Test of Aruba Networks, WAP3212

To: FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: ARUB189-U2 Rev A

Test of Aruba Networks, WAP3212

to

To FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: ARUB189-U2 Rev A

<u>Note:</u> this report contains data with regard to the 2400-2483.5 MHz and 5725-5850 MHz operational modes of the Aruba Networks WAP3212 Wireless Access Point. Test data for the 5,150 - 5,350 and 5,470–5,725 MHz is reported in MiCOM Labs test report ARUB189-U4

This report supersedes: NONE

Applicant:	Aruba Networks 1344 Crossman Avenue Sunnyvale California 94089, USA
du at Europtiana	

Product Function: Wireless Access Point for use in aircraft

Copy No: pdf Issue Date: 3rd February 2015

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

www.micomlabs.com

This page has been left intentionally blank

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:4 of 47

TABLE OF CONTENTS

ACC	CREDITATION, LISTINGS & RECOGNITION	. 5
	RECOGNITION	6
	PRODUCT CERTIFICATION	7
TES	T RESULT CERTIFICATE	. 9
1.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	1.1. Normative References	10
	1.2. Test and Uncertainty Procedures	11
2.	PRODUCT DETAILS AND TEST CONFIGURATIONS	12
	2.1. Technical Details	12
	2.2. Scope of Test Program	13
	2.3. Equipment Model(s) and Serial Number(s)	14
	2.4. Antenna Details	14
	2.5. Cabling and I/O Ports	14
	2.6. Test Configurations	15
	2.7. Equipment Modifications	15
•		10
3.	TEST EQUIPMENT CONFIGURATION(S)	16
	3.1. Radiated Spurious Emission Test Set-up > 1 GHz	16
		17
4.	TEST SUMMARY	19
5.	TEST RESULTS	21
	5.1. Device Characteristics	21
	5.1.1. Radiated Emission Testing	21

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
• ~ P ~	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	САВ	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II - recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:7 of 47

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC 17065. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

<u>United States of America – Telecommunication Certification Body (TCB)</u> TCB Identifier – US0159

Industry Canada – Certification Body

CAB Identifier – US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB)

RCB Identifier - 210

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

DOCUMENT HISTORY

	Document History			
Revision	Date	Comments		
Draft				
Rev A	3 rd February 2015	Initial release.		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TEST RESULT CERTIFICATE

Manufacturer:	Aruba Networks	Tested By:	MiCOM Labs, Inc.
	1344 Crossman Avenue		575 Boulder Court
	Sunnyvale		Pleasanton
	California 94089, USA		California, 94566, USA
EUT:	802.11a/b/g/n/ac Wireless LAN Access Point	Telephone:	+1 925 462 0304
Model:	WAP3212-001001 / RD-FA2066- 01	Fax:	+1 925 462 0306
S/N's:	P000013		
Test Date(s):	15th - 24th December 2014	Website:	www.micomlabs.com

STANDARD(S)

FCC 47 CFR Part 15.247 & IC RSS-210

EQUIPMENT COMPLIES

TEST RESULTS

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

ACCREDIT TESTING CERT #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:10 of 47

1. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

1.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
i.	FCC 47 CFR Part 15, Subpart C	2012	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES Subpart C—Intentional Radiators
ii.	RSS-210 Annex 8	2010	Radio Standards Specification 210, Issue 8, Low- power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment
iii.	FCC OET KDB 662911	31 st October 2013	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
iv.	RSS-GEN	2010	Radio Standards Specification-Gen, Issue 3, General Requirements and Information for the Certification of Radiocommunication Equipment
v.	FCC 47 CFR Part 15, Subpart B	2012	47 CFR Part 15, SubPart B; Unintentional Radiators
vi.	ICES-003	31 st August 2013	Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard Digital Apparatus; Issue 5
vii.	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
viii.	CISPR 22/ EN 55022	2010	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
ix.	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
х.	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
xi.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
xii.	A2LA	July 2014	Reference to A2LA Accreditation Status – A2LA Advertising Policy

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

1.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

2. PRODUCT DETAILS AND TEST CONFIGURATIONS

2.1. Technical Details

Details	Description
Purpose:	Test of the Aruba Networks, WAP3212 to FCC Part
	15.247 and Industry Canada RSS-210 regulations.
Applicant:	Aruba Networks
	1344 Crossman Avenue
	Sunnyvale, California 94089, USA
Manufacturer:	As applicant.
Laboratory performing the tests:	MiCOM Labs, Inc.
	575 Boulder Court
	Pleasanton, California 94566 USA
Test report reference number:	ARUB189-U2 Rev A
Date EUT received:	15 th December 2014
Standard(s) applied:	FCC 47 CFR Part 15.247 & IC RSS-210
Dates of test (from - to):	15th - 24th December 2014
No of Units Tested:	One
Type of Equipment:	802.11a/b/g/n/ac Wireless Access Point 3x3 Spatial
	Multiplexing MIMO configuration
Manufacturers Trade Name:	Cabin Wireless Access Point (CWAP)
Model(s):	WAP3212-001001 / RD-FA2066-01
Location for use:	Indoor only
Declared Frequency Range(s):	2400 - 2483.5 MHz; 5725 - 5850 MHz
Hardware Rev:	Mod 0
Firmware Rev:	e500rd_ap225.ari (radio-board)
Software Rev:	SWWAP-002-001
Type of Modulation:	Per 802.11 – CCK, BPSK, QPSK, DSSS, OFDM
Declared Nominal Average	802.11b: +18 dBm
Output Power:	802.11g:Leg. +18dBm,H1-20 +18 dBm,H1-40 +14 dBm
	802.11a:Leg. +18dBm,H1-20 +18 dBm,H1-40 +14 dBm
ELIT Madaa of Operation:	802.11ac-40 + 140Bm, 802.11ac-80 + 120Bm
EUT Modes of Operation.	002.11d/b/y, 002.1111 H1-20, H1-40, ac-40, ac-60
Inansmit/Receive Operation.	
Operating Temperature Pange:	Declared range 0% to 140%
	2400 2492 5 MHz 902 11b 12M0C1D
TTO Emission Designator.	2400 - 2403.5 MHz 802.110 15M9G1D 2400 - 2483.5 MHz 802.11a 16M6D1D
	2400 - 2483.5 MHz 802.11g T0M0D1D 2400 - 2483.5 MHz 802.11p - HT-20.17M8D1D
	2400 = 2483.5 MHz 802.11n = HT-20 17M6DTD 2400 = 2483.5 MHz 802.11n = HT-40 36M6D1D
	5725 – 5850 MHz 802 11a 17M7D1D
	5725 – 5850 MHz 802 11n – HT-20 17M7D1D
	5725 – 5850 MHz 802.11n – HT-40 36M4D1D
	5725 – 5850 MHz 802.11VHT-40 36M4D1D
	5725 – 5850 MHz 802.11VHT-80 75M9D1D
Equipment Dimensions:	L 279,4mm x W 230,0mm x H 59,5mm
Weight:	2.0 kg
Drimony function of aquint art	Wireless Access Point for transmitting data and voice
	within aircraft

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

2.2. Scope of Test Program

Aruba Networks WAP3212 Wireless Access Point

The scope of the test program was to test the Aruba Networks, WAP3212, 3x3 Spatial Multiplexing MIMO configurations in the frequency ranges 2400 - 2483.5 MHz and 5725 – 5850 MHz for compliance against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications.

FCC Correspondence – Tracking Number 906981

Aruba Networks sent an official inquiry (Tracking Number 906981) dated 21st October 2014 to the FCC requesting clarification on the reuse of test data. Received the following response from the FCC;

FCC response 12/04/2014:

You may reuse the conducted data but must do new radiated measurements. If the new application is under a different applicant's name, the applicant will need permission to reuse the data. This letter must be uploaded to the new application.

Conducted test data can be found in MiCOM Labs test report number: ARUB145-U1 Aruba Networks APIN0224, APIN0225 FCC Pt 15.247 & IC RSS 210

FCC OET KDB Implementation

This test program implements the following FCC KDB – 662911 4/4/2011; Emissions Testing of Transmitters with Multiple Outputs in the Same Band

The KDB document provides guidance for measurements of conducted output emissions of devices that employ a single transmitter with multiple outputs in the same band, with the outputs occupying the same or overlapping frequency ranges. It applies to EMC compliance measurements on devices that transmit on multiple antennas simultaneously in the same or overlapping frequency ranges through a coordinated process. Examples include, but are not limited to, devices employing beam forming or multiple-input and multiple-output (MIMO.) This guidance applies to both licensed and unlicensed devices wherever the FCC rules call for conducted output measurements. Guidance is provided for in-band, out-of-band and spurious emission measurements.

This guidance does not apply to the multiple transmitters included in a composite device, such as a device that combines an 802.11 modem with a cell phone in one enclosure with each driving its own antenna.

2.3. Equipment Model(s) and Serial Number(s)

Equipment Type	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	802.11a/b/g/n/ac WLAN	Aruba Networks	WAP3212-001001 / RD-FA2066-01	P000013
Support	Laptop PC	IBM	Thinkpad	None

2.4. Antenna Details

Madal		Gain	Freq. Band	Noto
woder	Туре		MHz	Note
metal sheet	Omni	4.0	2400 - 2500	(3x per band, per unit)
metal sheet	Omni	4.5	5150 - 5875	(3x per band, per unit)

2.5. Cabling and I/O Ports

Number and type of I/O ports

- 1. 2 x 10/100/1000 Ethernet (Daisy-Chainable)
- 2. 115 Vac (360-800 Hz), supply connector
- 3. 4 x Strapping pins for discrete input/outputs

2.6. Test Configurations

Antenna Test Configurations for Radiated Emissions

Results for the following configurations are provided in this report. Radiated emissions testing was performed for three different antennas that represent the highest gain for each antenna type intended for use with the EUT;- Integral antenna (As used in APINR109) ; ANT-18 60 degree sector antenna; ANT-19 monopole antenna.

Radiated emissions testing was performed for all possible configurations for antenna ANT-18 which is the highest gain antenna used with the equipment. Radiated emissions testing was performed for the other two antennas in worst case mode (mode with the highest spectral density)

15.247				
802.11b,g, 802.11n HT-20	SE 2412			
	SE 2437			
	SE 2462			
	BE 2390			
	BE 2483.5			
802.11n HT-40	SE 2412			
	SE 2437			
	SE 2462			
	BE 2390			
	BE 2483.5			

2.400	– 2483.5 MHz	
2,100	Z 100.0 Mil 12	

15.247			
000 44 -	a SE 5745		
802.11a 802 11n HT-20	a SE 5785		
002.111111-20	a SE 5825		
	SE 5755		
802.11n HT-40	SE 5795		
	BE 5460		
902 1100 90	SE 5775		
002.11aC-80	BE 5460		

5.725 – 5850 MHz

KEY;-	
SE – Spurious Emission BE – Band-Edge	

2.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

2.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3. TEST EQUIPMENT CONFIGURATION(S)

3.1. Radiated Spurious Emission Test Set-up > 1 GHz

The following tests were performed using the conducted test set-up shown in the diagram below.

Radiated Emission Measurement Setup – Above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.2. Digital Emissions Test Set-up (0.03 – 1 GHz)

The following tests were performed using the conducted test set-up shown in the diagram below.

Digital Emission Measurement Setup – Below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Traceability of Test Equipment Utilized for Radiated Emission Testing

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2015
301	5470 to 5725 MHz Notch Filter	Microtronics	RBC50704	001	08 Oct 2015
302	5150 to 5350 MHz Notch Filter	Microtronics	BRC50703	002	08 Oct 2015
303	5725 to 5875 MHz Notch filter	Microtronics	BRC50705	003	08 Oct 2015
310	SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	30 Oct 2015
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	14 Aug 2015
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	08 Oct 2015
343	5.15 GHz Notch Filter	EWT	EWT-14-0200	H1	08 Oct 2015
344	5.35 GHz Notch Filter	EWT	EWT-14-0201	H1	08 Oct 2015
345	5.46 GHz Notch Filter	EWT	EWT-14-0202	H1	08 Oct 2015
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	08 Oct 2015
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	07 Oct 2015
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	23 Oct 2015
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Oct 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	30 May 2015
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
502	Test Software for Radiated Emissions	EMISoft	Vasona	Version 5 Build 59	Not Required
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) A8.2(1) 4.4	6 dB and 99 % Bandwidths	≥500 kHz	Conducted	Complies*	NT
15.247(b)(3) 15.31(e) <mark>A8.4(4)</mark>	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85 % -115 %	Conducted	Complies*	NT
15.247(e) A8.2	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies*	NT
15.247(d) 15.205 / 15.209 A8.5 2.2 4.7	Spurious Emissions (30MHz - 26 GHz b/g and 30 MHz – 40 GHz a)	The radiated emission in any 100 kHz of out- band shall be at least 20 dB below the highest in- band spectral density	Conducted	Complies*	NT

NT - Not tested

* Not tested as part of this program, see Section 2.2 'Scope of Test Program'

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210, and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 / 15.209 A8.5 2.2 2.6 4.7	Radiated Emissions	Restricted Bands	Radiated	Complies	5.1.1
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	
	Radiated Band Edge	Band-edge results Peak Emissions		Complies	
15.205 / 15.209 2.2	Digital Emissions	Emissions <1 GHz (30M- 1 GHz)	Radiated	Complies	5.1.2
15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	N/A EUT is for use in aircraft	NT

NT - Not tested

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5. TEST RESULTS

- 5.1. Device Characteristics
- 5.1.1. Radiated Emission Testing

Transmitter Radiated Spurious Emissions (above 1 GHz); Peak Field Strength Measurements; and Radiated Band Edge Measurements – Restricted Bands

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Operational Modes

Operational mode(s) tested for spurious emissions were the modes which delivered maximum spectral density 802.11b and 802.11a.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FOwhere: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $\begin{array}{l} 40 \ dB\mu V/m = 100 \ \mu V/m \\ 48 \ dB\mu V/m = 250 \ \mu V/m \end{array}$

NOTE: KDB 662911 was implemented for Out-of-Band measurements. Where necessary Option (2) Measure and add 10 log (N) dB was implemented

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:23 of 47

5.1.1.1. Spurious Emissions

Test	t Freq.	2412 MHz	CH 1						Engineer	JMH		
v	/ariant	802.11b; 1	Mbit/s						Temp (ºC)	20.5		
Freq.	Range	1000 MHz -	18000	MHz				Re	I. Hum.(%)	60		
Power S	Setting	76				Press. (mBars)			s. (mBars)	1009		
Ar	ntenna	Integral						Duty	Cycle (%)	99		
Test N	lotes 1	WAP3212,	NAP3212, SN# P000013									
Test N	lotes 2	Power Setti	Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm									
With Vasona by EMiSoft 22 Dec 14 14:32 Vasona by EMiSoft 22 Dec 14 14:32 Vertical Verti												
Formally m	easur	red emission peaks										
Frequency MHz	Raw dBuV	Cable Loss	Cable LossAF dBLevel dBuV/mMeasurement TypePolHgt cmAzt CmLimit DegMargin dBuV/mPass /FailComments									
15717.435	40.5	11.6	11.6 0.2 52.3 Peak [Scan] H 150 0 54 -1.73 Pass Noise									
Legend:	TX = T	ransmitter Er	nissions	s; DIG = Digital	Emissions; FUN	D = Fu	Indame	ental; W	/B = Wideba	nd Emissio	on	
	NRB =	Non-Restric	on-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205									

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:24 of 47

Tes	st Freq.	2437 MHz (CH 6						Engineer	JMH			
١	Variant	802.11b; 1	Mbit/s						Temp (ºC)	20.5			
Freq.	Range	1000 MHz -	18000 N	IHz		Rel. Hum.(%)			I. Hum.(%)	60			
Power S	Setting	76						Pres	s. (mBars)	1009			
Ai	ntenna	Integral						Duty	Cycle (%)	99			
Test N	Notes 1	WAP3212,	WAP3212, SN# P000013										
Test N	Notes 2	Power Setti	ower Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm										
MiCOMLa	bs	dBuV/m 80.0 70.0 60.0 50.0 40.0 20.0 10.0 1000.0 Radiate Filenam	dBuV/m Vasona by EMiSoft 22 Dec 14 14:44 70.0 70.										
Formaliy	lieasui	red emission peaks											
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
16807.615	39.1	12.2	1.1	52.4	Peak [Scan]	V	200	0	54	-1.58	Pass	Noise	
2431.999	54.7	3.9	3.9 -11.7 46.9 Peak [Scan] FUND										
						F .	da		AC-L-L	1.5			
Legend:		Nep Postricted Pond Limit - 62.22 dPuV/m: PP - Postricted Pond Limits por 15.205											
	NKR =	RB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Tes	t Frea.	2462 MHz (CH 11						Engineer	JMH		
	/ariant	802.11b [.] 1	Mbit/s						Temp (°C)	20.5		
Freg.	Range	1000 MHz -	18000 M	IH7		Rel. Hum.(%)			I. Hum.(%)	60		
Power	Settina	76						Pres	s. (mBars)	1009		
A	ntenna	Integral						Duty	Cvcle (%)	99		
Test N	lotes 1	WAP3212.	SN# P00	0013				,				
Test N	lotes 2	Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBr										
MiCemLa	DS	dBuV/m Vasona by EMiSoft 22 Deo 14 14:53 Too Too Too Too Too Too Too T										
Formally n	Raw	ed emission peaks Cable AF Level Measurement Pol Hgt Azt Limit Margin Pass Comments										
40504.000		10.0	4.7	50.0	Deals[Cears]	V	000	Deg	54	4.05	Deer	Naina
16501.002	38.5	12.0	1./ _11.9	52.2	Peak [Scan]	V	200	0	54	-1.85	Pass	
2430.00172	57.0	3.9	-11.0	49.2	Feak [Scan]							FUND
Legend:	TX = 1	ransmitter Er	nissions;	DIG = Digital I	Emissions; FUND	= Fun	damen	tal; WB	s = Wideban	d Emissior	1	
Ŭ	NRB =	Non-Restric	ted Band.	Limit = 68.23	dBuV/m; RB = R	estrict	ed Ban	d. Limi	its per 15.20	5		

Tes	st Freq.	5745 MHz	ch 149						Engineer	JMH		
١	Variant	802.11a; 6	Mbit/s						Temp (ºC)	20.5		
Freq.	Range	1000 MHz -	18000 N	lHz		Rel. Hum.(%)			I. Hum.(%)	60		
Power	Setting	76				Press. (mBars)				1009		
A	ntenna	Integral						Duty	Cycle (%)	99		
Test N	Notes 1	WAP3212,	/AP3212, SN# P000013									
Test N	Notes 2	Power Setti	ower Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm									
MicemLa	bs	dBuV/m 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 10.0 Radiate Filenam	d Emission e: k:\progr	Vason:	a by EMiSoft	FCC	10000.0 RE 1-18 Do 15.24	GHz 7 & ic rs	22 Dec 14 10 PK 2 Ve Pk 0 Pk 0	8:21 orizonti rtical nt 3 3 3 3 MHz 3\data\		
Formally m	neasur	ed emissi	on pea	iks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16194.389	39.4	12.0	1.1	52.5	Peak [Scan]	V	100	0	54	-1.51	Pass	Noise
6212.42485	52.1	6.6	-8.8	49.8	Peak [Scan]	Н						NRB
5735.471	53.8	6.2	-10.7	49.4	Peak [Scan]							FUND
11490.362	47.4	9.4	-4.8	51.9	Peak Max	V	173	263	74	-22.1	Pass	RB
11490.362	34.4	9.4	-4.8	39.0	Average Max	V	173	263	54	-15.0	Pass	RB
Legend:	TX = T	ransmitter E	missions;	DIG = Digital I	Emissions; FUND	= Fun	damen	tal; WB	= Wideband	d Emissior	١	
	NRB =	Non-Restric	Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205									

Image: Stass Win2 on 157 Variant: 802.11a; 6 Mbit/s Temp (PC) 20.5 Freq. Range 1000 MHz Power Setting 76 Power Setting 76 Power Setting 76 Power Setting 76 Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm	T	. .		1. 457			1			F			
Variant 802.111; 6 Mbl/s Temp (C) 20.5 Freq. Range 1000 MHz - 18000 MHz Rel. Hum (%) 60 Power Setting 76 Duty Cycle (%) 99 Test Notes 1 WAP3212, SN# P000013 Duty Cycle (%) 99 Test Notes 2 Power Settings in quarter points + 4 to equal dBm settings is: 76.4=72.72/4=18 dBm MicCOM 20 Duty Cycle (%) 99 Bit Other 2 Power Settings in quarter points + 4 to equal dBm settings is: 76.4=72.72/4=18 dBm MicCOM 20	Ies	st Freq.	5785 MHZ (n 157						Engineer	JMH		
Freq. Range 1000 MHz Rel. Hum,(%) 60 Power Setting 76 Press. (mBars) 1009 Antenna Integral Duty Cycle (%) 99 Test Notes 1 WAP3212, SN# P000013 Duty Cycle (%) 99 Test Notes 2 Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Micom abs Quarter points + 4 to equal dBm settings ie: 76-762 15 247 & 10 rss 210 annex 8 datas Micom abs<		Variant	802.11a; 6	Mbit/s						Temp (ºC)	20.5		
Power Setting 76 Press. (mBars) 1009 Antenna Integral Duty Cycle (%) 99 Test Notes 1 WAP3212, SN# P000013 Duty Cycle (%) 99 Test Notes 2 Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs dBuV/m Vasiona by EMISoft 22 Dec 14 10:35 – USCOM abs Cable of the settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Cable of the settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Cable of the settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Cable of the settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Cable of the settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Cable of the settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICOM abs Cable of the settings in the settings ie: 76-4=72 72/4=18 dBm MICOM abs Cable of the settings ie: 76-4=72 72/4=18 dBm Micom abs Template Encode the settings ie: 76-4=72 72/4=18 dBm Micom abs Mase Dist 3m Seteo Dist 3m	Freq.	Range	1000 MHz -	18000 M	Hz				Re	I. Hum.(%)	60		
Antenna Integral Duty Cycle (%) 99 Test Notes 1 WAP3212, SN# P000013 Image: SN# P000013 Image: SN# P000013 Test Notes 2 Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Image: SN# P000013 Image: SN# Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Image: SN# Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Image: SN# Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Image: SN# Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Image: SN# Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Image: SN# Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Image: SN# Power Setting in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Image: SN# Power Setting in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Image: SN# Power Setting in quarter points + 4 to equal dBm settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Image: State is an general dBm settings ie: 76-4=72 72/4=18 dBm Image: State is an general dBm settings in quarter points + 4 to equarter dBm settings in quarter points + 4 to equarter dBm settings in quarter points + 4 to equarter dBm settings in quarter points + 4 to equarter dBm settings in quarter points + 4 to equarter dBm settings in quarter dBm settings in quarter dBm settings in quarter dBm set	Power \$	Setting	76						Pres	s. (mBars)	1009		
Test Notes 1 WAP3212, SN# P000013 Test Notes 2 Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Micential Case and a settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Micential Vasiona by EMISoft 22 Dec 14 18:35 Test Notes 2 GBW/m Vasiona by EMISoft 22 Dec 14 18:35 Test Notes 2 Balance for the settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Micential Balance for the settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm Mass Dist 3m Setting 3m Balance Emissions Templater FCC Ref 19 (bring 3m) Balance Emissions Peaks Templater FCC Ref 19 (bring 3m) Set 10 annex 8 ddata Frequency Raw Cable AF Level Measurement Type Pol Hgt Act Act Act Act Act Act Act Act Act Act Act	A	ntenna	Integral						Duty	Cycle (%)	99		
Test Notes 2 Power Settings in quarter points + 4 to equal dBm settings ie: 76-4=72 72/4=18 dBm MICEN.Ldb	Test N	lotes 1	WAP3212,	SN# P000	0013								
Prequency Raig Colspan="2">Colspan="2">Colspan="2">Colspan="2" Yasona by EMiSoft Colspan="2" Colspan="2" Balated Emissions Template: FCC RE 1-180Hz Frequency: MHz Balated Emissions Template: FCC RE 1-180Hz Frequency: MHz Balated Emissions Template: FCC RE 1-180Hz Below Balated Emissions Template: FCC RE 1-180Hz Below Balated Emissions Template: FCC RE 1-180Hz Below Balated Emissions Colspan="2">Below Balated Emissions Below Balated Emissions Below Below Below Below Below Below Below Below Below Below </th <th>Test N</th> <th>lotes 2</th> <th>Power Setti</th> <th>ngs in qua</th> <th>arter points + 4</th> <th>to equal dBm se</th> <th>ettings</th> <th>ie: 76-4</th> <th>4=72 72</th> <th>2/4=18 dBm</th> <th></th> <th></th> <th></th>	Test N	lotes 2	Power Setti	ngs in qua	arter points + 4	to equal dBm se	ettings	ie: 76-4	4=72 72	2/4=18 dBm			
Formally measured emission peaksFrequency MHzRaw dBuVCable LossAF dBLevel dBuV/mMeasurement TypePolHgt cmAzt DegLimit dBuV/mMargin dBPass FailComments16569.13838.811.91.652.3Peak [Scan]H150054-1.7Pass AssNoise5769.5390856.46.3-10.552.1Peak [Scan]II	MiC@MLa	dBuV/m Vasona by EMiSoft 22 Dec 14 18:35 ⁸⁰ ⁹⁰											
Frequency MHzRaw dBuVCable LossAF dBLevel dBuV/mMeasurement TypePolHgt cmAzt DegLimit dBuV/mMargin dBPass /FailComments16569.13838.811.91.652.3Peak [Scan]H150054-1.7Pass ASSNoise5769.5390856.46.3-10.552.1Peak [Scan]HIIIIIFUND6280.56150.16.6-8.548.2Peak [Scan]HIIIINRBTX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband EmissionWideband EmissionNRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205	Formally r	neasui	red emissi	on pea	ks								
16569.138 38.8 11.9 1.6 52.3 Peak [Scan] H 150 0 54 -1.7 Pass Noise 5769.53908 56.4 6.3 -10.5 52.1 Peak [Scan] Image: Comparison of the second	Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5769.53908 56.4 6.3 -10.5 52.1 Peak [Scan] Image: Comparison of the	16569.138	38.8	11.9	1.6	52.3	Peak [Scan]	н	150	0	54	-1.7	Pass	Noise
6280.561 50.1 6.6 -8.5 48.2 Peak [Scan] H Image: Marcon and the state of the state o	5769.53908	56.4	6.3	-10.5	52.1	Peak [Scan]							FUND
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205	6280.561	50.1	6.6	-8.5	48.2	Peak [Scan]	н						NRB
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205						-	•						
NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205	Legend:	TX = 1	ransmitter E	missions;	DIG = Digital E	Emissions; FUND	= Fun	damen	tal; WB	= Wideband	d Emission	1	
		NRB =	Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

Test	Frea.	5825 MHz	ch 165						Engineer	JMH			
V	ariant	802 11a 6	6 Mbit/s						Temp (%C)	20.5			
Erog E	Dango	1000 MH-	18000					Po		60			
Bower S	otting	76	- 10000			Bross (mBars)			. (mBara)	1000			
Fower 3	etting	70						Pies		1009			
An	tenna	Integral						Duty	Cycle (%)	99			
Test No	otes 1	WAP3212											
Test No	otes 2	Power Se	ttings in q	uarter points +	+ 4 to equal dBm s	setting	s ie: 76	6-4=72	(2/4=18 dBn	1			
Formally m	neasur	dBuV/m 800 700 600 500 400 300 400 300 400 300 400 300 400 300 400 300 8 400 700 6 8 400 8 700 6 700 6 700 6 700 6 700 6 700 6 700 6 700 700	dBuV/m Vasona by EMiSoft 22 Dec 14 18:42										
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5803.607	59.5	6.3	-10.4	55.4	Peak [Scan]							FUND	
16535.07	39.4	11.9	1.6	52.9	Peak [Scan]	V	150	0	54	-1.06	Pass	Noise	
6314.629	51.9	6.6	-8.4	50.1	Peak [Scan]	Н						NRB	
6076.15231	52.8	6.5 -9.6 49.7 Peak [Scan] H NRB											
Legend:	TX = T NRB =	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205											

5.1.1.2. Band-Edge - Spurious Emissions

Peak Limit 74.0 dBµV, Peak Limit 54.0 dBµV

2.4 GHz Frequency Band

		2390 M	Hz	2483.5 MHz					
	dBµV		Dower Setting	dE	βµV	Dower Sotting			
Operational Mode	Peak	Average	Fower Setting	Peak	Average	Fower Setting			
b	52.74	41.70	76.0	57.45	46.47	76.0			
g	73.56	53.26	75.0	73.79	52.68	75.0			
n HT-20	71.72	52.92	74.0	72.18	51.49	71.0			
n HT-40	67.17	53.51	65.0	70.62	53.60	64.0			

5.8 GHz Frequency Band

		5460 MHz									
	dB	μV	Dower Cotting								
Operational Mode	Peak	Average	Power Setting								
а	51.70	39.23	76.0								
n HT-20	50.95	38.92	76.0								
n HT-40	50.63	38.54	76.0								
ac-80	50.56	28.46	66.0								

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:30 of 47

802.11b Radiated Band-Edge @ 2390 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:31 of 47

802.11g Radiated Band-Edge @ 2390 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:32 of 47

Marker 1 [T1] RBW 1 MHz RF Att 20 dB Ref Lvl 71.72 dB**y**V VBW 1 MHz 95.9 dByV 2.39000000 GHz SWT 20 s Unit dbyv 95.9 -7.9 dB Offse **V**1 [T1] 71. 72 dB А 90 **∇**2 [T2] 92 dB<mark>y</mark> 52. 39000 000 GH2 80 D1 74 db**y**V 70 TN1 Allin 1MA 1VIEW nakaki wijelowill and a summer with the second 60 2AV 2VIEW 54 dB**y**V D2 50 40 30 20 1(-4.1 Center 2.35 GHz 8 MHz/ Span 80 MHz 22.DEC.2014 12:04:02 Date:

802.11n HT-20 Radiated Band-Edge @ 2390 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:33 of 47

Marker 1 [T1] RBW 1 MHz RF Att 20 dB Ref Lvl 67.17 dB**y**V VBW 1 MHz 95.9 dByV 2.38663327 GHz SWT 20 s Unit dbyv 95.9 -7.9 dB Offse **V**1 [T1] 67 17 dB А 90 **∇**2 [T2] 51 dB<mark>y</mark> 53 39000 000 GH: 80 D1 74 db**y**V 70 TN1 1MA 1VIEW 60 2AV 2VIEW 54 dB**y**1 D2 Water ٩**r**i 50 Mater 40 30 20 1(-4.1 Center 2.35 GHz 8 MHz/ Span 80 MHz 22.DEC.2014 12:27:10 Date:

802.11n HT-40 Radiated Band-Edge @ 2390 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:34 of 47

802.11b Radiated Band-Edge @ 2483.5 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:35 of 47

А

IN1 1MA

2AV

Marker 1 [T1] RBW 1 MHz RF Att 20 dB Ref Lvl 73.79 dB<mark>y</mark>V VBW 1 MHz 96.1 dByV 2.48350000 GHz SWT 20 s Unit dbyv 96.1 -7.7 dB Offse **V**1 [T1] 73. 79 dB 90 **∇**2 [T2] 68 dB**y** 52 48353 307 GH2 80 D1 74 db**y**v. ľ, 70 **1VIEW** 60 2VIEW Anneril **D**2 54 dB**y**1 50 40 30 20 1(-3.9 Start 2.4835 GHz 1.65 MHz/ Stop 2.5 GHz 22.DEC.2014 13:46:47 Date:

802.11g Radiated Band-Edge @ 2483.5 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:36 of 47

Marker 1 [T1] RBW 1 MHz RF Att 20 dB Ref Lvl 72.18 dB**y**V VBW 1 MHz 96.1 dByV 2.48350000 GHz SWT 20 s Unit dbyv 96.1 -7.7 dB Offse **V**1 [T1] 72. 18 dB**y** 90 **∇**2 [T2] 49 dB 51 48350 000 GH2 80 D1 74 db**y**v. 7(TN1 1MA 1MAX يا ميرو M. Markell Markers 60 **Weither** 2AV cole that 54 dB**y**v 50 40 30 20 1(-3.9 Start 2.4835 GHz 1.65 MHz/ Stop 2.5 GHz 22.DEC.2014 14:00:02 Date:

802.11n HT-20 Radiated Band-Edge @ 2483.5 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:37 of 47

Marker 1 [T1] RBW 1 MHz RF Att 20 dB Ref Lvl 70.62 dB**y**V VBW 1 MHz 96.1 dByV 2.48379760 GHz SWT 20 s Unit dbyv 96.1 -7.7 dB Offse **V**1 [T1] 70. 62 dB**y** А 90 **∇**2 [T2] 60 dB**y** 53. 48350 000 GH2 80 D1 74 db**y**v 70 TN1 Any 1MA **1VIEW** 60 2AV 2VIEW 54 dB**y p**2 50 40 30 20 1(-3.9 Start 2.4835 GHz 1.65 MHz/ Stop 2.5 GHz 22.DEC.2014 14:05:35 Date:

802.11n HT-40 Radiated Band-Edge @ 2483.5 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:38 of 47

802.11a Radiated Band-Edge @ 5460 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:39 of 47

802.11n HT-20 Radiated Band-Edge @ 5460 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:40 of 47

802.11n HT-40 Radiated Band-Edge @ 5460 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:41 of 47

802.11ac-80 Radiated Band-Edge @ 5460 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

5.1.1.3. Digital Emissions (0.03-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

where:

FS = R + AF + CORR

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable LossAG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

 $40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$

Title:Aruba Networks, WAP3212To:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:ARUB189-U2 Rev AIssue Date:3rd February 2015Page:45 of 47

	EUT	JT WAP3212				Engineer			JMH			
· · · ·	Variant	Digital Emissions				Temp (°C)			21.5			
Frea.	Range	30 MHz - 1000 MHz			Rel Hum (%)			Hum.(%)	42			
Standar	d I imit	FCC Clas	s R				Bross (mBars)		(mBars)	42		
Support	Equip		tsida cha	mber				11000	. (112413)	1007		
Тар												
lest	Test Notes SN# P000013											
With the second state of t												
Formally measured emission peaks												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
55.356	57.2	3.7	-24.1	36.8	Quasi Max	V	99	200	40	-3.2	Pass	
98.105	54.6	4.1	-21.8	36.930	Quasi Max	V	99	325	43.5	-6.6	Pass	
49.469	52.1	3.7	-23.0	32.9	Quasi Max	V	99	345	40.0	-7.2	Pass	
34.960	33.8	3.6	-13.6	23.8	Quasi Max	V	99	242	40.0	-16.2	Pass	
40.943	48.6	3.6	-18.1	34.1	Quasi Max	V	99	236	40	-5.9	Pass	
136.632	48.9	4.3	-17.9	35.3	Peak [Scan]	V	98	361	43.5	-8.2	Pass	
71.629	50.2	3.9	-23.1	31.0	Peak [Scan]	V	98	361	40	-9.0	Pass	
374.028	45.7	0.7 5.4 -15.3 35.7 Peak [Scan] V 98 361 46 -10.3 Pass										
Legend:	DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency											
	TRNS= Transient Emission, Brbnd= Broadband emission											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)		
30-88	100	40.0	3		
88-216	150	43.5	3		
216-960	200	46.0	3		
Above 960	500	54.0	3		

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

575 Boulder Court Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com