PK	179	1.0		
10960.860	34.3	Ĥ	54.0	-19.7	AVG	47	1.0		
10960.860	45.5	Н	74.0	-28.5	PK	47	1.0		
16441.070	36.3	Н	54.0	-17.7	AVG	162	1.0		
16441.070	46.5	Н	74.0	-27.5	PK	162	1.0		
			romont oold	ulated from	the fundame	ntal field atr	anath (neal	or overage) minus the hand	مطعم
	delta mark	ker meas	urement.					or average) minus the band of MHz, Power setting 10	edge
Run #1b: I	delta mark Radiated S	er meas	urement. Emissions	s, 1000 - 40	,000 MHz. C	Center Chan	nel @ 5595	MHz, Power setting 10	edge
Run #1b: I Frequency	delta mark Radiated S	er meas purious	urement. Emission: 15.20	s, 1000 - 40 9 / 15E	,000 MHz. C	center Chan			edge
Run #1b: I Frequency MHz	delta mark Radiated S	er meas	urement. Emissions	s, 1000 - 40	,000 MHz. C	Center Chan	nel @ 5595	MHz, Power setting 10	edge
Run #1b: I Frequency MHz 11191.250	delta mark Radiated S Level dBµV/m 34.7 45.1	er meas purious Pol V/h H H	Emission: 15.20 Limit 54.0 74.0	s, 1000 - 40 9 / 15E Margin -19.3 -28.9	,000 MHz. C Detector Pk/QP/Avg AVG PK	Azimuth degrees 360 360	nel @ 5595 Height meters	MHz, Power setting 10	edge
Run #1b: I Frequency MHz 11191.250 11191.250 16783.660	delta mark Radiated S Level dBµV/m 34.7 45.1 38.3	Pol V/h H H H	Emissions 15.20 Limit 54.0 74.0 54.0	s, 1000 - 40 9 / 15E Margin -19.3 -28.9 -15.7	,000 MHz. C Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 360 287	Height Height 1.0 1.0 1.0	MHz, Power setting 10	edge
Run #1b: I Frequency MHz 11191.250 11191.250 16783.660 16783.660	delta mark Radiated S Level dBμV/m 34.7 45.1 38.3 48.8	Pol V/h H H H H	Emission: 15.20 Limit 54.0 74.0 54.0 74.0	s, 1000 - 40 9 / 15E Margin -19.3 -28.9 -15.7 -25.2	,000 MHz. C Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 360 360 287 287	Height Height 1.0 1.0 1.0 1.0	MHz, Power setting 10	edge
Run #1b: I Frequency MHz 11191.250 11191.250 16783.660 16783.660 11189.800	delta mark Radiated S Level dBµV/m 34.7 45.1 38.3 48.8 36.4	Pol V/h H H H H V	urement. Emission: 15.20 Limit 54.0 74.0 54.0 74.0 54.0 54.0	s, 1000 - 40 9 / 15E Margin -19.3 -28.9 -15.7 -25.2 -17.6	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	Azimuth degrees 360 360 287 287 291	Height Height 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MHz, Power setting 10	edge
Frequency MHz 11191.250 11191.250 16783.660 16783.660 11189.800 11189.800	delta mark Radiated S Level dBµV/m 34.7 45.1 38.3 48.8 36.4 47.1	Pol V/h H H H H V V V	Emission: 15.20 Limit 54.0 74.0 54.0 74.0 54.0 74.0 74.0	s, 1000 - 40 9 / 15E Margin -19.3 -28.9 -15.7 -25.2 -17.6 -26.9	,000 MHz. C Detector Pk/QP/Avg AVG PK AVG PK AVG PK	Azimuth degrees 360 360 287 291 291	Height Height 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MHz, Power setting 10	edge
Run #1b: I Frequency MHz 11191.250 11191.250 16783.660 16783.660 11189.800	delta mark Radiated S Level dBµV/m 34.7 45.1 38.3 48.8 36.4	Pol V/h H H H H V	urement. Emission: 15.20 Limit 54.0 74.0 54.0 74.0 54.0 54.0	s, 1000 - 40 9 / 15E Margin -19.3 -28.9 -15.7 -25.2 -17.6	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	Azimuth degrees 360 360 287 287 291	Height Height 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MHz, Power setting 10	edge

Client: Redline	Communic	Dtt cations				J	ob Number:	J68022
Model: AN-80i						T-L	og Number:	T68072
		PIVIP				Accou	nt Manager:	Dean Eriksen
Contact: Medhat	3							
tandard: FCC 15	.247, RSS	-210					Class:	N/A
n #1c: Radiate	I Spurious	Emission	s, 1000 - 40	,000 MHz. H	igh Channe	l @ 5715 M	Hz, Power	setting 10
ner Spurious Rac	liated Emis	sions:						
equency Leve			9/15E	Detector	Azimuth	Height	Comments	
MHz dBµV/		Limit	Margin	Pk/QP/Avg	degrees	meters		
46.9	V	54.0	-7.1	AVG	272	1.6		
429.970 59.4	V	74.0	-14.6	PK	272	1.6		
46.110 40.3	V	54.0	-13.7	AVG	277	1.0		
46.110 50.9	V	74.0	-23.1	PK	277	1.0		
129.830 37.0	Н	54.0	-17.0	AVG	337	2.0		
429.830 48.4	Н	74.0	-25.6	PK	337	2.0		
45.650 40.2	Н	54.0	-13.8	AVG	96	1.0		
45.650 51.0	Н	74.0	-23.0	PK	96	1.0		

EXHIBIT 3: Photographs of Test Configurations

4 Pages