TEST REPORT

For

ActivConnect G Series Android PC

Model Number: PRM-X6PRO-01

FCC ID: QAM018

IC: 5459A-018

Report Number : WT168002531

Test Laboratory	:	Shenzhen Academy of Metrology and Quality Inspection
		National Digital Electronic Product Testing Center
Site Location	:	NETC Building, No.4 Tongfa Rd., Xili, Nanshan,
		Shenzhen, China
Tel	:	0086-755-86928965
Fax	:	0086-755-86009898-31396
Web	:	www.smq.com.cn
E-mail		emcrf@smq.com.cn

TEST REPORT DECLARATION

Applicant	: PROMETHEAN LIMITED
Address	: PROMETHEAN HOUSE, LOWER PHILIPS RD WHITEBIRK BLACKBURN, BB1 5TH UNITED KINGDOM
Manufacturer	: PROMETHEAN LIMITED
Address	: PROMETHEAN HOUSE, LOWER PHILIPS RD WHITEBIRK BLACKBURN, BB1 5TH UNITED KINGDOM
EUT Description	: ActivConnect G Series Android PC
Model No	: PRM-X6PRO-01
Trade mark	: Promethean
Serial Number	: /
FCC ID	: QAM018
IC	: 5459A-018

Test Standards:

FCC Part 15 15.207, 15.209, 15.407(2015)

RSS-247 Issue 1(2015-05) RSS-Gen Issue 4(2014-11)

The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the maximum emissions from the EUT. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with FCC Rules Part 15.207, 15.209, 15.407 and IC Rules RSS-247 Issue 1(2015-05), RSS-Gen Issue 4(2014-11)

The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory.

Project Engineer:	TRIA	Date:	_May.13, 2016
	(Chen Silin 陈司林)		
Checked by:	林主钢	Date:	May.13, 2016
	(Lin Yixiang 林奕翔)		
Approved by:	TEN	Date:	May.13, 2016
	(Lin Bin 林斌)		

TABLE OF CONTENTS

TES	T REP	ORT DECLARATION	2
1.	TES	T RESULTS SUMMARY	5
2.	GEN	ERAL INFORMATION	6
	2.1.	Report information	6
	2.2.	Laboratory Accreditation and Relationship to Customer	6
	2.3.	Measurement Uncertainty	7
3.	PRO	DUCT DESCRIPTION	8
	3.1.	EUT Description	8
	3.2.	Related Submittal(s) / Grant (s)	9
	3.3.	Block Diagram of EUT Configuration	9
	3.4.	Operating Condition of EUT	9
	3.5.	Directional Antenna Gain	9
	3.6.	Support Equipment List	10
	3.7.	Test Conditions	10
	3.8.	Special Accessories	10
	3.9.	Equipment Modifications	10
4.	TES	T EQUIPMENT USED	11
5.	DUT	Y CYCLE	12
	5.1.	LIMITS OF DUTY CYCLE	12
	5.2.	TEST PROCEDURE	12
	5.3.	TEST SETUP	12
	5.4.	TEST DATA	12
6.	6DB	BANDWIDTH MEASUREMENT	15
	6.1.	LIMITS OF 6dB BANDWIDTH MEASUREMENT	15
	6.2.	TEST PROCEDURE	15
	6.3.	TEST SETUP	15
7.	26DE	B BANDWIDTH MEASUREMENT	20
	7.1.	LIMITS OF 26dB BANDWIDTH MEASUREMENT	20
	7.2.	TEST PROCEDURE	20
	7.3.	TEST SETUP	20
	7.4.	Test Data	

8.	99% (OCCUPIED BANDWIDTH	
	8.1.	LIMITS OF 99%Occupied Bandwidth	29
	8.2.	TEST PROCEDURE	
	8.3.	TEST DATA	29
9.	MAXI	MUM CONDUCTED OUTPUT POWER MEASUREMENT	
	9.1.	LIMITS OF Maximum Conducted Output Power Measurement	
	9.2.	TEST PROCEDURE	
	9.3.	TEST SETUP	
	9.4.	TEST DATA	
10.	MAXI	MUM POWER SPECTRAL DENSITY LEVEL MEASUREMENT	42
	10.1.	LIMITS OF Maximum Power Spectral Density Level Measurement	42
	10.2.	TEST PROCEDURE	42
	10.3.	TEST DATA	43
11.	RADI	ATED BANDEDGE AND SPURIOUS MEASUREMENT	48
	11.1.	LIMITS OF Radiated Bandedge and Spurious Measurement	
	11.2.	TEST PROCEDURE	
	11.3.	TEST DATA	49
12.	CONI	DUCTED EMISSION TEST FOR AC POWER PORT MEASUREMENT	124
	12.1.	Test Standard and Limit	124
	12.2.	Test Procedure	124
	12.3.	Test Arrangement	124
	12.4.	Test Data	124
13.	FREG	QUENCY STABILITY	128
	13.1.	LIMITS OF Frequency Stability	128
	13.2.	TEST PROCEDURE	128
	13.3.	TEST DATA	128
14.	ANTE	INNA REQUIREMENTS	130
	14.1.	Applicable requirements	130
	14.2.	Antenna Connector	130
	14.3.	Antenna Gain	130

1. TEST RESULTS SUMMARY

Table 1 Test Results Summary				
Test Items	FCC Rules	IC Rules	Test Results	
6dB Bandwidth	FCC §15.407 (e)	RSS-247 Clause 6.2	Pass	
26dB Bandwidth	FCC §15.407 (a)	RSS-247 Clause 6.2	Pass	
Maximum Peak Conducted Power	FCC §15.407 (a)	RSS-247 Clause 6.2	Pass	
Maximum Power Spectral Density Level	FCC §15.407 (a)	RSS-247 Clause 6.2	Pass	
Radiated Bandedge and Spurious	15.407 (b) 15.209 15.205	RSS-247 Clause 6.2	Pass	
Conducted emission test for AC power port	15.207	RSS-Gen Section8.8	Pass	
Frequency Stability	15.407(g)	RSS-Gen §6.11	Pass	
Antenna Requirment	15.203	RSS-Gen Section8.1.3	Pass	
99% Occupied bandwidth	N/A	RSS-Gen Clause 6.6	Pass	

Remark: "N/A" means "Not applicable."

2. GENERAL INFORMATION

2.1.Report information

- 2.1.1.This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment.
- 2.1.2.The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.
- 2.1.3.Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so.

2.2. Laboratory Accreditation and Relationship to Customer

The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in their facilities located at Bldg. of Metrology & Quality Inspection, Longzhu Road, Nanshan District, Shenzhen, Guangdong, China. At the time of testing, Laboratory is accredited by the following organizations:

China National Accreditation Service for Conformity Assessment (CNAS) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is CNAS L0579. The Laboratory is listed in the United States of American Federal

Communications Commission (FCC), and the registration number are 446246 806614 994606(semi anechoic chamber).

The Laboratory is listed in Voluntary Control Council for Interference by Information Technology Equipment (VCCI), and the registration number are R-1974(open area test site), R-1966(semi anechoic chamber),C-2117(mains ports conducted interference measurement) and T-180(telecommunication ports conducted interference measurement).

The Laboratory is registered to perform emission tests with Industry Canada (IC), and the registration number is 11177A-1 11177A-2.

TUV Rhineland accredits the Laboratory for conformance to IEC and EN standards, the registration number is E2024086Z02.

2.3. Measurement Uncertainty

Conducted Emission 9kHz~30MHz 3.5dB

Radiated Emission 30MHz~1000MHz 4.5dB 1GHz~26.5GHz 4.6dB

3. PRODUCT DESCRIPTION

3.1.EUT Description

Description	· ActivConnect G Series Android PC		
Manufacturer	PROMETHEAN LIMITED		
Model Number	PRM-X6PRO-01		
Operate Frequency	: U-NII 1(5150~5250MHz) U-NII 3(5725~5850MHz)		
Antenna Designation	PIFA Antenna 2dBi		

Remark: /

Table 2 Working Frequency List U-NII 1 (802.11a, 802.11ac VH20, 802.11n HT20)

Channel	Frequency	Channel	Frequency
36	5180MHz	44	5220MHz
40	5200MHz	48	5240MHz

Table 3 Working Frequency List U-NII 1,(802.11ac VH40, 802.11n HT40)

Channel	Frequency	Channel	Frequency
38	5190MHz	46	5230MHz

Table 4 Working Frequency List U-NII 1 (802.11ac VH80)

Channel	Frequency
42	5210MHz

Table 5 Working Frequency List U-NII 3 (802.11a, 802.11ac VH20, 802.11n HT20)

Channel	Frequency	Channel	Frequency
149	5745MHz	161	5805MHz
153	5765MHz	165	5825MHz
157	5785MHz		

Table 6 Working Frequency List U-NII 3,(802.11ac VH40, 802.11n HT40)

Channel	Frequency	Channel	Frequency
151	5755MHz	159	5795MHz

Table 7 Working	I Frequency	V List U-NII 3	(802.11ac VH80)
			(

Channel	Frequency
155	5775MHz

3.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: **QAM018** and IC: **5459A-018** filing to comply with Section 15.207, 15.209, 15.407 of the FCC Part 15, Subpart E and RSS-247 Issue 1(2015-05), RSS-Gen Issue 4(2014-11) Rules.

3.3. Block Diagram of EUT Configuration

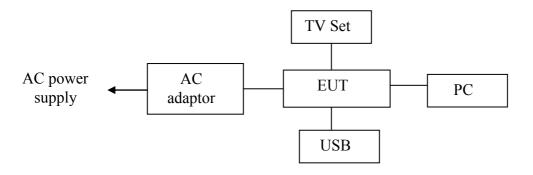


Figure 1 EUT setup

3.4. Operating Condition of EUT

The Radiated spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT is rotated on three test planes to find out the worst emission (X plane).

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power. Worst-case data rates as provided by the client were:

802.11a mode: 6 Mbps

802.11n HT20 mode: MCS0

802.11n HT40 mode: MCS0

802.11ac VH80 mode:MCS0

802.11a operates in SISO mode. For SISO conducted

measurements, the modes tested in this report will be considered as a worst case mode.

802.11n operate in SISO mode. For SISO conducted

measurements, the modes tested in this report will be considered as a worst case mode.

802.11ac operate in SISO mode. For SISO conducted

measurements, the modes tested in this report will be considered as a worst case mode.

3.5. Directional Antenna Gain

The EUT does NOT support a WIFI MIMO function. Directional gain need NOT to be considered.

3.6. Support Equipment List

Name	Model No	Support Equipme S/N	Manufacturer
Adaptor for EUT	ICP12-050-2000D		Shenzhen Shi Yingyuan Electronics Co., Ltd.
Computer	9439	L3BDF2K	Lenovo
Keyboard (USB)	SK-8825 (L)	02553778	Lenovo
Mouse (USB)	MO28UOL	4418011108	Lenovo
Monitor	9227-AE1	V1TDB38	Lenovo
TV	KV-J21TF8		Sony
LCD TV	26L16SW	R145567	Skyworth

Table 8 Support Equipment List

3.7.Test Conditions

Date of test : Apr.15,2016- May.10, 2016 Date of EUT Receive : Apr.11,2016 Temperature: -30-50 °C Relative Humidity:48-56%

3.8. Special Accessories

Not available for this EUT intended for grant.

3.9. Equipment Modifications

Not available for this EUT intended for grant.

4. TEST EQUIPMENT USED

					Cal.
No.	Equipment	Manufacturer	Model No.	Last Cal.	Interval
SB2603	EMI Test Receiver	Rohde & Schwarz	ESCS30	Dec.18, 2015	1 Year
SB3321	AMN	Rohde & Schwarz	ESH2-Z5	Jan.17, 2016	1 Year
SB2604	AMN	Rohde & Schwarz	ESH3-Z5	Nov.18, 2015	1 Year
SB8501/09	EMI Test Receiver	Rohde & Schwarz	ESU40	Mar.18, 2016	1 Year
SB8501/04	Bilog Antenna	Schwarzbeck	VULB9163	Mar.18, 2016	1 Year
SB5472/02	Trilog Broadband Antenna(30M-3GHz)	Schwarzbeck	VULB9163	Jan.07 ,2016	1 Year
SB3435	Horn Antenna	Rohde & Schwarz	HF906	Jan.18, 2016	1 Year
SB8501/01	Double-Ridged Waveguide Horn Antenna(1G~18GHz)	Rohde & Schwarz	HF907	Mar.21, 2016	1 Year
SB3345	Loop Antenna	Schwarzbeck	FMZB1516	Jan.20, 2015	2 Years
SB3437	Power meter	Rohde & Schwarz	NRVD	Jul.03, 2015	1 Year
SB8501/17	Preamplifier	Rohde & Schwarz	SCU-18	Mar.26, 2016	1 Year
SB8501/16	Preamplifier	Rohde & Schwarz	SCU-26	Mar.26, 2016	1 Year
SB9059	Preamplifier	Rohde & Schwarz	SCU-40	Nov.05,2015	1 Year
SB8501/11	Horn Antenna	ETS-Lindgren	3160-09	Mar.28,2016	1 Year
SB8501/12	Horn Antenna	ETS-Lindgren	3160-10	Mar.28,2016	1 Year
SB9721/05	Power Meter	Agilent	N1913A	Dec.28, 2015	1 Year
SB9721/06	Power Sensor	Agilent	E9304A	Dec.28, 2015	1 Year
SB11818	Temperature & Humidity Chamber	EH-010U	Espec,CHI NA	Jan.19, 2016	1 Year

Table 9 Test Equipment

5. DUTY CYCLE

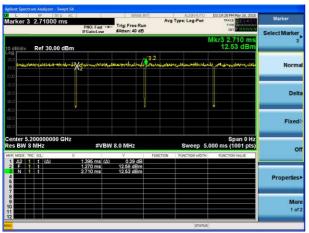
5.1.LIMITS OF DUTY CYCLE

None; for reporting purposes only

5.2.TEST PROCEDURE

- 1. Set span = Zero
- 2. RBW = 8MHz
- 3. VBW = 8MHz,
- 4. Detector = Peak

5.3.TEST SETUP



5.4. TEST DATA

Table 10 Duty Cycle Test Data

Mode	On Time (ms)	Duty Cycle(%)	Duty Factor	1/T Minimum VBW (kHz)
802.11a	1.395	96.88%	0.14	1
802.11n HT20	1.305	96.66%	0.15	1
802.11n HT40	0.65	92.20%	0.35	1.5
802.11ac	0.321	86.99%	0.61	3

802.11a

802.11n HT20

arker 3 2.95500 ms	PNO: Fast -+	SENSE INT	Avg Type	Log-Pwr	D3:21:53 PM M TRACE TYPE	2345	Marker
	IFGain:Low	#Atten: 40 dB				NUUNA	Select Marker
dB/div Ref 30.00 dBm				N	Akr3 2.9 8.72	dBm	3
99 00 00	trade X2	الإجريا والمعاولة والمقاربين	3.2	beunaulyksu	they begins	renslithe	Norma
00							Delta
0.0 × 0.0 ×							Fixed
enter 5.200000000 GHz es BW 8 MHz	#VBW	8.0 MHz		Sweep 5.0	Spa 100 ms (10	an 0 Hz 01 pts)	01
KR MODE TRC SDL X	1.305 ms (A)	2,48 dB	FUNCTION FU	NCTION WIDTH	FUNCTION V	ALUE	
2 F 1 t 3 N 1 t	1.605 ms 2.965 ms	8.58 dBm 8.72 dBm					Properties
4 5 6 7							

802.11n HT40

802.11ac VH80

enter Freq 5.210000000 GHz PN0: Fast +++ Trig: Free Run	ALDSVAUTO DS:24:41 PM May 18, Avg Type: Log-Pwr TRACE DS: DET P NUT	Frequency
IFGain:Low Atten: 40 dB	Mkr3 1.857 r 2.26 dE	ns Auto Tun
and a second property of the second property	142	Center Free 5.210000000 GH
		Start Free 5.210000000 GH
		Stop Free 5.210000000 GH
Δ2 1 t (Δ) 321.0 μs (Δ) 4.11 dB	Span 0 Span 0 Sweep 3.000 ms (1001 p NCTION FUNCTION WOTH	
2 F 1 t 1488 ms 202 dBm N 1 t 1967 ms 226 dBm		Freq Offse 0 H

6. 6DB BANDWIDTH MEASUREMENT

6.1.LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum 6 dB emission bandwidth of at least 500 kHz for the band 5.725-5.85 GHz.

6.2.TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer.

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \geq 3 x RBW.

c)Detector = Peak.

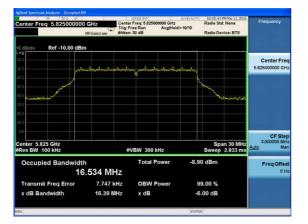
d)Trace mode = max hold.

e)Sweep = auto couple.

f)Allow the trace to stabilize.

g)Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3.TEST SETUP



Test Data

Table 11 6dB Bandwidth T	Fest Data 802.11a
--------------------------	-------------------


CHANNEL	6dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5745	16.39	Pass
5785	16.39	Pass
5825	16.39	Pass

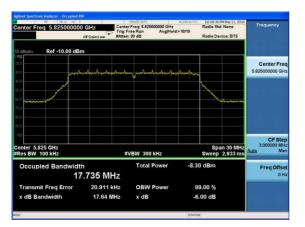
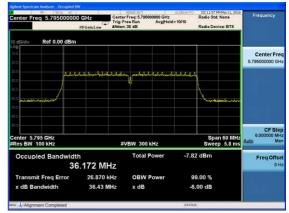
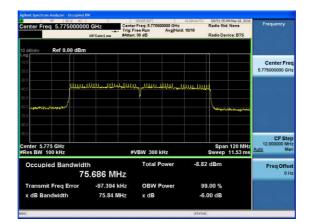


Table	12 6dB	Bandwidth	Test Data	802.11n HT20
-------	--------	-----------	-----------	--------------

CHANNEL	6dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5745	17.62	Pass
5785	17.61	Pass
5825	17.64	Pass



CHANNEL	6dB			
FREQUENCY	BANDWIDTH	results		
(MHz)	(MHz)			
5755	36.38	Pass		
5795	36.43	Pass		



	– • • • • •		
Table 14 6dB	Bandwidth	Lest Data	802.11ac VH80

CHANNEL	6dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5775	75.84	Pass

7. 26DB BANDWIDTH MEASUREMENT

7.1.LIMITS OF 26dB BANDWIDTH MEASUREMENT

None; for reporting purposes only...

7.2.TEST PROCEDURE

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the

emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat

measurement as needed until the RBW/EBW ratio is approximately 1%.

7.3.TEST SETUP

7.4. Test Data

CHANNEL	26dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5180	21.58	Pass
5200	21.66	Pass
5240	21.60	Pass

Table 15 26dB Bandwidth Test Data 5150~5250 MHz 802.11a

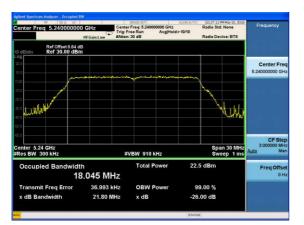
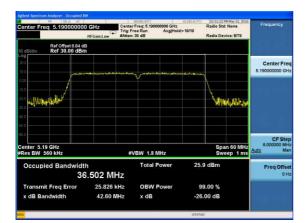
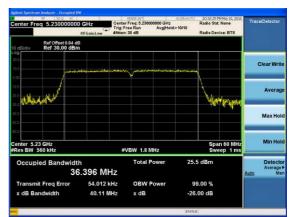
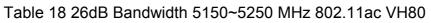
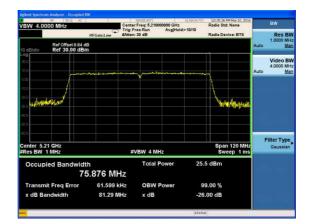


Table 16 26dB Bandwidth Test Data 5150~5250 MHz 802.11n HT20


CHANNEL FREQUENCY (MHz)	26dB BANDWIDTH (MHz)	results
5180	21.85	Pass
5200	21.94	Pass
5240	21.80	Pass




Table 17 26dE	Bandwidth	5150~5250	MHz 80	2 11n HT40
	Danawiati	0100 0200		


CHANNEL FREQUENCY	26dB BANDWIDTH	results
(MHz)	(MHz)	roodito
5190	42.60	Pass
5230	40.11	Pass

CHANNEL	26dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5210	81.29	Pass

CHANNEL	26dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5745	21.93	Pass
5785	21.80	Pass
5825	21.73	Pass


Table 19 26dB Bandwidth Test Data 5725~5850 MHz 802.11a

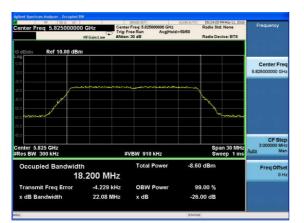
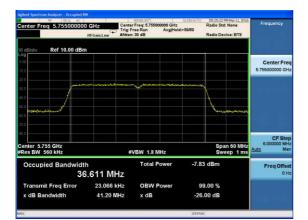


Table 20 26dB Bandwidth Test Data 5725~5850 MHz 802.11n HT20


CHANNEL FREQUENCY	26dB BANDWIDTH	results
(MHz)	(MHz)	
5745	22.00	Pass
5785	21.82	Pass
5825	22.08	Pass

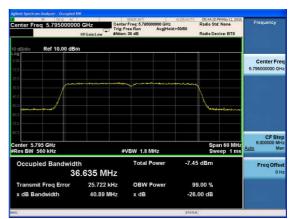
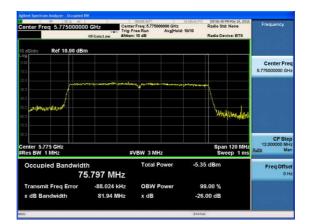



Table 21 26dB Bandwidth 5725~5850 MHz 802.11n HT40
--


CHANNEL	26dB	
•••••==		
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5755	41.20	Pass
5795	40.89	Pass

CHANNEL	26dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5775	81.94	Pass

8. 99% OCCUPIED BANDWIDTH

8.1.LIMITS OF 99%Occupied Bandwidth

None; for reporting purposes only

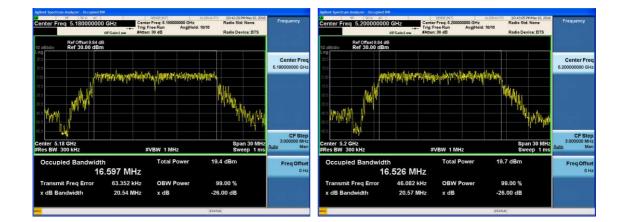
8.2.TEST PROCEDURE

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW \geq 3 RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode

shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be

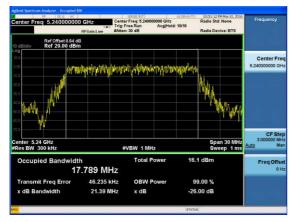

used.


6. Use the 99 % power bandwidth function of the instrument (if available).

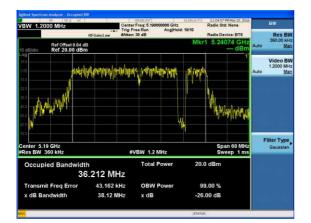
8.3.TEST DATA

CHANNEL	99%	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5180	16.597	Pass
5200	16.526	Pass
5240	16.488	Pass





CHANNEL	99%	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5180	17.767	Pass
5200	17.765	Pass
5240	17.789	Pass


Table 24 99% Bandwidth Test Data 5150~5250 MHz 802.11n HT20

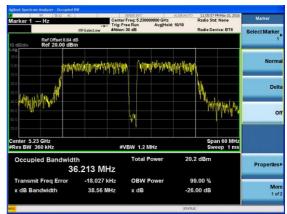
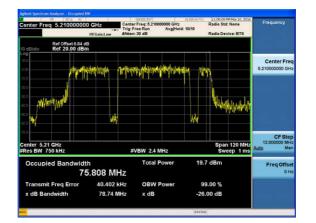


Table 25 99%	Bandwidth	5150~5250	MHz 8	302 11n HT40
	Danamatri	0100 0200		


CHANNEL FREQUENCY	99% BANDWIDTH	results
(MHz)	(MHz)	
5190	36.212	Pass
5230	36.213	Pass

CHANNEL	99%	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5210	75.808	Pass

Table 26 99% Bandwidth 5150~5250 MHz 802.11ac VH80

CHANNEL	99%	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5745	16.544	Pass
5785	16.489	Pass
5825	16.535	Pass

Table 27 99% Bandwidth Test Data 5725~5850 MHz 802.11a

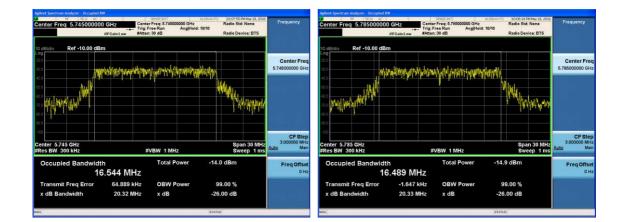
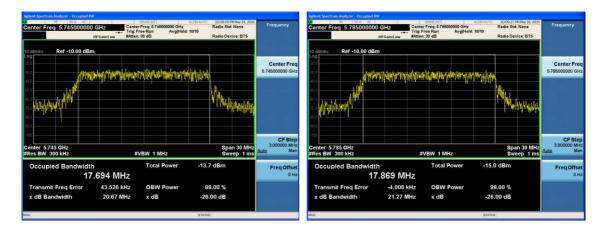
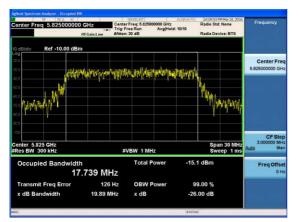
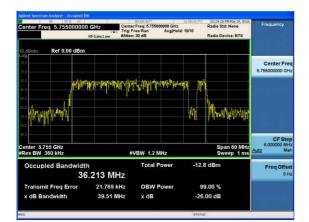




Table 28 99% Bandwidth Test Data 5725~5850 MHz 802.11n HT20


CHANNEL FREQUENCY	99% BANDWIDTH	results
(MHz)	(MHz)	
5745	17.694	Pass
5785	17.869	Pass
5825	17.739	Pass

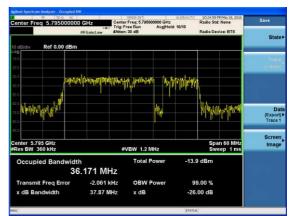
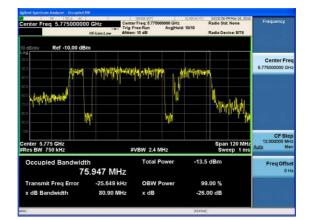


Table 29 99% Bandwidth 5725~5850 MHz 802.11n HT40


CHANNEL	99%	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5755	36.229	Pass
5795	36.171	Pass

CHANNEL	99%	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
5775	75.947	Pass

Table 30 99% Bandwidth 5725~5850 MHz 802.11ac VH80

9. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT

9.1.LIMITS OF Maximum Conducted Output Power Measurement

CFR 47 (FCC) part 15.2407 (a)

For the band 5.15–5.25 GHz.

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the max-imum antenna gain does not exceed 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W

RSS-247 Clause 6.2

For the band 5.15–5.25 GHz.

The maximum e.i.r.p. shall not exceed 200 mW or $10 + 10 \log 10$ B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. For the band 5.725-5.85 GHz, the maximum conducted output power shall not exceed 1 W.

9.2.TEST PROCEDURE

(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

The EUT is configured to transmit continuously or to transmit with a constant duty cycle.

At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.

The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.

- (iii) Measure the average power of the transmitter. This measurement is an average overboth the on and off periods of the transmitter.
- (iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g.,10 log (1/0.25) if the duty cycle is 25%).the measurement result.

9.3.TEST SETUP

9.4.TEST DATA

Maximum Conducted Output Powe(FCC)

Center Freq.[MHz]	Meas. Level (Cond.) [dBm]	Duty Factor	Maximum Conducted Output Power(Average) [dBm]	Limit [dBm]	Result
5180	13.11	0.14	13.25	< 23.98	Pass
5200	13.53	0.14	13.67	< 23.98	Pass
5240	13.82	0.14	13.96	< 23.98	Pass
5745	-12.25	0.14	-12.11	< 30	Pass
5785	-12.80	0.14	-12.66	< 30	Pass
5825	-13.18	0.14	-13.04	< 30	Pass

Table 31 Maximum Conducted Output Power Test Data 802.11a

Table 32 Maximum Conducted Output Power Test Data 802.11n HT20

Center Freq.[MHz]	Meas. Level (Cond.) [dBm]	Duty Factor	Maximum Conducted Output Power(Average) [dBm]	Limit [dBm]	Result
5180	12.82	0.15	12.97	< 23.98	Pass
5200	13.35	0.15	13.50	< 23.98	Pass
5240	13.67	0.15	13.82	< 23.98	Pass
5745	-12.02	0.15	-11.87	< 30	Pass
5785	-12.56	0.15	-12.41	< 30	Pass
5825	-12.67	0.15	-12.52	< 30	Pass

Table 33 Maximum Conducted Output Power Test Data 802.11n HT40

Center Freq.[MHz]	Levei	Duty Factor	Maximum Conducted Output Power(Average) [dBm]	Limit [dBm]	Result
5190	13.24	0.35	13.59	< 23.98	Pass
5230	13.97	0.35	14.32	< 23.98	Pass
5755	-12.32	0.35	-11.97	< 30	Pass
5795	-12.92	0.35	-12.67	< 30	Pass

(F	Center ⁻ req.[MHz]	Meas. Level (Cond.) [dBm]	Duty Factor		Limit [dBm]	Result
5	5210	13.23	0.61	13.84	< 23.98	Pass
Ę	5775	-12.53	0.61	-11.92	< 30	Pass

Table 34 Maximum Conducted Output Power Test Data 802.11ac VH80

Maximum Conducted Output Powe(IC) _____Table 35 Maximum Conducted Output Power Test Data 802.11a

Center Freq.[MHz]	Meas. Level (Cond.) [dBm]	Duty Factor		Limit [dBm]	Result
5180	13.11	0.14	1325	< 23 or <22.19	Pass
5200	13.53	0.14	1367	< 23 or <22.17	Pass
5240	13.82	0.14	13 96	< 23 or <22.18	Pass
5745	-12.25	0.14	-12.11	< 30	Pass
5785	-12.80	0.14	-12.66	< 30	Pass
5825	-13.18	0.14	-13.04	< 30	Pass

Table 36 Maximum Conducted Output Power Test Data 802.11n HT20

Center Freq.[MHz]	Meas. Level (Cond.) [dBm]	Duty Factor	Maximum Conducted Output Power(Average) [dBm]	Limit [dBm]	Result
5180	12.82	0.15	12.97	<23 or <22.48	Pass
5200	13.35	0.15	13.50	<23 or <22.52	Pass
5240	13.67	0.15	13.82	<23 or <22.49	Pass
5745	-12.02	0.15	-11.87	< 30	Pass
5785	-12.56	0.15	-12.41	< 30	Pass
5825	-12.67	0.15	-12.52	< 30	Pass

	Meas. Level (Cond.) [dBm]	Duty Factor	Maximum Conducted Output Power(Average) [dBm]	Limit [dBm]	Result
5190	13.24	0.35	13.59	< 23 or <25.59	Pass
5230	13.97	0.35	14.32	< 23 or <25.58	Pass
5755	-12.32	0.35	-11.97	< 30	Pass
5795	-12.92	0.35	-12.67	< 30	Pass

Table 37 Maximum Conducted Output Power Test Data 802.11n HT40

|--|

Center Freq.[MHz]	Meas. Level (Cond.) [dBm]	Duty Factor	Maximum Conducted Output Power(Average) [dBm]	Limit [dBm]	Result
5210	13.23	0.61	1 4 8/1	< 23 or 28.80	Pass
5775	-13.34	0.61	-12.73	< 30	Pass

10. MAXIMUM POWER SPECTRAL DENSITY LEVEL MEASUREMENT

10.1.LIMITS OF Maximum Power Spectral Density Level Measurement

CFR 47 (FCC) part 15.407 (a)

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-247 Clause 6.2

For the band 5.15-5.25 GHz the e.i.r.p. spectral density shall not exceed 10 dBm in any1.0 MHz band

For the band 5.725-5.85 GHz the power spectral density shall not exceed 30 dBm in any 500 kHz band.

10.2.TEST PROCEDURE

1.Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...." (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable:

a) If Method SA-2 or SA-2 Alternative was used, add 10 log (1/x), where x is the duty cycle, to the peak of the spectrum.

b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

4. The result is the Maximum PSD over 1 MHz reference bandwidth.

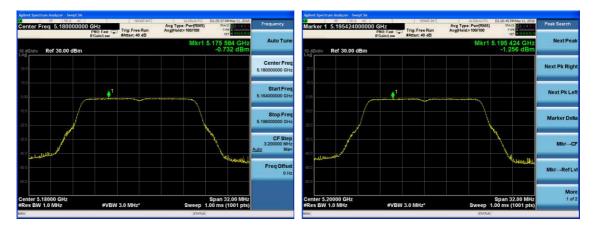
5. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the

above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may

need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and 789033 D02 General UNII Test Procedures New Rules v01r02 Page 10 integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW $\geq 1/T$, where T is defined in section II.B.I.a).

b) Set VBW \geq 3 RBW.


c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement. d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement. e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle. Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections

5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

10.3. TEST DATA

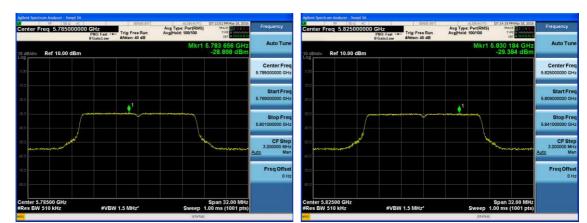
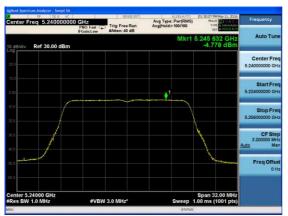
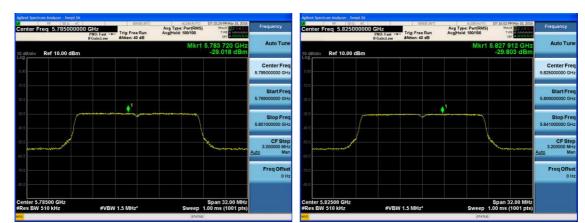

Center Freq.[MHz]	Meas.Level [dBm]	Duty Factor	Spectral	FCC Limit	IC Limit [dBm]	Result
5180	-0.732	0.14	-0.592	11	10	Pass
5200	-1.256	0.14	-1.116	11	10	Pass
5240	-0.935	0.14	-0.795	11	10	Pass
5745	-28.389	0.14	-28.249	30	30	Pass
5785	-28.898	0.14	-28.758	30	30	Pass
5825	-29.384	0.14	-29.244	30	30	Pass

Table 39 Maximum Power Spectral Density Level Test Data 802.11a

Report No.:WT168002531


Page 44 of 130

Center Freq.[MHz]	Meas.Level [dBm]	Duty Factor	•	FCC Limit	IC Limit [dBm]	Result
5180	-4.807	0.15	-4.657	11	10	Pass
5200	-4.992	0.15	-4.842	11	10	Pass
5240	-4.778	0.15	-4.628	11	10	Pass
5745	-27.964	0.15	-27.814	30	30	Pass
5785	-29.018	0.15	-28.868	30	30	Pass
5825	-29.803	0.15	-29.653	30	30	Pass


Table 40 Maximum Power Spectral Density Level Test Data 802.11n HT20

Report No.:WT168002531

Page 45 of 130

Center Freq.[MHz]	ivieas.Levei	Duty Factor	Spectral	FCC Limit	IC Limit [dBm]	Result
5190	-4.746	0.35	-4.396	11	10	Pass
5230	-3.479	0.35	-3.129	11	10	Pass
5755	-31.568	0.35	-31.218	30	30	Pass
5795	-32.636	0.35	-32.286	30	30	Pass

Table 41 Maximum Power Spectral Density Level Test Data 802.11n HT40

enter Freq 5.7550000		Avg Type: Pwr(RMS) Avg[Hold: 100/100	07:16:51 PM May 18, 2016 Triacz 2 2 4 4 Triat A concentration per A concentration	Frequency	Center Freq 5.7950	AC SENCE BIT 000000 GHz PN0: Fast IFGaint.ew #Atten: 40 dB	Avg Type: Pwr(RMS) Avg[Hold: 100/100	07:17:24 PM May 18, 2016 TMACE 2:24 PM TVPE A MANAGEMENT DET AUMANNA	Frequency
dB/div Ref 10.00 dBm		Mkr1	5.749 668 GHz -31.568 dBm	Auto Tune	10 dB/div Ref 10.00 d	dBm	Mkr1 8	5.788 800 GHz -32.636 dBm	Auto Tu
				Center Freq 5.755000000 GHz	B00				Center Fr 5.795000000 G
α				Start Freq 5.724000000 GHz	-10.0				Start F 5.764000000 (
		*****		Stop Freq 5.78600000 GHz	-30.0	/	an a		Stop F 5.826000000
and a second and a second			harden	CF Step 6.200000 MHz Auto Man	-52.0 			handressen	CF S 6.200000 Auto
a				Freq Offset 0 Hz	-70.0				Freq Of
enter 5.75500 GHz Res B₩ 510 kHz	#VBW 1.5 MHz*	Sweep	Span 62.00 MHz 1.00 ms (1001 pts)		Center 5.79500 GHz #Res BW 510 kHz	#VBW 1.5 MHz*		Span 62.00 MHz .00 ms (1001 pts)	

Center Freq.[MHz]	ivieas.Levei	Duty Factor	Spectral	FCC Limit	IC Limit [dBm]	Result
5210	-7.076	0.61	-6.466	11	10	Pass
5775	-32.730	0.61	-32.12	30	30	Pass

Table 42 Maximum Power Spectral Density Level Test Data 802.11n VH80

11. RADIATED BANDEDGE AND SPURIOUS MEASUREMENT

11.1.LIMITS OF Radiated Bandedge and Spurious Measurement

FCC Part 15.205 and 15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

FCC Part 15.407(b) and RSS-247 Clause 6.2

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

11.2.TEST PROCEDURE

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

3. For measurement below 1GHz, the EUT was placed on a turntable with 0.8 meter, above ground. For measurement above 1 GHz, test at FAR, the EUT is placed on a non-conductive table, which is 1.5 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. Use the following spectrum analyzer settings:

(1) Span shall wide enough to fully capture the emission being measured;

(2) Set RBW=100 kHz for f < 1 GHz; VBW >= RBW; Sweep = auto; Detector function = peak; Trace = max hold;

(3) Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. Set RBW = 1 MHz, and 1/T (on time) for average measurement.

11.3.TEST DATA

9KHz-30MHz

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Table 43 Radiated Emission Test Data 9k Hz-30MHz

Frequency MHz	Loss(dB	Antenna Factor(d B)	Readings(d BµV/m)	Level(dBµ V/m)	Turntable Angle(de g)	Antenna Height(m)	Limits(dBµV/m)	Margin(d B)

30MHz-1GHz

Worst case is shown below for 30MHz-1GHz only.

The emissions don't show in following result tables are more than 20dB below the limits.

Frequency MHz		Antenna Factor(d B)	Readings(d BµV/m)	Level(dBµ V/m))	Turntable Angle(de g)	Hoight(m	Limits(dBµV/m)	Margin(d B)
65.891	0.9	16.6	23.1	34.7	V	0	1.0	40	5.3
581.251	3.0	10.7	23.1	42.7	V	20	1.5	46	3.3
625.095	3.2	16.6	22.6	44.3	V	0	2.0	46	1.7
699.397	3.3	18.5	19.4	41.2	V	20	1.0	46	4.8
750.031	3.5	18.5	19.5	41.8	V	30	1.2	46	4.2
792.032	3.6	18.8	17.9	40.3	V	0	1.0	46	5.7
166.188	1.5	8.7	25.0	35.2	Н	38	1.2	43.5	8.3
253.041	1.9	12.1	23.2	37.2	Н	0	1.0	46	8.8
375.029	2.3	14.3	28.5	45.1	Н	0	1.2	46	0.9
567.089	2.9	16.6	21.7	41.2	Н	20	1.0	46	4.8
625.095	3.2	18.5	22.2	43.9	Н	0	1.7	46	2.1
891.069	3.9	20.1	17.2	41.2	Н	0	1.0	46	4.8

Table 44 Radiated Emission Test Data 30MHz-1GHz