ONE WORLD OUR APPROVAL

Test report

402832-3TRFWL

Date of issue: August 28, 2020

Applicant: Stryker Instruments

Product: SurgiCount®+

Model under Test: SurgiCount[®]+ Cradle: 0694-002-002 Tested with SurgiCount®+ Tablet: 0794-001-010 SurgiCount®+ Reader: 0694-002-005

FCC ID: Q9R-0042

Specifications:

◆ FCC 47 CFR Part 15, Subpart C – §15.225

Operation within the band 13.110-14.010 MHz

RSS-210, Issue 10, December 2019

License-Exempt Radio Apparatus: Category I Equipment

RSS-Gen, Issue 5, Amendment 1, March 2019

General Requirements for Compliance of Radio Apparatus

Test location

Company name	Nemko USA, Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
Province	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500
Website	www.nemko.com
FCC Site Number	Test Firm Registration Number: 392943 Designation Number: US5058
ISED Test Site	2040B-3

Tested by	David Hewitt, EMC Specialist
Reviewed by	James Cunningham, EMC/MIL/WL Supervisor
Review date	August 28, 2020
Reviewer signature	281

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Table of contents

Table of	contents	.3
Section 1	. Report summary	.4
1.1	Applicant and manufacturer	.4
1.2	Test specifications	.4
1.3	Test methods	.4
1.4	Statement of compliance	.4
1.5	Exclusions	.4
1.6	Test report revision history	
Section 2	2. Summary of test results	.5
2.1	FCC Part 15 Subpart C, general requirements test results	. 5
2.2	FCC Part 15 Subpart C, intentional radiators test results	. 5
2.3	IC RSS-GEN, Issue 4, test results	. 5
2.4	IC RSS-210, Issue 9, test results	
Section 3		
3.1	Sample information	. 6
3.2	EUT information	. 6
3.3	Technical information	. 6
3.4	Product description and theory of operation	.7
3.5	EUT exercise details	.7
3.6	EUT setup diagram	.7
3.7	EUT sub assemblies	.7
Section 4	. Engineering considerations	.8
4.1	Modifications incorporated in the EUT	. 8
4.2	Technical judgment	. 8
4.3	Deviations from laboratory tests procedures	. 8
Section 5	. Test conditions	.9
5.1	Atmospheric conditions	.9
5.2	Power supply range	.9
Section 6	6. Measurement uncertainty	10
6.1	Uncertainty of measurement	10
Section 7	7. Test Data	11
7.1	Field strength of spurious emissions	11
7.2	Conducted emissions	
7.3	Carrier frequency stability	22
7.4	Occupied Bandwidth: 99% OBW and 20 dB Bandwidth	
Section 8		
8.1	Radiated emissions set-up	
8.2	Conducted emissions set-up	29

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Stryker Instruments
Address	1941 Stryker Way
City	Portage
State	MI
Postal/Zip code	49002
Country	USA

1.2 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.225	Operation within the band 13.110-14.010 MHz
RSS-210, Issue 10	License-Exempt Radio Apparatus: Category I Equipment
RSS-Gen, Issue 5, Amendment 1, March 2019	General Requirements for Compliance of Radio Apparatus

1.3 Test methods

ANSI C64.3-2014	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report
402832-3TRFWL	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass
§15.203 ¹	Antenna requirement	Pass
§15.215	20 dB bandwidth	Pass

Notes: ¹ The Antenna is internal to device or with unique antenna coupling.

2.2 FCC Part 15 Subpart C, intentional radiators test results

Part	Test description	Verdict
§15.225(a)	Field strength within 13.553–13.567 MHz band	Pass
§15.225(b)	Field strength within 13.410–13.553 MHz and 13.567–13.710 MHz bands	Pass
§15.225(c)	Field strength within 13.110–13.410 MHz and 13.710–14.010 MHz bands	Pass
§15.225(d)	Field strength outside 13.110–14.010 MHz band	Pass
§15.225(e)	Frequency tolerance of carrier signal	Pass

Notes: None

2.3 IC RSS-GEN, Issue 4, test results

Part	Test description	Verdict
7.1.2 ¹	Receiver radiated emission limits	Not applicable
7.1.3 ¹	Receiver conducted emission limits	Not applicable
8.8	Power Line Conducted Emissions Limits for License-Exempt Radio Apparatus	Pass
8.10	Restricted Frequency Bands	Pass
6.6	Occupied bandwidth	Pass
6.11	Transmitter frequency stability	Pass

Note: ¹ According to sections 5.2 and 5.3 of RSS-Gen, Issue 4, the EUT does not have a stand-alone receiver nor scanner receiver and is therefore exempt from receiver requirements.

2.4 IC RSS-210, Issue 9, test results

Part	Test description	Verdict
B.6 (a)	The field strength within the band 13.553–13.567 MHz.	Pass
B.6 (b)	The field strength within the bands 13.410–13.553 MHz and 13.567–13.710 MHz	Pass
B.6 (c)	The field strength within the bands 13.110–13.410 MHz and 13.710–14.010 MHz.	Pass
B.6 (d)	The field strength outside the band 13.110–14.010 MHz.	Pass
B.6	Carrier frequency stability shall be maintained to ±0.01% (±100 ppm)	Pass

Note: None.

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	July 20, 2020
Nemko sample ID number	NEx: 402832

3.2 EUT information

Product name	SurgiCount®+
Model	SurgiCount®+ Cradle: 0694-002-002
	SurgiCount®+ Tablet: 0794-001-010
	SurgiCount®+ Reader: 0694-002-005
Model variant	N/A
	SurgiCount®+ Cradle Serial Number: 208641
Serial number	SurgiCount®+ Tablet Serial Number: GK49CE00043
	SurgiCount®+ Reader Serial Number: 19343520100167
FCC ID	Q9R-0042

3.3 Technical information

All used IC test site(s) Reg. number	2040B-3
RSS number and Issue number	RSS-210, Issue 10, December 2019
Frequency band	13.11 – 14.01 MHz
Frequency Min (MHz)	13.56 MHz
Frequency Max (MHz)	13.56 MHz
Measured RF power Max (W), EIRP	00.0084 W
Field strength, Units @ distance	44.51 dBμV/m @ 3m
Measured BW (kHz) (20 dB)	306 Hz
Measured BW (kHz) (99%)	10.467 kHz
Power requirements	120 V _{AC} ; 60Hz
Antenna information	The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.

3.4 Product description and theory of operation

The SurgiCount®+ system is indicated for use in counting, displaying and recording the number of RFID-tagged surgical sponges, laparotomy sponges and towels used during surgical procedures, and providing a non-invasive means of locating retained RFID-tagged surgical sponges, towels and other tagged items within an operating room.

3.5 EUT exercise details

System is tested with accompanying tablet and RFID scanner attached to cradle. Tablet is connected to a wireless router via Wi-Fi, while the tablet is continuously pinged through the Wi-Fi network; the RFID scanner is connected to the EUT via BLE and is continually reading a passive RF tag.

3.6 EUT setup diagram

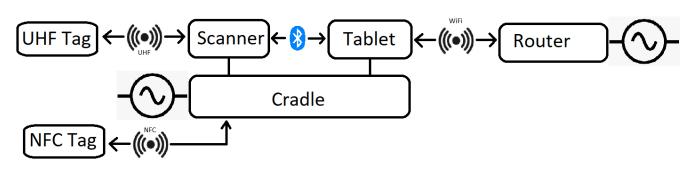


Figure 3.6-1: EUT setup diagram

3.7 EUT sub assemblies

Table	2.7-1	FUT sub	assemblies
Table	3.7-1.	LO1 300	assemblies

Description	Brand name	Model/Part number	Serial number
SurgiCount [®] + Cradle	Stryker	0694-002-002	208641
SurgiCount®+ Tablet	Stryker	0794-001-010	GK49CE00043
SurgiCount [®] + Reader	Stryker	0694-002-005	19343520100167
AC Power Cable	Stryker	700001044827	

Description	Brand name	Model/Part number	Serial number	Rev.
Wireless router	Asus	RT-N66U	E4IA08020580	

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	1.38

Section 7. Test Data

7.1 Field strength of spurious emissions

7.1.1 Definitions and limits

FCC:

- a. The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- b. Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- c. Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- d. The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

ISED:

The field strength of any emission shall not exceed the following limits:

- a. 15.848 mV/m (84 dBµV/m) at 30 m, within the band 13.553-13.567 MHz;
- b. 334 µV/m (50.5 dBµV/m) at 30 m, within the bands 13.410-13.553 MHz and 13.567-13.710 MHz;
- c. $106 \,\mu$ V/m (40.5 dB μ V/m) at 30 m, within the bands 13.110-13.410 MHz and 13.710-14.010 MHz; and
- d. RSS-Gen general field strength limits for frequencies outside the band 13.110-14.010 MHz.

Table 7.1-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field strength of emissions		Measurement distance, m
MHz	μV/m	dBµV/m	
0.009–0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 7.1-2: IC restricted frequency bands

MHz	MHz		
	101112	MHz	GHz
0.090–0.110	12.51975-12.52025	399.9–410	5.35-5.46
2.1735-2.1905	12.57675-12.57725	608–614	7.25-7.75
3.020-3.026	13.36–13.41	960–1427	8.025–8.5
4.125-4.128	16.42-16.423	1435–1626.5	9.0–9.2
4.17725-4.17775	16.69475-16.69525	1645.5–1646.5	9.3–9.5
4.20725-4.20775	16.80425-16.80475	1660–1710	10.6–12.7
5.677-5.683	25.5–25.67	1718.8–1722.2	13.25–13.4
6.215-6.218	37.5–38.25	2200–2300	14.47–14.5
6.26775-6.26825	73–74.6	2310–2390	15.35–16.2
6.31175-6.31225	74.8–75.2	2655–2900	17.7–21.4
8.291-8.294	108–138	3260–3267	22.01-23.12
8.362-8.366	156.52475–156.52525	3332–3339	23.6–24.0
8.37625-8.38675	156.7–156.9	3345.8–3358	31.2–31.8
8.41425-8.41475	240–285	3500-4400	36.43–36.5
12.29–12.293	322–335.4	4500–5150	Above 38.6

Note: Certain frequency bands listed in Table 8.3-2 and above 38.6 GHz are designated for low-power license-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

Testing data Field strength of spurious emissions FCC §15.225(a)-(d) and RSS-210 Issue 10 B.6

Table 7.1-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5-25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6-24.0
12.29-12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43-36.5
12.57675-12.57725	322–335.4	3600–4400	Above 38.6
13.36-13.41			

7.1.2 Test summary

Verdict	Pass		
Test date	July 23, 2020	Temperature	22 °C
Test engineer	David Hewitt, EMC Specialist	Air pressure	1004 mbar
Test location	10m semi anechoic chamber 3m semi anechoic chamber	Relative humidity	58 %

7.1.3 Observations, settings and special notes

In order to investigate the spectrum from the lowest radio frequency signal generated in the device to the tenth harmonic of the highest fundamental frequency, per 47 CFR § 15.33 (a)-1, radiated emissions were measured from 9 kHz to 150 MHz.

7.1.4 Setup details

Spectrum analyzer settings for radiated measurements within restricted bands from 9 kHz to 30 MHz:

Resolution bandwidth	200 Hz from 9 – 150 kHz, 9 kHz from 150 kHz – 30 MHz
Video bandwidth	600 Hz and 30 kHz respectively
Detector mode	 Peak (Preview measurement) Quasi-peak (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak preview measurement) 15000 ms (Quasi-peak final measurement)

Spectrum analyzer settings for radiated measurements within restricted bands from 30 – 1000 MHz:

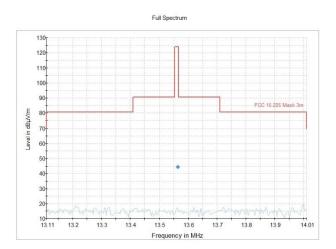
Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	 Peak (Preview measurement)
	– Quasi-peak (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak preview measurement)
	 5000 ms (Quasi-peak final measurement)

7.1.4 Setup details, continued

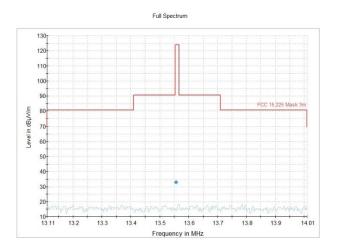
Table 7.1-4: Radiated disturbance equipment list

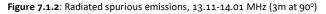
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver (10m chamber)	Rohde & Schwarz	ESU40	E1121	2 yr	25 Nov 2020
EMI Test Receiver (3m chamber)	Rohde & Schwarz	ESU40	E1131	1 yr	19 Nov 2020
System controller (10m chamber)	Sunol Sciences	SC104V	E1129	NCR	NCR
System controller (3m chamber)	Sunol Sciences	SC104V	E1191	NCR	NCR
Active Loop antenna	Hewlett Packard	6502	E1267	1 yr	12 Nov 2020
Bilog antenna	Schaffner	CBL 6111D	1480	1 yr	18 Oct 2020

Notes: None


Table 7.1-5: Radiated disturbance test software details

Manufacturer of Software	Details
Rohde & Schwarz	EMC32 V10.00.00 (10m chamber)
	EMC32 V10.35.10 (3m chamber)


Notes: None



7.1.5 Testing data

Table 7.1-6: Radiated field stren	oth measurement results 12 11	-14 01 MHz (Test antenna at (n Deg)
Table /.1-0. Raulateu lielu streli	gui measurement results 13.11	-14.01 ועוחב (דפגר מוונפוווומ מנינ	J Degj

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)		(deg)	(dB/m)
13.564605	44.51	124.00	79.49	15000.0	9.000	0°	174.0	11.3

Table 7.1-7: Radiated field strength measurement results 13-14.2 MHz (Test antenna at 90 Deg)

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)		(deg)	(dB/m)
13.555590	32.82	124.00	91.18	15000.0	9.000	90°	215.0	11.3

7.1.5 Testing data, continued

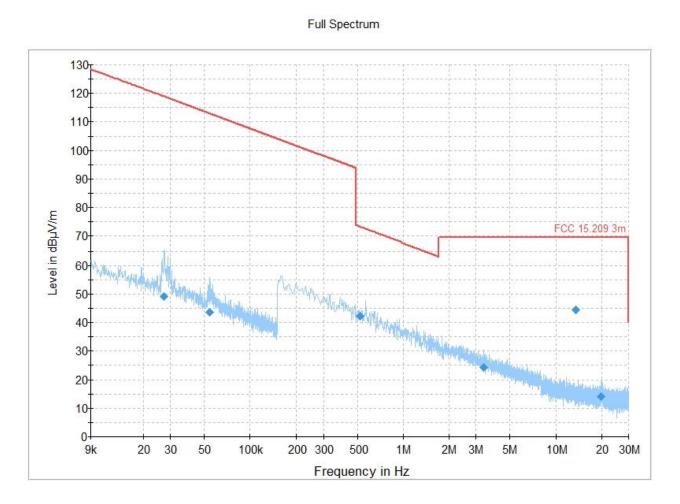


Figure 7.1-3: Radiated spurious emissions, 9 kHz-30 MHz at 0°

Table 7.1-8: Radiated disturbance (Quasi-Peak) results

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB/m)
0.027210	49.06	118.90	69.83	15000.0	0.200	0°	265.0	14.8
0.053972	43.57	112.95	69.38	15000.0	0.200	0°	267.0	12.7
0.521915	42.17	73.25	31.08	15000.0	9.000	0°	165.0	11.0
3.342800	24.22	69.50	45.28	15000.0	9.000	0°	274.0	11.0
13.564605	44.51	69.50	24.99	15000.0	9.000	0 °	174.0	11.3
19.854210	14.14	69.50	55.36	15000.0	9.000	0°	287.0	10.9

Notes:

¹Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB) – amplifier gain (dB)

³ The maximum measured value observed over a period of 15 seconds was recorded.

⁴The spectral plot is a summation of a vertical and horizontal scan.

7.1.5 Testing data, continued

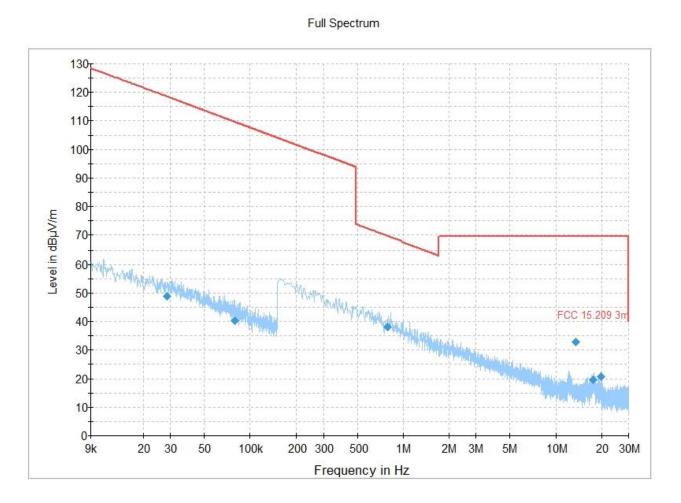


Figure 7.1-4: Radiated spurious emissions, 9 kHz-30 MHz at 90°

Table 7.1-9: Radiated disturbance (Quasi-Peak) results

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB/m)
0.028470	48.81	118.50	69.70	15000.0	0.200	90°	200.0	14.7
0.079648	40.22	109.57	69.35	15000.0	0.200	90°	327.0	12.2
0.785610	38.17	69.71	31.54	15000.0	9.000	90°	162.0	10.8
13.555590	32.82	69.50	36.68	15000.0	9.000	90°	215.0	11.3
17.658175	19.65	69.50	49.85	15000.0	9.000	90°	174.0	11.1
19.694780	20.57	69.50	48.93	15000.0	9.000	90°	0.0	11.0

Notes:

² Correction factors = antenna factor ACF (dB) + cable loss (dB) – amplifier gain (dB)

³ The maximum measured value observed over a period of 15 seconds was recorded.

⁴The spectral plot is a summation of a vertical and horizontal scan.

¹Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

7.1.5 Testing data, continued

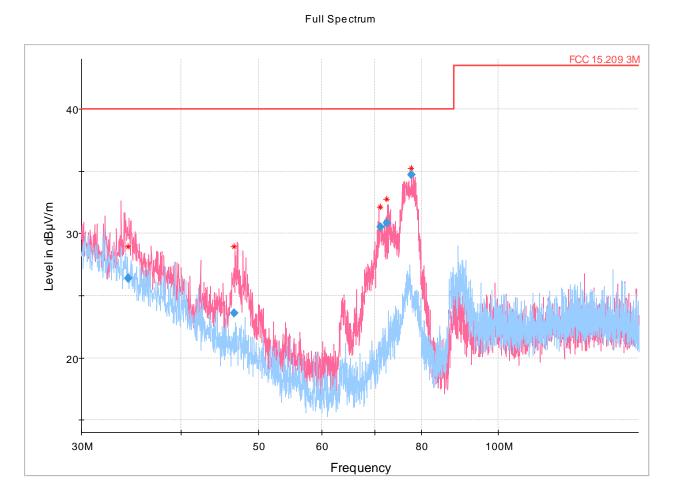


Figure 7.1-5: Radiated spurious emissions, 30 MHz – 150 MHz

T . I. I		and an error	
lable 7	7.1-10: Radiated	disturbance	(Quasi-Peak) results

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.313667	26.37	40.00	13.63	5000.0	120.000	124.6	V	190.0	23.3
46.627333	23.58	40.00	16.42	5000.0	120.000	116.1	v	32.0	16.6
71.092333	30.53	40.00	9.47	5000.0	120.000	110.7	V	269.0	13.4
72.470667	30.82	40.00	9.18	5000.0	120.000	98.0	V	16.0	13.6
77.698000	34.75	40.00	5.25	5000.0	120.000	118.5	V	216.0	14.2

Notes:

 1 Field strength (dBµV/m) = receiver/spectrum analyzer value (dBµV) + correction factor (dB) 2 Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ The maximum measured value observed over a period of 5 seconds was recorded.

⁴ The spectral plot is a summation of a vertical and horizontal scan.

⁵ The spectrum was investigated from the lowest radio frequency signal generated in the device to the tenth harmonic of the highest fundamental frequency.

7.2 Conducted emissions

7.2.1 References

Title 47 \rightarrow Chapter I \rightarrow Subchapter A \rightarrow Part 15 \rightarrow Subpart C \rightarrow §15.207 / ANSI C63.4: 2014

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency

- (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:
 - a. For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
 - b. For all other carrier current systems: 1000 μV within the frequency band 535-1705 kHz, as measured using a 50 μH/50 ohms LISN.
 - c. Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.
- (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

7.2.2 Conducted Emissions Test summary

Verdict	Pass		
Test date	July 24, 2020	Temperature	23 °C
Test engineer	David Hewitt, EMC Specialist	Air pressure	1006 mbar
Test location	Ground Plane	Relative humidity	54 %

7.2.3 Notes

None

7.2.4 Setup details

Port under test	AC Mains
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	 Peak and Average (Preview measurement) Quasi-peak and CAverage (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak and Average preview measurement) 5000 ms (Quasi-peak final measurement) 5000 ms (CAverage final measurement)

Table 7.2-1: Conducted disturbance at mains port equipment list

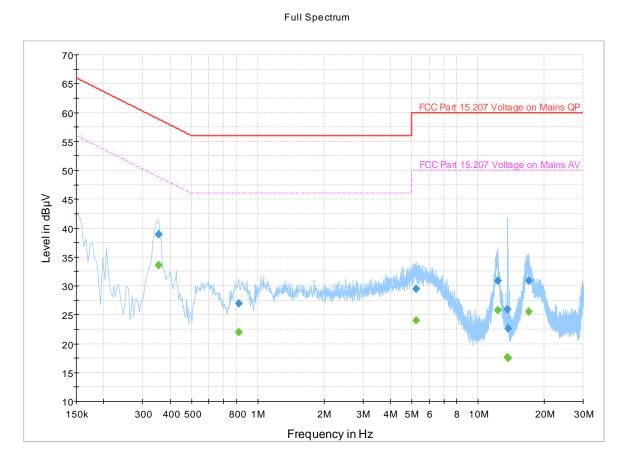

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESCI 7	E1026	2 yr	29 May 2021
Transient Limiter	Hewlett-Packard	11947A	681	1 yr	20 Jan 2021
Two Line V-Network	Rohde & Schwarz	ENV216	E1020	1 yr	29 Aug 2020
LISN	Solar	9348-50-R-24-BNC	384	1 yr	8 Aug 2020
Notes: None					

Table 7.2-2: Conducted disturbance at mains port test software details

Manufacturer of Software		Details
Rohde & S	chwarz	EMC 32 V10.20.01
Notes:	None	

Conducted Emissions Test data 7.2.5

Figure 7.2.1: Conducted spurious emissions, 150 kHz-30 MHz

Table 7.2-3 Conducted disturbance at AC mains results (Quasi-Peak and Average)

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.354000		33.57	48.87	15.29	5000.0	9.000	N	ON	19.5
0.354000	38.96		58.87	19.91	5000.0	9.000	Ν	ON	19.5
0.818000	26.89		56.00	29.11	5000.0	9.000	L1	ON	19.4
0.818000		21.96	46.00	24.04	5000.0	9.000	L1	ON	19.4
5.234000		24.07	50.00	25.93	5000.0	9.000	N	ON	19.3
5.234000	29.45		60.00	30.55	5000.0	9.000	N	ON	19.3
12.258000	30.83		60.00	29.17	5000.0	9.000	L1	ON	19.9
12.258000		25.78	50.00	24.22	5000.0	9.000	L1	ON	19.9
13.582000		17.70	50.00	32.30	5000.0	9.000	Ν	ON	20.1
13.582000	25.88		60.00	34.12	5000.0	9.000	N	ON	20.1
13.642000		17.52	50.00	32.48	5000.0	9.000	Ν	ON	20.1
13.642000	22.60		60.00	37.40	5000.0	9.000	Ν	ON	20.1
16.938000		25.59	50.00	24.41	5000.0	9.000	Ν	ON	20.3
16.938000	30.95		60.00	29.05	5000.0	9.000	Ν	ON	20.3

¹ Result (dB μ V) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

² Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB) ³ The maximum measured value observed over a period of 5 seconds was recorded.

7.3 Carrier frequency stability

7.3.1 Definition and limits

47 CFR § 15.225 - Operation within the band 13.110-14.010 MHz

e) The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

RSS-210 Issue 9 B.6

b) The carrier frequency stability shall not exceed ±100 ppm

7.3.2 Test Summary

Verdict	Pass		
Test date	July 27, 2020	Temperature	22 °C
Test engineer	David Hewitt, EMC Specialist	Air pressure	1004 mbar
Test location	Wireless Bench	Relative humidity	60 %

7.3.3 Observations, settings and special notes

Frequency stability results were compared to calculated OBW Center Freq @ 20°C and 120 VAC per RSS-Gen 6.7: 13.5612908 MHz

7.3.4 Setup details

ANSI C63.10-2013: §6.8.1 Frequency stability with respect to ambient temperature §6.8.2 Frequency stability when varying supply voltage

Table 7.3-1: Carrier frequency stability equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Signal and Spectrum Analyzer	Rohde & Schwarz	FSW 43	E1302	1 yr	10 Jan 2021
Environmental chamber	Test Equity	115A	E1162	1 yr	3 Aug 2020

7.3.5 Test results

Temp (C°)	Voltage	Fc (MHz)	Frequency drift, ±ppm	Limit, ±ppm	Margin, ppm
+50	Nominal (120 Vac)	13.56055441	-20.41135945	100	79.58864055
+40	Nominal (120 Vac)	13.56106638	17.34222604	100	82.65777396
+30	Nominal (120 Vac)	13.56053877	-21.56468108	100	78.43531892
+20	115% Nominal (138 Vac)	13.56107031	17.6324	100	82.3676
+20	Nominal (120 Vac)	13.5612908	Reference	Reference	Reference
+20	85% Nominal (102 Vac)	13.56024871	-42.95385669	100	57.04614331
+10	Nominal (120 Vac)	13.56102503	14.29337163	100	85.70662837
+0	Nominal (120 Vac)	13.56111297	20.77785615	100	79.22214385
-10	Nominal (120 Vac)	13.55992388	-66.90777185	100	33.09222815
-20	Nominal (120 Vac)	13.56111297	20.77785615	100	79.22214385

Notes: The carrier frequency (F_c) was calculated at each temperature and supply voltage as follows using (F₁) as the low boundary and (F_h) as the high boundary measured during 99% OBW calculations.

Section 7 Test name Specification Testing data Carrier frequency stability FCC 47 CFR Part 15, Subpart C – §15.225(e) and RSS-210 Issue 9 B.6.b

$$F_c = \frac{F_l + F_h}{2}$$

$$\label{eq:Frequency} \begin{split} & \mbox{Frequency drift was calculated as follows:} \\ & \mbox{F}_{measured} = F_c = (F_1 + F_h)/2 \\ & \mbox{Frequency drift (ppm)} = ((F_{measured} - F_{reference}) \div F_{reference}) \times 1 \times 10^6 \end{split}$$

7.3.5 Test results, continued

OBW Reference Freq @ 20°C and 120 $V_{\mbox{\scriptsize AC}}$

Spectrum								
Ref Level -	-20.00 c	iBm 😑	RBW 300 Hz					· · · · ·
Att	25	dB 🛛 SWT 6.3 ms 👄	VBW 1 kHz	Mode Aut	o FFT			
PA								
●1Rm Max								
				M	11[1]			-43.70 dBm
-30 dBm——								6083120 MHz
				0	CC BW	I	10.46	6860411 kHz
-40 dBm——				M1	-			
				Ā				
-50 dBm				H				
-60 dBm								
-70 dBm					_			
-80 dBm——			$-\Sigma$			2		
mon	m	mon '		1	V X	~ ww	man	~m~~
-90 dBm								
-100 dBm								
-110 dBm-+-								
CF 13.56 MI	Hz		3200:	1 pts	1	I	Śŗ	an 42.0 kHz
Marker								
Type Ref	Trc	X-value	Y-value	Fund	tion	F	unction Res	ult
M1	1	13.5608312 MHz	-43.70 dB					
T1	1	13.55605737 MHz	-76.08 dB		Occ Bw		10.46	6860411 kHz
T2	1	13.56652423 MHz	-82.04 dB	m				
				Me	asuring		120	24.07.2020

Date: 24.JUL.2020 14:34:08

7.4 Occupied Bandwidth: 99% OBW and 20 dB Bandwidth

7.4.1 References

RSS-Gen - 6.7 Occupied bandwidth (or 99% emission bandwidth) and x dB bandwidth

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

47 CFR § 15.215 - Additional provisions to the general radiated emission limitations.

c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may other wise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

7.4.2 Notes

None

7.4.3 Test Summary

Test date	July 27, 2020	Temperature	22 °C
Test engineer	David Hewitt, EMC Specialist	Air pressure	1004 mbar
Test location	Wireless workbench	Relative humidity	60 %

7.4.4 Setup Details

Spectrum analyzer settings:

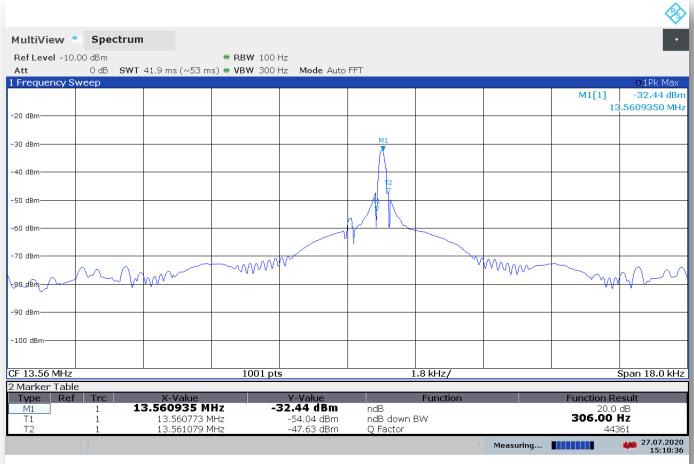
Resolution bandwidth	100 kHz
Video bandwidth	300 kHz (≥3 × RBW)
Frequency span	18 kHz (1.5 x OBW \leq Span \leq 5 x OBW)
Detector mode	Peak
Trace mode	Max Hold

Table 7.4-1: Occupied bandwidth equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Signal and Spectrum Analyzer	Rohde & Schwarz	FSW 43	E1302	1 yr	10 Jan 2021
Active Loop H Field Antenna	Hewlett-Packard	6502	E1267	1 yr	12 Nov 2020
Notes: None					

Notes:

Test Data 7.4.5

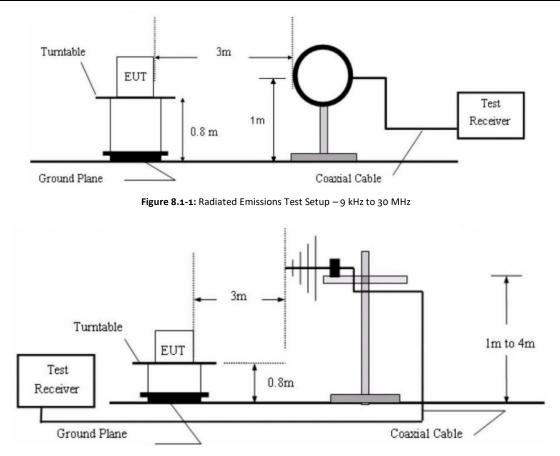

99% Occupied Bandwidth

Ref Level -10. Att		● RB WT 41.9 ms (~53 ms) ● VB	W 100 Hz W 300 Hz Mode Auto	FFT				
l Occupied Ba		(1 41.5 ms (**55 ms) • VD	W SOUTHE MODE Auto					oiPk Max
							M1[1]	-36.02 dBr
							15	3.5608990 MH
-20 dBm								
-30 dBm				M1				
				X				
-40 dBm							+	+
-50 dBm				<u> </u>				
-60 dBm								
00 0011			T1 /		T2			
-70 dBm				1				
70 ubin			MM/		~	mm-	h~	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mann v	/ / • •				- ww	10000
-80 dBm		///////////////////////////////////////					- V V V	40000
-90 dBm								-
-100 dBm								
CF 13.56 MHz			001 pts	1				 Span 18.0 kHz
Marker Table	2		001 pt3		10 KHZ/			5pun 10.0 km
Type Ref		X-Value	Y-Value		Function		Function R	esult
M1	1	13.560899 MHz	-36.02 dBm	Occ Bw			3.9422901	.27 kHz
T1 T2	1	13.5589052 MHz	-66.62 dBm	Occ Bw Cei			13.560876	
12	1	13.5628475 MHz	-65.70 dBm	Occ Bw Fre	iq Uffset		876.3616	30913 HZ

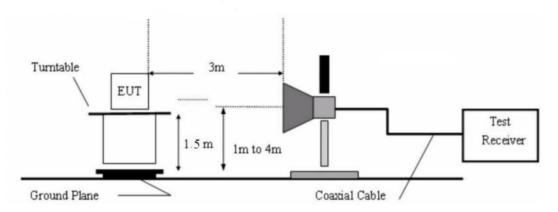
Section 7 Test name Specification Testing data Occupied Bandwidth: 99% OBW and 20 dB Bandwidth FCC 47 CFR Part 15, Subpart C – §15.215(c) and RSS-Gen Issue 5, Section 6.7



#### 20 dB Bandwidth




15:10:37 27.07.2020




## Section 8. Block diagrams of test setups

## 8.1 Radiated emissions set-up











## 8.2 Conducted emissions set-up

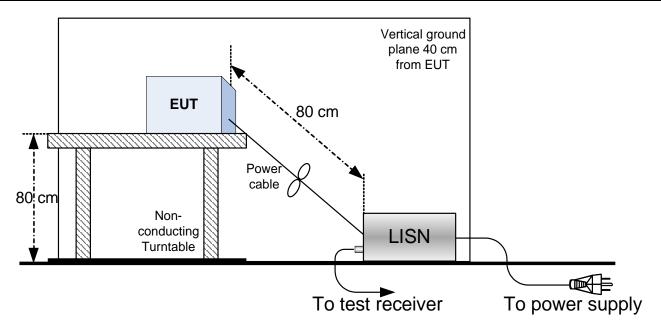



Figure 8.2-2: Conducted Emissions Test Setup – 150 kHz to 30 MHz