

Shenzhen Huatongwei International Inspection Co., Ltd. Huatongwei Building, keji'nan 12th Road, High-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China. Phone:86-755-26715499 E-mail: cs@szhtw.com.on Website:http://www.szhtw.com.on

TE	ST REPORT			
Report No	CHTEW21090043	Report verification:		
Project No	SHT2012019901EW			
FCC ID:	Q9SAWRRP9000N			
Applicant's name:	Northfield Telecommunicatio Wireless Communications	ns, Inc. d/b/a Adva	nced	
Address:	20809 Kensington Blvd. Lakevi America	lle MN 55044 United	d States Of	
Test item description:	Repeater			
Trade Mark:	AWC			
Model/Type reference:	AWR-RP9000N			
Listed Model(s):	-			
Standard:	FCC CFR Title 47 Part 90			
Date of receipt of test sample:	May.27, 2021			
Date of testing	May.28, 2021-Sep.12, 2021			
Date of issue	Sep.14, 2021			
Result	PASS			
Compiled by (Position - Printed name - Signature):	File administrators Fanghui Zhu	Jangh	wi Zhu	
Supervised by (Position - Printed name - Signature):	Project Engineer Cheng Xiao		gXiao	
Approved by (Position - Printed name - Signature):	RF Manager Hans Hu			
Testing Laboratory Name:	Shenzhen Huatongwei International Inspection Co., Ltd.			
Address:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China			
Shenzhen Huatongwei International In This publication may be reproduced in w	•		as the	

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1</u>	TEST STANDARDS AND REPORT VERSION	3
1.1. 1.2.	Test Standards Report revised information	3 3
<u>2</u>	TEST DESCRIPTION	4
<u>3</u>	SUMMARY	5
3.1 3.2	Client Information	5
	Product Description	5 5
3.3 3.4	Radio Specification Description Testing Laboratory Information	5 6
<u>4</u>	TEST CONFIGURATION	7
4.1	Test frequency list	7
4.2	Operation mode	7
4.3	Support unit used in test configuration and system	8
4.4	Environmental conditions	9
4.5	Measurement uncertainty	9
4.6	Equipments Used during the Test	10
<u>5</u>	TEST CONDITIONS AND RESULTS	12
5.1	Conducted Carrier Output Power	12
5.2	99% Occupied Bandwidth & 26dB Bandwidth	13
5.3	Emission Mask	15
5.4	Modulation Limit	17
5.5	Audio Frequency Response	18
5.6	Frequency stability VS Temperature	20
5.7	Frequency stability VS Voltage	21
5.8	Transmitter Frequency Behavior	22
5.9 5.10	Transmit Conducted Spurious Emission Transmitter Radiated Spurious Emission	24 25
<u>6</u>	TEST SETUP PHOTOS	32
<u>7</u>	EXTERNAL AND INTERNAL PHOTOS	33
<u>-</u>		
7.1	External Photos of the EUT	33
7.2	Internal Photos of the EUT	36
<u>8</u>	APPENDIX REPORT	38

1 TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 2:</u> Frequency allocations and radio treaty matters; General rules and regulations FCC Rules Part 90: Private land mobile radio services.

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

ANSI/TIA-603-E(2016): Land Mobile FM or PM Communications Equipment and Performance Standards

1.2. Report revised information

Revised No.	Date of issued	Description
N/A	2021-09-14	Original

2 TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Carrier Output Power	Part 90.205 Part 2.1046(a)	Pass	Casper Chen
99% Occupied Bandwidth & 26dB bandwidth	Part 90.209 & 210 Part 2.1049	Pass	Casper Chen
Emission Mask	Part 90.209 & 210 Part 2.1049	Pass	Casper Chen
Modulation Limit	Part 2.1047(b)	Pass	Casper Chen
Audio Frequency Response	Part 2.1047(a)	Pass	Casper Chen
Frequency Stability VS Temperature	Part 90.213 Part 2.1055	Pass	Casper Chen
Frequency Stability VS Voltage	Part 90.213 Part 2.1055	Pass	Casper Chen
Transient Frequency Behavior	Part 90.214	Pass	Casper Chen
Transmit Conducted Spurious Emission	Part 90.210 Part 2.1051	Pass	Casper Chen
Transmit Radiated Spurious Emission	Part 90.210 Part 2.1053	Pass	Jian Li

3 <u>SUMMARY</u>

3.1 Client Information

Applicant:	Northfield Telecommunications, Inc. d/b/a Advanced Wireless Communications
Address:	20809 Kensington Blvd. Lakeville MN 55044 United States Of America
Manufacturer:	Northfield Telecommunications, Inc. d/b/a Advanced Wireless Communications
Address:	20809 Kensington Blvd. Lakeville MN 55044 United States Of America

3.2 Product Description

Name of EUT:	Repeater
Trade mark:	AWC
Model/Type reference:	AWR-RP9000N
Listed model(s):	-
Power supply:	DC 12V
Adapter information:	Model: KT241120200US Input: 100-240V, 50/60Hz, 0.8A Output: 12V, 2A
Hardware version:	V4
Software version:	0.01.45

3.3 Radio Specification Description

Support Frequency Range:	450MHz~470MHz		
Rated Output Power:	High Power: 4W	Low Power: 2W	
Modulation Type:	Analog:	FM	
Channel Separation:	Analog:	🛛 6.25kHz	🛛 12.5kHz
Emission Designator:	Analog:	5K00F3E;11K0F3E	
Support data rate:	9.6kbps		
Antenna Type:	External		

3.4 Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Tel: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications	Type Accreditation Number		
Qualifications	FCC	762235	

4 TEST CONFIGURATION

4.1 Test frequency list

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in below table

Frequency range over which EUT operates	Number of frequencies	Location in frequency range of operation	
1 MHz or less	1	Middle	
1 MHz to 10 MHz	2	1 near top and 1 near bottom	
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom	

Frequency Bands (MHz)	Test Frequency (MHz)	
450MHz ~ 470MHz	CH∟	450.0125
	CH _H	469.9875

4.2 Operation mode

Test Mode Transmitting	Dessiving	Analog		Power Level		
Test Mode	de Transmitting	Receiving	6.25KHz	12.5kHz	High	Low
TX-ANH	-					
TX-ANL						
TX-AEH						
TX-AEL						
RX-AN						
Charging						

Note:

■: is operation mode.

Modulation Type	Description
UM	Un-modulation
AM2	Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
AM6	Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, then increase the level from the audio generator by 20 dB
AM5	Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation.
DM	A 511 bit binary pseudo-random bit sequence based on ITU-T Rec. 0.153

Page: 8 of 38

Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report.

Test item	Modulation Type	Test mode (Worse case mode)
Conducted Output Power	UM	TX-ANH, TX-ANL, TX-AEH, TX-AEL
99% Occupied Bandwidth & 26dB bandwidth	AM6, DM	TX-ANH, TX-ANL, TX-AEH, TX-AEL
Emission Mask	AM5, DM	TX-ANH, TX-ANL, TX-AEH, TX-AEL
Modulation Limit	AM6	TX-ANH
Audio Frequency Response	AM2	TX-ANH
Frequency Stability VS Temperature	UM	TX-ANH, TX-ANL, TX-AEH, TX-AEL
Frequency Stability VS Voltage	UM	TX-ANH, TX-ANL, TX-AEH, TX-AEL
Transient Frequency Behavior	UM	TX-AEH, TX-ANH
Transmit Conducted Spurious Emission	AM5, DM	TX-AEH, TX-ANH
Transmit Radiated Spurious Emission	AM5, DM	TX-AEH, TX-ANH

4.3 Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Wheth	Whether support unit is used?								
	No								
Item	Equipement	Trade Name	Model No.	FCC ID	Power cord				
1									
2									

4.4 Environmental conditions

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar
	Normal voltage (V _N):	DC12V
Voltage:	Extreme high voltage (V _H):	DC10.8V
	Extreme high voltage (V_L):	DC13.2V

4.5 Measurement uncertainty

Test Items	Measurement Uncertainty
Frequency stability & Occupied Bandwidth	15Hz for <1GHz 70Hz for >1GHz
Conducted Output Power	0.51dB
ERP / EIRP / RSE	2.66dB for <1GHz 3.44dB for >1GHz
Conducted Emission 9KHz-30MHz	3.02dB
Radiated Emission 30~1000MHz	4.90dB
Radiated Emission 1~18GHz	4.96dB
FM deviation	25 Hz
Audio level	0.62 dB
Low Pass Filter Response	0.76 dB
Modulation Limiting	0.42 %
Transient Frequency Behavior	6.8 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.0										
•	TS8613 Test system									
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)			
0	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2020/10/19	2021/10/18			
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2020/10/19	2021/10/18			
•	RF Communication Test Set	HP	HTWE0038	8920A	3813A10206	2020/10/20	2021/10/19			
•	Digital intercom communication tester	Aeroflex	HTWE0255	3920B	1001682041	2020/10/20	2021/10/19			
•	Signal Generator	R&S	HTWE0191	SML02	100507	2020/10/20	2021/10/19			
•	Signal Generator	R&S	HTWE0337	SMC100A	107268	2020/10/20	2021/10/19			
•	RF Control Unit	Tonscend	HTWE0294	JS0806-2	N/A	N/A	N/A			
0	Filter-VHF	Microwave	HTWE0309	N26460M1	498702	N/A	N/A			
•	Filter-UHF	Microwave	HTWE0311	N25155M2	498704	N/A	N/A			
0	Power Divider	Microwave	HTWE0043	OPD1040-N-4	N/A	2021/05/17	2022/05/16			
0	Attenuator	JFW	HTWE0292	50FH-030-100	N/A	2021/05/17	2022/05/16			
0	Attenuator	JFW	HTWE0293	50-A-MFN-20	0322	2021/05/17	2022/05/16			
•	Test software	HTW	N/A	Radio ATE	N/A	N/A	N/A			

4.6 Equipments Used during the Test

•	Auxiliary Equipment								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2020/10/15	2021/10/14		
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A		

•	Radiated Spu	urious Emission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2020/10/20	2021/10/19
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2022/04/05
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/11
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2022/04/05
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2020/11/13	2021/11/12
•	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2021/03/05	2022/03/04
٠	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25
٠	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0119-05	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25

Shenzhen Huatongwei International Inspection Co., Ltd.

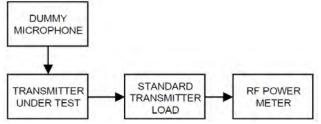
Repo	ort No.: CHT	EW21090043	Page:	11 of 3	8	Issued:	2021-09-14
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25
•	EMI Test Software	Audix	N/A	E3	N/A	N/A	N/A

•	Conducted Emission								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27		
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2020/10/19	2021/10/18		
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2020/10/15	2021/10/14		
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2020/10/15	2021/10/14		
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2020/10/15	2021/10/14		
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A		

•	Radiated emission-6th test site								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2021/09/29		
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2020/10/19	2021/10/18		
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2022/04/05		
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2022/04/05		
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2020/11/13	2021/11/12		
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2021/02/26	2022/02/25		
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A		

•	Radiated emission-7th test site								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26		
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2020/10/20	2021/10/19		
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31		
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/11		
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2020/11/13	2021/11/12		
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2021/03/05	2022/03/04		
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0119-05	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25		
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A		

5 TEST CONDITIONS AND RESULTS


5.1 Conducted Carrier Output Power

<u>LIMIT</u>

FCC Part 90.205, FCC Part 2.1046

Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation.

TEST CONFIGURATION

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Correct for all losses in the RF path
- (3) Measure the transmitter output power
- (4) If the power output is adjustable, measurements shall be made for the highest and lowest power levels.

TEST MODE

Please reference to the section 4.2

TEST RESULTS

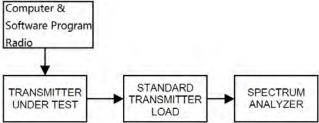
☑ Passed □ Not Applicable

TEST DATA:

Please refer to appendix A on the section 8 appendix report


5.2 99% Occupied Bandwidth & 26dB Bandwidth

<u>LIMIT</u>


FCC Part 90.209, FCC Part 2.1049

Frequency band (MHz)	Channel spacing (kHz)	Authorized bandwidth (kHz)
Below 25 ²		
25-50	20	20
72-76	20	20
150-174	17.5	^{1 3} 20/11.25/6
216-220 ⁵	6.25	20/11.25/6
220-222	5	5 4
406-512 ²	¹ 6.25	¹³⁶ 20/11.25/6
806-809/851-854	12.5	20
809-824/854-869	25	⁶ 20
896-901/935-940	12.5	13.6
902-928 ⁴		
929-930	25	20
1427-1432 ⁵	12.5	12.5
³ 2450-2483.5 ²		
Above 2500 ²		

TEST CONFIGURATION

Test setup for Digital:

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Spectrum set as follow:

Centre frequency = the nominal EUT channel center frequency, The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 × OBW is sufficient) RBW = 1% to 5% of the anticipated OBW, VBW ≥ 3 × RBW, Sweep = auto, Detector function = peak, Trace = max hold

- (3) Set 99% Occupied Bandwidth and 26dB Bandwidth
- (4) Measure and record the results in the test report.

TEST MODE

Please reference to the section 4.2

TEST RESULTS

🛛 Passed

Not Applicable

TEST DATA:

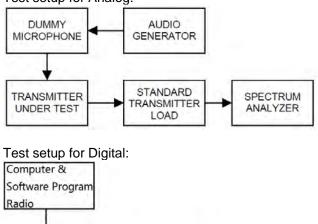
Please refer to appendix B on the section 8 appendix report

5.3 Emission Mask

<u>LIMIT</u>

FCC Part 90.210, FCC Part 2.1049

Frequency band (MHz)	Mask for equipment with audio low pass filter	Mask for equipment without audio low pass filter
Below 25 ¹	A or B	A or C
25-50	в	С
72-76	В	c
150-174 ²	B, D, or E	C, D or E
150 paging only	В	с
220-222	F	F
421-512 ^{2 5}	B, D, or E	C, D, or E
450 paging only	В	G
806-809/851-854 ⁶	В	н
809-824/854-869 ^{3 5}	в	G
896-901/935-940	1	j.
902-928	к	к
929-930	в	G
4940-4990 MHz	L or M	L or M
5850-5925 ⁴		
All other bands	В	с


Emission Mask D — 12.5 kHz channel bandwidth equipment

For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- (1) On any frequency from the centre of the authorized bandwidth f₀ to 5.625 kHz removed from f₀: 0dB
- (2) On any frequency removed from the centre of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(f_d−2.88 kHz) dB.
- (3) On any frequency removed from the centre of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

TEST CONFIGURATION

Test setup for Analog:

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- 2) Spectrum set as follow: Centre frequency = fundamental frequency, span=120kHz for 12.5kHz channel spacing, RBW=100Hz, VBW=1000Hz, Sweep = auto, Detector function = peak, Trace = max hold
- 3) Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the OdB reference for the measurement.
- 4) Apply Input Modulation Signal to EUT according to Section 4.2
- 5) Measure and record the results in the test report.

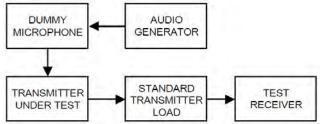
TEST MODE

Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

TEST DATA:


Please refer to appendix C on the section 8 appendix report

5.4 Modulation Limit

LIMIT

FCC Part 2.1047(b) 2.5kHz for 12.5 KHz Channel Spacing System

TEST CONFIGURATION

TEST PROCEDURE

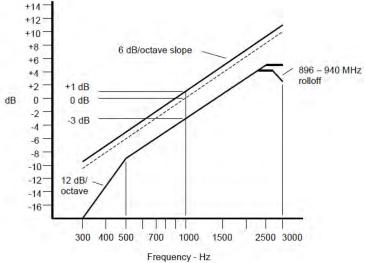
- 1) Connect the equipment as illustrated.
- 2) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15,000 Hz. Turn the de-emphasis function off.
- 4) Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation.
- 5) Increase the level from the audio frequency generator by 20 dB in one step (rise time between the 10% and 90% points shall be 0.1 second maximum).
- 6) Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
- 7) With the level from the audio frequency generator held constant at the level obtained in step 4), slowly vary the audio frequency from 300 Hz to 3000 Hz and observe the steady-state deviation. Record the maximum deviation.

TEST MODE

Please reference to the section 4.2

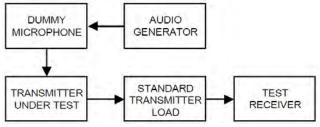
TEST RESULTS

☑ Passed □ Not Applicable


TEST DATA:

Please refer to appendix D on the section 8 appendix report

5.5 Audio Frequency Response


LIMIT

2.1047(a): Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- Set the test receiver to measure peak positive deviation. Set the audio bandwidth for 50 Hz to 15,000 Hz. Turn the de-emphasis function off.
- 3) Set the DMM to measure rms voltage.
- 4) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 5) Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
- 6) Set the test receiver to measure rms deviation and record the deviation reading.
- 7) Record the DMM reading as V_{REF}
- 8) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz.
- 9) Vary the audio frequency generator output level until the deviation reading that was recorded in step 6) is obtained.
- 10) Record the DMM reading as V_{FREQ}
- 11) Calculate the audio frequency response at the present frequency as: audio frequency response=20log₁₀ (V_{FREQ}/V_{REF}).
- 12) Repeat steps 8) through 11) for all the desired test frequencies

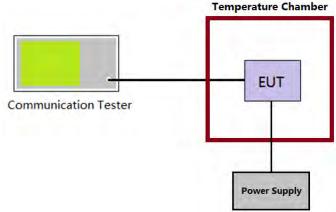
TEST MODE

Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

TEST DATA:


Please refer to appendix E on the section 8 appendix report

5.6 Frequency stability VS Temperature

LIMIT FCC Part 90.213, FCC Part 2.1055

Frequency range (MHz)		Mobile stations	
		Over 2 watts output power	2 watts or less output power
Below 25	1 2 3 1 0 0	100	200
25-50	20	20	50
72-76	5		50
150-174	5115	65	4650
216-220	1.0		1.0
220-222 ¹²	0.1	1.5	1.5
421-512	7 11 142.5	85	85
806-809	141.0	1.5	1.5
809-824	141.5	2.5	2.5
851-854	1.0	1.5	1.5
854-869	1.5	2.5	2.5
896-901	140.1	1.5	1.5
902-928	2.5	2.5	2.5
902-928 ¹³	2.5	2.5	2.5
929-930	1.5		
935-940	0.1	1.5	1.5
1427-1435	⁹ 300	300	300
Above 2450 ¹⁰			

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- 2) The EUT was placed inside the temperature chamber.
- 3) Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency as MCF_{MHz} .
- Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- 5) Repeat step 3 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE

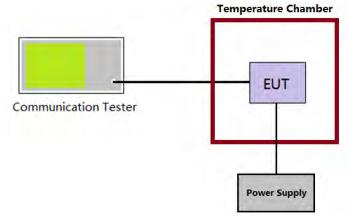
Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

TEST DATA:

Please refer to appendix F on the section 8 appendix report


5.7 Frequency stability VS Voltage

<u>LIMIT</u>

FCC Part 90.213, FCC Part 2.1055

Frequency range (MHz)		Mobile stations	
		Over 2 watts output power	2 watts or less output power
Below 25	^{1 2 3} 100	100	200
25-50	20	20	50
72-76	5		50
150-174	5115	65	4 650
216-220	1.0		1.0
220-222 ¹²	0.1	1.5	1.5
421-512	7 11 142.5	85	85
806-809	141.0	1.5	1.5
809-824	141.5	2.5	2.5
851-854	1.0		1.5
854-869	1.5	2.5	2.5
896-901	140.1	1.5	1.5
902-928	2.5	2.5	2.5
902-928 ¹³	2.5	2.5	2.5
929-930	1.5		
935-940	0.1	1.5	1.5
1427-1435	⁹ 300	300	300
Above 2450 ¹⁰			

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- 2) The EUT was placed inside the temperature chamber at 25°C
- 3) Record the carrier frequency of the transmitter as MCF_{MHZ}
- Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- 5) Repeat step 3 measure with varied ±15% of the nominal value measured at the input to the EUT

TEST MODE

Please reference to the section 4.2

TEST RESULTS

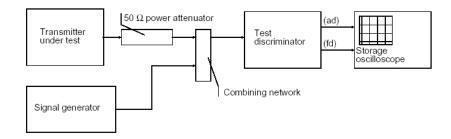
☑ Passed □ Not Applicable

Please refer to appendix G on the section 8 appendix report

5.8 Transmitter Frequency Behavior

LIMIT

FCC part 90.214


Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

Time intervals ^{1 2}	Maximum frequency difference ³	All equipment	
		150 to 174 MHz	421 to 512 MHz
Transient	t Frequency Behavior for E	quipment Designed to Operat	e on 25 kHz Channels
t ₁ 4	±25.0 kHz	5.0 ms	10.0 ms
t ₂	±12.5 kHz	20.0 ms	25.0 ms
t ₃ 4	±25.0 kHz	5.0 ms	10.0 ms
Transient	Frequency Behavior for Ec	uipment Designed to Operate	on 12.5 kHz Channels
t ₁ 4	±12.5 kHz	5.0 ms	10.0 ms
t ₂	±6.25 kHz	20.0 ms	25.0 ms
t ₃ 4	±12.5 kHz	5.0 ms	10.0 ms
Transient	Frequency Behavior for Ec	uipment Designed to Operate	on 6.25 kHz Channels
t ₁ 4	±6.25 kHz	5.0 ms	10.0 ms
t ₂	±3.125 kHz	20.0 ms	25.0 ms
t3 ⁴	±6.25 kHz	5.0 ms	10.0 ms

Note:

- 1. On is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.
 - 1) t_1 is the time period immediately following ton.
 - 2) t_2 is the time period immediately following t_1 .
 - 3) t_3 is the time period from the instant when the transmitter is turned off until toff.
 - 4) t_{off} is the instant when the 1 kHz test signal starts to rise.
- 2. During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in §90.213.
- 3. Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect DUT into Test discriminator and Storage Oscilloscope and keep DUT stats ON;
- 2) Input 1kHz signal into DUT;
- 3) Set the modulation domain analyzer to trigger on the rising edge of the waveform in order to capture a single-shot turn-on of the transmitter signals;
- 4) Keep DUT in OFF state and Key the PTT;
- 5) Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the periods t_1 and t_2 , and shall also remain within limits following t_2 ;
- 6) Adjust the modulation domain analyzer to trigger on the falling edge of the transmitter waveform in order to capture a single-shot turn-off transmitter of the transmitter signal.
- 7) Keep the digital portable radio in ON state and unkey the PTT;
- 8) Observe the stored oscilloscope of modulation domain analyzer, the signal trace shall be maintained within the allowable limits during the period t_3 .
- Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ±12.5 kHz deviation and set its output level to -100dBm.
- 10) Turn on the transmitter.

- 11) Supply sufficient attenuation via the RF attenuator to provide an input level to the stored oscilloscope12) that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power
- level. Note this power level on the stored oscilloscope as P_0 .
- 13) Turn off the transmitter.
- 14) Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- 15) Remove the attenuation, so the input power to the stored oscilloscope is increased by 30 dB when the transmitter is turned on.
- 16) Adjust the vertical amplitude control of the stored oscilloscope to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- 17) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be ton. The trace should be maintained within the allowed divisions during the period t₁ and t₂.
- 18) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum
- 19) Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

TEST MODE

Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

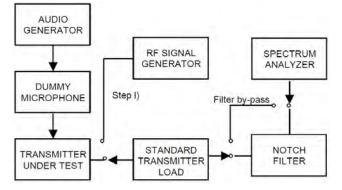
TEST DATA:

Please refer to appendix H on the section 8 appendix report

5.9 Transmit Conducted Spurious Emission

<u>LIMIT</u>

FCC Part 90.210, FCC Part 2.1051


Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: <u>At least 50 + 10 log (P) dB or 70 dB</u>, whichever is the lesser attenuation.

In general, the worse case attenuation requirement shown above was applied. Calculation: Limit (dBm) =EL-50-10log (P) EL is the emission level of the Output Power expressed in dBm,

Limit $(dBm) = P(dBm)-50-10 \log (Pwatts) = -20dBm$

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the equipment as illustrated, with the notch filter by-passed.
- 2. Apply Input Modulation Signal to EUT according to Section 4.2
- Adjust the spectrum analyzer for the following settings: Below 1GHz: RBW=100kHz, VBW=300kHz Above 1GHz: RBW=1MHz, VBW=3MHz Detector=Peak, Sweep time=Auto, Trace=Max hold
- 4. Scan frequency range up to 10th harmonic.
- 5. Record the frequencies and levels of spurious emissions

TEST MODE

Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

TEST DATA:

Please refer to appendix I on the section 8 appendix report

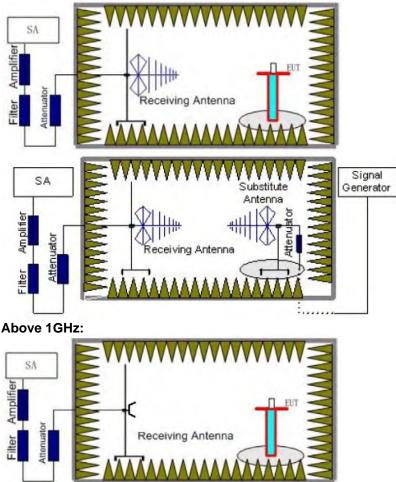
5.10 Transmitter Radiated Spurious Emission

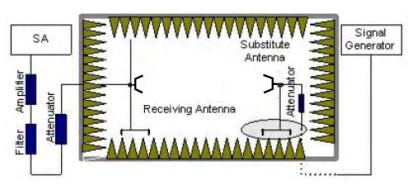
<u>LIMIT</u>

FCC Part 90.210, FCC Part 2.1051

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: <u>At least 50 + 10 log (P) dB or 70 dB</u>, whichever is the lesser attenuation.


Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:


(3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: <u>At least 55</u> + 10 log (P) or 65 dB, whichever is the lesser attenuation.

In general, the worse case attenuation requirement shown above was applied. Calculation: Limit (dBm) =EL-50-10log (P) EL is the emission level of the Output Power expressed in dBm, Limit (dBm) = P(dBm)-50-10 log (Pwatts) = -20dBm

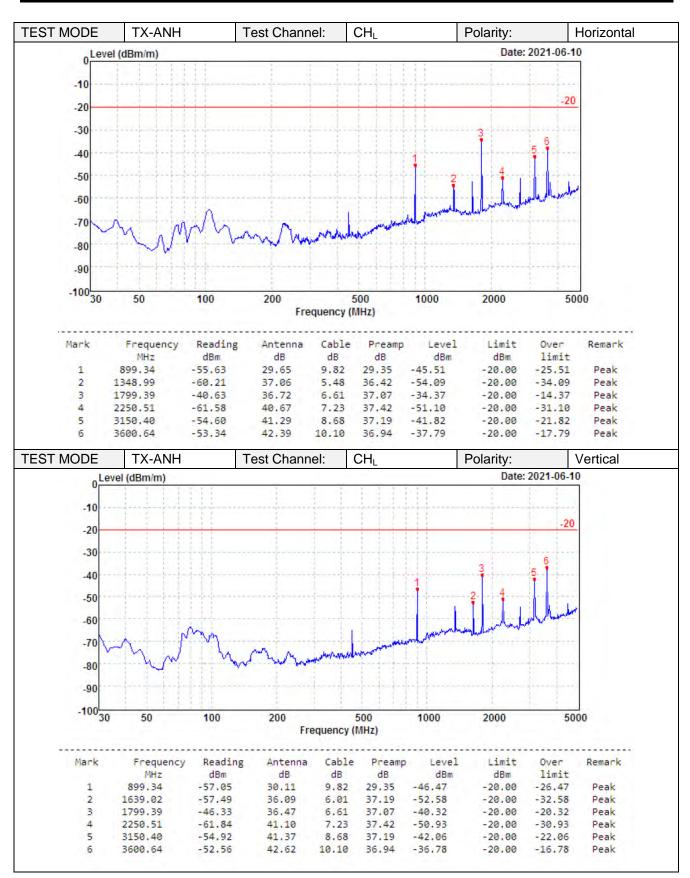
TEST CONFIGURATION

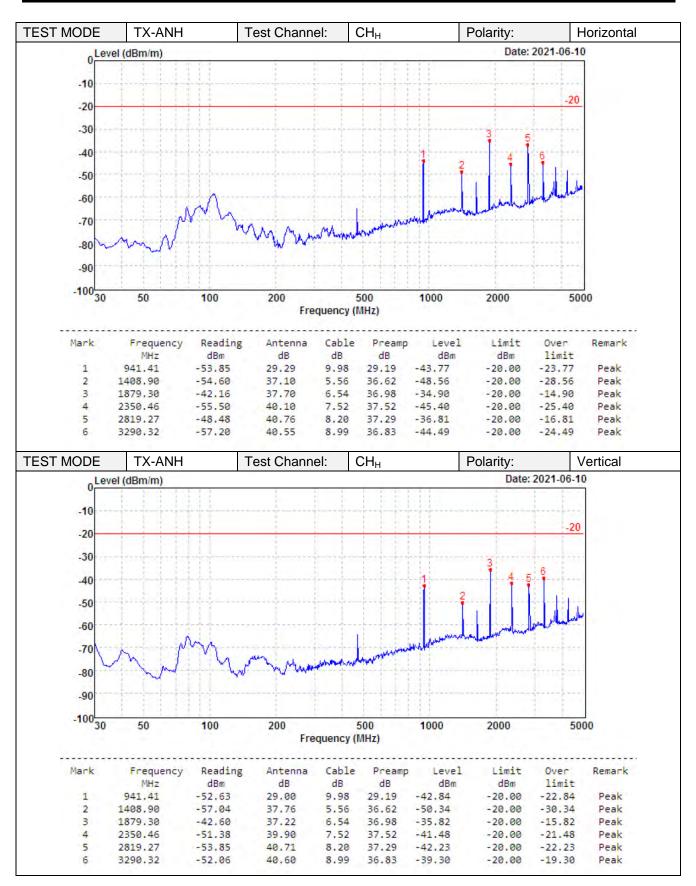
Below 1GHz:

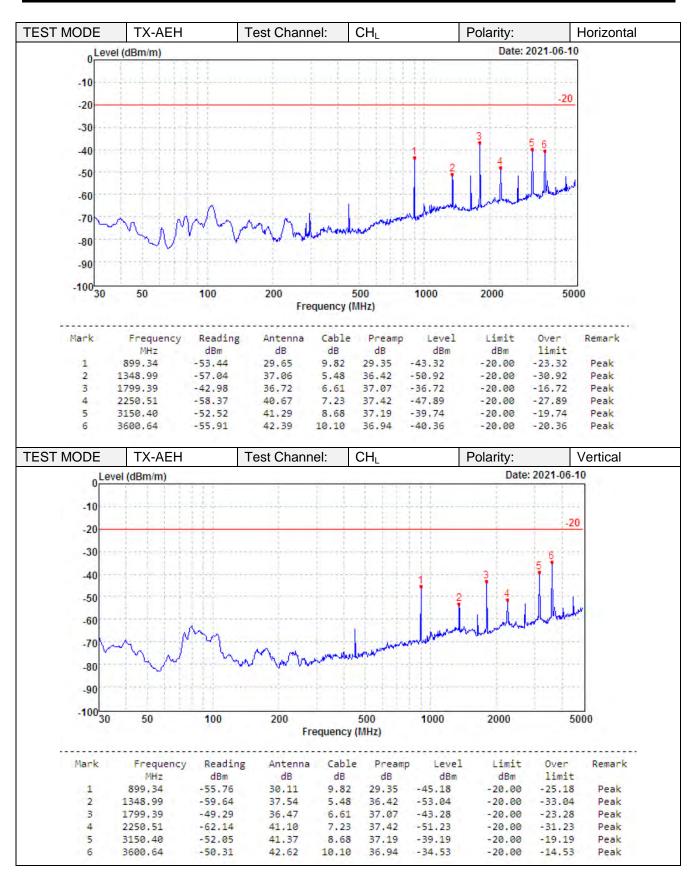
TEST PROCEDURE

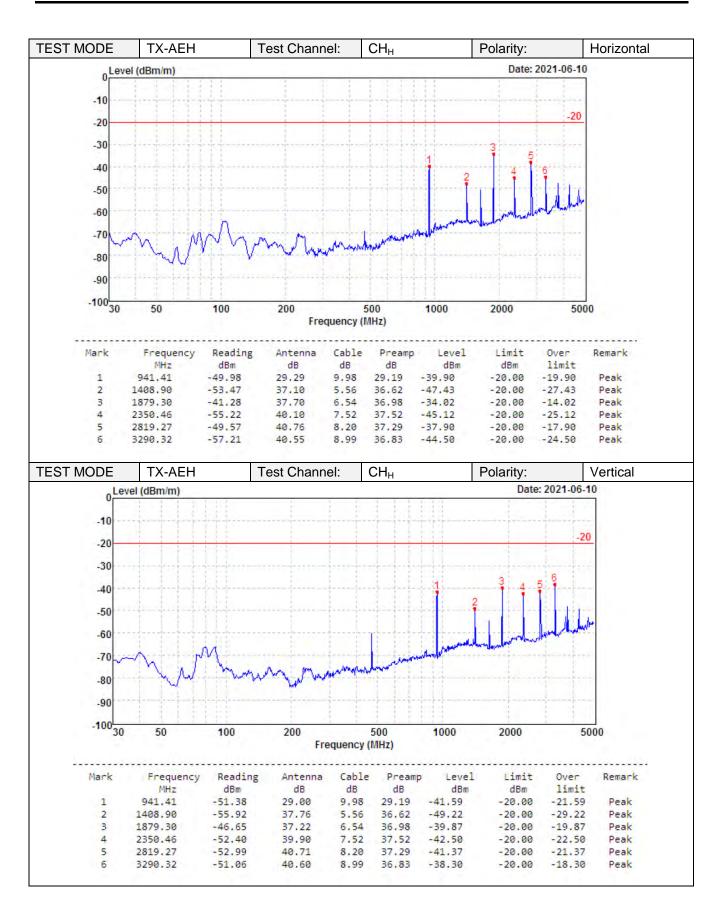
- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- Receiver or Spectrum set as follow: Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto
- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:
 Pe = Ps(dBm) cable loss (dB) + antenna gain (dBd)
 - where
 - Pe = equivalent emission power in dBm
 - Ps = source (signal generator) power in dBm
 - NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.
- Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) 2.15 dB.

Page: 27 of 38

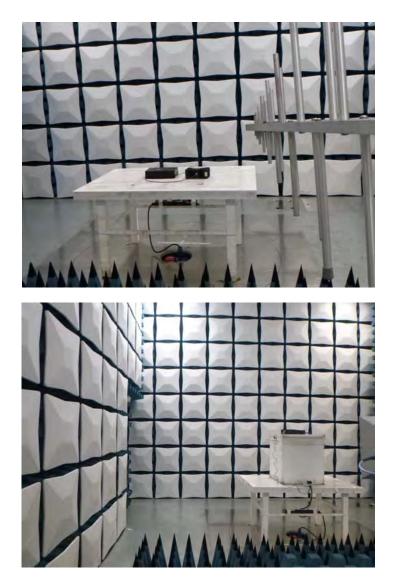

If necessary, the antenna gain can be calculated from calibrated antenna factor information 14. Provide the complete measurement results as a part of the test report.


TEST MODE


Please reference to the section 4.2


TEST RESULTS

☑ Passed □ Not Applicable

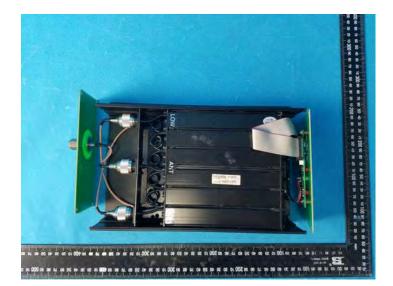


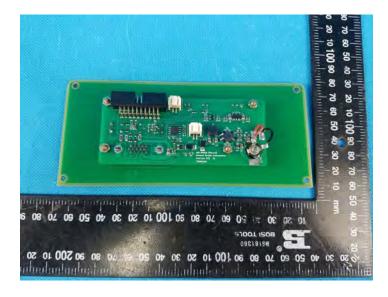
6 TEST SETUP PHOTOS

7 EXTERNAL AND INTERNAL PHOTOS

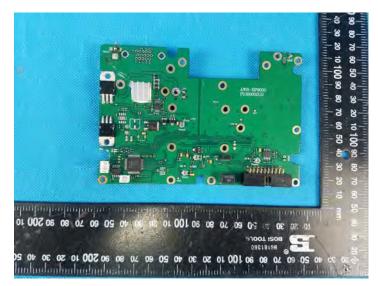
7.1 External Photos of the EUT

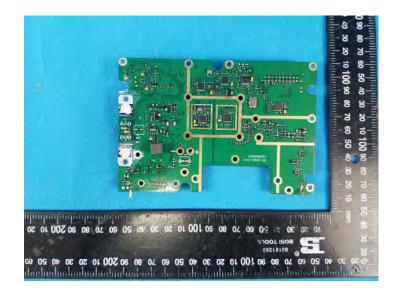
Shenzhen Huatongwei International Inspection Co., Ltd.

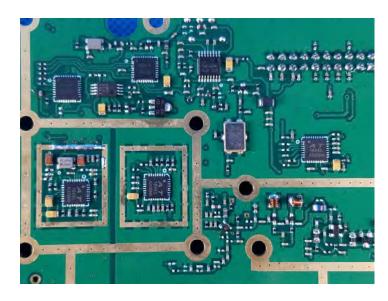




7.2 Internal Photos of the EUT









8 APPENDIX REPORT

Project No.	SHT2012019901EW						
Test sample No.	YPHT20120199001	Model No.	AWR-RP9000N				
Start test date	2021/6/9	Finish date	2021/9/10				
Temperature	23.5℃	Humidity	51%				
Test Engineer	Caspar Chen	Auditor	Xiaodong Zheo				

Appendix clause	Test Item	Test date (M/D)	Test Result (PASS/FAIL)
А	Maximum Transmitter Power	8/24	PASS
В	Occupied Bandwidth	8/24	PASS
С	Emission Mask	8/24	PASS
D	Modulation Limit	8/24	PASS
E	Audio Frequency Response	8/24	PASS
F	Frequency Stability Test & Temperature	8/24	PASS
G	Frequency Stability Test & Voltage	8/24	PASS
н	Transmitter Frequency Behavior	6/11	PASS
I	Spurious Emission On Antenna Port	9/10	PASS

Operation Mode	Modulation Type	Test Channel	Measured Power(dBm)	Measured Power(W)	Rated Power(W)	Percentage (%)	Limit (%)	Result
TX-AEH	FM	CH_L	35.9	3.85	4.00	-3.8	±20	PASS
TX-AEH	FM	СН _н	35.9	3.93	4.00	-1.8	±20	PASS
TX-AEL	FM	CH_{L}	33.7	2.36	2.00	18.0	±20	PASS
TX-AEL	FM	СН _н	33.7	2.35	2.00	17.5	±20	PASS
TX-ANH	FM	CH_{L}	35.9	3.86	4.00	-3.5	±20	PASS
TX-ANH	FM	CH _H	36.0	3.97	4.00	-0.7	±20	PASS
TX-ANL	FM	CH_{L}	33.7	2.33	2.00	16.5	±20	PASS
TX-ANL	FM	СН _н	33.7	2.37	2.00	18.5	±20	PASS

Appendix A:Maximum Transmitter Power

Operation	Modulation	Test Channel	Occupied	Bandwidth	99%	Result	
Mode	Туре	Test Channel	99%(kHz)	26dB(kHz)	Limit(kHz)	Result	
TX-AEH	FM	CH∟	5.115	5.399	≤6	PASS	
TX-AEH	FM	СН _н	5.115	5.400	≤6	PASS	
TX-AEL	FM	CHL	5.115	5.401	≤6	PASS	
TX-AEL	FM	СН _н	5.115	5.401	≤6	PASS	
TX-ANH	FM	CHL	6.064	10.809	≤11.25	PASS	
TX-ANH	FM	CH _H	6.087	10.811	≤11.25	PASS	
TX-ANL	FM	CHL	6.093	10.811	≤11.25	PASS	
TX-ANL	FM	CH _H	6.106	10.813	≤11.25	PASS	

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AEH	FM	CHL	Address
TX-AEH	FM	СН _н	Added Spectrum Analyzer - Occupied BW Center Freq 469.987500 MHz #FGainLaw Freq Freq 469.987500 MHz #FGainLaw Freq Freq 469.987500 MHz #FGainLaw Center Freq 469.987500 MHz #Gain Argthdd>-10/16 Radio Device BTS Radio Device BTS Radio Device BTS Radio Device BTS Clear Write Average Max Hold Center 470 MHz #Res BW 100 Hz #VBW 300 Hz Syan 50 kHz Transmit Freq Error 84 Hz OBW Power 99.00 % x dB Bandwidth 5.400 kHz x dB -26.00 dB Bandwidth 5.400 kHz x dB -26.00 dB
TX-AEL	FM	CHL	Algheri Systema Augerra. Occupied BW Center Freq 450.012500 MHz PFGalat.aw

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AEL	FM	CH _H	Applent Spectrum Analyzer Occupied BW Center Freq. 469.997500 MHz Center Freq. 469.997500 MHz Radio Std: None 10 dBrain Law ArgHold: 10/10 Radio Device: BTS 10 dBrain Law PiFGain: Law Center Freq. 469.997500 MHz Center Freq. 469.997500 MHz 10 dBrain Law PiFGain: Law Center Freq. 469.997500 MHz Radio Device: BTS 10 dBrain Law PiFGain: Law Center Freq. 469.997500 MHz Radio Device: BTS 10 dBrain Law PiFGain: Law Center Freq. 469.997500 MHz Radio Device: BTS 10 dBrain Law PiFGain: Law Center Freq. 469.997500 MHz Average 10 dBrain Law PiFGain: Law PiFGain: Law Average 10 dBrain Law PiFGain: Law Average Max Hold 10 dBrain Law #VEW 300 Hz Span 50 kHz Name 20 daw Bandwidth Total Power 36.5 dBm Detector Average Max Max Max Max 10 dBrain Law Bandwidth 5.401 kHz x dB -26.00 dB Max 10 dBrain Law Bandwidth 5.401 kHz x dB -26.00 dB Max<
TX-ANH	FM	CHL	Kellent Spectrum Andyrer Spectrum Kellent Center Freq 450.012500 MHz Center Freq 450.012500 MHz Trig: Freq Kind Auglield-1010 Radio Device: BTS Radio Device: BTS Center Freq 450.012500 MHz Center Freq 450.012500 MHz Trig: Freq Kind Auglield-1010 Radio Device: BTS Center Freq 450.012500 MHz Center Freq 450.012500 MHz Center Freq 450.012500 MHz Trig: Freq Kind Auglield-2010 Center Freq 450.012500 MHz Center Freq 450.012500 MHz Center Freq 450.012500 MHz Span 50 MHz Center Freq 450.012500 MHz Span 50 MHz Center Freq 450.012500 MHz Span 50 MHz Span 50 MHz Sweep FFT Occupied Bandwidth Total Power 40.2 dBm 6.066 KHz Preq Offset Transmit Freq Error 83 Hz OBW Power 99.00 % x dB Bandwidth 10.81 kHz x dB -26.00 dB
TX-ANH	FM	СН _Н	Address Spectrum Avalyzer Spectrum LW Center Freq 469.987500 MHz Center Freq 469.987500 MHz Trig: freq full Center Freq 469.987500 MHz Image: State Register Control of the state Regist

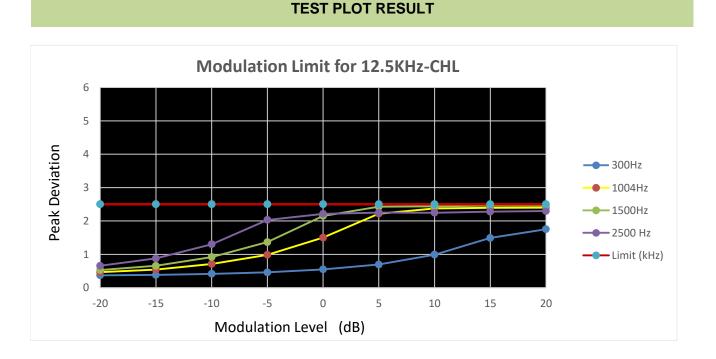
Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-ANL	FM	CH∟	Allowed Spectrum Analyzer - Spectrum File X & R L DE - 420 B and C Certer Freq 450.012500 MHz Frequency Frequency Certer Freq 450.012500 MHz Frequency Frequency Frequency Frequency Frequency Frequency Frequency Frequency Frequency Certer Freq 450.012500 MHz Frequency Certer Freq 450.012500 MHz Center Freq 450.012
TX-ANL	FM	CH _H	Address Spectrum Madyor: Spectrum EW BYRE 91 US Address Manuel Auget 2021 Frequency Center Freq 469.987500 MHz UFGalactor Enter Freq 469.987500 MHz Radio Skit None Radio Skit None 10 dB/dv Ref 38.54 dBm Enter Freq 469.987500 MHz Center Freq 469.987500 MHz Radio Skit None Radio Skit None 10 dB/dv Ref 38.54 dBm Center Freq 469.987500 MHz Center Freq 469.987600 MHz CF

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT						
TX-AEH	FM	CHL	Multiview Spectrum Ref Level 45:00 dbm Offset 20:50 db = RBW 100 Hz Act 34:48 SWI 41.9 ms (~57 ms) = VBW 300 Hz Mode Auto FFT I Frequency Sweep Limit Check PASS Image: Check and the Auto FFT I Frequency Sweep Limit Check PASS Image: Check and the Auto FFT I Gen PASS Image: Check and the Auto FFT Image: Check and the Auto FFT 10 dbm PASS Image: Check and the Auto FFT Image: Check and the Auto FFT 10 dbm PASS Image: Check and the Auto FFT Image: Check and the Auto FFT 10 dbm Image: Check and the Auto FFT Image: Check and the Auto FFT Image: Check and the Auto FFT 10 dbm Image: Check and the Auto FFT Image: Check and the Auto FFT Image: Check and the Auto FFT 10 dbm Image: Check and the Auto FFT Image: Check and the Auto FFT Image: Check and the Auto FFT 10 dbm Image: Check and the Auto FFT Image: Check and the Auto FFT Image: Check and the Auto FFT 10 dbm Image: Check and the Auto FFT Image: Check and the Auto FFT Image: Check and the Auto FFT	Span 100.0 kHz					
TX-AEH	FM	СН _Н	Multiview Spectrum Ref Level 45:00 dbm Offset 20:50 db = RBW 100 Hz 30:80 WT 41.9 ms (~57 ms) = VBW 200 Hz Mode Auto FFT InterCheck PASE InterCheck 40:80 m PASE InterCheck 10:80 m PASE PASE 10:90 m PASE PASE <	Span 100.0 kHz					
TX-AEL	FM	CHL	Multiview Spectrum Ref Level 45:00 dim Offset 20.50 dim Mode Auto FFT Hrequency 34:40 SWI 41.9 ms (~57 ms) = VBW 300 Hz Mode Auto FFT Hrequency 90 dim 10.0 kHz 10.0 kHz/ 20 dim 10 dim 10.0 kHz/ 10.0 kHz/ 20 dim 10.0 kHz/ 10.0 kHz/ Modesuring	Span 100.0 kHz					

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AEL	FM	СН _Н	MultiView Spectrum Ref Level 45:00 dBm Offset 20:50 dB = RBW 100 Hz Att 2:3:4:00 SWT 1:4:3:0:ms (-57 ms) = VBW 300 Hz Mode Auto FFT I Frequencios Weep III: View 21:50 View Limit Cried France MultiView 10 dbm 0.00 ref 0.00 ref
TX-ANH	FM	CHL	Ref Offset 23 dB Center Freq 450.012500 MHz Center Fr
TX-ANH	FM	CHL	Addref Spectrum Andyrer Spectrum Endolven Mode Center Freq 450.012500 MHz Center Freq 450.012500 MHz Ref 050:5034 Jug24, 2021 Ref 050:5034 Jug24, 2021 Center Freq 450.012500 MHz Gene Freq 450.012500 MHz Ref 056:1238 Ref 056:1238 Ref 056:1238 Ref 056:1238 Ref 050:12500 MHz Center Freq 450.012500 MHz Center 50.012500 MHz Center 50.01250 MHz Center 50.012500

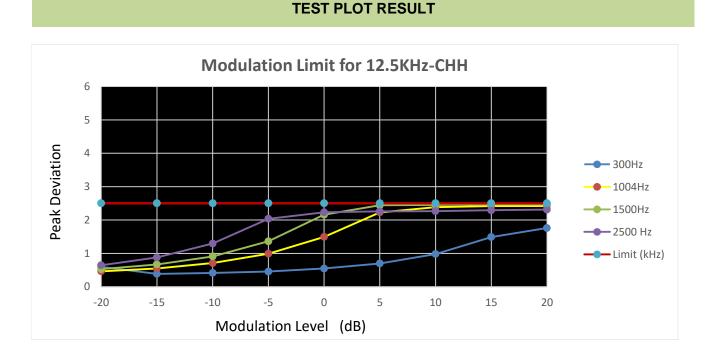
Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-ANH	FM	CH _H	Aglend Socktram Analyzer - Spectrum Emission Analyzer Bit Spectrum Freq 469,387500 MHz Center Freq 469,387500 MHz Center Freq 469,387500 MHz Frequency PASS IF GainLow Past Spectrum Emission Analyzer - Sp
TX-ANH	FM	СН _н	Back () File 400.40 () Statistic Recalled Exclusion All L No Statistic Recalled Statistic Recent ()
TX-ANL	FM	CHL	Aglout Spectrum Andyzer - Spectrum Enholden And ESSERVE All Products Frequency Center Freq 450.012500 MHz Center Freq 450.012500 MHz Center Freq 450.012500 MHz Frequency PASS IFGainLow Center Freq 450.012500 MHz Center Freq 450.012500 MHz Frequency PASS IFGainLow State: 40 60 Radio Device: BTS Center Freq 450.012500 MHz Center Freq 450.012500 MHz 10 4Bidly Ref 00.0 dBm Center Freq 450.012500 MHz Center Freq 450.012500 MHz Center Freq 450.012500 MHz 200 Center Freq 450.012500 MHz State: 40 60 Radio Device: BTS Center Freq 450.012500 MHz 200 Center Freq 450.012500 MHz State: 40 60 State: 40 60 Radio Device: BTS 200 Center Freq 450.012500 MHz State: 40 60 State: 40 60 State: 40 60 200 Center Freq 450.01250 MHz State: 40 60 State: 40 60 State: 40 60 200 State: 40 60 State: 40 60 State: 40 60 State: 40 60 200 State: 40 60 State: 40 60 State: 40 60 State: 40 60 200 State:

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-ANL	FM	CHL	Jelling Spectrum Andrew Spectrum Entries Max Stree PLY ALXAN/TO (92%-99/AMA23, 202) Center Freq 450.012500 MHz Center Freq 450.012500 MHz Frequency Radio Stric None PASS IFCaintow BAtten: 40 dB Auxention (92%-99/AMA23, 202) Frequency Ref Offset 23 dB Conter Freq 450.012500 MHz Center Freq 450.000% of 10 Radio Device: BTS Center Freq 450.012500 MHz Center Freq 450.000% of 10 Or additive Ref Offset 23 dB Operation Auxention Special Conter Cont
TX-ANL	FM	СН _Н	Interview Strate Strate
TX-ANL	FM	CH _H	Active Spectrum Mudgrer - Spectrum finksten Mode Center Freq 469.987500 MHz Center Freq 469.987500 MHz Frequency Center Freq 469.987500 MHz Center Freq 469.987500 MHz Center Freq 469.987500 MHz Radio Spectrum Finksten Meg 100.00% of 10 Radio Spectrum Finksten Meg 100.00% of 10 Radio Spectrum Finksten Meg 100.00% of 10 Radio Device BTS Ref Offset 23 dB IFG and any IfG any



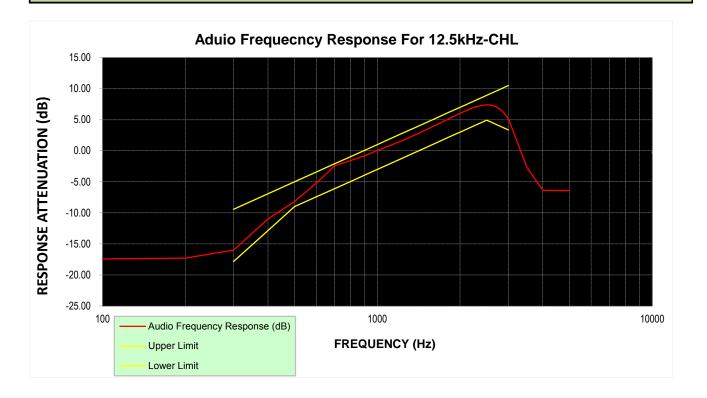
Appendix D:Modulation Limit

Operation	eration Modulation Test		Modulation Peak frequency deviation (kHz)						Desult
Mode	Туре	Channel	Level (dB)	300Hz	1004Hz	1500Hz	2500 Hz	(kHz)	Result
TX-ANH	FM	CH_{L}	-20	0.373	0.465	0.531	0.656	2.5	PASS
TX-ANH	FM	CH_{L}	-15	0.383	0.545	0.658	0.878	2.5	PASS
TX-ANH	FM	CH_{L}	-10	0.416	0.712	0.918	1.303	2.5	PASS
TX-ANH	FM	CH_{L}	-5	0.46	0.986	1.368	2.031	2.5	PASS
TX-ANH	FM	CH_{L}	0	0.55	1.502	2.15	2.214	2.5	PASS
TX-ANH	FM	CH_{L}	5	0.695	2.217	2.427	2.249	2.5	PASS
TX-ANH	FM	CH_{L}	10	0.991	2.375	2.437	2.248	2.5	PASS
TX-ANH	FM	CH_{L}	15	1.491	2.394	2.462	2.278	2.5	PASS
TX-ANH	FM	CH_{L}	20	1.753	2.398	2.458	2.297	2.5	PASS
TX-ANH	FM	CH _H	-20	0.595	0.464	0.527	0.645	2.5	PASS
TX-ANH	FM	CH _H	-15	0.387	0.547	0.67	0.878	2.5	PASS
TX-ANH	FM	CH _H	-10	0.414	0.71	0.909	1.295	2.5	PASS
TX-ANH	FM	CH _H	-5	0.456	0.99	1.363	2.037	2.5	PASS
TX-ANH	FM	CH _H	0	0.547	1.494	2.158	2.229	2.5	PASS
TX-ANH	FM	CH _H	5	0.699	2.228	2.441	2.26	2.5	PASS
TX-ANH	FM	СН _н	10	0.98	2.383	2.454	2.266	2.5	PASS
TX-ANH	FM	СН _н	15	1.488	2.418	2.47	2.293	2.5	PASS
TX-ANH	FM	СН _Н	20	1.76	2.42	2.461	2.312	2.5	PASS

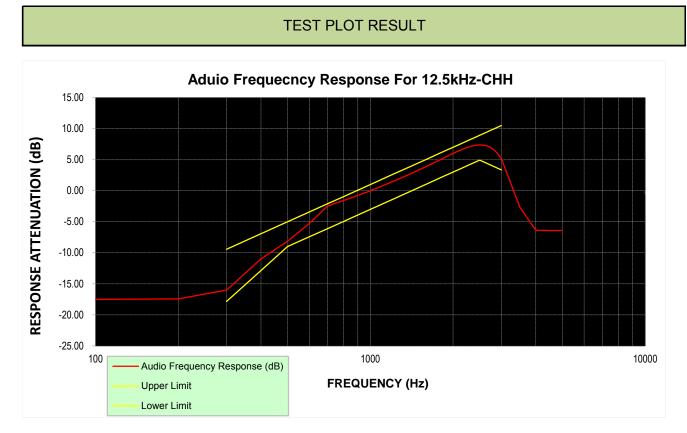


Appendix D:Modulation Limit

Appendix D:Modulation Limit


Operation Mode	Modulation Type	Test Channel	Frequency (Hz)	Audio Frequency Response (dB)	Lower Limit	Upper Limit	Result
TX-ANH	FM	CH∟	100	-17.41			PASS
TX-ANH	FM	CH∟	200	-17.28			PASS
TX-ANH	FM	CH∟	300	-15.99	-17.84	-9.42	PASS
TX-ANH	FM	CH∟	400	-10.98	-12.86	-6.93	PASS
TX-ANH	FM	CH∟	500	-8.16	-9.00	-5.00	PASS
TX-ANH	FM	CH∟	600	-5.23	-7.42	-3.42	PASS
TX-ANH	FM	CH∟	700	-2.42	-6.09	-2.09	PASS
TX-ANH	FM	CH∟	800	-1.55	-4.93	-0.93	PASS
TX-ANH	FM	CH∟	900	-0.79	-3.91	0.09	PASS
TX-ANH	FM	CH∟	1000	0.03	-3.00	1.00	PASS
TX-ANH	FM	CH∟	1200	1.43	-1.42	2.58	PASS
TX-ANH	FM	CH∟	1400	2.73	-0.09	3.91	PASS
TX-ANH	FM	CH∟	1600	3.95	1.07	5.07	PASS
TX-ANH	FM	CH∟	1800	5.04	2.09	6.09	PASS
TX-ANH	FM	CH∟	2000	6.03	3.00	7.00	PASS
TX-ANH	FM	CH∟	2100	6.46	3.42	7.42	PASS
TX-ANH	FM	CH∟	2200	6.83	3.83	7.83	PASS
TX-ANH	FM	CH∟	2300	7.13	4.21	8.21	PASS
TX-ANH	FM	CH∟	2400	7.32	4.58	8.58	PASS
TX-ANH	FM	CH∟	2500	7.41	4.93	8.93	PASS
TX-ANH	FM	CH∟	2600	7.35	4.59	9.27	PASS
TX-ANH	FM	CH∟	2700	7.12	4.27	9.60	PASS
TX-ANH	FM	CH∟	2800	6.66	3.95	9.91	PASS
TX-ANH	FM	CH_{L}	2900	6.02	3.65	10.22	PASS
TX-ANH	FM	CH_{L}	3000	5.18	3.35	10.51	PASS
TX-ANH	FM	CH_{L}	3500	-2.61			PASS
TX-ANH	FM	CH_{L}	4000	-6.35			PASS
TX-ANH	FM	CH∟	4500	-6.41			PASS
TX-ANH	FM	CH∟	5000	-6.41			PASS
TX-ANH	FM	CH _H	100	-17.51			PASS
TX-ANH	FM	CH _H	200	-17.42			PASS
TX-ANH	FM	CH _H	300	-15.99	-17.84	-9.42	PASS
TX-ANH	FM	CH _H	400	-10.98	-12.86	-6.93	PASS
TX-ANH	FM	CH _H	500	-8.14	-9.00	-5.00	PASS
TX-ANH	FM	CH _H	600	-5.29	-7.42	-3.42	PASS
TX-ANH	FM	CH _H	700	-2.44	-6.09	-2.09	PASS
TX-ANH	FM	CH _H	800	-1.56	-4.93	-0.93	PASS
TX-ANH	FM	CH _H	900	-0.75	-3.91	0.09	PASS
TX-ANH	FM	CH _H	1000	-0.03	-3.00	1.00	PASS
TX-ANH	FM	CH _H	1200	1.43	-1.42	2.58	PASS
TX-ANH	FM	CH _H	1400	2.73	-0.09	3.91	PASS
TX-ANH	FM	CH _H	1600	3.93	1.07	5.07	PASS

Operation Mode	Modulation Type	Test Channel	Frequency (Hz)	Audio Frequency Response (dB)	Lower Limit	Upper Limit	Result
TX-ANH	FM	СН _н	1800	5.02	2.09	6.09	PASS
TX-ANH	FM	СН _н	2000	6.01	3.00	7.00	PASS
TX-ANH	FM	СН _н	2100	6.45	3.42	7.42	PASS
TX-ANH	FM	СН _н	2200	6.81	3.83	7.83	PASS
TX-ANH	FM	CH _H	2300	7.11	4.21	8.21	PASS
TX-ANH	FM	СН _н	2400	7.30	4.58	8.58	PASS
TX-ANH	FM	CH _H	2500	7.38	4.93	8.93	PASS
TX-ANH	FM	СН _н	2600	7.33	4.59	9.27	PASS
TX-ANH	FM	СН _н	2700	7.12	4.27	9.60	PASS
TX-ANH	FM	СН _н	2800	6.67	3.95	9.91	PASS
TX-ANH	FM	СН _н	2900	6.04	3.65	10.22	PASS
TX-ANH	FM	СН _н	3000	5.20	3.35	10.51	PASS
TX-ANH	FM	СН _н	3500	-2.62			PASS
TX-ANH	FM	CH _H	4000	-6.36			PASS
TX-ANH	FM	CH _H	4500	-6.42			PASS
TX-ANH	FM	СН _Н	5000	-6.41			PASS



Note: The highest audio frequency response at 3kHz<3.125kHz, so meet the requirement.

Note: The highest audio frequency response at 3kHz<3.125kHz, so meet the requirement.

Appendix F:Frequency Stability Test & Temperature

Operation	Operation Modulation Mode Type	Test Co	onditions	Frequency error (ppm)		Limit (nnm)	Result
Mode		Voltage	Temperature	CHL	СН _н	Limit (ppm)	Result
TX-AEH	FM	VN	-30	0.299	0.251	±0.5	PASS
TX-AEH	FM	VN	-20	0.298	0.243	±0.5	PASS
TX-AEH	FM	VN	-10	0.293	0.249	±0.5	PASS
TX-AEH	FM	VN	0	0.292	0.232	±0.5	PASS
TX-AEH	FM	VN	10	0.306	0.237	±0.5	PASS
TX-AEH	FM	VN	20	0.283	0.231	±0.5	PASS
TX-AEH	FM	VN	30	0.304	0.249	±0.5	PASS
TX-AEH	FM	VN	40	0.291	0.246	±0.5	PASS
TX-AEH	FM	VN	50	0.292	0.234	±0.5	PASS
TX-AEL	FM	VN	-30	0.240	0.261	±0.5	PASS
TX-AEL	FM	VN	-20	0.239	0.266	±0.5	PASS
TX-AEL	FM	VN	-10	0.234	0.258	±0.5	PASS
TX-AEL	FM	VN	0	0.225	0.246	±0.5	PASS
TX-AEL	FM	VN	10	0.243	0.258	±0.5	PASS
TX-AEL	FM	VN	20	0.224	0.246	±0.5	PASS
TX-AEL	FM	VN	30	0.239	0.270	±0.5	PASS
TX-AEL	FM	VN	40	0.243	0.258	±0.5	PASS
TX-AEL	FM	VN	50	0.245	0.249	±0.5	PASS
TX-ANH	FM	VN	-30	0.297	0.254	±1.5	PASS
TX-ANH	FM	VN	-20	0.304	0.246	±1.5	PASS
TX-ANH	FM	VN	-10	0.306	0.252	±1.5	PASS
TX-ANH	FM	VN	0	0.290	0.257	±1.5	PASS
TX-ANH	FM	VN	10	0.290	0.256	±1.5	PASS
TX-ANH	FM	VN	20	0.284	0.237	±1.5	PASS
TX-ANH	FM	VN	30	0.295	0.239	±1.5	PASS
TX-ANH	FM	VN	40	0.303	0.247	±1.5	PASS
TX-ANH	FM	VN	50	0.290	0.248	±1.5	PASS
TX-ANL	FM	VN	-30	0.249	0.237	±1.5	PASS
TX-ANL	FM	VN	-20	0.236	0.245	±1.5	PASS
TX-ANL	FM	VN	-10	0.238	0.252	±1.5	PASS
TX-ANL	FM	VN	0	0.240	0.253	±1.5	PASS
TX-ANL	FM	VN	10	0.233	0.250	±1.5	PASS
TX-ANL	FM	VN	20	0.229	0.233	±1.5	PASS
TX-ANL	FM	VN	30	0.252	0.244	±1.5	PASS
TX-ANL	FM	VN	40	0.234	0.247	±1.5	PASS
TX-ANL	FM	VN	50	0.239	0.235	±1.5	PASS

Appendix G:Frequency Stability Test & Voltage

Operation	Modulation	Test Conditions		Frequency error (ppm)		Limit (nom)	Result
Mode	Туре	Voltage	Temperature	CH_{L}	CH _H	Limit (ppm)	Result
TX-AEH	FM	VN	ΤN	0.283	0.231	±0.5	PASS
TX-AEH	FM	VL	ΤN	0.284	0.235	±0.5	PASS
TX-AEH	FM	Vн	ΤN	0.298	0.243	±0.5	PASS
TX-AEL	FM	VN	ΤN	0.224	0.246	±0.5	PASS
TX-AEL	FM	VL	ΤN	0.228	0.250	±0.5	PASS
TX-AEL	FM	Vн	ΤN	0.236	0.259	±0.5	PASS
TX-ANH	FM	VN	ΤN	0.284	0.237	±1.5	PASS
TX-ANH	FM	VL	ΤN	0.286	0.242	±1.5	PASS
TX-ANH	FM	Vн	ΤN	0.293	0.242	±1.5	PASS
TX-ANL	FM	VN	ΤN	0.229	0.233	±1.5	PASS
TX-ANL	FM	VL	ΤN	0.230	0.236	±1.5	PASS
TX-ANL	FM	Vн	ΤN	0.231	0.244	±1.5	PASS

Appendix H:Transmitter Frequency Behavior

Operation	Modulation	Test	
Mode	Туре	Channel	TEST PLOT RESULT
TX-AEH	FM	CHL	MultiView Spectrum Analog Demod Ref Level 400.0dm Offset 200.0dl Att 24.88 AQI Double Carrier Offset 200.0dl 200.0dl 200.0dl Number Offset 20.0dl 200.0dl 200.0dl Number Offset 20.0dl 200.0dl 200.0dl Number Offset 20.0dl 20.0dl 200.0dl
TX-AEH	FM	CHL	Date: H1.044.0021 (39.013) Analog Demod Image: Control (100,002) Image: Control (100,002)<
TX-AEH	FM	CH _H	MultiView Spectrum Analog Demod Image: Control of the control of th

Appendix H:Transmitter Frequency Behavior

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
Mode	1 ypc	Channer	MultiView Spectrum Analog Demod Ref Level 40.00 dfm Offset 26.00 dfm
TX-AEH	FM	CH _H	Ref Level Def Level <thdef level<="" th=""> <thdef level<="" th=""> <thdef level<="" th=""></thdef></thdef></thdef>
TX-ANH	FM	CHL	HuitiView Spectrum Analog Demod Image: Construction of the constructio
TX-ANH	FM	CHL	MultiView Spectrum Alage Demod Part level 4000 dim Offent 2000 dim DBW 25 kHz Freq 4500125 ME Part level 4000 dim Offent 2000 dim DBW 25 kHz Freq 4500125 ME Part level 4000 dim Offent 2000 dim DBW 25 kHz Freq 4500125 ME Part level 4000 dim Offent 2000 dim DBW 25 kHz Freq 4500125 ME Part level 4000 dim Offent 2000 dim DBW 25 kHz Freq 4500125 ME Part level 4000 dim Offent 2000 dim DIM DIM Part level 4000 dim Offent 2000 dim DIM DIM Part level 4000 dim Offent 2000 dim Offent 2000 dim DIM Part level 4000 dim Offent 2000 dim Offent 2000 dim Offent 2000 dim Part level 4000 dim Offent 2000 dim Offent 2000 dim Offent 2000 dim Part level 4000 dim Offent 2000 dim Offent 2000 dim Offent 2000 dim Part level 4000 dim Offent 2000 dim Offent 2000 dim Offent 2000 dim Part level 4000 dim Offent 2000 dim Offent 2000 dim Offent 2000 dim Part level 4000 dim Offent 2000 dim Offent 2000 dim <

Appendix H:Transmitter Frequency Behavior

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-ANH	FM	СН _н	MultiView Spectrum Analog Demod Image: Constraint of the const
TX-ANH	FM	CH _H	HultView Spectrum Analog Demod Ref Level 40 00 dfm Offset 26 00 dfm At 24 dfg 100.032 mg OBW 25 lint: Freq 469.9875 lint: Total Diff Total Diff Total Diff Total Diff Total Diff Nume Total Diff Total Diff Total Diff Total Diff Nume Total Diff Total Diff Total Diff Total Diff Nume Total Diff Total Diff Total Diff Total Diff Nume Total Diff Total Diff Total Diff Total Diff Nume Total Diff Total Diff Total Diff Total Diff Nume Total Diff Total Diff Total Diff Total Diff Nume Total Diff Total Diff Total Diff Total Diff Nume Total Diff Total Diff Total Diff Total Diff Nume Total Diff Total Diff Total Diff Total Diff Nume Total Diff Total Diff Total Diff Total Diff

Appendix I:Spurious Emission On Antenna Port

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AEH	TX-AEH FM	CH∟	Multiview Spectrum Ref Level 2000 dBm Offset 20.50 dB Mode Auto Sweep Spurious Emissions 11 Max
		One Operation Oper	
TX-AEH	FM	CH⊦	Multiview Spectrum Ref Level 20.00 dBm Offset 20.50 dB Mode Auto Sweep Structure and structure
TX-ANH	FM	CH∟	HultiView Spectrum Ref Level 20.0 dBm Offset 20.50 dB Mode Auto Sweep Suprove the second 1 Max 1 Max Suprove the second 1 Max 1 Max Linit Citede 1 Max 1 Max 10 date 1 Max 1 Max 10

Appendix I:Spurious Emission On Antenna Port

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
Mode TX-ANH	FM	Channel CH _H	MultiView Spectrum Ref Level 2000 dbm Offset 20.50 db Mode Auto Sweep Isomorphic and a state of the state
			30,000 MHz 1,000 GHz 100,000 HHz 469,98734 MHz -43,99 dBm -18,99 dB 1,000 GHz 5,000 GHz 1,000 MHz 4,22984 GHz -33,49 dBm -8,49 dB 1,000 GHz 1,000 MHz 4,22984 GHZ -33,49 dBm -8,49 dB 1,000 GHz 1,000 MHz 1

----End of Report----