

EMC RESEARCH INSTITUTE

EMI TEST REPORT

Emission of electromagnetic disturbance

Test Report No. : ERI-FCC04-0009

Equipment : AV PLAYER

Name of basic model: DM-AV10

Family model : None

Manufacturer :GUANGZHOU DEBAO YUCHANG ELECTRONICS CO.,Ltd

Applicant: D.M. Technology Co., Ltd.

Tested date : 2004. 2. 2 - 2. 3

Issued date : 2004. 2. 7

Test results : PASS

Test Standards: FCC Part 15 Subpart B (Class B)

/digital devices & peripherals

Test Procedure and Items:

Tested by: GWEON, HUR

AC Power line Conducted emissions measurement : ANSI C63.4-1992
 Radiated emissions measurement : ANSI C63.4-1992

Approved by: SANG-KYU, LEE

N. K. Lee

The results in this report apply only to the sample tested.

This test report shall not be reproduced except in full, without the written approval of **ERI Laboratory**.

CONTENTS

- 1. CLIENT INFORMATION
- 2. LABORATORY INFORMATION
- 3. EQUIPMENT UNDER TEST INFORMATION(EUT)
 - 3.1 Identification of the EUT
 - 3.2 Additional information about the EUT
 - 3.3 Peripheral equipment
- 4. CONTINUOUS DISTURBANCE VOLTAGE, MAIN TERMINAL
 - 4.1 Operating environment
 - 4.2 Test set-up and test procedures
 - 4.3 Test instrument
 - 4.4 Test results(Play mode)
 - 4.5 Test results(Upload mode)
 - 4.6 Test results(Download mode)
- 5. RADIATED DISTURBANCE & VOLTAGE AT THE ANTENNA TERMINALS
 - 5.1 Operating environment
 - 5.2 Test set-up
 - 5.3 Test conditions
 - 5.4 Test instrument
 - 5.5 Test results(Play mode)
 - 5.6 Test results(Upload mode)
 - 5.7 Test results(Download mode)

APPENDIX

(None)

File No. ERI-FCC04-0009 Page 3 of 14

1. CLIENT INFORMATION

The EUT has been tested by request of:

Company : D.M. Technology Co., Ltd.

Address : 5th F1., Mando Bldg. 730 Dang-dong, Gunpo, Kyunggi-do,

Korea 435-010

Name of contact : TONG-JIN, PARK

Telephone : + 82-31-451-4526Facsimile : + 82-31-451-4520

2. LABORATORY INFORMATION

The 10m full-anechoic chamber and/or EMC facilities are used for these testing. These facilities were accredited by KOLAS, EK, MIC of Korea and FCC of USA.

Address

ELECTROMAGNETIC RESEARCH INSTITUTE.

66-6, JEIL-RI, YANGJI-MYUN, YOUNGIN-CITY, KYUNGGI-DO, KOREA

Telephone No. : +82-31-336-1186~7 Facsimile No. : +82-31-336-1184

Registered No.

KOLAS : 111 EK : J

MIC : KR0030 FCC Filing No. : 302567

3. EQUIPMENT UNDER TEST INFORMATION(EUT)

3.1 Identification of the EUT

Type of equipment : AV PLAYER

Model name : DM-AV10

Brand name : ALVA

Manufacturer : GUANGZHOU DEBAO YUCHANG ELECTRONICS CO.,Ltd

Address : DONGSI BUILDING, HONGTU, INDUSTRIAL ZONE,

LICUN VILLAGE, DASHI TOWN, PANYU CITY, UANGDONG,

CHINA

Telephone : + 86-20-3456-1885 Facsimile : + 86-20-3456-1811

Country of origin : CHINA

Rating : AC110V, 60Hz

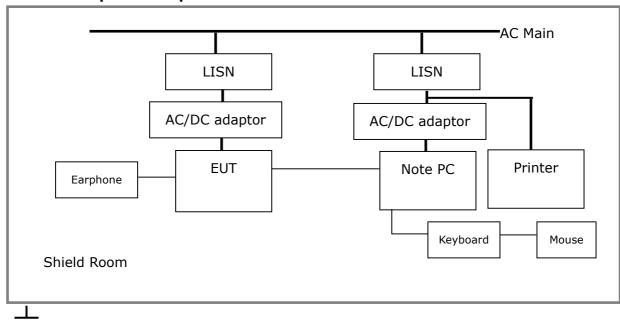
3.2 Additional information about the EUT

Class B, Family model list; None

3.3 Peripheral equipment

Defined as equipment needed for correct operation of the EUT.

Description	Model No.	Serial No.	Manufacture	
AC/DC adaptor	PW137KA500N53	-	AULT KOREA Corp.	
Note pc	CM2080	5Y17JNZ9R892	LG	
AC/DC adaptor	/DC adaptor ADP-60DB		Delta electronics Co., Ltd.	
Earphone	-	-	-	
Keyboard	SDM4510UH	4M020619	-	
Mouse	Mouse X05-53748		IntelliMouse	
Printer	CG4127A	CN13V1B1SZ	НР	


4. CONTINUOUS DISTURBANCE VOLTAGE, MAIN TERMINAL

: Frequency range 0.15 MHz to 30 MHz

4.1 Operating environment

Temperature : 22.0 $^{\circ}$ C Relative Humidity : 32.0 $^{\circ}$

4.2 Test set-up and test procedures

The mains terminal disturbance voltage was measured with the equipment under test(EUT) in a shield room. The EUT was connected to an artificial mains network(LISN) placed on the floor. The EUT was placed on non-metallic table 0.4m above the metallic, grounded floor. The distance to other metallic surface was at least 0.8m.

Amplitude measurements were performed with a quasi-peak detector and an average detector.

4.3 Operation Conditions

Play, download, upload mode

4.4 Test instrument

Instrument	Model No	Serial No.	Makers	Next cal.date	Used
Test receiver	ESCS30	100020	R&S	2004. 3. 25	X
L.I.S.N.	ESH3-Z5	827246/008	R&S	2004. 3. 19	X
	ESH3-Z5	831887/018	R&S	2004. 3. 19	
Shield room	8 × 6 × 3.3m/H	-	-	-	X

E R I, 66-6, Jeil-Ri, Yangji-Myun, Yongin-City, Kyunggi-Do, Korea Tel: +82-31-336-1186~7 Fax: +82-31-336-1184

4.4 Test results(Play mode)

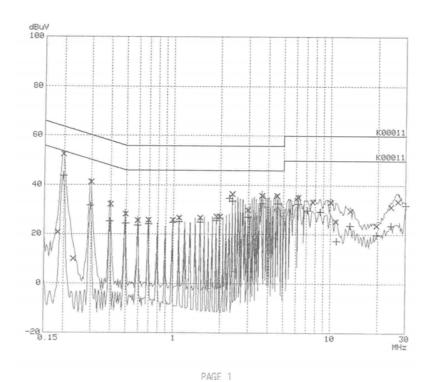
Date of test: Feb 02, 2004.

An overview sweep performed with peak detector & average detector are included

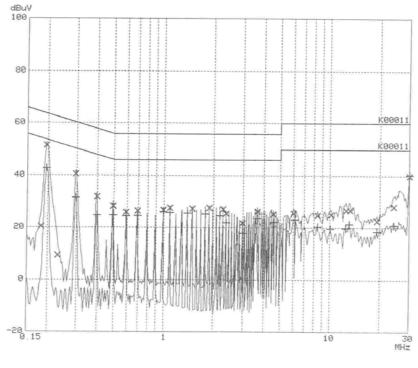
in the report as test reports.

in the report as test reports.										
Frequency Range	Tested Freq.	LISN	Meter Reading		Lim	Limits		Margin		
			QP	AV	QP	AV	QP	AV		
[MHz]	[MHz]		[dl	3uV]	[dB	uV]	[dBuV]			
	0.198	Н	52.6	43.8	63.7	53.7	11.1	9.9		
	0.297	Η	41.4	31.9	60.3	50.3	18.9	18.4		
0.15-30	2.370	Η	36.5	33.6	56.0	46.0	19.5	12.4		
	3.650	Η	35.8	32.6	56.0	46.0	20.2	13.4		
	4.540	Η	35.7	32.6	56.0	46.0	20.3	13.4		
	6.220	Η	35.2	32.4	60.0	50.0	24.8	17.6		
	7.700	Н	33.4	29.8	60.0	50.0	26.6	20.2		
	26.760	Н	33.5	23.7	60.0	50.0	26.5	26.3		

^{* &}lt;5 : mean less than 5dB


Result: Pass

The measured emissions level of the EUT have found the below of the specified limit.



^{*} Other frequency keep over 20dB margin.

[Live line]

PAGE 1

[Neutral line]

4.5 Test results(Upload mode)

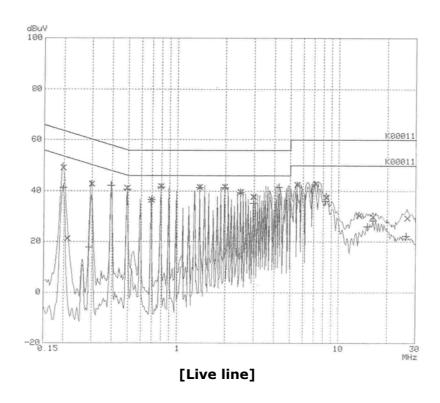
Date of test: Feb 02, 2004.

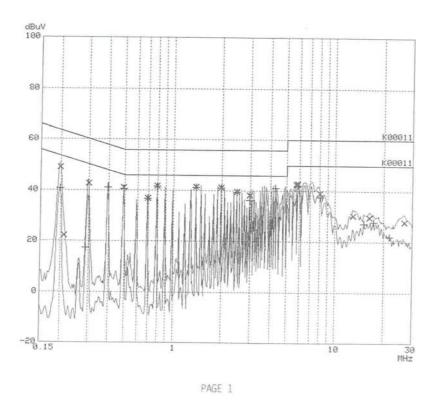
An overview sweep performed with peak detector & average detector are included

in the report as test reports.

Tested Freq.	LISN	Meter Reading		Limits		Margin	
		QP	AV	QP	AV	QP	AV
[MHz]		[di	BuV]	[dB	uV]	[dl	BuV]
0.198	N	49.1	40.8	63.8	53.8	14.7	13.0
0.297	N	42.7	17.4	60.3	50.3	17.6	32.9
0.492	N	41.0	40.6	56.1	46.1	15.1	5.5
0.789	N	41.7	41.6	56.0	46.0	14.3	4.4
1.380	N	41.5	41.3	56.0	46.0	14.5	4.7
1.974	N	41.3	41.1	56.0	46.0	14.7	4.9
5.720	N	42.5	42.1	60.0	50.0	17.5	7.9
5.820	N	42.7	42.1	60.0	50.0	17.3	7.9
	[MHz] 0.198 0.297 0.492 0.789 1.380 1.974 5.720	[MHz] 0.198 N 0.297 N 0.492 N 0.789 N 1.380 N 1.974 N 5.720 N	Freq. Real QP [MHz] [dli 0.198 N 49.1 0.297 N 42.7 0.492 N 41.0 0.789 N 41.7 1.380 N 41.5 1.974 N 41.3 5.720 N 42.5	Freq. Reading QP AV [MHz] [dBuV] 0.198 N 49.1 40.8 0.297 N 42.7 17.4 0.492 N 41.0 40.6 0.789 N 41.7 41.6 1.380 N 41.5 41.3 1.974 N 41.3 41.1 5.720 N 42.5 42.1	Reading Lin QP AV QP [MHz] [dBuV] [dB 0.198 N 49.1 40.8 63.8 0.297 N 42.7 17.4 60.3 0.492 N 41.0 40.6 56.1 0.789 N 41.7 41.6 56.0 1.380 N 41.5 41.3 56.0 1.974 N 41.3 41.1 56.0 5.720 N 42.5 42.1 60.0	Reading Limits QP AV QP AV [MHz] [dBuV] [dBuV] 0.198 N 49.1 40.8 63.8 53.8 0.297 N 42.7 17.4 60.3 50.3 0.492 N 41.0 40.6 56.1 46.1 0.789 N 41.7 41.6 56.0 46.0 1.380 N 41.5 41.3 56.0 46.0 1.974 N 41.3 41.1 56.0 46.0 5.720 N 42.5 42.1 60.0 50.0	Reading Limits Mag QP AV QP QP AV QP [dBuV] [dBuV]

^{* &}lt;5 : mean less than 5dB


Result: Pass


The measured emissions level of the EUT have found the below of the specified limit.

^{*} Other frequency keep over 20dB margin.

[Neutral line]

4.6 Test results(Download mode)

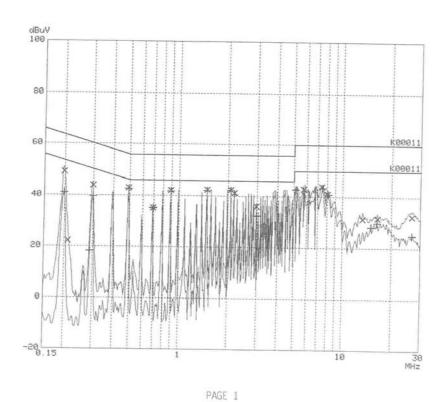
Date of test: Feb 02, 2004.

An overview sweep performed with peak detector & average detector are included

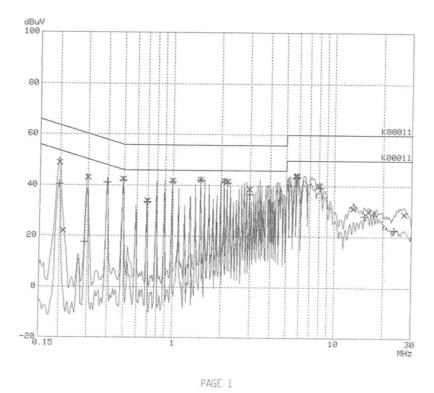
in the report as test reports.

Frequency Range	Tested Freq.	LISN	Meter Reading		Limits		Margin	
			QP	AV	QP	AV	QP	AV
[MHz]	[MHz]		[dl	BuV]	[dB	uV]	[dl	BuV]
	0.198	Н	49.3	41.1	63.7	53.7	14.4	12.6
	0.297	Н	43.9	18.4	60.3	50.3	16.4	31.9
0.15-30	0.492	Н	43.0	42.6	56.2	46.2	13.2	3.6
	0.888	Н	42.1	41.8	56.0	46.0	13.9	4.2
	1.479	Н	42.4	42.1	56.0	46.0	13.6	3.9
	2.073	Н	42.5	42.3	56.0	46.0	13.5	3.7
	2.172	Н	41.4	40.7	56.0	46.0	14.6	5.3
	5.720	Н	42.9	42.8	60.0	50.0	17.1	7.2
	7.400	Н	43.9	43.5	60.0	50.0	16.1	6.5
	7.990	Н	41.0	41.0	60.0	50.0	19.0	9.0

^{* &}lt;5 : mean less than 5dB


Result: Pass

The measured emissions level of the EUT have found the below of the specified limit.



^{*} Other frequency keep over 20dB margin.

[Live line]

[Neutral line]

5. RADIATED DISTURBANCE : 30MHz - 1000MHz

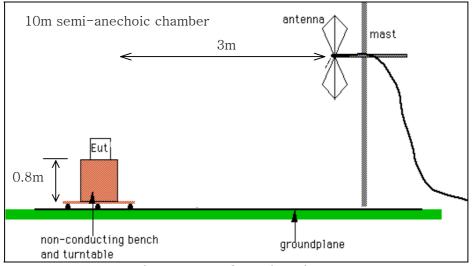
5.1 Operating environment

Temperature : 22.0 $^{\circ}$ C Relative Humidity : 33 $^{\circ}$

5.2 Test set-up

The frequency range investigated was 30 MHz to 1000 MHz.

All readings are quasi-peak unless stated otherwise.


The half-wave dipole antenna was tuned to the frequency found during Preliminary radiated measurements. The EUT, support equipment and Interconnecting cables were re-configured to the set-up to the producing the Maximum emission for the frequency and were placed on top of a 0.8 meter High non-metallic 1 X 1.5 meter table. The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The turntable containing the system was rotated the antenna height was varied 1 to 4 meters

and stopped at the azimuth or height producing the maximum emission.

And this device(EUT) was tested in 3 orthogonal planes.

The antenna measured both horizontal and vertical polarization.

<General test set-up for radiated emissions>

5.3 Operation Conditions

Play, Download, upload mode

5.4 Test instrument

Instrument	Model No.	Serial No.	Makers	Next cal.date	Used
Test receiver	ESCS30	100021	R&S	2005. 1. 24	X
L.I.S.N.	ESH3-Z5	827246/008	R&S	2004. 3. 19	
	ESH3-Z5	831887/018	R&S	2004. 3. 19	
Biconical Antenna	VHA9103	91031950	Schwarzbeck	2005.01.24	X
Log-Periodic Antenna	UHALP9108A	0392	Schwarzbeck	2005.01.23	X
Antenna Mast	MA240	N/A	HD	-	X
Turn Table	DT430S	N/A	HD	-	X

5.5 Test results (Test mode: Play mode)

Date of test: Feb 3, 2004.

Freq	Reading	Ant	AF	CL	Result	Limit	Margin
(MHz)	(dBuV)		(dB)	(dB)	(dBuV/m)	(dB)	(dB)
76.60	25.60	Н	6.48	2.10	34.18	40.00	5.82
121.00	19.72	V	12.44	2.50	34.66	43.50	8.84
180.00	15.78	Н	16.22	3.00	35.00	43.50	8.50
405.03	22.33	Н	15.87	4.10	42.30	46.00	3.70
426.00	21.33	Н	15.87	4.10	41.30	46.00	4.70
468.00	12.96	Н	16.64	4.40	34.00	46.00	12.00

^{*} Receiving Antenna Mode : *Horizontal, Vertical*

Note: Reading = Test Receiver meter, $P = Polarization \rightarrow POL H = Horizontal POL V = Vertical A = Angle, AF = Antenna Factor CL = Cable Loss Result = Field Strength(AF + CL + Reading)$

^{*} <5 : mean less than 5dB

5.6 Test results (Test mode: Upload mode)

Date of test: Feb 3, 2004.

Freq	Reading	Ant	AF	CL	Result	Limit	Margin
(MHz)	(dBuV)		(dB)	(dB)	(dBuV/m)	(dB)	(dB)
82.70	24.95	Н	7.60	1.90	34.45	40.00	5.55
101.60	18.59	V	10.31	2.00	30.90	43.50	12.60
108.30	21.60	Н	11.00	2.00	34.60	43.50	8.90
133.30	18.55	V	13.86	2.20	34.61	43.50	8.89
219.00	13.30	V	16.50	2.80	32.60	46.00	13.40
356.00	24.82	Н	14.31	3.80	42.93	46.00	3.07
396.00	21.97	Н	14.31	3.80	40.08	46.00	5.92
421.00	17.04	V	15.87	4.20	37.11	46.00	8.89

^{*} Receiving Antenna Mode : *Horizontal, Vertical*

Note: Reading = Test Receiver meter, $P = Polarization \rightarrow POL H = Horizontal POL V = Vertical A = Angle, AF = Antenna Factor CL = Cable Loss Result = Field Strength(AF + CL + Reading)$

5.7 Test results (Test mode: Download mode)

Date of test: Feb 3, 2004.

Freq	Reading	Ant	AF	CL	Result	Limit	Margin
(MHz)	(dBuV)		(dB)	(dB)	(dBuV/m)	(dB)	(dB)
135.30	16.74	V	14.70	2.40	33.84	43.50	9.66
148.80	15.86	Н	14.10	2.30	32.26	43.50	11.24
252.10	16.50	Н	17.35	3.20	37.05	46.00	8.95
270.30	15.68	Н	18.00	3.30	36.98	46.00	9.02
275.70	16.39	Н	18.00	3.30	37.69	46.00	8.1
349.00	21.08	V	13.80	3.70	38.58	46.00	7.42
396.00	24.30	Н	14.31	3.80	42.41	46.00	3.59
748.00	15.74	Н	20.06	5.50	41.30	46.00	4.70
802.00	11.31	V	20.84	6.10	38.25	46.00	7.75

^{*} Receiving Antenna Mode : *Horizontal, Vertical*

Note: Reading = Test Receiver meter, $P = Polarization \rightarrow POL H = Horizontal POL V = Vertical A = Angle, AF = Antenna Factor CL = Cable Loss Result = Field Strength(AF + CL + Reading)$

^{*} <5 : mean less than 5dB

^{*} <5 : mean less than 5dB