Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

(CIC)

TEST REPORT

Report Reference No.....: TRE1710003402 R/C......: 65735

FCC ID.....: QAM019

Applicant's name.....: Promethean Ltd

United Kingdom

Manufacturer...... Promethean Ltd

United Kingdom

Test item description: ActivPanel PC for Android

Trade Mark Promethean

Model/Type reference...... PRM-ACON1-OPS

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample........... Oct. 12, 2017

Date of testing...... Oct. 13, 2017 - Nov. 12, 2017

Result...... PASS

Compiled by

(Position+Printed name+Signature): File administrators Becky Liang

Supervised by

(Position+Printed name+Signature): Project Engineer Jeff Sun

Approved by

(Position+Printed name+Signature): RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: TRE1710003402 Page: 2 of 57 Issued: 2017-11-13

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
		<u> </u>
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Conducted Emissions (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	20 dB Bandwidth	18
5.5.	Carrier Frequencies Separation	22
5.6.	Hopping Channel Number	24
5.7.	Dwell Time	26
5.8.	Pseudorandom Frequency Hopping Sequence	33
5.9.	Restricted band (radiated)	34
5.10.	Band edge and Spurious Emissions (conducted)	36
5.11.	Spurious Emissions (radiated)	52
<u>6.</u>	TEST SETUP PHOTOS	5 6
7.	EXTERANAL AND INTERNAL PHOTOS	57
		0.

Report No.: TRE1710003402 Page: 3 of 57 Issued: 2017-11-13

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devicese

1.2. Report version

Version No.	Date of issue	Description
00	Nov. 13, 2017	Original

Report No.: TRE1710003402 Page: 4 of 57 Issued: 2017-11-13

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Antenna Requirement	15.203/15.247 (c)	Pass	Jeff Sun
AC Power Line Conducted Emissions	15.207	Pass	Jack Wang
Conducted Peak Output Power	15.247 (b)(1)	Pass	Baozhu Hu
20 dB Bandwidth	15.247 (a)(1)	Pass	Baozhu Hu
Carrier Frequencies Separation	15.247 (a)(1)	Pass	Baozhu Hu
Hopping Channel Number	15.247 (a)(1)	Pass	Baozhu Hu
Dwell Time	15.247 (a)(1)	Pass	Baozhu Hu
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass	Baozhu Hu
Restricted band	15.247(d)/15.205	Pass	Baozhu Hu
Radiated Emissions	15.247(d)/15.209	Pass	Michael Jie

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1710003402 Page: 5 of 57 Issued: 2017-11-13

3. **SUMMARY**

3.1. Client Information

Applicant:	Promethean Ltd
Address: Promethean House, Lower Philips Rd, Blackburn, Lancash United Kingdom	
Manufacturer:	Promethean Ltd
Address:	Promethean House, Lower Philips Rd, Blackburn, Lancashire United Kingdom

3.2. Product Description

3.2. I Toddet Description	
Name of EUT:	ActivPanel PC for Android
Trade Mark:	Promethean
Model No.:	PRM-ACON1-OPS
Listed Model(s):	-
Power supply:	DC 12-19V
Adapter information:	-
Hardware version:	-
Software version:	-
Bluetooth	
Version:	Supported BT4.1+EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Integral Antenna
Antenna gain:	3.00 dBi

Report No.: TRE1710003402 Page: 6 of 57 Issued: 2017-11-13

3.3. Operation state

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
00	2402
01	2403
÷	:
39	2441
i i	
77	2479
78	2480

> TEST MODE

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

o Al	ADAPTER	Manufacturer:	Shenzhen SOY Technology Co.,Ltd
	ADAPTER	Model No.:	SOY024A-1200200CN
		Manufacturer:	/
0		Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1710003402 Page: 7 of 57 Issued: 2017-11-13

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1710003402 Page: 8 of 57 Issued: 2017-11-13

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1710003402 Page: 9 of 57 Issued: 2017-11-13

4.5. Equipments Used during the Test

Cond	Conducted Emissions						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.		
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2016/11/13		
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2016/11/13		
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2016/11/13		
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	-	-		

Radia	Radiated Emissions						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.		
1	EMI test receiver	Rohde&Schwarz	ESI 26	100009	2016/11/13		
2	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2016/11/13		
3	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13		
4	Horn antenna	ShwarzBeck	9120D	1011	2016/11/13		
5	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13		
6	Amplifier	Sonoma	310N	E009-13	2016/11/13		
7	JS Amplifier	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2016/11/13		
8	Amplifier	Compliance Direction systems	PAP1-4060	120	2016/11/13		
9	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13		
10	EMI test Software	Rohde&Schwarz	ESK1	-	-		
11	EMI test Software	Audix	E3	-	-		
12	TURNTABLE	MATURO	TT2.0	-	-		
13	ANTENNA MAST	MATURO	TAM-4.0-P	-	-		

RF Co	RF Conducted methods						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.		
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2016/11/13		
2	MXA Signal Analyzer	Agilent Technologies	N9020A	MY5050187	2016/11/13		

The Cal.Interval was one year.

Report No.: TRE1710003402 Page: 10 of 57 Issued: 2017-11-13

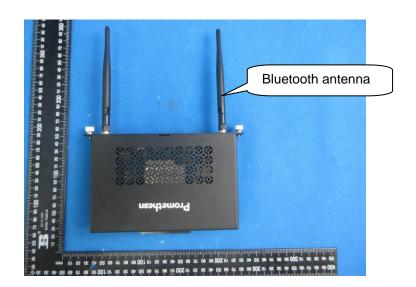
5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

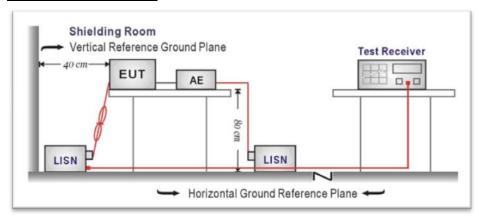
Test Result:

	$oxed{oxed}$ Passed	☐ Not Applicable
--	---------------------	------------------

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: TRE1710003402 Page: 11 of 57 Issued: 2017-11-13

5.2. Conducted Emissions (AC Main)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguesey range (MLIT)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Note:

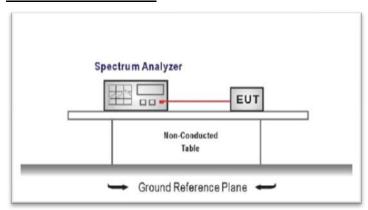
- 1) Transd= Cable lose + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit Level

Report No.: TRE1710003402 Page: 12 of 57 Issued: 2017-11-13

t Line:				L				
Level [dBµV]								
80	Ţ <u>-</u>	: - :		!			Ţ-;	· <u>-</u> ·
70							<u> </u>	·
60	i i i	· 	- 		 -	1 1 1	ii	i
50	<u> </u>	San a sandon						
1 (2)	WITTON	XVIV. DANIE	VIII (IX) III Ja	the other little		والمحالي	land.	į
40	17\ \ \ [.] \ A	N.A.A.A.A.A.A.A.A	white .	11.	& Halland Albanda	ald Hart	Charles and the same	
30	# # # # # # #	1 74 14 14 14 14 14 14 14 14 14 14 14 14 14	TO PERSONAL PROPERTY OF THE					The second
20 \	¥−₩-₩ : ₩-₩	╌╌╌┼┦┩┞╌┆			. 11. 1. 1. 1. 1. 1. 1. 1. 1.	- + - +	A CAN CAMPAGE	
10		╌╶┼╌┼╌┼	- 	· 			÷-;	. Y
0			!			1 1 1	! !	<u> </u>
150k 3	00k 400k	600k 800k	1M	2M	3M 4M 5M	6M 8M	10M	20M 30
к ж ж MES GM171	0185015_fin	1		Frequency [H:	zj			
x x x MES GM171 Frequency MHz	0185015_fin Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE	
Frequency	Level	Transd		Margin		Line	PE GND	
Frequency MHz 0.316500 0.415500	Level dBµV 56.20 50.50	Transd dB 10.2 10.2	dΒμV 60 58	Margin dB 3.6 7.0	Detector			
Frequency MHz 0.316500 0.415500 0.523500	Level dBµV 56.20 50.50 51.90	Transd dB 10.2 10.2 10.2	dBµ∇ 60 58 56	Margin dB 3.6 7.0 4.1	Detector QP QP QP	L1 L1 L1	GND GND GND	
Frequency MHz 0.316500 0.415500 0.523500 0.528000	Level dBµV 56.20 50.50 51.90 48.80	Transd dB 10.2 10.2 10.2 10.2	dBμV 60 58 56 56	Margin dB 3.6 7.0 4.1 7.2	Detector QP QP QP QP QP	L1 L1 L1 L1	GND GND GND GND	
Frequency MHz 0.316500 0.415500 0.523500 0.528000 0.820500	Level dBµV 56.20 50.50 51.90 48.80 48.20	Transd dB 10.2 10.2 10.2 10.2 10.2	dBμV 60 58 56 56	Margin dB 3.6 7.0 4.1 7.2 7.8	Detector QP QP QP QP QP QP	L1 L1 L1 L1	GND GND GND GND GND	
Frequency MHz 0.316500 0.415500 0.523500 0.528000	Level dBµV 56.20 50.50 51.90 48.80	Transd dB 10.2 10.2 10.2 10.2	dBμV 60 58 56 56	Margin dB 3.6 7.0 4.1 7.2	Detector QP QP QP QP QP	L1 L1 L1 L1	GND GND GND GND	
Frequency MHz 0.316500 0.415500 0.523500 0.528000 0.820500	Level dBµV 56.20 50.50 51.90 48.80 48.20	Transd dB 10.2 10.2 10.2 10.2 10.2	dВµV 60 58 56 56 56	Margin dB 3.6 7.0 4.1 7.2 7.8	Detector QP QP QP QP QP QP QP QP	L1 L1 L1 L1	GND GND GND GND GND	
Frequency MHz 0.316500 0.415500 0.523500 0.528000 0.820500 1.162500	Level dBµV 56.20 50.50 51.90 48.80 48.20 47.80	Transd dB 10.2 10.2 10.2 10.2 10.2	dВµV 60 58 56 56 56	Margin dB 3.6 7.0 4.1 7.2 7.8 8.2	Detector QP QP QP QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND GND	
Frequency MHz 0.316500 0.415500 0.523500 0.528000 0.820500 1.162500 Frequency	Level dBµV 56.20 50.50 51.90 48.80 48.20 47.80 Level dBµV	Transd dB 10.2 10.2 10.2 10.2 10.2 Transd dB	dBµV 60 58 56 56 56 56	Margin dB 3.6 7.0 4.1 7.2 7.8 8.2 Margin	Detector QP QP QP QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND GND	
Frequency MHz 0.316500 0.415500 0.523500 0.528000 0.820500 1.162500 Frequency MHz 0.312000 0.487500	Level dBµV 56.20 50.50 51.90 48.80 48.20 47.80 Level dBµV 37.80 33.10	Transd dB 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.	dBµV 60 58 56 56 56 56 Limit dBµV 50 46	Margin dB 3.6 7.0 4.1 7.2 7.8 8.2 Margin dB 12.1 13.1	Detector QP QP QP QP QP QP AV AV	L1 L1 L1 L1 L1 L1 Line	GND GND GND GND GND FE	
Frequency MHz 0.316500 0.415500 0.523500 0.528000 0.820500 1.162500 Frequency MHz 0.312000 0.487500 0.519000	Level dBµV 56.20 50.50 51.90 48.80 48.20 47.80 Level dBµV 37.80 33.10 38.20	Transd dB 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.	dBµV 60 58 56 56 56 56 Limit dBµV 50 46 46	Margin dB 3.6 7.0 4.1 7.2 7.8 8.2 Margin dB 12.1 13.1 7.8	Detector QP QP QP QP QP QP AV AV AV	L1 L1 L1 L1 L1 L1 Line	GND GND GND GND GND FE GND GND GND	
Frequency MHz 0.316500 0.415500 0.523500 0.528000 0.820500 1.162500 Frequency MHz 0.312000 0.487500	Level dBµV 56.20 50.50 51.90 48.80 48.20 47.80 Level dBµV 37.80 33.10	Transd dB 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.	dBµV 60 58 56 56 56 56 Limit dBµV 50 46	Margin dB 3.6 7.0 4.1 7.2 7.8 8.2 Margin dB 12.1 13.1	Detector QP QP QP QP QP QP AV AV	L1 L1 L1 L1 L1 L1 Line	GND GND GND GND GND FE	

Report No.: TRE1710003402 Page: 13 of 57 Issued: 2017-11-13

Line:				N					
Level [dBµV]									
80 F <u>i</u>	Ţ <u>Ţ</u>	,					- -	<u>-</u>	
70	ļļ	! !-						 	
60	i i i		- i	i	i i <u>i</u>	<u> </u>	ii	i	
	1				 			į	
50	MANAGE		WAY WILLIAM	The official			al del		
40 + + +	// / / / / / / / / / / / / / / / / / /		11111111111		l pil dadigu a jik	والأراء	de la companya de la		
30 	-1-M-1-4 M-1-1-5	TAHAAAANWAA	(YEAFFEMANAL)	VAMAS — SAMAS SAMASSAM		A de la constant de l	ALL AND PROPERTY.	A To and	
20 A-L-VL-V	V-11-N:71":		משניני מעובי	בישיביעותי עומוייט על	4 4 4 6 4 4 6	a kilo nain	n elektrische geben der	44 14 1	
10	<u> </u>	i i i i i		<u></u>	* i i i	_		M.	
	·								
0 150k 30	00k 400k	600k 800k	1M	2M	3M 4M 5M	6M 8M	10M	20M	301
				Frequency [H:	z]				
x x MES GM171	0185016_fin								
Frequency MHz	0185016_fin Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE		
Frequency	Level	Transd		_	Detector	Line N	PE GND		
Frequency MHz 0.199500 0.316500	Level dBµV 47.00 50.30	Transd dB 10.3 10.2	dВµV 64 60	dB 16.6 9.5					
Frequency MHz 0.199500 0.316500 0.519000	Level dBµV 47.00 50.30 49.10	Transd dB 10.3 10.2 10.2	dBμV 64 60 56	dB 16.6 9.5 6.9	QP QP QP	N N N	GND GND GND		
Frequency MHz 0.199500 0.316500 0.519000 0.757500	Level dBµV 47.00 50.30 49.10 46.80	Transd dB 10.3 10.2 10.2 10.2	dBμV 64 60 56 56	dB 16.6 9.5 6.9 9.2	QP QP QP QP	N N N	GND GND GND GND		
Frequency MHz 0.199500 0.316500 0.519000 0.757500 0.838500	Level dBµV 47.00 50.30 49.10 46.80 49.10	Transd dB 10.3 10.2 10.2 10.2 10.1	dBμV 64 60 56 56 56	dB 16.6 9.5 6.9 9.2 6.9	QP QP QP QP QP	N N N N	GND GND GND GND GND		
Frequency MHz 0.199500 0.316500 0.519000 0.757500	Level dBµV 47.00 50.30 49.10 46.80	Transd dB 10.3 10.2 10.2 10.2	dBμV 64 60 56 56	dB 16.6 9.5 6.9 9.2	QP QP QP QP	N N N	GND GND GND GND		
Frequency MHz 0.199500 0.316500 0.519000 0.757500 0.838500	Level dBµV 47.00 50.30 49.10 46.80 49.10	Transd dB 10.3 10.2 10.2 10.1 10.1 Transd	dBµV 64 60 56 56 56 56	dB 16.6 9.5 6.9 9.2 6.9 8.5	QP QP QP QP QP	N N N N	GND GND GND GND GND GND		
Frequency MHz 0.199500 0.316500 0.519000 0.757500 0.838500 0.897000	Level dBµV 47.00 50.30 49.10 46.80 49.10 47.50	Transd dB 10.3 10.2 10.2 10.2 10.1	dBµV 64 60 56 56 56	dB 16.6 9.5 6.9 9.2 6.9 8.5	QP QP QP QP QP	N N N N	GND GND GND GND GND GND		
Frequency MHz 0.199500 0.316500 0.519000 0.757500 0.838500 0.897000 Frequency MHz	Level dBµV 47.00 50.30 49.10 46.80 49.10 47.50	Transd dB 10.3 10.2 10.2 10.1 10.1 Transd	dBµV 64 60 56 56 56 56	dB 16.6 9.5 6.9 9.2 6.9 8.5 Margin	QP QP QP QP QP	N N N N	GND GND GND GND GND GND		
Frequency MHz 0.199500 0.316500 0.519000 0.757500 0.838500 0.897000 Frequency MHz 0.505500 0.622500	Level dBµV 47.00 50.30 49.10 46.80 49.10 47.50 Level dBµV 34.60 33.90	Transd dB 10.3 10.2 10.2 10.1 10.1 Transd dB 10.2 10.2	dBμV 64 60 56 56 56 56 46 Limit dBμV	dB 16.6 9.5 6.9 9.2 6.9 8.5 Margin dB 11.4 12.1	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND		
Frequency MHz 0.199500 0.316500 0.519000 0.757500 0.838500 0.897000 Frequency MHz 0.505500 0.622500 0.757500	Level dBµV 47.00 50.30 49.10 46.80 49.10 47.50 Level dBµV 34.60 33.90 31.10	Transd dB 10.3 10.2 10.2 10.1 10.1 Transd dB 10.2 10.2 10.2 10.2 10.2	dBµV 64 60 56 56 56 56 Limit dBµV 46 46	dB 16.6 9.5 6.9 9.2 6.9 8.5 Margin dB 11.4 12.1 14.9	QP QP QP QP QP Detector AV AV	N N N N N Line	GND GND GND GND GND FE GND GND GND		
Frequency MHz 0.199500 0.316500 0.519000 0.757500 0.838500 0.897000 Frequency MHz 0.505500 0.622500 0.757500 0.847500	Level dBµV 47.00 50.30 49.10 46.80 49.10 47.50 Level dBµV 34.60 33.90 31.10 35.00	Transd dB 10.3 10.2 10.2 10.1 10.1 Transd dB 10.2 10.2 10.2 10.2 10.1	dBµV 64 60 56 56 56 56 46 46 46 46	dB 16.6 9.5 6.9 9.2 6.9 8.5 Margin dB 11.4 12.1 14.9 11.0	QP QP QP QP QP Detector AV AV AV	N N N N N Line	GND GND GND GND GND FE GND GND GND GND		
Frequency MHz 0.199500 0.316500 0.519000 0.757500 0.838500 0.897000 Frequency MHz 0.505500 0.622500 0.757500	Level dBµV 47.00 50.30 49.10 46.80 49.10 47.50 Level dBµV 34.60 33.90 31.10	Transd dB 10.3 10.2 10.2 10.1 10.1 Transd dB 10.2 10.2 10.2 10.2 10.2	dBµV 64 60 56 56 56 56 Limit dBµV 46 46	dB 16.6 9.5 6.9 9.2 6.9 8.5 Margin dB 11.4 12.1 14.9	QP QP QP QP QP AV AV AV AV AV	N N N N N Line	GND GND GND GND GND FE GND GND GND		


Report No.: TRE1710003402 Page: 14 of 57 Issued: 2017-11-13

5.3. Conducted Peak Output Power

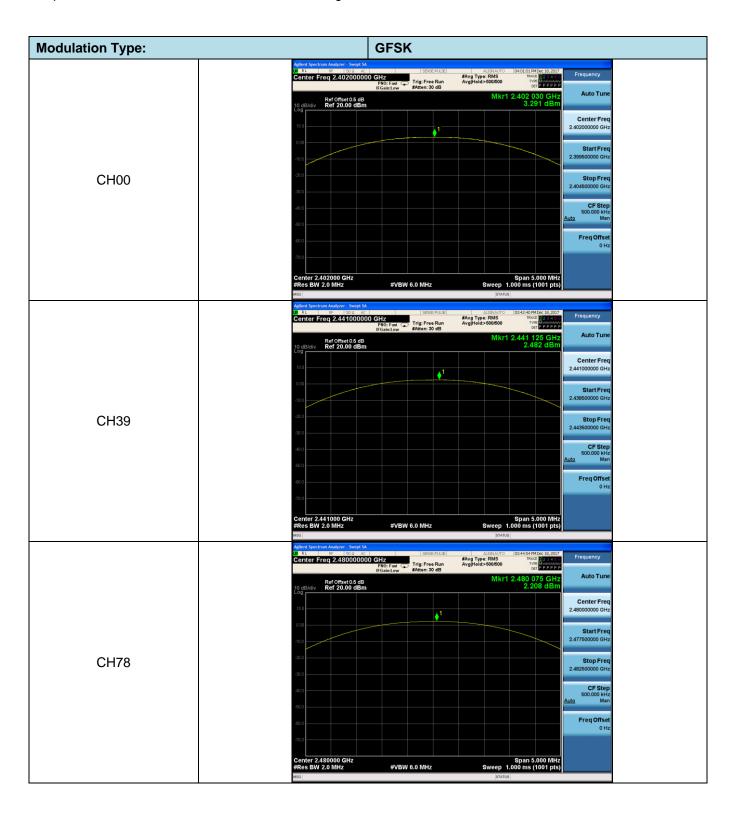
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

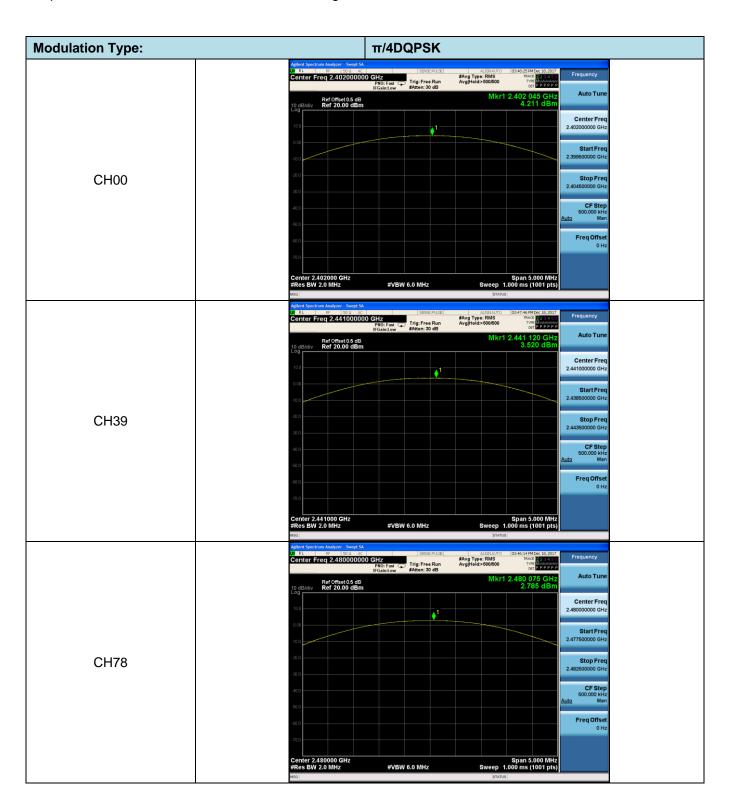
TEST CONFIGURATION

TEST PROCEDURE

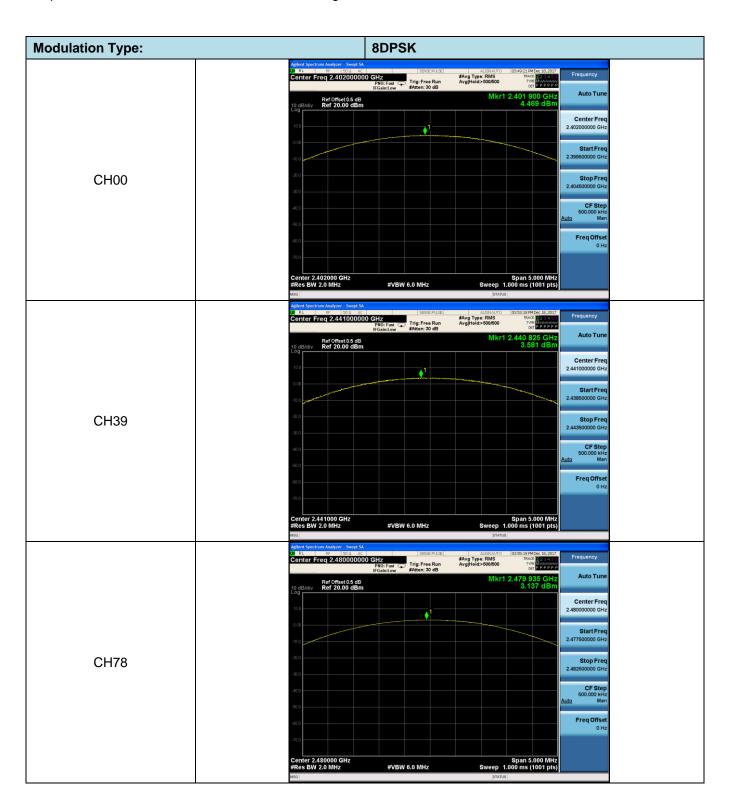
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW≥ the 20 dB bandwidth of the emission being measured, VBW≥RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

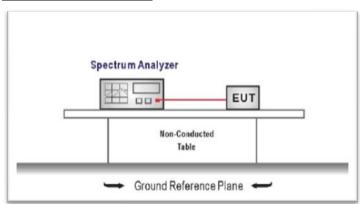

TEST RESULTS

Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result
	00	3.291		
GFSK	39	2.482	≤ 30.00	Pass
	78	2.208		
	00	4.211		
π/4DQPSK	39	3.520	≤ 21.00	Pass
	78	2.785		
	00	4.469		
8DPSK	39	3.581	≤ 21.00	Pass
	78	3.137		


Report No.: TRE1710003402 Page: 15 of 57 Issued: 2017-11-13

Report No.: TRE1710003402 Page: 16 of 57 Issued: 2017-11-13

Report No.: TRE1710003402 Page: 17 of 57 Issued: 2017-11-13


Report No.: TRE1710003402 Page: 18 of 57 Issued: 2017-11-13

5.4. 20 dB Bandwidth

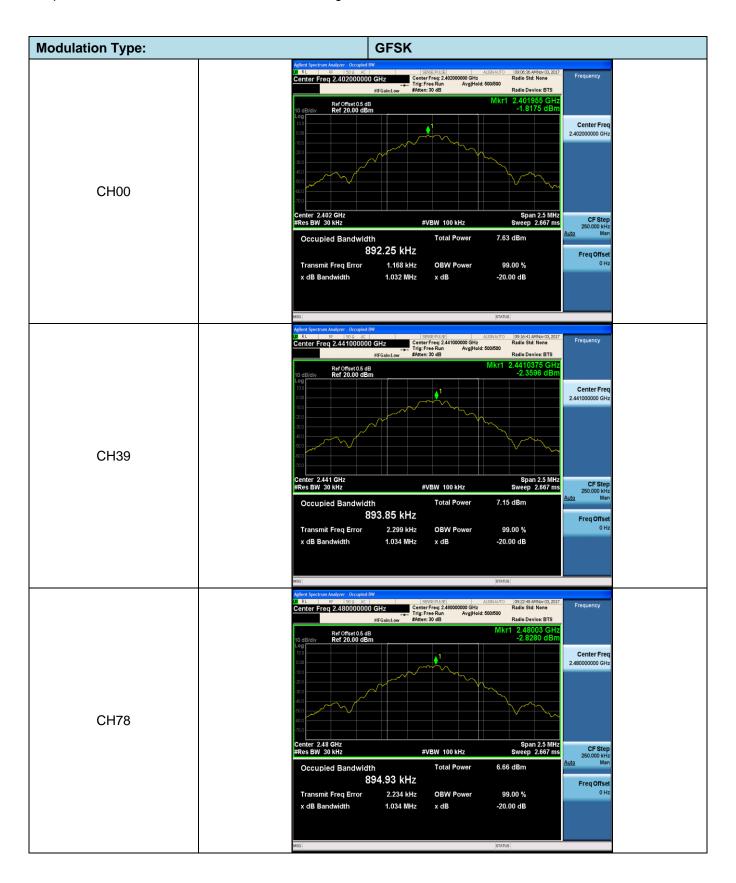
LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

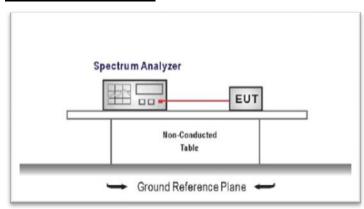
TEST RESULTS

Modulation type	Channel	20 dB Bandwidth (MHz)	Limit (MHz)	Result	
	00	1.03			
GFSK	39	1.03	-	Pass	
	78	1.03			
	00	1.34			
π/4DQPSK	39	1.34	-	Pass	
	78	1.34			
	00	1.36			
8DPSK	39	1.36	-	Pass	
	78	1.36			

Report No.: TRE1710003402 Page: 19 of 57 Issued: 2017-11-13

Report No.: TRE1710003402 Page: 20 of 57 Issued: 2017-11-13

Report No.: TRE1710003402 Page: 21 of 57 Issued: 2017-11-13


Report No.: TRE1710003402 Page: 22 of 57 Issued: 2017-11-13

5.5. Carrier Frequencies Separation

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25 kHz or the 2/3*20 dB bandwidth of the hopping channel, whichever is greater.

TEST CONFIGURATION

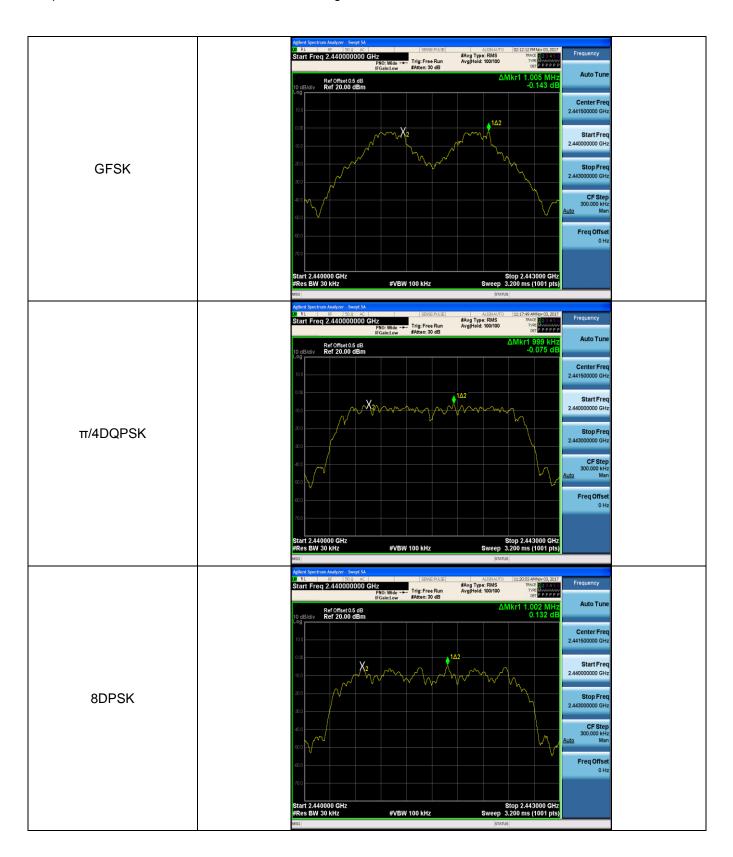
TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels
 - RBW ≥ 1% of the span, VBW ≥ RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

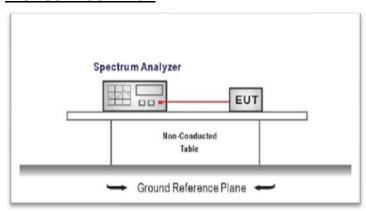

⊠ Passed	☐ Not Applicable
IXI Passed	Not Applicable

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz) *	Result
GFSK	39	1.01	≥0.687	Pass
π/4DQPSK	39	1.00	≥0.893	Pass
8DPSK	39	1.00	≥0.907	Pass

Note:

^{*:} GFSK limit = 2/3 * The maximum 20 dB Bandwidth for $\pi/4$ DQPSK modulation on the section 5.4. $\pi/4$ DQPSK limit = 2/3 * The maximum 20 dB Bandwidth for $\pi/4$ DQPSK modulation on the section 5.4. 8DPSK limit = 2/3 * The maximum 20 dB Bandwidth for 8DPSK modulation on the section 5.4

Report No.: TRE1710003402 Page: 23 of 57 Issued: 2017-11-13


Report No.: TRE1710003402 Page: 24 of 57 Issued: 2017-11-13

5.6. Hopping Channel Number

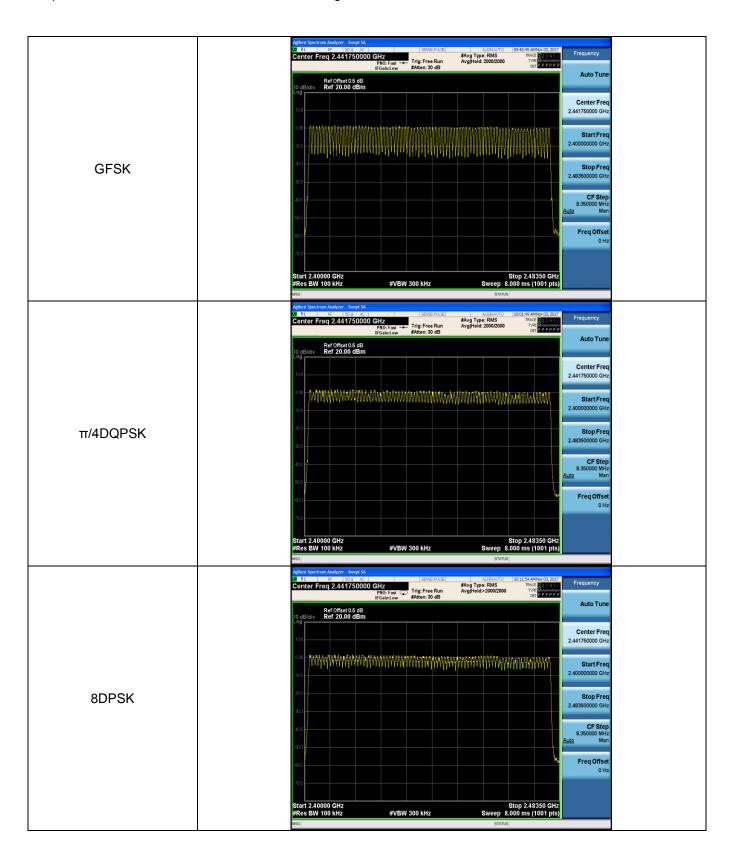
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems in the 2400–2483.5 MHz band shall use at least **15** channels.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = the frequency band of operation
 - RBW ≥ 1% of the span, VBW ≥ RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

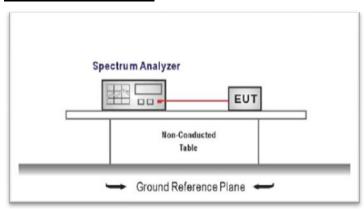

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel number	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15.00	Pass
8DPSK	79		

Report No.: TRE1710003402 Page: 25 of 57 Issued: 2017-11-13


Report No.: TRE1710003402 Page: 26 of 57 Issued: 2017-11-13

5.7. Dwell Time

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

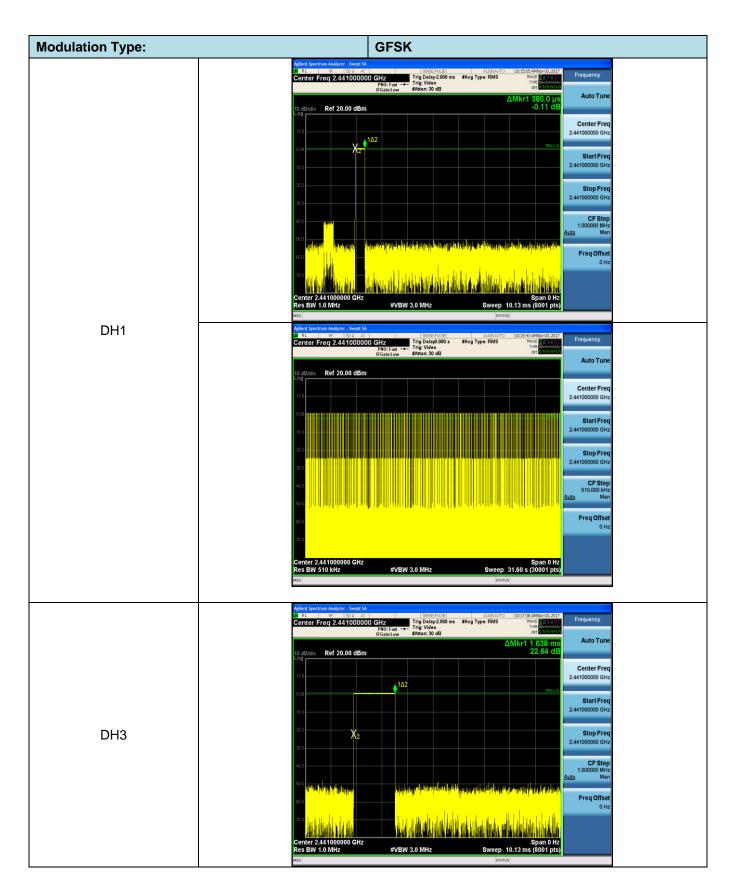
TEST CONFIGURATION

TEST PROCEDURE

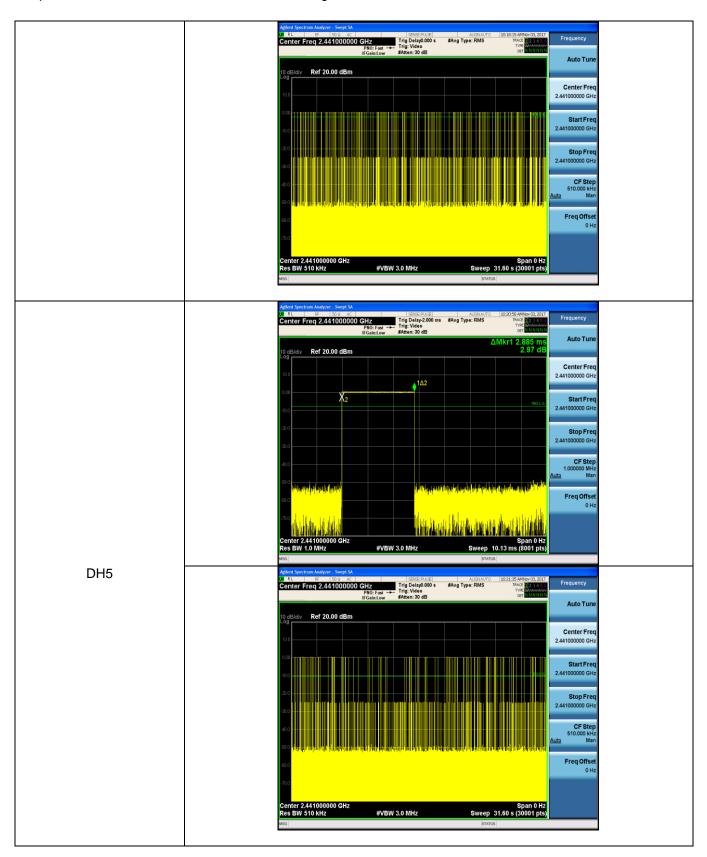
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW ≥ RBW
 - Sweep = as necessary to capture the entire dwell time per hopping channel,
 - Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

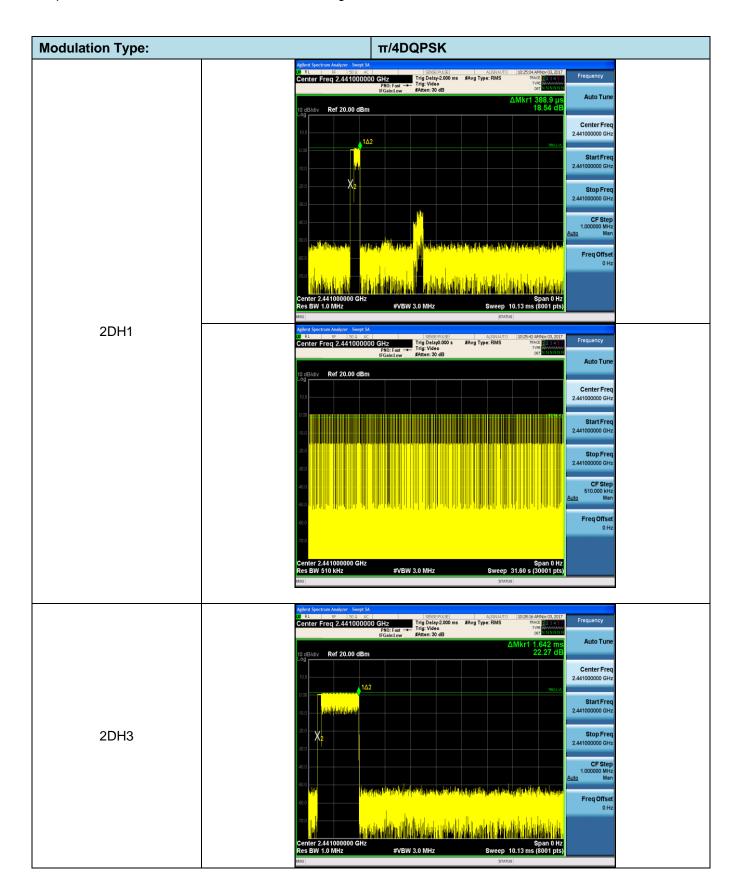
Please refer to the clause 3.3

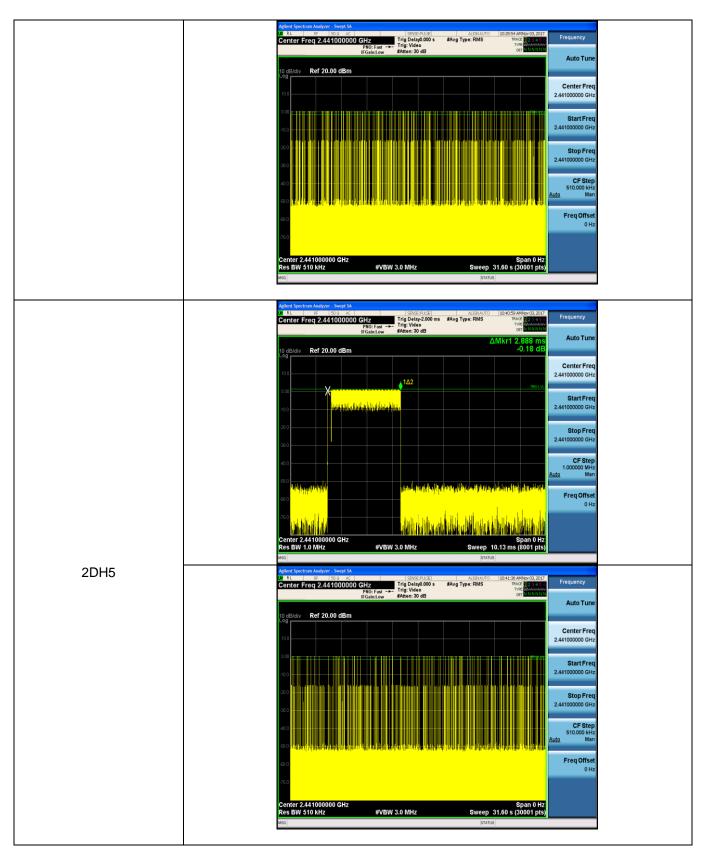

TEST RESULTS

Modulation type	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell time (Second)	Limit (Second)	Result
	DH1	0.38	319.00	0.12		
GFSK	DH3	1.64	154.00	0.25	≤ 0.40	Pass
	DH5	2.89	100.00	0.29		ļ
	2DH1	0.39	315.00	0.12		
π/4DQPSK	2DH3	1.64	146.00	0.24	≤ 0.40	Pass
	2DH5	2.89	100.00	0.29		
	3DH1	0.39	317.00	0.12		
8DPSK	3DH3	1.64	169.00	0.28	≤ 0.40	Pass
	3DH5	2.88	102.00	0.29		


Note:

- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- 2. Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2DH1, 3DH1 Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2DH3, 3DH3 Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2DH5, 3DH5


Report No.: TRE1710003402 Page: 27 of 57 Issued: 2017-11-13


Report No.: TRE1710003402 Page: 28 of 57 Issued: 2017-11-13

Report No.: TRE1710003402 Page: 29 of 57 Issued: 2017-11-13

Report No.: TRE1710003402 Page: 30 of 57 Issued: 2017-11-13

