ENGINEERING TEST REPORT

Card Reader Model No.: 4GCRO FCC ID: QC4-4GCRO

Applicant:

Bioscrypt, Inc.

50 Acadia Avenue, Suite 200 Markham, Ontario Canada L3R 0B3

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C
Unlicensed Low Power Transmitter Operating in the Band 13.110-14.010 MHz

UltraTech's File No.: MYT-175F15C225

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: June 15, 2011

Report Prepared by: Dan Huynh Tested by: Wei Wu

Issued Date: June 15, 2011 Test Dates: May 2, 12, 13, & 26, 2011

June 14, 2011

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

FCC

91038

1309

46390-2049

NvLap Lab Code 200093-0

 $ar{L}$

SL2-IN-E-1119R

TABLE OF CONTENTS

EXHIBIT	1. INTRODUCTION	1
1.1. 1.2. 1.3.	SCOPE	1
EXHIBIT	2. PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	CLIENT INFORMATION	3 3 3
EXHIBIT	3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	б
3.1. 3.2.	CLIMATE TEST CONDITIONSOPEPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	6
EXHIBIT	4. SUMMARY OF TEST RESULTS	7
4.1. 4.2. 4.3.	LOCATION OF TESTS	7
EXHIBIT	5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	8
5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	TEST PROCEDURES	8 8 8
5.7. 5.8.	[47 CFR 15.225 (a) to (d)]	13
EXHIBIT	6. TEST EQUIPMENT LIST	20
EXHIBIT	7. MEASUREMENT UNCERTAINTY	21
7.1.	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Sec. 15.225 - Operation within the band 13.110 – 14.010 MHz.
Title:	Title 47, Code of Federal Regulations (CFR), Part 15, Subpart C
Purpose of Test:	To gain FCC Certification Authorization for Section 15.225 - Operation within the Band 13.110 - 14.010 MHz.
Test Procedures:	American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
Environmental Classification:	Commercial, industrial or business environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
47 CFR Parts 0-19	2010	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.4	2003 2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
ANSI C63.10	2009	American National Standard for Testing Unlicensed Wireless Devices
CISPR 22 & EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. **CLIENT INFORMATION**

APPLICANT		
Name:	Bioscrypt, Inc.	
Address:	50 Acadia Avenue, Suite 200 Markham, Ontario Canada L3R 0B3	
Contact Person:	Shiraz Kapadia Phone #: 905-940-7750 Fax #: 905-940-7642 Email Address: SKapadia@L1ID.com	

MANUFACTURER		
Name:	Knight Wah Technology Ltd.	
Address:	Unit 16 - 19, 3/F Tower B,Regent Centre, 63-73 Wo Yi Hop Road, Kwai Chung, N. T. Hong Kong	
Contact Person:	Y.H. Chan Phone #: (852) 2619 0162 Fax #: (852) 2619 0132 Email Address: yhchan@knightwah.com	

EQUIPMENT UNDER TEST (EUT) INFORMATION 2.2.

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Bioscrypt, Inc.
Product Name:	Card Reader
Model Name or Number:	4GCRO
Serial Number:	Test sample
Type of Equipment:	Low Power Communication Device Transmitter
Input Power Supply Type:	12-24 VDC on DC Line or 48 VDC on PoE
Primary User Functions of EUT:	Enroll, verification, communication output

FCC ID: QC4-4GCRO

2.3. EUT'S TECHNICAL SPECIFICATIONS

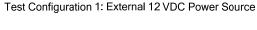
Transmitter		
Equipment Type:	Mobile	
Intended Operating Environment:	Commercial, light industry & heavy industry	
Power Supply Requirement:	4.25-5.75 VDC (HID)	
Field Strength:	44.55 dBμV/m at 10 m	
Operating Frequency Range:	13.56 MHz	
RF Output Impedance:	50 Ω	
20 dB Bandwidth:	5.01 kHz	
Modulation Type:	ASK	
Oscillator Frequencies:	13.56 MHz	
Antenna Connector Type:	Integral	

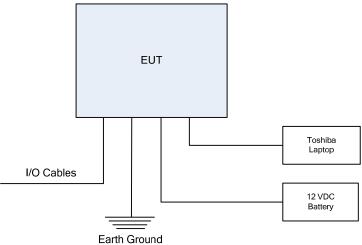
2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	Ethernet 100-Base TX	1	Header	Non shielded
2	Host RS-485	1	Header	Non shielded
3	Power	1	Header	Non shielded
4	Wiegand I/O (5 Lines)	1	Header	Non shielded
5	General Purpose I/O (2 Inputs & 2 Outputs)	1	Header	Non shielded
6	Relay Control (NC, NO & COM)	1	Header	Non shielded
7	*USB OTG (Auxiliary Port)	1	USB-Micro-AB	Shielded

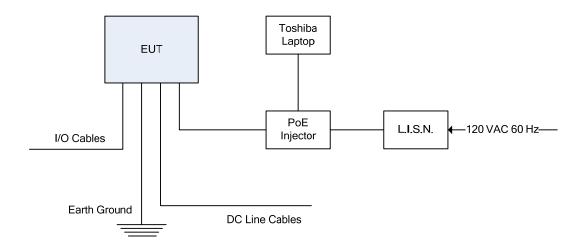
^{*} Used for service by administrator only and secured by a security door.

2.5. ANCILLARY EQUIPMENT

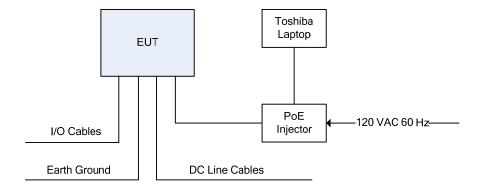

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:


Ancillary Equipment # 1		
Description:	PoE Injector	
Brand Name:	Allied Telesis	
Model Name or Number:	AT-6101	
Serial Number:	A03784G080700832A1	
Cable Length & Type:	> 3 m, Non-shielded	
Connected to EUT's Port:	Ethernet	

Ancillary Equipment # 2		
Description:	Laptop	
Brand Name:	Toshiba	
Model Name or Number:	SATELLITE	
Serial Number:	1027387 CU	
Cable Length & Type:	> 3 m, Non-shielded	
Connected to EUT's Port:	PoE Injector	


2.6. GENERAL TEST SETUP

2.6.1. Power Line Conducted Emission Test Setup



Test Configuration 2: Power Over Ethernet (PoE) Injector

2.6.2. Radiated Emission Test Setup

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	12 VDC 48 VDC (from PoE)

3.2. OPEPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	The EUT was configured for continuous transmission for the duration	
	of testing.	
Special Test Software:	N/A	
Special Hardware Used:	N/A	
Transmitter Test Antenna:	The EUT was tested with the antenna fitted in a manner typical of	
	normal intended use as integral antenna equipment.	

Transmitter Test Signals:				
Frequency:	13.56 MHz			
Transmitter Wanted Output Test Signals:				
RF Power Output (measured maximum output power):	44.55 dBµV/m at 10 m			
Normal Test Modulation:	ASK			
Modulating signal source:	Internal			

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2014-04-04.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Regulations	Test Requirements	Compliance (Yes/No)
15.203 & 15.204	The transmitter shall use a transmitting antenna that is an integral part of the device	Yes
15.215(c)	Emission Bandwidth	Yes
15.225(a) – (d)	Field Strength of Emissions Inside and Outside the Permitted Band 13.110 - 14.010 MHz	Yes
15.225(e)	Frequency Stability	Yes
15.107 & 15.207	Class B - Power Line Conducted Emissions	Yes

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

Ferrite material added outside device on cables:

4G CR-Pass required the addition of a Steward Ferrite P/N: 28A2432-0A2, requiring 3 turns on the Ethernet lines.

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4-2003 and ULTR-P001-2004.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement. Refer to Exhibit 7 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4-2003 and CISPR 16-1-1.

5.4. COMPLIANCE WITH FCC PART 15 - GENERAL TECHNICAL REQUIREMENTS

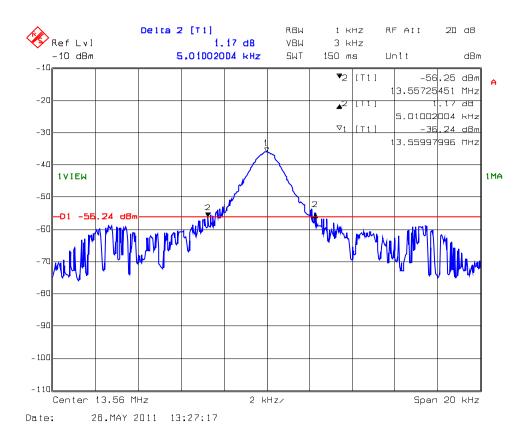
FCC Section	FCC Rules	
15.203	Described how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.	Integral PCB antenna
	The exception is in those cases where EUT must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed:	
	The application (or intended use) of the EUT	
	 The installation requirements of the EUT The method by which the EUT will be marketed 	
15.204	Provided the information for every antenna proposed for use with the EUT: (a) type (e.g. Yagi, patch, grid, dish, etc), (b) manufacturer and model number (c) gain with reference to an isotropic radiator	Only furnished integral antenna will be used in the EUT.

File #: MYT-175F15C225 June 15, 2011

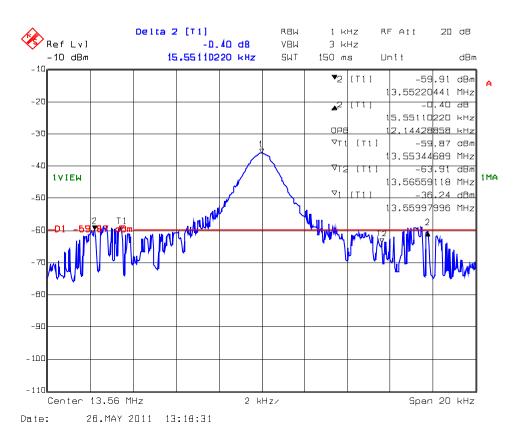
5.5. EMISSION BANDWIDTH

5.5.1. Limits

The 20 dB bandwidth of the emission shall be contained within the band 13.110–14.010 MHz.


5.5.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4-2003 for measurement methods


5.5.3. Test Data

Tost Fraguency (MUz)	Occupied Bandwidth (kHz)		
Test Frequency (MHz)	20 dB BW 99 % BW		
13.56	5.01	15.55	

Plot 5.5.3.1 20 dB Bandwidth Test Frequency: 13.56 MHz

Plot 5.5.3.2 99% Occupied Bandwidth Test Frequency: 13.56 MHz

Page 11 FCC ID: QC4-4GCRO

5.6. FIELD STRENGTH OF EMISSIONS WITHIN & OUTSIDE THE PERMITTED BAND 13.110-14.010 MHz [47 CFR 15.225 (a) to (d)]

5.6.1. Limits

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110 14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

47 CFR 15.209(a) - Radiated Emission Limts; general requirements

Frequency (MHz)	Field Strength Limits (microvolts/m)	Distance (Meters)
0.009 - 0.490	2,400 / F (KHz)	300
0.490 - 1.705	24,000 / F (KHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

5.6.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4-2003 for measurement methods

File #: MYT-175F15C225

June 15, 2011

5.6.3. Test Data

Remarks:

- Radiated spurious emissions measurements were performed at a measuring distance of 10 m (for frequencies below 30 MHz) and 3 m (for frequencies at or above 30 MHz), from 10 kHz - 10th harmonic of the fundamental and all spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- For frequencies below 30 MHz, the results measured at 10 m distance shall be extrapolated to the specified distance using an extrapolation factor of 40 dB/decade for determining compliance.

5.6.3.1. Field Strength of Emissions Within the Permitted Band at 10 m

Frequency (MHz)	Measured Field Strength @ 10 m (dBμV/m)	Detector Used (Peak/QP)	Antenna Plane (H/V)	Field Strength Extrapolated Value (dBµV/m)	§ 15.225 Field Strength Limits (dBµV/m)	Margin (dB)
13.56	44.55	Peak	V	25.5	84.0	-58.5
13.56	37.42	Peak	Н	18.3	84.0	-65.7

5.6.3.2. Field Strength of Emissions Outside the Permitted Band Below 30 MHz at 10 m

Frequency (MHz)	Measured Field Strength @ 10 m (dBμV/m)	Detector Used (Peak/QP)	Antenna Plane (H/V)	Field Strength Extrapolated Value (dBµV/m)	§ 15.209 Field Strength Limits (dBμV/m)	Margin (dB)
All spurious emissions are more than 20 dB below the specified limit.						

5.6.3.3. Field Strength of Emissions Outside the Permitted Band at or Above 30 MHz at 3 m

Frequency (MHz)	Measured Field Strength @ 3 m (dΒμV/m)	Detector Used (Peak/QP)	Antenna Plane (H/V)	§ 15.209 Field Strength Limits (dBμV/m)	Margin (dB)
40.68	26.29	Peak	V	40.0	-13.7
54.24	23.25	Peak	V	40.0	-16.8
67.80	28.93	Peak	V	40.0	-11.1
81.36	25.81	Peak	V	40.0	-14.2
108.48	29.38	Peak	V	43.5	-14.1
122.04	32.63	Peak	V	43.5	-10.9
135.60	37.52	Peak	V	43.5	-6.0
135.60	26.70	Peak	Н	43.5	-16.8

File #: MYT-175F15C225 June 15, 2011

5.7. FREQUENCY STABILITY [47 CFR 15.225(e)]

5.7.1. Limits

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.7.2. Method of Measurements

ANSI C63.4-2003

5.7.3. Test Data

Frequency Band:	13.56 MHz
Center Frequency:	13.56 MHz
Frequency Tolerance Limit:	<u>+</u> 0.01% (<u>+</u> 1356 Hz)
Max. Frequency Tolerance Measured:	<u>+</u> 190 Hz
Input Voltage Rating:	12-24 VDC on DC input 48 VDC on PoE

	Frequency Drift (Hz)		
Ambient Temperature (°C)	Supply Voltage (Nominal) 12 VDC	Supply Voltage (85 % of Nominal) 10.2 VDC	Supply Voltage (115% of Nominal) 27.6 VDC
-30	-190		
-20	-110		
-10	-40		
0	-10		
10	-10		
20	0	0	0
30	-10		
40	+10		
50	+90		
60	+190		

	Frequency Drift (Hz)		
Ambient Temperature (°C)	Supply Voltage (Nominal) 48 VDC	Supply Voltage (85 % of Nominal) 40.8 VDC	Supply Voltage (115% of Nominal) 55.2 VDC
-30	+64		
-20	+107		
-10	+129		
0	+93		
10	+86		
20	0	0	0
30	+22		
40	-14		
50	-43		
60	-50		

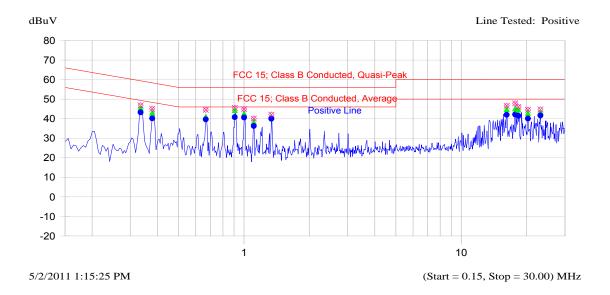
5.8. POWER LINE CONDUCTED EMISSIONS [47 CFR 15.107(a) & 15.207]

5.8.1. Limits

The equipment shall meet the limits of the following table:

Test Frequency Range	Class B Limits (dBμV)		Moscuring Pandwidth	
(MHz)	Quasi-Peak	Average	Measuring Bandwidth	
0.15 to 0.5	66 to 56*	56 to 46*	RBW = 9 kHz VBW ≥ 9 kHz for QP VBW = 1 Hz for Average	
0.5 to 5	56	46	RBW = 9 kHz VBW <u>></u> 9 kHz for QP VBW = 1 Hz for Average	
5 to 30	60	50	RBW = 9 kHz VBW <u>></u> 9 kHz for QP VBW = 1 Hz for Average	

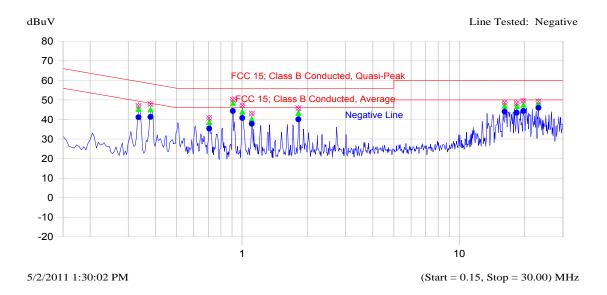
^{*} Decreasing linearly with logarithm of frequency


5.8.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4-2003 for measurement methods

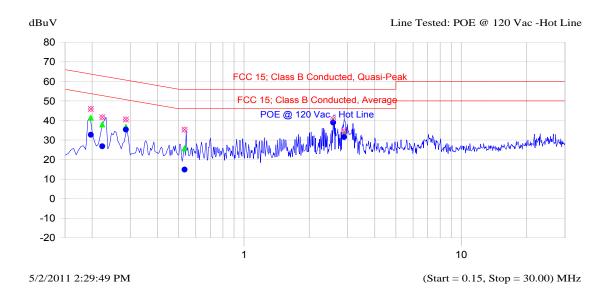
FCC ID: QC4-4GCRO

Plot 5.8.3.1. Power Line Conducted Emission Test Configuration 1: External 12 VDC Power Source Line Voltage: 12 VDC Line Tested: Positive


Current Graph

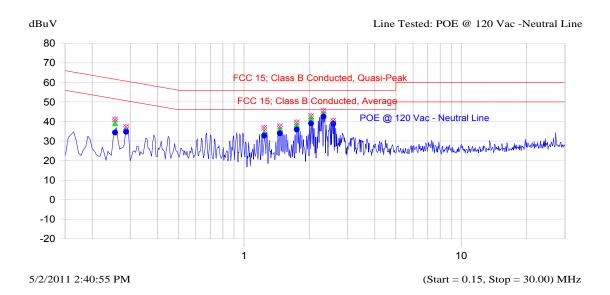
Frequency MHz	Peak dBuV	QP dBu\	Delta QP-QP Limit / dB	Avg Delt dBuV dB	a Avg-Avg Limit	Trace Name
0.334	46.8	45.7	-15.0	43.3 -7.4		Positive Line
0.378	45.0	43.1	-16.3	40.2 -9.3		Positive Line
0.667	44.5	41.1	-14.9	39.6 -6.4		Positive Line
0.907	45.5	44.4	-11.6	40.8 -5.2		Positive Line
1.002	44.8	42.7	-13.3	40.6 -5.4		Positive Line
1.110	40.0	38.4	-17.6	36.3 -9.7		Positive Line
1.337	42.0	40.9	-15.1	40.0 -6.0		Positive Line
16.166	46.6	44.9	-15.1	42.0 -8.0		Positive Line
17.694	47.8	45.3	-14.7	42.1 -7.9		Positive Line
18.304	46.1	44.7	-15.3	41.5 -8.5		Positive Line
20.257	44.5	42.9	-17.1	40.1 -9.9		Positive Line
23.127	44.7	43.5	-16.5	41.7 -8.3		Positive Line

Plot 5.8.3.2. Power Line Conducted Emission
Test Configuration 1: External 12 VDC Power Source
Line Voltage: 12 VDC
Line Tested: Negative


Current Graph

Frequency MHz	Peak QP dBuV dB		Avg Delta Avg-Avg Limit dBuV dB	Trace Name
0.334	46.9 45.	4 -15.3	41.2 -9.5	Negative Line
0.380	47.8 45.	2 -14.2	41.3 -8.0	Negative Line
0.707	40.7 38.	8 -17.2	35.4 -10.6	Negative Line
0.908	50.1 48.	3 -7.7	44.4 -1.6	Negative Line
1.003	47.2 44.	0 -12.0	40.8 -5.2	Negative Line
1.110	43.0 40.	3 -15.7	37.8 -8.2	Negative Line
1.817	45.7 43.	4 -12.6	40.0 -6.0	Negative Line
16.165	48.7 47.	1 -12.9	44.0 -6.0	Negative Line
18.364	48.3 46.	8 -13.2	43.5 -6.5	Negative Line
19.709	49.6 47.	6 -12.4	44.3 -5.7	Negative Line
23.128	49.2 48.	2 -11.8	45.9 -4.1	Negative Line

Plot 5.8.3.3. Power Line Conducted Emission Test Configuration 2: Power over Ethernet (PoE) Injector Line Voltage: 120VAC 60Hz Line Tested: Hot


Current Graph

Frequency MHz	Peak QP dBuV dBu		Avg dBu\	Delta Avg-Avg Limit / dB	Trace Name
0.197	45.9 41.4	-23.2	32.7	-21.9	POE @ 120 Vac - Hot Line
0.223	41.7 38.0	-25.9	26.8	-27.1	POE @ 120 Vac - Hot Line
0.286	40.5 36.8	3 -25.2	35.3	-16.7	POE @ 120 Vac - Hot Line
0.533	35.3 25.8	3 -30.2	14.9	-31.1	POE @ 120 Vac - Hot Line
2.573	40.7 39.8	-16.2	39.0	-7.0	POE @ 120 Vac - Hot Line
2.891	34.4 32.8	3 -23.2	31.5	-14.5	POE @ 120 Vac - Hot Line

Plot 5.8.3.4. Power Line Conducted Emission Test Configuration 2: Power over Ethernet (PoE) Injector Line Voltage: 120VAC 60Hz Line Tested: Neutral

Current Graph

Frequency MHz	Peak QP dBuV dBu		Avg Delta Avg-Avg Lim dBuV dB	it Trace Name
0.255	41.0 39.2	-23.7	34.4 -18.6	POE @ 120 Vac - Neutral Line
0.287	37.2 35.9		34.8 -17.3	POE @ 120 Vac - Neutral Line
1.239	36.6 34.5	5 -21.5	32.8 -13.2	POE @ 120 Vac - Neutral Line
1.463	37.5 36.0	-20.0	33.9 -12.1	POE @ 120 Vac - Neutral Line
1.750	39.6 38.3	3 -17.7	35.9 -10.1	POE @ 120 Vac - Neutral Line
2.036	42.8 41.9	-14.1	39.0 -7.0	POE @ 120 Vac - Neutral Line
2.323	45.6 44.3	3 -11.7	42.4 -3.6	POE @ 120 Vac - Neutral Line
2.576	40.4 39.4	-16.6	38.9 -7.1	POE @ 120 Vac - Neutral Line

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Spectrum Analyzer	Agilent	E7401A	US40240432	9 kHz – 1.5 GHz	10 Jan 2012
L.I.S.N.	EMCO	3825/2R	1165	10 kHz – 30 MHz	08 Apr 2012
Transient Limiter	Pasternack	PE7010-20		DC – 2 GHz 20 dB attenuation	18 Jan 2012
Spectrum Analyzer	Rohde & Schwarz	ESU40	100037	20 Hz – 40 GHz	15 Mar 2012
RF Amplifier	AH System	PAM-0118	225	20 MHz – 18 GHz	15 Mar 2012
Horn Antenna	EMCO	3115	5955	1 – 18 GHz	09 Jan 2012
Biconi-Log Antenna	EMCO	3142C	00026873	26 – 3000 MHz	26 Apr 2012
Loop Antenna	EMCO	6502	9104-2611	10 kHz – 30 MHz	08 Aug 2011
Semi-Anechoic Chamber	TDK	FCC: 91038 IC: 2049A-3			04 Apr 2014
Temperature & Humidity Chamber	Tenney	T5	9723B	-40°C - +80°C range	13 Sep 2011

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (150 kHz – 30 MHz):	Measured	Limit
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} u_i^2(y)}$	<u>+</u> 1.57	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.14	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.30	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration