

Statement of compliance to Maximum Permissible Exposure (MPE)

Applicant	:	Aruba Networks, Inc			
		1344 Crossman Ave. Sunnyvale, CA,94089			
Manufacturer	:	Aruba Networks, Inc			
		1344 Crossman Ave. Sunnyvale, CA,94089			
Product Name	:	Wireless Sensor			
Type/Model	:	LSIN0100			

According to §2.1091, §2.1093 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Date of issue: January 26, 2015

Prepared by:

Ner li

Nemo Li (Project engineer)

Approved by:

Daniel Zhao (Reviewer)

Power density (S) is calculated according to the formula:

 $S = PG / (4\pi R)$

Where $S = power density in mW/cm^2$

 $\mathbf{P} = \text{transmit power in mW}$

G = numeric gain of transmit antenna (numeric gain=Log-1(dB antenna gain/10))

R = distance (cm)

As we can see from the test report 150101832SHA-001 & 150101832SHA-002 & 150101832SHA-003 & 150101832SHA-004 & 150101832SHA-005:

Bluetooth

Frequency band	Power		An	tenna Gain	R	S	Limits
(MHz)	dBm	mW	dBi	(Numeric)	(cm)	(mW/cm2)	(mW/cm2)
2400 - 2483.5	4.47	2.80	0.3	1.07	20	0.0006	1
(MHZ) 2400 -2483.5	авт 4.47	2.80	0.3	(Numeric) 1.07	(cm) 20	(mw/cm2) 0.0006	(mw/cm 1

Note: 1 mW/cm2 from 1.310 Table 1

Wi-Fi

Frequency band	Power		Antenna Gain		R	S	Limits
(MHz)	dBm	mW	dBi	(Numeric)	(cm)	(mW/cm2)	(mW/cm2)
2400 - 2483.5	19.38	86.70	2.3	1.70	20	0.0293	1
5150-5250	9.88	9.73	3.7	2.34	20	0.0045	1
5250-5350	9.65	9.23	3.7	2.34	20	0.0043	1
5470-5725	9.75	9.44	3.7	2.34	20	0.0044	1
5725-5850	9.86	9.68	3.7	2.34	20	0.0045	1

Note: 1 mW/cm2 from 1.310 Table 1

For the device can support simultaneous transmission, according to 447498 D01 General RF Exposure Guidance v05r02,

The sum of the MPE ratios = $0.0006 / 1.0 + 0.0293 / 1.0 = 0.0299 \text{mW/cm}^2$

This level is below the simultaneous transmission MPE test exclusion requirements (≤ 1.0).

Appendix I

Definition below must be outlined in the User Manual:

To satisfy FCC RF exposure requirements, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during device operation. To ensure compliance, operations at closer than this distance is not recommended.