

FCC 47 CFR PART 90

TEST REPORT

For

Applicant: Advanced Wireless Communications

20809 Kensington Blvd. Lakeville, MN 55020

USA 55044-8353

- Product Name : Wireless Transmit & Receive Device Module
 - Model Name : AWC520V2
 - Brand Name : AWC

Address :

- FCC ID: Q9SAWR520V2
- Report No.: STS110618F1
- Date of Issue : June 27, 2011
 - Issued by : Shenzhen Super Test Service Technology Co., Ltd.
 - Address : No.5, 2nd Langshan Road, North District, Hi-tech IndustrialPark, Nanshan, Shenzhen, Guangdong, China
 - Tel: 86-755-2795 8522

Fax : 86-755-2795 8022

The report consists 36 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The clientshould not use it to claim product endorsement by STS. The test results in the report only applyto the testedsample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

CONTENTS

1.	TEST RESULT CERTIFICATION	3
2.	Technical Information	4
2.1	EUT Description	4
2.2	Objective	5
2.3	Test Standards and Results	5
2.4	Environmental Conditions	5
3.	Details of Test	6
3.1	Identification of the Responsible Testing Laboratory	6
3.2	Identification of the Responsible TestingLocation	6
3.3	List of Test Equipments	7
3.4	Environmental Conditions	8
3.5	Configuration of Tested System	8
3.6	Equipment Used in Tested System	8
4.	Test Methodology	9
4.1	General Test Procedures	9
4.2	Description of Test Modes	9
5.	FCC Part 90 Requirements	10
5.1	Power and Antenna High Limits	10
5.2	Modulation Characteristic	11
5.3	Occupied Bandwidth	15
5.4	Emission Mask	16
5.5	Frequency Stability vs. Temperature	23
5.6	Frequency Stability vs. Voltage	25
5.7	Transmitter Frequency Behavior	27
Anne	ex A	28
Phot	tographs of the Test Setup	28
Anne	ех В	31
Phot	tographs of the EUT	31

1. TEST RESULT CERTIFICATION

Applicant Name:	Advanced Wireless Communications
Address:	20809 Kensington Blvd. Lakeville, MN 55020 USA 55044-8353
Manufacturer Name:	Allcomm Electronic Compay Limited
Address:	Tang Xia Yong Village,SongGang Town,Baoan District,Shenzhen,Guang Dong,PRC
Brand Name:	AWC
Equipment Under Test:	Wireless Transmit & Receive Device Module
Model Number:	AWC520V2
FCC ID :	Q9SAWR520V2
Test Standard	FCC 47 CFR Part 90
File Number:	STS110618F1
Date of Test:	June 20, 2011- June 27, 2011

We (STS) hereby certify that the test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA-603-C-2004 and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 90.

The test results of this report relate only to the tested sample identified in this report.

Tested by (+ signature):

Petter Piny

Petter PingJune 27, 2011

Review by (+ signature):

July Wen June 27, 2011

Approved by (+ signature):

o Yong

Terry YangJune 27, 2011

2. Technical Information

Note: the following data is based on the information by the applicant.

2.1 EUT Description

Product	Wireless Transmit & Receive Device Module
Brand Name	AWC
Model Number	AWC520V2
Series Model Name:	N/A
Series Model Difference description:	N/A
Power Supply	DC 7.5V,1200 mA
Frequency Range	450.000 MHz-470.000 MHz
Modulation Technique	FM
Channel Number	16 (Low: 450.125 MHz, Middle: 460.125MHz, High:469.975MHz)
Antenna Gain	1.5dBi
Temperature Range	-10°C-50°C

Note:

- 1. This submittal(s) (test report) is intended for FCC ID: <u>Q9SAWR520V2</u>filing to comply with the FCC Part 90, Subpart I Rules.
- 2. Please refer to Appendix B for the photographs of the EUT. For more details, please refer to the User's manual of the EUT.

2.2 Objective

The tests documented in this report were performed in accordance with ANSI/TIA-603-C-2004and FCC CFR 47 Rules Part 90SubpartI.

No.	Identity	Document Title
1	47 CFR Part 2	Radio Frequency Devices
	(10-1-05 Edition)	
2	47 CFR Part 90	Private Land Mobile Radio Services
	(10-1-09 Edition)	

2.3 Test Standards and Results

Test items and the results are as bellow:

Nº	Test Type	Para. Number	Limit	Result
1	Powerand Antenna High Limits	2.1046; 90.205	Refer to90.205	PASS
2	Modulation Characteristic	2.1047; 90.207	Refer to 90.207	PASS
3	Occupied Bandwidth	2.1049; 90.209	Refer to 90.209	PASS
4	Emission Mask	2.1053; 90.210	Refer to 90.210	PASS
5	Frequency Stability vs. Temperature	2.1055; 90.213	Refer to 90.213	PASS
6	Frequency Stability vs. Voltage	2.1055; 90.213	Refer to 90.213	PASS
7	Transmitter Frequency Behavior	90.214	Refer to 90.214	PASS
				·

2.4 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60%
- Atmospheric pressure: 86-106 kPa

3. Details of Test

3.1 Identification of the Responsible Testing Laboratory

Company:Shenzhen Super Test Service Technology Co., Ltd.Address:No.5, Langshan 2nd Rd., North Hi-Tech Industrial park, Nanshan,
Shenzhen,Guangdong, China

3.2 Identification of the Responsible TestingLocation

Test Site:	Most Technology Service Co.,Ltd.						
Location:	No.5,Langshan 2nd Rd., North Hi-Tech Industrial park, Nanshan, Shenzhen,						
	Guangdong, China						
Description:	There is one 3m semi-anechoican area test sites and two line conducted labs for final						
	test. The Open Area Test Sites and the Line Conducted labs are constructed and						
	calibrated to meet the FCC requirements in documents ANSI C63.4:2009,						
	ANSI/TIA-603-C-2004 and CISPR 16 requirements.						
	The FCC Registration Number is 490827.						
Site Filing:	The site description is on file with the Federal Communications Commission, 7435						
	Oakland Mills Road, Columbia, MD 21046.						
Instrument Tolerance:	All measuring equipment is in accord with ANSI C63.4:2009,						
	ANSI/TIA-603-C-2004and CISPR 16 requirements that meet industry regulatory						
	agency and accreditation agency requirement.						
Ground Plane:	Two conductive reference ground planes were used during the Line Conducted						
	Emission, one in vertical and the other in horizontal. The dimensions of these ground						
	planes are as below. The vertical ground plane was placed distancing 40 cm to the						
	rear of the wooden test table on where the EUT and the support equipment were						
	placed during test. The horizontal ground plane projected 50 cm beyond the footprint						
	of the EUT system and distanced 80 cm to the wooden test table. For Radiated						
	Emission Test, one horizontal conductive ground plane extended at least 1m beyond						
	the periphery of the EUT and the largest measuring antenna, and covered the entire						
	area between the EUT and the antenna.						

3.3 List of Test Equipments

No.	Equipmont	Manufacturer	Model No.	S/N	Calibration
INO.	Equipment	Manufacturer	Model No.	5/1	due date
1	Test Receiver	Rohde & Schwarz	ESCI	100492	2012/03/14
2	L.I.S.N.	Rohde & Schwarz	ENV216	100093	2012/03/14
3	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2012/03/14
4	Terminator	Hubersuhner	50Ω	No.1	2012/03/14
5	RF Cable	SchwarzBeck	N/A	No.1	2012/03/14
6	Bilog Antenna	Sunol	JB3	A121206	2012/03/14
7	Cable	Resenberger	N/A	NO.1	2012/03/14
8	DC Power Filter	DuoJi	DL2×30B	N/A	2012/03/14
9	Single Phase Power Line Filter	DuoJi	FNF 202B30	N/A	2012/03/14
10	3 Phase Power Line Filter	DuoJi	FNF 402B30	N/A	2012/03/14
11	Absorbing Clamp	Luthi	MDS21	3635	2012/03/14
12	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2012/03/14
13	AC Power Source	Kikusui	AC40MA	LM003232	2012/03/14
14	Test Analyzer	Kikusui	KHA1000	LM003720	2012/03/14
15	Line Impendence Network	Kikusui	LIN40MA-PCR-L	LM002352	2012/03/14
16	ESD Tester	Kikusui	KES4021	LM003537	2012/03/14
17	EMCPRO System	EM Test	UCS-500-M4	V0648102026	2012/03/14
18	Signal Generator	IFR	2032	203002/100	2012/03/14
19	Amplifier	A&R	150W1000	301584	2012/03/14
20	CDN	FCC	FCC-801-M3-25	107	2012/03/14
21	EM Injection Clamp	FCC	F-203I-23mm	403	2012/03/14
22	Telecommunication Antenna	European Antennas	PSA 75301R/170	0304213	2012/03/14

NOTE:Equipments listed above have been calibrated and are in the period of validation.

3.4 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60%
- Atmospheric pressure: 86-106 kPa

3.5 Configuration of Tested System

EUT

3.6 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/Type No.	Identifier	Series No.	Note
1	DC Supply Connect Cable	N/A	N/A	N/A	N/A	

4. Test Methodology

4.1 General Test Procedures

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirement in Section 13.1.4.1 of ANSI C63.4:2009,ANSI/TIA-603-C-2004.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

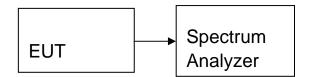
Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4:2009,ANSI/TIA-603-C-2004.

4.2 Description of Test Modes

The EUT has been tested under normal operating condition.

Three channels (The top channel, the middle channel and the bottom channel) are chosen for testing.


5. FCC Part 90 Requirements

5.1 Power and Antenna High Limits

<u>LIMIT</u>

According to CFR 47 section 90.205, Maximum ERP/Conducted Power is dependent upon the station's antenna HAAT and required service area.

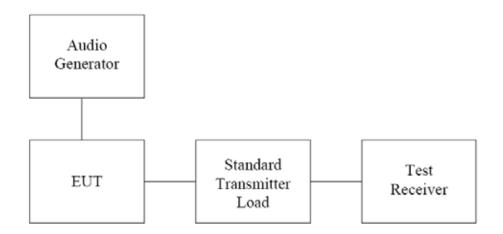
TEST CONFIGURATION

TEST PROCEDURE

The EUT was connected to the Spectrum Analyzer. The radio frequency load attached to the EUT antenna terminal was 50 Ohm. The lost of the cables and the test system is calibrated to correct the reading.

TEST RESULTS

Channel	Frequency (MHz)	Reading (dBm)	Factor	Conducted Peak Power (dBm)
Low	450.125	29.96	2.39	32.35
Mid	460.125	29.63	2.43	32.06
High	469.975	29.48	2.41	31.89


5.2 **Modulation Characteristic**

LIMIT

According to CFR 47 section 2.1047 a, for Voice modulation communication equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000 Hz shall be measured.

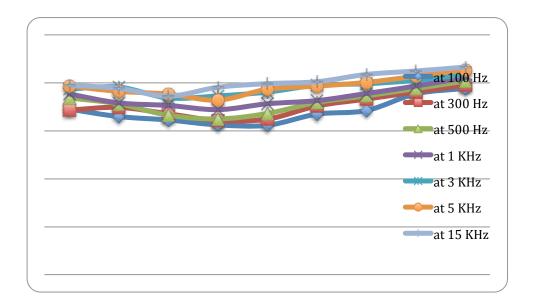
According to CFR 47 section 90.205, Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

TEST CONFIGURATION

TEST PROCEDURE

Modulation limits is the transmitter circuit's ability to limit the transmitter form producing deviations in excess of rated system deviation.

The audio signal generator is connected to the audio input of the EUT with its full rating.

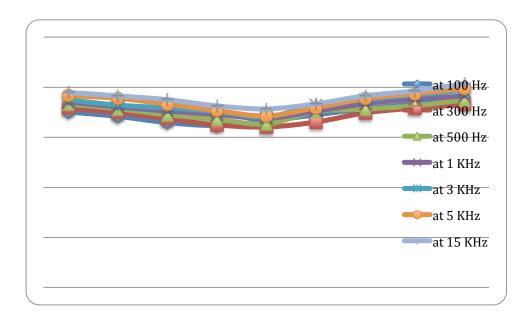

The modulation response is measured at certain modulation frequencies, related to 1000 Hz reference signal.

Tests are performed for positive and negative modulation.

TEST RESULTS

Modulation			Peak F	requency De	eviation		
Level (dB)	at 100 Hz	at 300 Hz	at 500 Hz	at 1 KHz	at 3 KHz	at 5 KHz	at 15 KHz
-20	17.25	17.18	18.44	18.84	19.35	19.65	19.75
-15	16.49	17.44	17.81	17.91	19.56	19.12	19.43
-10	16.13	16.78	16.63	17.65	18.43	18.83	18.62
-5	15.62	16.08	16.24	17.21	18.64	18.20	19.54
0	15.58	16.22	16.81	17.82	19.04	19.33	19.92
+5	16.74	17.59	17.96	18.15	19.75	19.66	20.12
+10	17.12	18.31	18.65	18.89	19.91	20.05	20.88
+15	18.86	19.05	19.41	19.67	20.26	20.69	21.24
+20	19.43	19.76	20.18	20.56	20.87	21.34	21.65

The Low Channel (450.125 MHz)

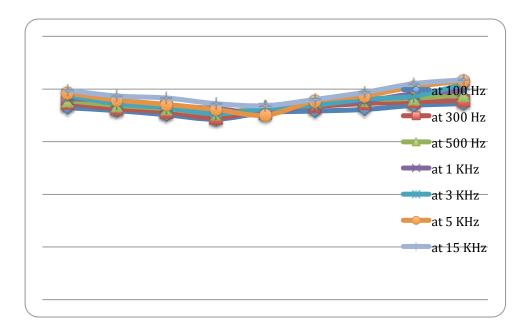


Report No.:STS110618F1

FCC ID: Q9SAWR520V2

Modulation			Peak F	requency De	eviation				
Level (dB)	at 100 Hz	at 300 Hz	at 500 Hz	at 1 KHz	at 3 KHz	at 5 KHz	at 15 KHz		
-20	17.54	17.90	18.33	18.51	18.73	19.16	19.48		
-15	17.09	17.45	17.85	18.04	18.22	18.89	19.14		
-10	16.47	16.86	17.24	17.62	17.93	18.31	18.76		
-5	16.18	16.24	16.79	17.28	17.58	17.66	18.14		
0	16.62	16.03	16.33	16.89	17.03	17.14	17.83		
+5	17.24	16.52	17.56	17.61	18.24	17.95	18.34		
+10	17.85	17.44	17.81	18.35	18.76	18.86	19.15		
+15	18.36	17.92	18.16	18.84	19.25	19.36	19.63		
+20	18.89	18.25	18.73	19.12	19.68	19.86	20.36		

The Middle Channel (460.125 MHz)

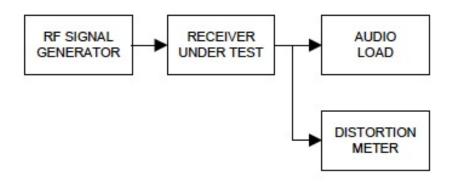


Report No.:STS110618F1

FCC ID: Q9SAWR520V2

Modulation			Peak F	requency De	eviation	viation			
Level (dB)	at 100 Hz	at 300 Hz	at 500 Hz	at 1 KHz	at 3 KHz	at 5 KHz	at 15 KHz		
-20	18.23	18.65	18.89	19.12	19.39	19.61	19.88		
-15	17.95	18.13	18.45	18.86	18.61	18.95	19.34		
-10	17.56	17.84	18.13	18.41	18.23	18.54	19.15		
-5	17.14	17.26	17.69	18.15	17.65	18.06	18.61		
0	17.76	18.04	18.32	17.68	18.12	17.52	18.42		
+5	17.91	18.35	18.79	18.52	18.46	18.88	19.01		
+10	18.06	18.62	18.96	18.86	19.04	19.36	19.68		
+15	18.45	18.79	19.12	19.55	19.32	20.21	20.51		
+20	18.62	18.92	19.45	19.83	20.46	20.78	20.88		

The High Channel (469.975 MHz)



5.3 Occupied Bandwidth

LIMIT

According to FCC CFR 47 Part 90 Section 90.209, for other types of emissions, the maximum authorized bandwidth shall not be more than that normally authorized for voice operations.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the equipment as illustrated.
- 2. Set EUT as normal operation.
- 3. Apply a standard input signal and adjust its level to a value that produces reference sensitivity.
- 4. Increase the signal level by 6 dB.
- 5. Increase the input signal frequency until the standard SINAD is obtained. Record this frequency as FH.
- 6. Decrease the input signal frequency until the standard SINAD is obtained. Record this frequency as FL .
- 7. Calculate the frequency differences by the following:

FDIFF 1 = FH - nominal frequency,

FDIFF 2 = nominal frequency – FL

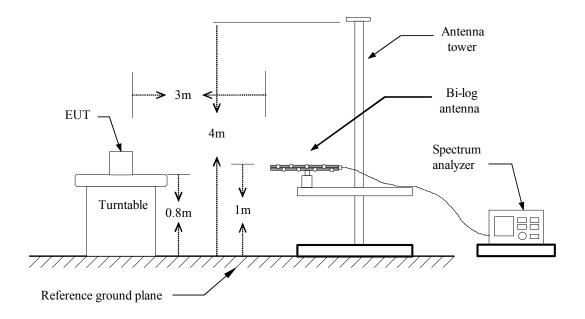
The smaller of FDIFF 1 or FDIFF 2 is the signal displacement bandwidth.

TEST RESULTS

Channel	Frequency	Occupied Bandwidth	Result
Bottom	450.125 MHz	11.06 KHz	PASS
Middle	460.125 MHz	11.05 KHz	PASS
Тор	469.975MHz	11.08 KHz	PASS

5.4 Emission Mask

LIMIT


According to CFR 47 section 90.210, the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

(1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB;

(2) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB;

(3) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least $43+10\log_{10}$ *(mean output power in watts) dB;

TEST CONFIGURATION

TEST PROCEDURE

1. On a test site, the EUT shall be placed on a turntable and in the position closest to the normal use as declared by the user.

2. The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.

3. The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.

4. The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

5. The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.

6. The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

7. The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.

8. The maximum signal level detected by the measuring receiver shall be noted.

9. The measurement shall be repeated with the test antenna set to horizontal polarization.

10. Replace the antenna with a proper Antenna (substitution antenna).

11. The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.

12. The substitution antenna shall be connected to a calibrated signal generator.

13. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

14. The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

15. The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.

16. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

17. The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

TEST RESULTS

The Unwanted Radiated Emission

Frequency (MHz)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
900.25	V	-17.68	10.69	8.31	-20.06	-13	-7.06
Other	V					-13	> 10 dB
	V					-13	> 10 dB
	V					-13	> 10 dB
900.25	Н	-18.07	10.69	8.31	-20.45	-13	-7.45
Other	Н					-13	> 10 dB
	Н					-13	> 10 dB

The Low Channel (450.125 MHz)

Notes:

(1) "--" in the table above means that the emissions are too small to be measured and are at least 10 dB below the limit.

(2) Emisiion Level=S.G ourput power(dBm)-Cable loss(db)+Antenna Gain(dBi)

Frequency (MHz)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
920.25	V	-18.27	10.73	8.35	-20.65	-13	-7.65
Other	V					-13	> 10 dB
	V					-13	> 10 dB
	V					-13	> 10 dB
	V					-13	> 10 dB
	V					-13	> 10 dB
920.25	Н	-19.04	10.73	8.35	-21.42	-13	-8.42
Other	н					-13	> 10 dB
	Н					-13	> 10 dB
	Н					-13	> 10 dB
	Н					-13	> 10 dB

The Middle Channel (460.125 MHz)

Notes:

(1) "--" in the table above means that the emissions are too small to be measured and are at least 10 dB below the limit.

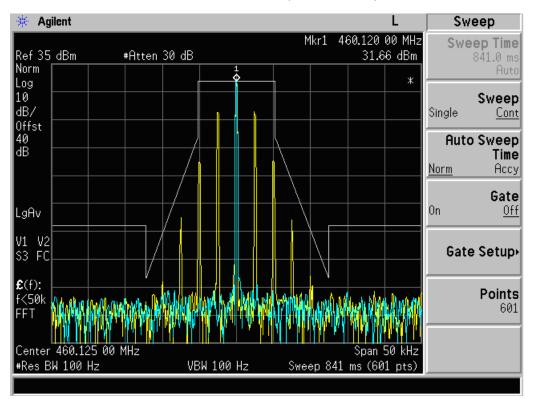
(2) Emisiion Level=S.G ourput power(dBm)-Cable loss(db)+Antenna Gain(dBi)

Frequency (MHz)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
940.03	V	-18.61	10.90	8.69	-20.82	-13	-7.82
Other	V					-13	> 10 dB
	V					-13	> 10 dB
	V					-13	> 10 dB
940.03	Н	-19.43	10.90	8.69	-21.64	-13	-8.64
Other	Н					-13	> 10 dB
	Н					-13	> 10 dB
	Н					-13	> 10 dB
	Н					-13	> 10 dB

The High Channel (469.975 MHz)

Notes:

(1) "--" in the table above means that the emissions are too small to be measured and are at least 10 dB below the limit.


(2) Emisiion Level=S.G ourput power(dBm)-Cable loss(db)+Antenna Gain(dBi)

Maximum Transmitter Power (P)	32.35 dBm
Require attenuation	43+10log ₁₀ (1.718)= 45.35 dB
Emission Limits	P-[43+10log ₁₀ (1.718)]= -13 dBm

The Unwanted Conducted Emission

NO.	Frequency	Measurement Bandwidth	Level	Limit	Margin			
	MHz	KHz	EIRP	dBm	dB			
	The Low Channel (450.125 MHz)							
1	<1000	100	١	-13	>10			
2	4804	100	١	-13	>10			
3	7206	100	١	-13	>10			
4	9608	100	١	-13	>10			
5	12010	100	١	-13	>10			
6	other	100	١	-13	>10			
		The Middle Channel (460).125 MHz)					
1	<1000	100	١	-13	>10			
2	4884	100	١	-13	>10			
3	7326	100	١	-13	>10			
4	9768	100	١	-13	>10			
5	12210	100	١	-13	>10			
6	other	100	١	-13	>10			
		The High Channel (469.	975 MHz)					
1	<1000	100	١	-13	>10			
2	4960	100	١	-13	>10			
3	7440	100	١	-13	>10			
4	9920	100	/	-13	>10			
5	12400	100	/	-13	>10			
6	other	100	١	-13	>10			
Measuren	nent uncertainty:	±3.2dB						

Emission Mask:

The Middle Channel (460.125 MHz)

5.5 Frequency Stability vs. Temperature

LIMIT

a). According to FCC Part 2 Section 2.1055(a)(1), the frequency stability shall be measured with variation of ambient temperature from -30° C to $+50^{\circ}$ C centigrade.

b). According to FCC Part 2 Section 2.1055(d)(1), vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

c). According to FCC Part 90 Section 90.213, for output power > 2Wats, the limits is 2.5 ppm.

TEST PROCEDURE

The EUT power was supplied by DC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber. The DC leads and the RF output cable, exited the chamber through an opening made for that purpose.

After the temperature stabilized the frequency output was recorded form the counter.

RESULTS

The Low Channel (450.125 MHZ)					
Temperature (℃)	Frequency Error (K Hz)	Frequency Error (%)	Frequency Error (ppm)	Limit (ppm)	
-30	-10.255	-0.000023	-0.23	±2.5	
-20	-8.562	-0.000019	-0.19	±2.5	
-10	4.065	0.000009	0.09	±2.5	
0	2.168	0.000005	0.05	±2.5	
10	-3.086	-0.000007	-0.07	±2.5	
20	-5.455	-0.000012	-0.12	±2.5	
30	-7.310	-0.000016	-0.16	±2.5	
40	-9.605	-0.000020	-0.20	±2.5	
50	-12.589	-0.000028	-0.28	±2.5	

The Low Channel (450.125 MHz)

Temperature (℃)	Frequency Error (K Hz)	Frequency Error (%)	Frequency Error (ppm)	Limit (ppm)
-30	-11.125	-0.000024	-0.24	±2.5
-20	-9.521	-0.000021	-0.21	±2.5
-10	-6.092	-0.000013	-0.13	±2.5
0	2.865	0.000006	0.06	±2.5
10	-4.146	-0.000009	-0.09	±2.5
20	-6.264	-0.000014	-0.14	±2.5
30	-8.124	-0.000018	-0.18	±2.5
40	-10.045	-0.000022	-0.22	±2.5
50	-13.209	-0.000029	-0.29	±2.5

The Middle Channel (460.125 MHz)

The High Channel (469.975 MHz)

Temperature (℃)	Frequency Error (K Hz)	Frequency Error (%)	Frequency Error (ppm)	Limit (ppm)
-30	-13.558	-0.000029	-0.29	±2.5
-20	-11.325	-0.000024	-0.25	±2.5
-10	-9.215	-0.000020	-0.20	±2.5
0	-6.665	-0.000014	-0.14	±2.5
10	3.175	0.000007	0.07	±2.5
20	-5.413	-0.000012	-0.12	±2.5
30	-7.258	-0.000015	-0.15	±2.5
40	-10.865	-0.000023	-0.23	±2.5
50	-15.431	-0.000033	-0.33	±2.5

5.6 Frequency Stability vs. Voltage

LIMIT

a). According to FCC Part 2 Section 2.1055(a)(1), the frequency stability shall be measured with variation of ambient temperature from -30° C to $+50^{\circ}$ C centigrade.

b). According to FCC Part 2 Section 2.1055(d)(1), vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

c). According to FCC Part 90 Section 90.213, for output power > 2Wats, the limits is 2.5 ppm.

TEST PROCEDURE

An external variable DC power supply was connected to the EUT.

For hand carried, The DC power equipment primary supply voltage was reduced to the end point as specified by the manufacturer. The output frequency was recorded for highest and lowest voltage.

RESULTS

	The Low Channel(450.125 MHz)					
Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)	Limit (%)		
3.6	9165	0.000020	0.20	±2.5		
3.7	7860	0.000017	0.17	±2.5		
4.2	6120	0.000014	0.14	±2.5		

The Low Channel(450.125 MHz)

The Middle Channel (460.125 MHz)

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)	Limit (%)
3.6	11038	0.000024	0.24	±2.5
3.7	9850	0.000021	0.21	±2.5
4.2	6965	0.000015	0.15	±2.5

		•	,	
Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)	Limit (%)
3.6	9765	0.000021	0.21	±2.5
3.7	7056	0.000015	0.15	±2.5
4.2	5142	0.000011	0.11	±2.5

The High Channel (469.975 MHz)

5.7 Transmitter Frequency Behavior

Provisions Applicable

Section 90.214

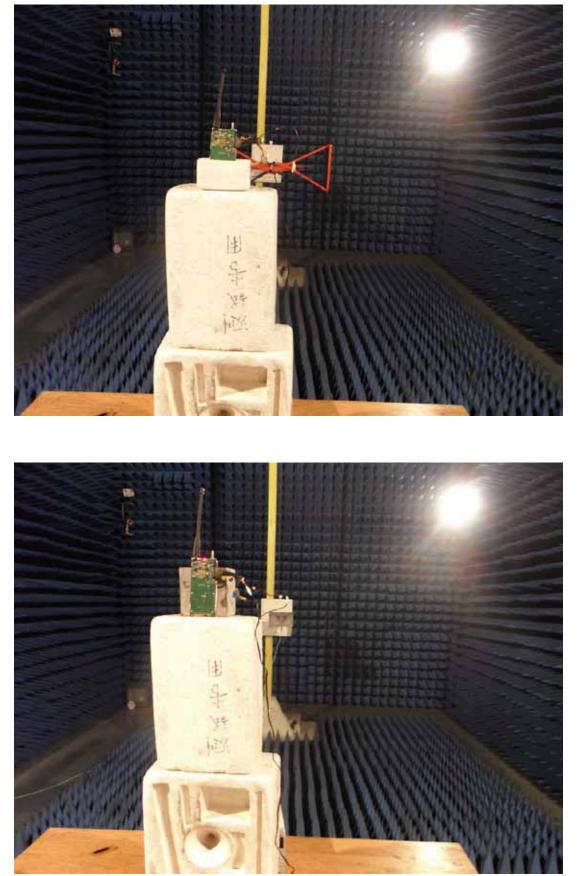
TEST PROCEDURE

TIA/EIA-603 2.2.19

RESULTS

Please refer to the test plot.

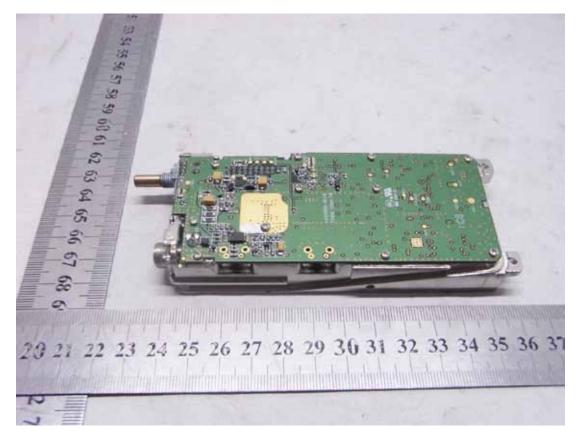
0.0000	5.00000	30.000
* * * * * * * * * * * * * * * *		
• • • • • • • • • • • •	+	A 40012 Put - 00000000
	 	8.5 X X X
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		97.1 of 6
	1)P = 1	
30.0000	-5.00000	20.0000
		<u> </u>
	1 1 ± [NUUUUU	
	<u> </u>	
and the second		
	<u> </u>	
		┼╋╇╋╋╋


No non-compliance noted

Conclusion: PASS

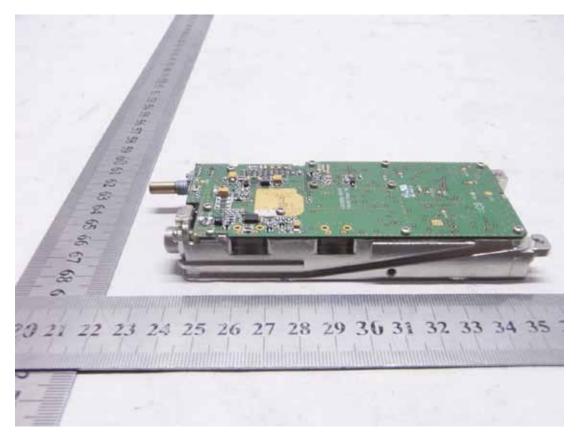
Annex A

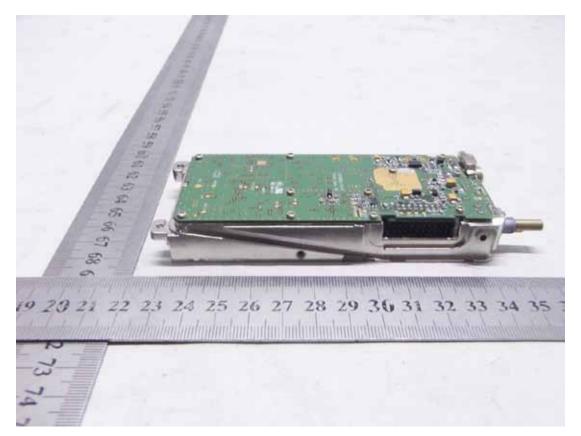
Photographs of the Test Setup

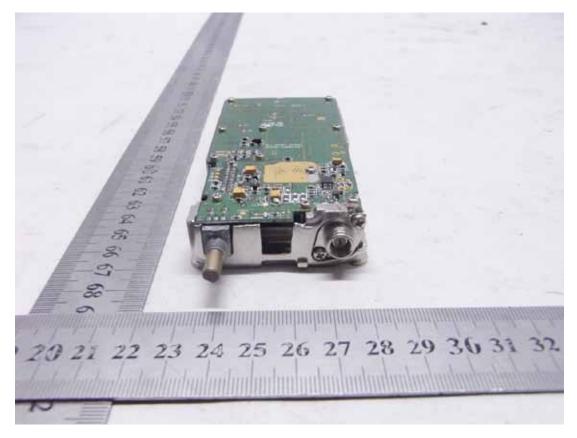

Report No.:STS110618F1

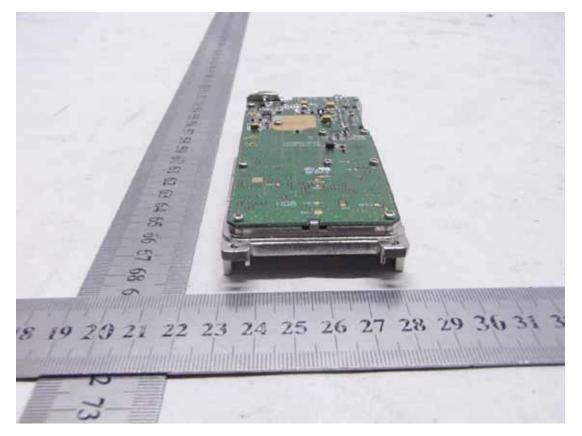
Annex B

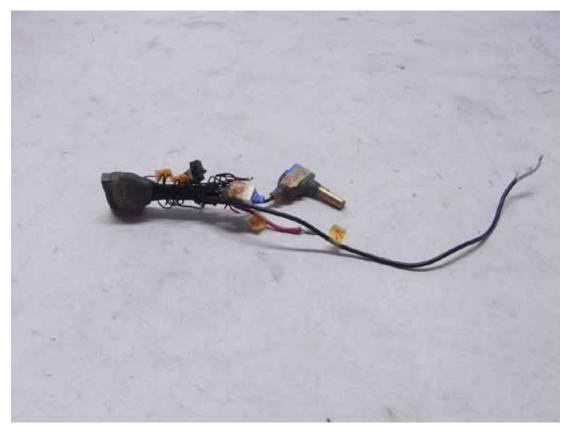
Photographs of the EUT


FRONT VIEW OF SAMPLE


BACK VIEW OF SAMPLE


LEFT VIEW OF SAMPLE


RIGHT VIEW OF SAMPLE


UP VIEW OF SAMPLE

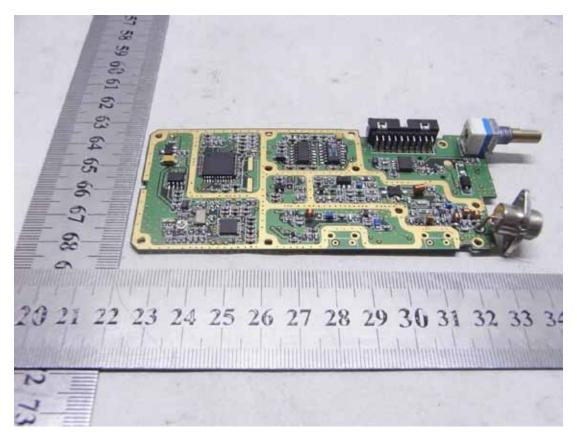

DOWN VIEW OF SAMPLE

PHOTO OF SPECIAL DC POWER CABLE

INTERNAL PHOTO OF SAMPLE-1

INTERNAL PHOTO OF SAMPLE-2

*** End of the Reports***