849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Test Report

Product Name: PORTABLE PTT RADIO

FCC ID: Q9S02041688

Applicant:

ADVANCED WIRELESS COMMUNICATIONS 20809 KENSINGTON BLVD. LAKEVILLE, MINNESOTA 55044

Date Receipt: FEBRUARY 16, 2004

Date Tested: JULY 19, 2004

APPLICANT: ADVANCED WIRELESS COMMUNICATIONS
FCC ID: Q9S02041688
REPORT #: A\ADVANCED WIRELESS_Q9S\188AUT4\188AUT4TestReport.doc
COVER SHEET

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: <u>sid@timcoengr.com</u>

TABLE OF CONTENTS LIST

APPLICANT: ADVANCED WIRELESS COMMUNICATIONS

FCC ID: Q9S02041688

TEST REPORT:

PAGE 1GENERAL INFORMATION & TECHNICAL DESCRIPTION	
PAGE 2	
RF POWER OUTPUT	
PAGE 3MODULATION CHARACTERISTICS	
AUDIO FREQUENCY RESPONSE GRAPH	
PAGE 4	
PAGE 5AUDIO LOW PASS FILTER	
PAGE 6-7OCCUPIED BANDWIDTH	
PAGE 8OCCUPIED BANDWIDTH PLOT	
PAGE 9 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
FIELD STRENGTH OF SPURIOUS EMISSIONS	
PAGE 10METHOD OF MEASURING RADIATED SPURIOUS EMISSIONS	S
PAGE 11FREQUENCY STABILITY	
PAGE 12-13TRANSIENT FREQUENCY RESPONSE	
PAGE 14TRANSIENT FREQUENCY RESPONSE PLOTS	
PAGE 15-18LIST OF TEST EQUIPMENT	

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

GENERAL INFORMATION REQUIRED FOR TYPE ACCEPTANCE

2.1033(c)(1)(2) ADVANCED WIRELESS COMMUNICATIONS will sell the FCC ID: Q9S02041688 VHF transceiver in quantity, for use under FCC RULES PART 90.

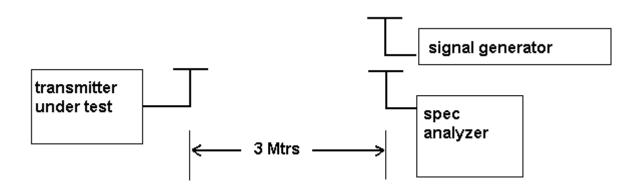
> ADVANCED WIRELESS COMMUNICATIONS 20809 KENSINGTON BLVD. LAKEVILLE, MINNESOTA 55044

- 2.1033(c) TECHNICAL DESCRIPTION
- 2.1033(c)(3) Instruction book. A draft copy of the instruction manual is included in the exhibits.
- 2.1033(c) (4) Type of Emission: 8K4F3E 90.209 Bn = 2M + 2DK M = 2200 D = 2000 Bn = 2(2200)+2(2000) = 8.4k
- 90.217 (b) Authorized Bandwidth 12.5 kHz
- 2.1033(c)(5) Frequency Range: 460 470 MHz
- 90.209
- 2.1033(c)(6)(7) Power Output shall not exceed 59 Watts into a 50 ohm 90.205 resistive load. There are no user power controls.
- 2.1033(c)(8) DC Voltages and Current into Final Amplifier: POWER INPUT:

FINAL AMPLIFIER ONLY Vce = 3.6 Volts IC = 0.48 A

Pin = 1.728 WATTS

(9) Tune-up procedure. The tune-up procedure is given in the exhibits.


849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

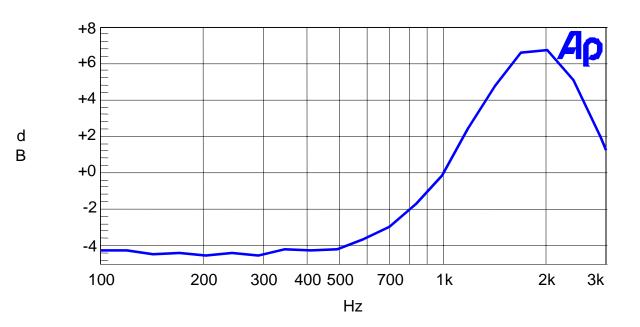
- 2.1033 (10)Complete Circuit Diagrams: The circuit diagram and block diagram are included in the exhibits.
 - (11)Function of each electron tube or semiconductor device or other active circuit device: See the exhibits.
 - (12)Description of all circuitry and devices provided for determining and stabilizing frequency is included in the circuit description in the instruction manual.
- 2.1033(c)(13) A photo or drawing of the equipment identification label is shown in the exhibits.
- 2.1033(c)(14)Photographs of the equipment of sufficient clarity to reveal equipment construction and layout and label location are shown in the exhibits.
- 2.1033(c)(15)Digital Modulation is not allowed.
- 2.1033(c)(16)The data required for 2.1046 through 2.1057 is submitted below.

2.1046(a) RF POWER OUTPUT

RF power is measured as ERP as the antenna is permanently attached. The substitution method was used. With a nominal battery voltage of 3.6 VDC, and the transmitter properly adjusted the RF output measures:

OUTPUT POWER: HIGH - 0.219 Watts ERP LOW - 0.182 Watts ERP

APPLICANT: ADVANCED WIRELESS COMMUNICATIONS FCC ID: Q9S02041688 **REPORT #:** A\ADVANCED WIRELESS 09S\188AUT4\188AUT4TestReport.doc

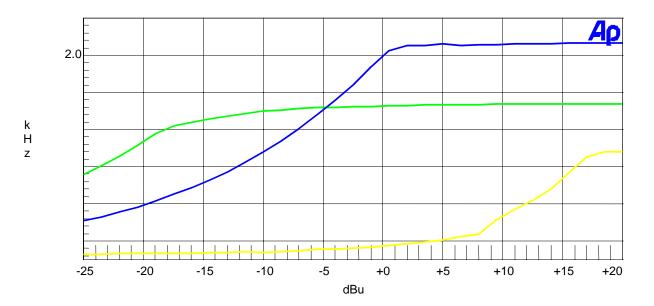

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1047(a)(b) <u>Modulation characteristics</u>:

AUDIO FREQUENCY RESPONSE

The audio frequency response was measured in accordance with TIA/EIA Specification 603. The audio frequency response curve is shown below. The audio signal was fed into a dummy microphone circuit and into the microphone connector. The input required to produce 30 percent modulation level was measured.

AUDIO FREQUENCY RESPONSE PLOT


Audio Frequency Response Plot

APPLICANT: ADVANCED WIRELESS COMMUNICATIONS
FCC ID: Q9S02041688
REPORT #: A\ADVANCED WIRELESS_Q9S\188AUT4\188AUT4TestReport.doc

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

> 2.1047(b) Audio input versus modulation The audio input level needed for a particular percentage of modulation was measured in accordance with TIA/EIA Specification 603. The audio input curves versus modulation are shown below. Curves are provided for audio input frequencies of 300, 1000, and 2500 Hz.

Modulation Limiting Plots: 2.5KHz (Green), 1.0KHz (Blue), 300Hz (Yellow)

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

d B

Post Limiter Filter

The filter must be between the modulation limiter and the modulated stage. At any frequency between 3 & 20 kHz the filter must have an attenuation of 60log (f/3) greater that the attenuation at 1KHz. See the plot below.

+8 +6 +4 +2 +0 -2 -4 2k 3k 4k 5k 6k 7k 8k 10k 20k Hz

Audio Low Pass Filter

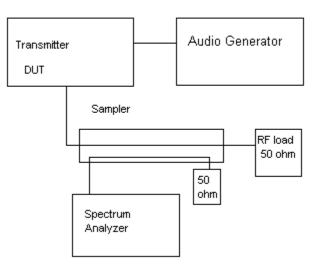
849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1049(c) EMISSION BANDWIDTH:

90.210(d)

Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.
- (2) On any frequency from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27 (fd - 2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10log(P) dB or 70 dB, whichever is the lesser attenuation.

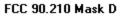

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: <u>sid@timcoengr.com</u>

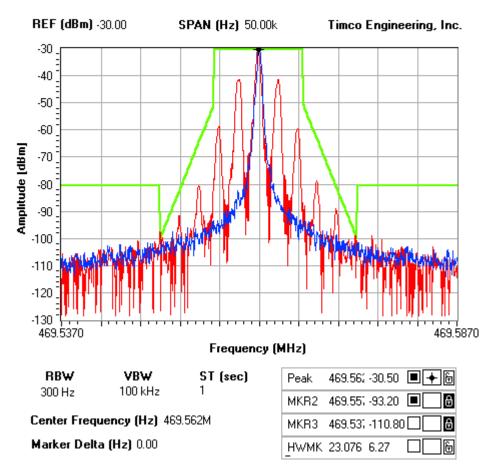
Radiotelephone transmitter with modulation limiter:

Test procedure diagram

OCCUPIED BANDWIDTH MEASUREMENT

Occupied BVV Test Equipment Setup




849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

OCCUPIED BANDWIDTH

NOTES:

ADVANCED WIRELESS COMMUNICATIONS - FCC ID: Q9S02041688 OCCUPIED BANDWIDTH_PLOT

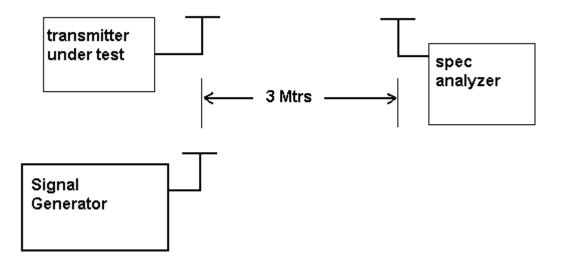
849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

- 2.1051 **Spurious emissions at antenna terminals (conducted):** Not applicable, no antenna terminal allowed.
- 2.1053 Field strength of spurious emissions:
- NAME OF TEST: RADIATED SPURIOUS EMISSIONS
- **REQUIREMENTS:** Emissions must be 50 + 10log(Po) dB below the mean power output of the transmitter.
- TEST DATA: 50 + 10log(.182) = 42.60 dB (Low Power)

1			1	1	1
Emission	Ant.	Corrected	Coax	Substitution	dB
Frequency	Frequency Polarity		Loss	Antenna	Below
MHz		Signal	(dB)	(dBd)	Carrier
		Reading			(dBc)
461.00	v	22.60	0	0	0
922.10	v	-22.50	0	-0.79	45.89
1383.10	v	-34.90	1.08	4.47	54.11
1844.20	v	-40.30	1.17	5.15	58.92
2305.30	н	-48.90	1.26	6.21	66.55
2766.30	v	-58.10	1.33	7.06	74.97
3227.40	v	-41.10	1.37	7.38	57.69
3688.40	v	-50.50	1.42	7.55	66.97
4149.50	v	-56.50	1.46	7.77	72.79
4610.50	н	-50.60	1.52	8.23	66.49

TEST DATA:

- 50 + 10log(.219) = 43.40 dB
- (High Power)


Emission	Ant.	Corrected	Coax	Substitution	dB
Frequency	Polarity	EUT	Loss	Antenna	Below
MHz		Signal	(dB)	(dBd)	Carrier
		Reading			(dBc)
469.50	v	23.40	0	0	0
939.10	v	-30.70	0	-1.02	55.12
1408.70	v	-32.50	1.08	4.58	52.4
1878.20	н	-47.80	1.18	5.18	67.2
2347.80	н	-49.50	1.27	6.36	67.81
2817.40	v	-50.90	1.33	7.1	68.53
3286.90	v	-41.90	1.38	7.42	59.26
3756.50	v	-51.30	1.43	7.55	68.58
4226.10	v	-56.60	1.47	7.91	73.56
4695.70	н	-51.30	1.54	8.12	68.12

APPLICANT: ADVANCED WIRELESS COMMUNICATIONS

FCC ID: Q9S02041688

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Method of Measuring Radiated Spurious Emissions

METHOD OF MEASUREMENTS: The tabulated data shows the results of the radiated field strength emissions test. The spectrum was scanned from 30 MHz to at least the tenth harmonic of the fundamental. This test was conducted per TIA/EIA STANDARD 603 using the substitution method. Measurements were made at the open field test site of TIMCO ENGINEERING, INC. located at 849 NW State Road 45, Newberry, FL 32669.

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1055 Frequency stability:

90.213(a)(1)

Temperature and voltage tests were performed to verify that the frequency remains within the .00015%, 1.5 ppm specification limit, for 25 kHz spacing & 0.00025% for 12.5 kHz spacing and 0.0001% for 6.25KHz spacing. The test was conducted as follows: The transmitter was placed in the temperature chamber at 25° C and allowed to stabilize for one hour. The transmitter was keyed ON for one minute during which four frequency readings were recorded at 15 second intervals. The worse case number was taken for temperature plotting. The assigned channel frequency was considered to be the reference frequency. The temperature was then reduced to -30° C after which the transmitter was again allowed to stabilize for one hour. The transmitter was keyed ON for one minute, and again frequency readings were noted at 15 second intervals. The worst-case number was recorded for temperature plotting. This procedure was repeated in 10 degree increments up to + 50° C.

Readings were also taken at minus 15% of the battery voltage of 3.6 VDC, which we estimate to be the battery endpoint.

MEASUREMENT DATA:

Assigned Frequency (Ref. Frequency): 469.562 603 MHz

TEMPERATURE	_°C	FREQUENC	CY_MHz	PPM
REFERENCE		469.562	603	0.00
-30		469.562	481	- 0.26
-20		469.562	436	- 0.36
-10		469.462	456	- 0.31
0		469.562	426	- 0.38
+10		469.562	501	- 0.22
+20		469.562	603	+ 0.00
+30		469.562	609	+ 0.01
+40		469.562	578	- 0.05
+50		469.562	532	- 0.15
BATT	8BATT. DATA	v	OLTS	BATT. PPM
-15%	469.562 607		3.06	+ 0.01

RESULTS OF MEASUREMENTS: The test results indicates that the EUT DOES meets the requirements.

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

2.1055(a)(1)Frequency stability:90.214Transient Frequency BehaviorREQUIREMENTS:Transmitters designed to operate in the 150-174 MHzand 401 510 MHz for more heads much maintain

and 421-512 MHz frequency bands must maintain transient frequencies within the maximum transient frequencies within the maximum frequency difference limits during the time intervals indicated:

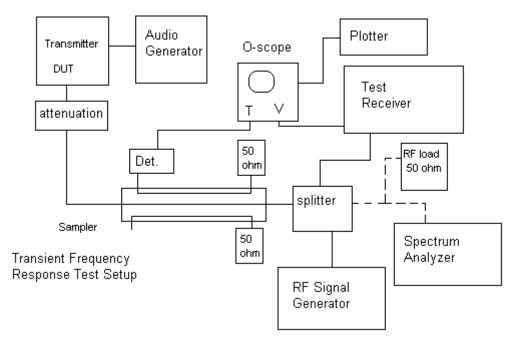
Time Intervals	Maximum frequency difference	All Equipment	
		150-174 MHz 421-512 MHz	

Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels

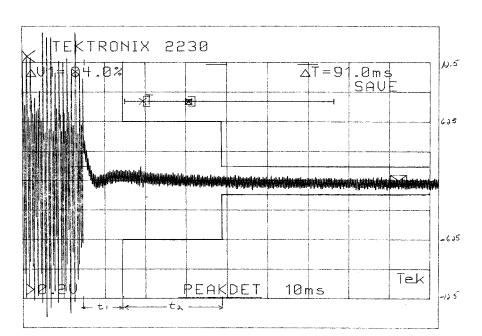
t ₁ ⁴	±25.0 kHz	5.0 mS	10.0 mS
t ₂	±12.5 kHz	20.0 mS	25.0 mS
t ₃ ⁴	±25.0 kHz	5.0 mS	10.0 mS

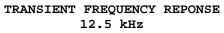
Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels

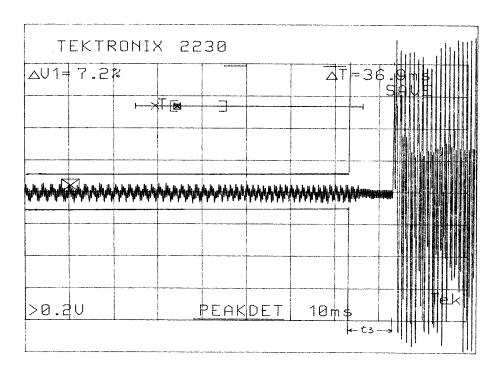
t ₁	±12.5 kHz	5.0 mS	10.0 mS
t ₂	±6.25 kHz	20.0 mS	25.0 mS
t ₃ ⁴	±12.5 kHz	5.0 mS	10.0 mS


Transient Frequency Behavior for Equipment Designed to Operate on 6.25 kHz Channels

t ₁ ⁴	±6.25 kHz	5.0 mS	10.0 mS
t ₂	±3.125 kHz	20.0 mS	25.0 mS
t ₃ ⁴	±6.25 kHz	5.0 mS	10.0 mS


849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com


TEST PROCEEDURE: TIA/EIA TS603 PARA 2.2.19, the levels were set as follows;


- 1. Using the variable attenuator the transmitter level was set to 40 dB below the test receivers maximum input level, then the transmitter was turned off.
- 2. With the transmitter off the signal generator was set 20dB below the level of the transmitter in the above step, this level will be maintained with the signal generator through-out the test.
- 3. Reduce the attenuation between the transmitter and the RF detector by 30 dB.
- 4. With the levels set as above the transient frequency behavior was observed & recorded.

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: sid@timcoengr.com

APPLICANT: ADVANCED WIRELESS COMMUNICATIONS
 FCC ID: Q9S02041688
 REPORT #: A\ADVANCED WIRELESS_Q9S\188AUT4\188AUT4TestReport.doc

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com 888.472.2424 F 352.472.2030 email: <u>sid@timcoengr.com</u>

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 1/13/03	1/13/06
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
	Receiver, Beige Tower Spectrum Analyzer	HP	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
	RF Preselector	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
	Quasi-Peak Adapter	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
X X	Receiver, Blue Tower Spectrum Analyzer	HP	8568B	2928A04729 2848A18049	CAL 4/15/03	4/15/05
х	RF Preselector	HP	85685A	2926A00983	CAL 4/15/03	4/15/05
х	Quasi-Peak Adapter	HP	85650A	2811A01279	CAL 4/15/03	4/15/05
	Receiver, Silver/Grey Tower Spectrum Analyzer	HP	8566B Opt 462	3552A22064 3638A08608	CAL 10/14/02	10/14/04
	RF Preselector	HP	85685A	2620A00294	CAL 10/14/02	10/14/04
	Quasi-Peak Adapter	HP	85650A	3303A01844	CAL 10/14/02	10/14/04
	Preamplifier	HP	8449B	3008A01075	CHAR 1/28/02	1/28/04
X	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
	Biconnical Antenna	Eaton	94455-1	1057	CAL 3/18/03	3/18/05
\square	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CAL 3/4/03	3/4/05

EMC Equipment List

APPLICANT: ADVANCED WIRELESS COMMUNICATIONS

FCC ID: Q9S02041688

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CAL 9/26/02	9/26/05
	Double-Ridged Horn Antenna	Electro-Metrics	RGA-180	2319	CAL 2/17/03	2/17/05
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/31/03	3/31/05
	Horn Antenna	ATM	19-443-6R	None	No Cal Required	
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
	Line Impedance Stabilization	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03
	Line Impedance Stabilization	Electro-Metrics	EM-7820	2682	CAL 3/12/03	3/12/05
	Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
	Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CHAR 12/12/01	12/12/03
	Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
	System One	Audio Precision	System One	SYS1-45868	CHAR 4/25/02	4/25/04
	Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
	AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
	AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
	AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
X	Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
	Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
	Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
	Multimeter	Fluke	FLUKE-77-3	79510405	CHAR 9/26/01	9/26/03
	Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/03
	Power Meter	HP	432A	1141A07655	CAL 4/15/03	4/15/05

APPLICANT: ADVANCED WIRELESS COMMUNICATIONS

FCC ID: Q9S02041688

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
	Power Meter And Sensor	Bird	4421-107 4022	0166 0218	CAL 4/16/03	4/16/05
	Power Sensor	HP	478A	72129	CAL 4/15/03	4/15/05
	Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
	Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
	Thermometer	Extech	4028	14871-2	CAL 3/7/03	3/7/05
X	Hygro-Thermometer	Extech	445703	0602	CAL 10/4/02	10/4/04
	Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
	Frequency Counter	HP	5385A	2730A03025	CAL 3/7/03	3/7/05
	Power Sensor	Agilent Technologies	84811A	2551A02705	CHAR 1/26/01	1/26/03
	Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
	Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
	Signal Generator	HP	8640B	2308A21464	CAL 2/15/02	2/15/04
	Sweep Generator	Wiltron	6648	101009	CAL 4/15/03	4/15/05
	Sweep Generator	Wiltron	6669M	007005	CAL 3/3/03	3/3/05
	Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/03
	Modulation Meter	Boonton	8220	10901AB	CAL 4/15/03	4/15/05
	Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03
	BandReject Filter	Lorch Microwave	5BR4-2400/ 60-N	Z1	CHAR 3/2/01	3/2/03
	BandReject Filter	Lorch Microwave	6BR6-2442/ 300-N	Z1	CHAR 3/2/01	3/2/03
	BandReject Filter	Lorch	5BR4-10525/ 900-S	Z1	CHAR 3/2/01	3/2/03
	High Pass Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
	High Pass Filter	Microlab	HA-20N		CHAR 2/7/03	2/7/05

APPLICANT: ADVANCED WIRELESS COMMUNICATIONS

FCC ID: Q9S02041688

849 NW State Road 45 Newberry, Florida 32669 http://www.timcoengr.com

888.472.2424 F 352.472.2030 email: sid@timcoengr.com

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
Frequency Counter	HP	5385A	3242A07460	CAL 3/7/03	3/7/05
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04