

REGULATORY COMPLIANCE TEST REPORT

FCC CFR 47 Part 15 Subpart E 15.407 ISED RSS-247 Issue 2

Report No.: HPEN155-U9 Rev A (UNII) Addendum: RF Power, Bandwidth

Company: Hewlett Packard Enterprise Company

Model Name: ASIN0304, ASIN0303

REGULATORY COMPLIANCE TEST REPORT

Company Name: Hewlett Packard Enterprise Company

Model Name: ASIN0304, ASIN0303

To: FCC CFR 47 Part 15 Subpart E 15.407

Test Report Serial No.: HPEN155-U9 Rev A (UNII) Addendum: RF Power, Bandwidth

This report supersedes: NONE

Applicant: Hewlett Packard Enterprise Company 3333 Scott Blvd Santa Clara, California 95054 USA

Issue Date: 23rd July 2021

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

4
4
6
34
41
63
71
72
78
192

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

1. TEST RESULTS

1.1. Peak Transmit Power

Conducted Test Conditions for Maximum Conducted Output Power								
Standard:	CC CFR 47:15.407 Ambient Temp. (°C): 24.0 - 27.5							
Test Heading:	Maximum Conducted Output Rel. Humidity (%): 32 - 45							
Standard Section(s):	15.407 (a) Pressure (mBars): 999 - 1001							
Reference Document(s):	See Normative References							

Test Procedure for Maximum Conducted Output Power Measurement

Method PM (Measurement using an RF average power meter). KDB 789033 defines a methodology using an average wideband power meter. Measurements were made while the EUT was operating in a continuous transmission mode (100% duty cycle) at the appropriate center frequency. All operational modes and frequency bands were measured independently and the resultant calculated. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported separately. A summation (Σ) of each antenna port output power is provided which includes any offset due to Duty Cycle Correction Factor (DCCF). Testing was performed under ambient conditions at nominal voltage.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power [$10^{*}Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$]

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits Maximum Conducted Output Power

Operating Frequency Band 5150-5250 MHz

15. 407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used,

both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5250-5350 and 5470 - 5725 MHz

15.407 (a)(2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5725 - 5850 MHz

15.407 (a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

FCC Power Measurements

Equipment Configuration for Peak Transmit Power

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measured	I Conducted	Output Pow	/er (dBm)	Calculated Total Minimum 26 dB		Limit	Margin	EUT
Frequency		Por	t(s)		Power	Bandwidth		3	Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5180.0	17.07	18.75			21.00	Not Applicable	30.00	-9.00	18.00
5200.0	17.35	19.11		-	21.33	Not Applicable	30.00	-8.67	18.00
5240.0	17.79	19.51		-	21.74	Not Applicable	30.00	-8.26	18.00

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ac-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measured	Conducted	Output Pow	ver (dBm)	Calculated Minimum 26 dB		Linelt	Manain	EUT.
Frequency		Por	t(s)		Total Power	Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5210.0	16.14	17.79			20.05	Not Applicable	28.70	-6.65	17.00

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measured Conducted Output Power (dBm)						1.1	Manada	
Frequency		Por	t(s)		Total Power	Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5180.0	17.27	18.89	-	-	21.17	Not Applicable	28.70	-7.53	18.00
5200.0	17.59	19.19			21.47	Not Applicable	28.70	-7.23	18.00
5240.0	17.95	19.60			21.86	Not Applicable	28.70	-6.84	18.00

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-40	Duty Cycle (%):	97.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measured	Conducted	Output Pov	ver (dBm)	Calculated	Minimum 26 dB		Manain	EUT Power
Frequency		Por	t(s)		Total Bandwidth		Limit	Margin	
MHz	а	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5190.0	16.35	18.04	-		20.29	Not Applicable	28.70	-8.41	17.00
5230.0	17.77	19.36			21.65	Not Applicable	28.70	-7.05	18.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-80	Duty Cycle (%):	96.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measu	Test Measurement Results								
Test	Measured	Conducted	Output Pow	ver (dBm)	Calculated Total Power		Linait	Margin	EUT Power
Frequency		Por	t(s)				Limit		
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5210.0	16.63	18.27			20.54	Not Applicable	28.70	-8.16	17.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measured	Conducted	Output Pov	ver (dBm)	Calculated	Minimum 26 dB	Limit		
Frequency		Por	t(s)		Power	Total Bandwidth		Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5180.0	17.10	18.78			21.03	Not Applicable	28.70	-7.67	18.00
5200.0	17.34	19.05	-		21.29	Not Applicable	28.70	-7.41	18.00
5240.0	17.72	19.47			21.69	Not Applicable	28.70	-7.01	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measured	Conducted	Output Pov	ver (dBm)	Calculated Total Power		1.1	Margin	EUT Power
Frequency		Por	t(s)				Limit		
MHz	а	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5190.0	17.16	18.88	-		21.11	Not Applicable	28.70	-7.59	18.00
5230.0	17.55	19.30			21.52	Not Applicable	28.70	-7.18	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	Output Pow			Minimum	Lineld		EUT Power
Frequency		Por	rt(s)		Total Power	26 dB Limit Bandwidth		Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5260.0	17.68	19.11			21.46	21.200	24.00	-2.54	18.00
5300.0	17.87	19.44			21.74	23.200	24.00	-2.26	18.00
5320.0	17.98	19.42			21.77	23.130	24.00	-2.23	18.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ac-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum	Lineit	Manain	
Frequency		Por	t(s)		Total Power	26 dB Limit Bandwidth		Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5290.0	16.49	18.10		-	20.38	132.530	22.70	-2.32	17.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:				

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			
Frequency		Por	t(s)		Total Power	26 dB Limit Bandwidth		Margin	EUT Power
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5260.0	17.85	19.46			21.74	22.800	22.70	-0.96	18.00
5300.0	17.98	19.60			21.88	24.530	22.70	-0.82	18.00
5320.0	18.03	19.64			21.92	27.930	22.70	-0.78	18.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	l Output Pow	er (dBm)	Calculated Total	Minimum 26 dB	Limit	Margin	
Frequency		Por	rt(s)		Power	Bandwidth		Wargin	EUT Power Setting
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5270.0	17.87	19.40			21.71	39.870	22.70	-0.99	18.00
5310.0	16.78	18.38			20.66	44.530	22.70	-2.04	17.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-80	Duty Cycle (%):	96.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum	1.1	Margin	
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	26 dB Limit andwidth		EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5290.0	16.81	18.50			20.75	84.000	22.70	-1.95	17.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:					

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted			Minimum 26 dB	Limit			
Frequency		Por	t(s)		Total Power	Bandwidth	Linin	Margin	EUT Power
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5260.0	17.64	18.79			21.26	24.670	22.70	-1.44	18.00
5300.0	17.83	19.08	-		21.51	25.800	22.70	-1.19	18.00
5320.0	18.01	19.14			21.62	29.070	22.70	-1.08	18.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test Frequency	Measure	d Conducted	l Output Pow t(s)	er (dBm)	Calculated Total	Minimum 26 dB Limit		Margin	EUT Power
		FUI	((S)		Power	Bandwidth			Setting
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dB	_
5270.0	17.73	18.91			21.37	67.070	22.70	-1.33	18.00
5310.0	17.83	19.15			21.55	66.800	22.70	-1.15	18.00

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)			1		EUT Power
Frequency		Por	rt(s)		Total Power	26 dB Limit Bandwidth		Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5500.0	18.02	18.86			21.47	23.800	24.00	-2.53	18.00
5580.0	18.63	19.33			22.00	25.470	24.00	-2.00	18.00
5720.0	17.92	18.14			21.04	21.270	24.00	-2.96	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ac-80	Duty Cycle (%):	96.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	est Measurement Results								
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum	Linelt		
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5530.0	16.24	17.04			20.67	122.130	22.70	-2.03	16.00
5610.0	18.71	19.18	-		21.96	132.530	22.70	-0.74	18.00
5690.0	18.02	18.47			21.26	129.330	22.70	-1.44	18.00

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER		
Measurement Uncertainty:	±1.33 dB		

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	asurement Results								
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated Minimum		1	Manufa	
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin	Margin dB 0.00 10.00 10.00 10.00 10.00
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5500.0	18.27	19.10			21.72	23.000	22.70	-0.98	18.00
5580.0	18.87	19.69	-		22.31	26.600	22.70	-0.39	18.00
5720.0	18.07	18.59			21.35	20.670	22.70	-1.35	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measu	est Measurement Results								
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated Total				
Frequency		Por	t(s)		Power	26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5510.0	16.31	17.09	-		19.72	42.800	22.70	-2.98	16.00
5550.0	18.83	19.50	-		22.19	46.530	22.70	-0.51	18.00
5710.0	18.19	18.64			21.43	44.130	22.70	-1.27	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-80	Duty Cycle (%):	96.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	est Measurement Results								
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated Total	Minimum 26 dB	Lingit Manufa		
Frequency		Por	t(s)		Power	Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5530.0	15.53	16.31	-		18.95	79.200	22.70	-3.75	15.00
5610.0	18.88	19.45	-		22.18	80.270	22.70	-0.52	18.00
5690.0	18.33	18.75			21.56	84.800	22.70	-1.14	18.00

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER		
Measurement Uncertainty:	±1.33 dB		

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measur	Test Measurement Results								
Test	Measured Conducted Output Power (dBm)				Calculated	Minimum	Lineit	Margin	
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	26 dB Limit andwidth		EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5500.0	18.01	18.89	-		21.48	25.330	22.70	-1.22	18.00
5580.0	18.65	19.44	-		22.07	28.200	22.70	-0.63	18.00
5720.0	17.94	18.10			21.03	24.270	22.70	-1.67	18.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measu	Test Measurement Results								
Test	Measured Conducted Output Power (dBm)				Calculated Total	Minimum 26 dB	Limit		
Frequency		Por	t(s)		Power	Bandwidth	Linint	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5510.0	15.02	15.38	-		18.21	66.930	22.70	-4.49	15.00
5550.0	18.51	18.90			21.72	64.930	22.70	-0.98	18.00
5710.0	17.88	17.90			20.90	49.600	22.70	-1.80	18.00

Traceability to Industry Recognized Test Methodologies						
	Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
	Measurement Uncertainty:	±1.33 dB				

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measu	Test Measurement Results								
Test Frequency			Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power		
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm dB	Setting
5745.0	18.19	18.58			21.40	Not Applicable	30.00	-8.60	18.00
5785.0	17.79	18.46		-	21.15	Not Applicable	30.00	-8.85	18.00
5825.0	18.19	18.68			21.45	Not Applicable	30.00	-8.55	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ac-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results									
Test	Measured Conducted Output Power (dBm)				Calculated	Minimum 26 dB	1.1	Manain	
Frequency		Por	t(s)		Total Power	Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5775.0	17.86	18.43			21.16	Not Applicable	28.70	-7.54	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results									
Test	Measured	Conducted	Output Pov	ver (dBm)	Calculated Minimum 26 dB		1.1		
Frequency		Por	t(s)		Total Power	Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5745.0	18.35	18.78			21.58	Not Applicable	28.70	-7.12	18.00
5785.0	17.99	18.59			21.31	Not Applicable	28.70	-7.39	18.00
5825.0	18.32	18.81			21.58	Not Applicable	28.70	-7.12	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results									
Test	Measured	Conducted	Output Pov	ver (dBm)	Calculated	Minimum 26 dB	1 1	Margin	EUT Power
Frequency		Por	t(s)		Total Power	Bandwidth	Limit		
MHz	а	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5755.0	18.40	18.79	-		21.61	Not Applicable	28.70	-7.09	18.00
5795.0	18.08	18.60			21.36	Not Applicable	28.70	-7.34	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measu	Test Measurement Results								
Test	Measured	Conducted	Output Pow	ver (dBm)	Calculated Total Power Minimum 26 dB Bandwidth		Linelt	Margin	EUT Power
Frequency		Por	t(s)				Limit		
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5775.0	18.02	18.60			21.33	Not Applicable	28.70	-7.37	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measu	Test Measurement Results								
Test	Measured	I Conducted	Output Pov	ver (dBm)	Calculated	Minimum 26 dB			
Frequency		Por	t(s)		Total Power	Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5745.0	18.26	18.61			21.45	Not Applicable	28.70	-7.25	18.00
5785.0	17.81	18.40	-		21.13	Not Applicable	28.70	-7.57	18.00
5825.0	18.26	18.63			21.46	Not Applicable	28.70	-7.24	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results									
Test	Measured	I Conducted	Output Pov	ver (dBm)	Calculated	Minimum 26 dB	Linelt	Margin	EUT Power
Frequency		Por	t(s)		Total Power	Bandwidth	Limit		
MHz	а	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5755.0	18.07	18.52	-		21.31	Not Applicable	28.70	-7.39	18.00
5795.0	17.79	18.29			21.06	Not Applicable	28.70	-7.64	18.00

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

ISED Power Measurements (5150 – 5250 MHz)

RSS-247 Section 6.2.1.1 Limits 200mW or 10 + 10*Log(B) dBm

Minimum 99% Bandwidth = 16.973 MHz: Limit = +22.30 dBm/EIRP (Click here to view 802.11a 99% Bandwidth Measurements)

Equipment Configuration for Peak Transmit Power

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test Frequency	Measure	d Conducted Por	l Output Pow t(s)	er (dBm)	Calculated Total EIRP Power	Minimum 99% Bandwidth	Limit	Margin	EUT Power
MHz	а	b	c	d	Σ Port(s) dBm/EIRP	MHz	dBm/EIRP	dB	Setting
5180.0	12.91	14.32			20.98	16.973	22.30	-1.32	14.00
5200.0	13.02	14.65			21.22	17.021	22.31	-1.09	14.00
5240.0	13.11	14.78			21.34	17.095	22.33	-0.99	14.00

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	2.81 dB					

RSS-247 Section 6.2.1.1 Limits 200mW or 10 + 10*Log(B) dBm

Minimum 99% Bandwidth = 76.828 MHz: Limit = +28.86 dBm/EIRP (Click here to view 802.11ac-80 99% Bandwidth Measurements)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ac-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated Total EIRP	Minimum 99%	Limit	Margin	
Frequency	Port(s)				Power	Bandwidth	Linin	Margin	EUT Power Setting
MHz	а	b	с	d	Σ Port(s) dBm/EIRP	MHz	dBm/EIRP	dB	Setting
5210.0	11.30	12.88			22.47	76.828	23.00	-0.53	11.00

Traceability to Industry Recognized Test Methodologies

		Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
		Measurement Uncertainty:	2.81 dB

RSS-247 Section 6.2.1.1 Limits 200mW or 10 + 10*Log(B) dBm

Minimum 99% Bandwidth = 18.796 MHz: Limit = +22.74 dBm/EIRP (Click here to view 802.11ax-20 99% Bandwidth Measurements)

Equipment Configuration for Peak Transmit Power							
Variant: 802.11ax-20 Duty Cycle (%): 99.0							
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30				
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							

Test Measurement Results									
Test	Measure	d Conducted	l Output Pow	er (dBm)	Calculated Total EIRP	Minimum 99%	Limit	Margin	
Frequency		Por	rt(s)		Power	Bandwidth	Linin	wargin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm/EIRP	MHz	dBm/EIRP	dB	Setting
5180.0	10.45	11.92			21.56	18.797	22.74	-1.18	11.00
5200.0	10.63	11.85			21.59	18.796	22.74	-1.15	11.00
5240.0	10.19	11.98			21.49	18.829	22.75	-1.26	11.00

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	2.81 dB					

RSS-247 Section 6.2.1.1 Limits 200mW or 10 + 10*Log(B) dBm

Minimum 99% Bandwidth = 37.480 MHz: Limit = +25.74 dBm/EIRP (Click here to view 802.11ax-40 99% Bandwidth Measurements)

Equipment Configuration for Peak Transmit Power Variant: 802.11ax-40 Duty Cycle (%): 97.0 Data Rate: 13.50 MBit/s Antenna Gain (dBi): 4.30 Modulation: OFDM Beam Forming Gain (Y)(dB): 3.00 TPC: **Tested By:** SB Not Applicable **Engineering Test Notes:**

Test Measur	ement Resu	lts							
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated Total EIRP	Minimum 99%	Limit	Margin	
Frequency		Por	t(s)		Power	Bandwidth	Linin	wargin	EUT Power Setting
MHz	а	b	с	d	Σ Port(s) dBm/EIRP	MHz	dBm/EIRP	dB	Setting
5190.0	11.51	12.89	-		22.56	37.495	23.00	-0.44	11.00
5230.0	11.49	12.86			22.54	37.480	23.00	-0.46	11.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	2.81 dB

RSS-247 Section 6.2.1.1 Limits 200mW or 10 + 10*Log(B) dBm

Minimum 99% Bandwidth = 77.484 MHz: Limit = +28.90 dBm/EIRP (Click here to view 802.11ax-80 99% Bandwidth Measurements)

Equipment Configuration for Peak Transmit Power

Variant:	802.11ax-80	Duty Cycle (%):	96.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

	l cot meacai	ciliciti resu								
Test		Measure	d Conducted	Output Pow	er (dBm)	Calculated Total EIRP			Margin	
	Frequency		Por	t(s)		Power	Bandwidth	Limit	Wargin	EUT Power Setting
	MHz	а	b	с	d	Σ Port(s) dBm/EIRP	MHz	dBm/EIRP	dB	Setting
	5210.0	11.56	12.72			22.49	77.484	23.00	-0.51	11.00

Traceability to Industry Recognized Test Methodologies

-			
		Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
		Measurement Uncertainty:	2.81 dB

RSS-247 Section 6.2.1.1 Limits 200mW or 10 + 10*Log(B) dBm

Minimum 99% Bandwidth = 17.977 MHz: Limit = +22.55 dBm/EIRP (Click here to view 802.11n HT20 99% Bandwidth Measurements)

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test meda									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			
Frequenc	y	Рог	rt(s)		Total EIRP Power	99% Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm/EIRP	MHz	dBm/EIRP	dB	Setting
5180.0	10.35	11.67			21.37	17.977	22.55	-1.18	11.00
5200.0	10.45	11.98			21.59	18.000	22.55	-0.96	11.00
5240.0	10.58	11.87			21.58	18.071	22.57	-0.99	11.00

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 2.81 dB

RSS-247 Section 6.2.1.1 Limits 200mW or 10 + 10*Log(B) dBm

Minimum 99% Bandwidth = 36.776 MHz: Limit = +25.66 dBm/EIRP (Click here to view 802.11n HT40 99% Bandwidth Measurements)

Equipment Configuration for Peak Transmit Power Variant: 802.11n HT-40 Duty Cycle (%): 99.0 Data Rate: 13.50 MBit/s Antenna Gain (dBi): 4.30 Modulation: OFDM Beam Forming Gain (Y)(dB): 3.00 TPC: **Tested By:** SB Not Applicable **Engineering Test Notes:**

Test Measur	ement Resu	lts							
Test	Measured Conducted Output Power (dBm)					Minimum 99%	Limit	Margin	
Frequency		Por	t(s)		Power	Bandwidth	Linin	Margin	EUT Power Setting
MHz	а	b	с	d	Σ Port(s) dBm/EIRP	MHz	dBm/EIRP	dB	Setting
5190.0	11.88	12.79	-	-	22.67	36.815	23.00	-0.33	12.00
5230.0	11.89	12.77			22.66	36.776	23.00	-0.34	12.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	2.81 dB

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

1.2. 26 dB & 99% Bandwidth

	Conducted Test Conditions f	or 26 dB and 99% Bandwidth					
Standard: FCC CFR 47:15.407 Ambient Temp. (°C): 24.0 - 27.5							
Test Heading:	26 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test	Ме	asured 26 dB	Bandwidth (M	Hz)	26 dB Band	width (MLI=)	
Frequency	uency		t(s)		26 06 Banu	width (MHz)	
MHz	а	b	С	d	Highest	Lowest	
5180.0	<u>21.000</u>	<u>28.870</u>			28.870	21.000	
5200.0	<u>21.600</u>	<u>27.270</u>			27.270	21.600	
5240.0	<u>24.070</u>	<u>29.130</u>			29.130	24.070	

Test Frequency	Measured 99% Bandwidth (MHz) Port(s)				99% Bandv	vidth (MHz)	
MHz	а	b	с	d	Highest	Lowest	
5180.0	<u>17.070</u>	<u>16.973</u>			17.070	16.973	
5200.0	<u>17.078</u>	<u>17.021</u>			17.078	17.021	
5240.0	<u>17.149</u>	<u>17.095</u>			17.149	17.095	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ac-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

ment Results							
Ме	asured 26 dB	Bandwidth (M	Hz)				
	Por	t(s)			26 dB Bandwidth (MHZ)		
а	b	С	d	Highest	Lowest		
<u>128.270</u>	<u>133.330</u>			133.330	128.270		
					•	•	
M	Measured 99% Bandwidth (MHz)						
	Por	t(s)		99% Bandy	wiath (WHZ)		
а	b	С	d	Highest	Lowest		
<u>76.828</u>	<u>76.907</u>			76.907	76.828		
	a <u>128.270</u> M	Measured 26 dB Por a b 128.270 133.330 Measured 99% E Por a b	Measured 26 dB Bandwidth (M Port(s) a b c 128.270 133.330 Measured 99% Bandwidth (MH Port(s) a b c	Measured 26 dB Bandwidth (MHz) Port(s) a b c d 128.270 133.330 Measured 99% Bandwidth (MHz) Port(s) Port(s) a b c d	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) a b c d Highest 128.270 133.330 133.330 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) 99% Bandwidth (MHz) a b c d	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest Lowest 128.270 133.330 133.330 128.270 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest Lowest	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz)

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ax-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results										
Test	Measured 26 dB Bandwidth (MHz)			26 dB Bandwidth (MHz)						
Frequency		Por	t(s)		20 UB Ballu	width (WHZ)				
MHz	а	b	С	d	Highest	Lowest				
5180.0	<u>26.530</u>	<u>28.470</u>			28.470	26.530				
5200.0	<u>20.870</u>	<u>31.200</u>			31.200	20.870				
5240.0	<u>28.130</u>	<u>30.870</u>			30.870	28.130				
								-		

Test Frequency	Measured 99% Bandwidth (MHz) Port(s)			99% Bandv	vidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5180.0	<u>18.797</u>	<u>18.841</u>			18.841	18.797	
5200.0	<u>18.796</u>	<u>18.842</u>	-		18.842	18.796	
5240.0	<u>18.829</u>	<u>18.873</u>			18.873	18.829	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ax-40	Duty Cycle (%):	97.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measure	ment Results							
Test Frequency	Me	easured 26 dB	Bandwidth (M	Hz)	26 dB Band	26 dB Bandwidth (MHz)		
		Po	rt(s)					
MHz	а	b	с	d	Highest	Lowest		
5190.0	<u>39.870</u>	<u>50.000</u>			50.000	39.870		
5230.0	<u>44.400</u>	<u>51.730</u>			51.730	44.400		
Test	м	Measured 99% Bandwidth (MHz)				99% Bandwidth (MHz)		
Frequency		Por	rt(s)		99% Ballu			

Frequency	Port(s)			55% Balluv			
MHz	а	b	С	d	Highest	Lowest	
5190.0	<u>37.495</u>	<u>37.583</u>			37.583	37.495	
5230.0	<u>37.480</u>	<u>37.541</u>			37.541	37.480	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ax-80	Duty Cycle (%):	96.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Fest Measurement Results							
Test Measured 26 dB Bandwidth (MHz)				00 dD Dondwidth (MU)			
	Por	t(s)					
а	b	С	d	Highest	Lowest		
<u>79.470</u>	<u>93.330</u>			93.330	79.470		
						•	
M	easured 99% E	Bandwidth (MF	lz)	99% Bandwidth (MHz)			
	Por	t(s)					
а	b	С	d	Highest	Lowest		
<u>77.484</u>	<u>77.558</u>			77.558	77.484		
	Me <u>79.470</u> Ma	Measured 26 dB Por a b 79.470 93.330 Measured 99% E Por a b	Measured 26 dB Bandwidth (M Port(s) a b c 79.470 93.330 Measured 99% Bandwidth (MH Port(s) a b c	Measured 26 dB Bandwidth (MHz) Port(s) a b c d 79.470 93.330 Measured 99% Bandwidth (MHz) Port(s) a b c a b c d	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) a b c d Highest 79.470 93.330 93.330 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) 99% Bandwidth (MHz) a b c d	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest Lowest 79.470 93.330 93.330 79.470 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest Lowest	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest Lowest 79.470 93.330 93.330 79.470 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Image: state of the state

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test	Ме	asured 26 dB	Bandwidth (M	26 dB Bandwidth (MHz)			
Frequency	Port(s)						
MHz	а	b	С	d	Highest	Lowest	
5180.0	<u>25.070</u>	<u>28.530</u>			28.530	25.070	
5200.0	<u>26.470</u>	<u>33.270</u>			33.270	26.470	
5240.0	<u>31.470</u>	<u>31.800</u>			31.800	31.470	

Test Frequency	Measured 99% Bandwidth (MHz) Port(s) 99% I		99% Bandv	vidth (MHz)			
MHz	а	b	С	d	Highest	Lowest	
5180.0	<u>17.977</u>	<u>17.988</u>			17.988	17.977	
5200.0	<u>18.009</u>	<u>18.000</u>	-		18.009	18.000	
5240.0	<u>18.071</u>	<u>18.091</u>			18.091	18.071	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measure								
Test Frequency	Measured 26 dB Bandwidth (MHz) Port(s)				26 dB Bandwidth (MHz)			
MHz	а	b	с	d	Highest	Lowest		
5190.0	<u>70.400</u>	<u>67.070</u>			70.400	67.070		
5230.0	<u>72.530</u>	<u>69.600</u>			72.530	69.600		
Test	М	easured 99% I	Bandwidth (MH	łz)	00% Bandy	width (MU-)		
Frequency					99% Bandwidth (MHz)			

Test						vidth (MUz)	
Frequency	Port(s)				Port(s) 99% Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5190.0	<u>37.016</u>	<u>36.815</u>			37.016	36.815	
5230.0	<u>37.099</u>	<u>36.776</u>			37.099	36.776	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results								
Test	Measured 26 dB Bandwidth (MHz)							
Frequency		Por	t(s)		26 dB Bandwidth (MHz)			
MHz	а	b	С	d	Highest	Lowest		
5260.0	<u>21.670</u>	<u>21.200</u>			21.670	21.200		
5300.0	<u>23.200</u>	<u>26.270</u>			26.270	23.200		
5320.0	<u>23.130</u>	<u>24.530</u>			24.530	23.130		
								-

Test Frequency	Measured 99% Bandwidth (MHz) Port(s)			99% Bandwidth (MHz)			
MHz	а	b	С	d	Highest	Lowest	
5260.0	<u>17.069</u>	<u>16.899</u>			17.069	16.899	
5300.0	<u>17.107</u>	<u>17.006</u>	-		17.107	17.006	
5320.0	<u>17.152</u>	<u>17.049</u>			17.152	17.049	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ac-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results								
Measured 26 dB Bandwidth (MHz)			26 dB Band					
	Por	t(s)						
а	b	С	d	Highest	Lowest			
<u>132.530</u>	<u>132.530</u>			132.530	132.530			
M	easured 99% E	Bandwidth (MF	lz)	00% Dandu				
	Port(s)			99% Bandy	viatn (MHZ)			
а	b	С	d	Highest	Lowest			
<u>76.839</u>	<u>76.917</u>			76.917	76.839			
	Me <u>a</u> <u>132.530</u> Ma	Measured 26 dB Por a b 132.530 132.530 Measured 99% E Por a b	Measured 26 dB Bandwidth (M Port(s) a b c 132.530 132.530 Measured 99% Bandwidth (MH Port(s) a b c	Measured 26 dB Bandwidth (MHz) Port(s) a b c d 132.530 132.530 Measured 99% Bandwidth (MHz) Port(s) Port(s) a b c d	Measured 26 dB Bandwidth (MHz) 26 dB Band Port(s) a b c d 132.530 132.530 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) 99% Bandwidth (MHz) a b c d	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest Lowest 132.530 132.530 132.530 132.530 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) Port(s) Port(s) Port(s)	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) a b c d Highest Lowest 132.530 132.530 132.530 132.530 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest Lowest	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ax-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results								
Test	Measured 26 dB Bandwidth (MHz)							
Frequency		Por	t(s)		26 dB Bandwidth (MHz)			
MHz	а	b	С	d	Highest	Lowest		
5260.0	<u>22.800</u>	<u>24.330</u>			24.330	22.800		
5300.0	<u>24.530</u>	<u>28.800</u>			28.800	24.530		
5320.0	<u>28.130</u>	<u>27.930</u>			28.130	27.930		

Test Frequency	Measured 99% Bandwidth (MHz) Port(s)			99% Bandwidth (MHz)			
MHz	а	b	с	d	Highest	Lowest	
5260.0	<u>18.808</u>	<u>18.828</u>			18.828	18.808	
5300.0	<u>18.809</u>	<u>18.847</u>			18.847	18.809	
5320.0	<u>18.835</u>	<u>18.848</u>			18.848	18.835	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ax-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measure	ment Results						
Test	Me	asured 26 dB	Bandwidth (M	Hz)	26 dB Bandwidth (MHz)		
Frequency		Рог	t(s)				
MHz	а	b	С	d	Highest	Lowest	
5270.0	<u>39.870</u>	<u>50.000</u>			50.000	39.870	
5310.0	<u>44.530</u>	<u>51.870</u>			51.870	44.530	
Test	М	easured 99% E	Bandwidth (MF	łz)	99% Bandwidth (MHz)		
Frequency		Рог	t(s)		99% Balluv		

		× ,			99% Bandv	vidth (MUz)	
Frequency	Port(s)			35 /6 Banuv			
MHz	а	b	С	d	Highest	Lowest	
5270.0	<u>37.439</u>	<u>37.574</u>			37.574	37.439	
5310.0	<u>37.555</u>	<u>37.580</u>			37.580	37.555	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ax-80	Duty Cycle (%):	96.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

ment Results							
Ме	asured 26 dB	Bandwidth (M	Hz)	26 dB Bond	26 dB Bandwidth (MHz)		
	Por	t(s)					
а	b	С	d	Highest	Lowest		
<u>84.000</u>	<u>89.870</u>			89.870	84.000		
M	easured 99% E	Bandwidth (MF	lz)	00% Bandy			
	Port(s)			99% Banuv			
а	b	С	d	Highest	Lowest		
<u>77.553</u>	<u>77.477</u>			77.553	77.477		
	Me <u>a</u> <u>84.000</u> M	Measured 26 dB Por a b 84.000 89.870 Measured 99% E Por a b	Measured 26 dB Bandwidth (M Port(s) a b c 84.000 89.870 Measured 99% Bandwidth (MH Port(s) a b c	Measured 26 dB Bandwidth (MHz) Port(s) a b c d 84.000 89.870 Measured 99% Bandwidth (MHz) Port(s) Port(s) a b c d	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) a b c d Highest 84.000 89.870 89.870 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Measured 99% Control 99% Bandwidth (MHz) a b c d Highest	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest Lowest 84.000 89.870 89.870 84.000 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest Lowest	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) Highest Lowest 84.000 89.870 89.870 84.000 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Image: Note that the strength of the strengt of the strengt of the strength of the strength of the strengt of

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test	Measured 26 dB Bandwidth (MHz)		20 dD Daradaridth (MUL)				
Frequency		Por	t(s)		26 dB Bandwidth (MHz)		
MHz	а	b	с	d	Highest	Lowest	
5260.0	<u>25.530</u>	<u>24.670</u>			25.530	24.670	
5300.0	<u>27.400</u>	<u>25.800</u>			27.400	25.800	
5320.0	<u>29.070</u>	<u>29.730</u>			29.730	29.070	

Test Frequency	Measured 99% Bandwidth (MHz) Port(s)			99% Bandv	vidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5260.0	<u>18.006</u>	<u>17.921</u>			18.006	17.921	
5300.0	<u>18.014</u>	<u>17.944</u>	-		18.014	17.944	
5320.0	<u>18.098</u>	<u>17.991</u>			18.098	17.991	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measure	ment Results						
Test	Measured 26 dB Bandwidth (MHz)		20 dD Dandwidth (MUL)				
Frequency		Por	t(s)		26 dB Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5270.0	<u>70.530</u>	<u>67.070</u>			70.530	67.070	
5310.0	<u>71.470</u>	<u>66.800</u>			71.470	66.800	
Test	Μ	easured 99% E	Bandwidth (MF	łz)	00% Bandy	width (MHz)	
Frequency		Por	t(s)		99% Bandwidth (MHz)		

Frequency	Port(s)				Port(s) 99% Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5270.0	<u>37.018</u>	<u>36.802</u>			37.018	36.802	
5310.0	<u>37.230</u>	<u>36.773</u>			37.230	36.773	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Frequency	Measured 26 dB Bandwidth (MHz)						
		Port(s)			26 dB Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5500.0	<u>23.800</u>	<u>27.730</u>			27.730	23.800	
5580.0	<u>29.200</u>	<u>25.470</u>			29.200	25.470	
5720.0	<u>21.270</u>	<u>22.070</u>			22.070	21.270	

Test	Fest Measured 9		Measured 99% Bandwidth (MHz)			vidth (MU-)		
Frequency		Por	t(s)		99% Bandwidth (MHz)			
MHz	а	b	С	d	Highest	Lowest		
5500.0	<u>17.130</u>	<u>17.036</u>			17.130	17.036		
5580.0	<u>17.137</u>	<u>17.037</u>			17.137	17.037	TDWR BE	Verification
5660.0	<u>16,433</u>	<u>16.433</u>			16,433	16.433	TDWR BE	Verification
5720.0	<u>17.084</u>	<u>16.877</u>			17.084	16.877		

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ac-80	Duty Cycle (%):	96.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measure	ment Results							
Test	Ме	asured 26 dB	Bandwidth (M	Hz)	26 dB Bandwidth (MHz)			
Frequency		Por	t(s)					
MHz	а	b	с	d	Highest	Lowest		
5530.0	<u>122.130</u>	<u>130.930</u>			130.930	122.130		
5610.0	<u>132.530</u>	<u>136.270</u>			136.270	132.530	Limited to FC	C Frequency
5690.0	<u>129.870</u>	<u>129.330</u>			129.870	129.330		
				• 、				

Test	M	easured 99% E	Bandwidth (MF	łz)	99% Bandv	width (MU-)		
Frequency		Por	t(s)		99% Balluv			
MHz	а	b	С	d	Highest	Lowest		
5530.0	<u>76.577</u>	<u>76.824</u>			76.824	76.577		
5610.0	<u>76.802</u>	<u>76.994</u>	-		76.994	76.802	Limited to FC	C Frequency
5690.0	<u>76.820</u>	<u>76.789</u>			76.820	76.789		

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ax-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test	Test Mea		Measured 26 dB Bandwidth (MHz)		26 dB Band	width (MHz)		
Frequency MHz a		Port(s)			20 ub ballu	26 dB Bandwidth (MHz)		
	а	b	С	d	Highest	Lowest		
5500.0	<u>23.000</u>	<u>30.870</u>			30.870	23.000		
5580.0	26.600	<u>29.530</u>			29.530	26.600		
5720.0	25.070	20.670			25.070	20.670		

Test	Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz)		leasured 99% Bandwidth (MHz)			99% Bandwidth (MHz)		
Frequency		Por	t(s)		5576 Danuv			
MHz	а	b	c	d	Highest	Lowest		
5500.0	<u>18.820</u>	<u>18.879</u>			18.879	18.820		
5580.0	<u>18.832</u>	<u>18.848</u>			18.848	18.832	TDWR BE	Verification
5660.0	<u>18.758</u>	<u>18.758</u>			18.758	18.758	TDWR BE	Verification
5720.0	<u>18.810</u>	<u>18.828</u>			18.828	18.810		

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ax-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test	Measured 26 dB Bandwidth (MHz)				26 dB Band	26 dB Bandwidth (MHz)		
Frequency		Port(s)	20 ub ballu	width (WHZ)				
MHz	а	b	С	d	Highest	Lowest		
5510.0	<u>42.800</u>	<u>52.000</u>			52.000	42.800		
5550.0	<u>46.530</u>	<u>52.130</u>			52.130	46.530		
5710.0	44.130	44.400			44.400	44.130		

Test	M	Measured 99% Bandwidth (MHz) Port(s)				vidth (MHz)		
Frequency								
MHz	а	b	С	d	Highest	Lowest		
5510.0	<u>37.498</u>	<u>37.593</u>			37.593	37.498		
5550.0	<u>37.545</u>	<u>37.608</u>			37.608	37.545	TDWR BE	Verification
5670.0	<u>37.675</u>	<u>37.515</u>			37.515	37.675	TDWR BE	Verification
5710.0	<u>37.479</u>	<u>37.551</u>			37.551	37.479		

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ax-80	Duty Cycle (%):	96.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test	Measured 26 dB Bandwidth (MHz) Port(s)		- 26 dB Bandwidth (MHz)					
Frequency								
MHz	а	b	с	d	Highest	Lowest		
5530.0	<u>79.200</u>	<u>94.400</u>			94.400	79.200		
5610.0	<u>80.270</u>	<u>124.800</u>			124.800	80.270		
5690.0	<u>88.000</u>	<u>84.800</u>			88.000	84.800		
			1	1	1		1	1

Test	M	easured 99% E	Bandwidth (MF	łz)	00% Rondy	vidth (MHz)		
Frequency		Por	t(s)		99% Balluv			
MHz	а	b	С	d	Highest	Lowest		
5530.0	<u>77.374</u>	<u>77.481</u>			77.481	77.374		
5610.0	<u>77.447</u>	<u>77.600</u>			77.600	77.447	Limited to FC0	C Frequency
5690.0	<u>77.428</u>	<u>77.494</u>			77.494	77.428		

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test	Measured 26 dB Bandwidth (MHz) Cy Port(s)		- 26 dB Bandwidth (MHz)				
Frequency							
MHz	а	b	С	d	Highest	Lowest	
5500.0	<u>25.330</u>	<u>25.800</u>			25.800	25.330	
5580.0	<u>28.200</u>	<u>28.470</u>			28.470	28.200	
5720.0	24.870	24.270			24.870	24.270	

Test	Measured 99% Bandwidth (MHz)			99% Bandv	vidth (MHz)			
Frequency		Port(s)			55 /6 Banuv			
MHz	а	b	c	d	Highest	Lowest		
5500.0	<u>17.973</u>	<u>17.937</u>			17.973	17.937		
5580.0	<u>18.025</u>	<u>17.985</u>	-		18.025	17.985	TDWR BE Verification	
5660.0	<u>17.635</u>	<u>17.635</u>			17.635	17.635	TDWR BE Verification	
5720.0	<u>17.968</u>	<u>17.870</u>			17.968	17.870		

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test	Measured 26 dB Bandwidth (MHz)				26 dB Band	26 dB Bandwidth (MHz)		
Frequency		Port(s)						
MHz	а	b	С	d	Highest	Lowest		
5510.0	<u>66.930</u>	<u>66.930</u>			66.930	66.930		
5550.0	<u>69.470</u>	<u>64.930</u>			69.470	64.930		
5710.0	68.400	49.600			68.400	49.600		

Test	Measured 99% Bandwidth (MHz)		99% Bandv	vidth (MHz)				
Frequency		Port(s)			5578 Danuv			
MHz	а	b	c	d	Highest	Lowest		
5510.0	<u>36.995</u>	<u>36.776</u>			36.995	36.776		
5550.0	<u>37.068</u>	<u>36.740</u>			37.068	36.740	TDWR BE Verification	
5670.0	<u>36.072</u>	<u>36.232</u>			36.072	36.232	TDWR BE Verification	
5710.0	<u>36.929</u>	<u>36.690</u>			36.929	36.690		

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

1.3. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth								
Standard:	FCC CFR 47:15.407	CC CFR 47:15.407 Ambient Temp. (°C): 24.0 - 27.5						
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45					
Standard Section(s):	15.407 (a)	15.407 (a) Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References							

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to 100 kHz. Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results								
Test	Measured 6 dB Bandwidth (MHz)			6 dB Bandwidth (MHz)				
Frequency	Port(s)			6 UB Balluv				
MHz	а	b	С	d	Highest	Lowest		
5745.0	<u>16.400</u>	<u>16.400</u>			16.400	16.400		
5785.0	<u>16.400</u>	<u>16.470</u>			16.470	16.400		
5825.0	<u>16.400</u>	<u>16.470</u>			16.470	16.400		

Test Frequency	Measured 99% Bandwidth (MHz) Port(s)				99% Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5745.0	<u>17.137</u>	<u>16.958</u>			17.137	16.958	
5785.0	<u>17.079</u>	<u>16.950</u>	-		17.079	16.950	
5825.0	<u>17.080</u>	<u>16.998</u>			17.080	16.998	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11ac-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

ment Results							
M	easured 6 dB I	Bandwidth (MF	łz)				
	Por	t(s)		о ив вани			
а	b	С	d	Highest	Lowest		
<u>76.530</u>	<u>76.000</u>			76.530	76.000		
							•
M	Measured 99% Bandwidth (MHz)						
	Port(s)				viath (MHZ)		
а	b	С	d	Highest	Lowest		
<u>76.864</u>	<u>76.619</u>			76.864	76.619		
	a <u>76.530</u> M	Measured 6 dB I Por a b 76.530 76.000 Measured 99% E Por a b	Measured 6 dB Bandwidth (MH Port(s) a b c 76.530 76.000 Measured 99% Bandwidth (MH Port(s) a b c	Measured 6 dB Bandwidth (MHz) Port(s) a b c d 76.530 76.000 Measured 99% Bandwidth (MHz) Port(s) Port(s) a b c d	Measured 6 dB Bandwidth (MHz) 6 dB Bandwidth (MHz) Port(s) a b c d 76.530 76.000 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) 99% Bandwidth (MHz) a b c d	6 dB Bandwidth (MHz) 6 dB Bandwidth (MHz) Port(s) a b c d Highest Lowest 76.530 76.000 76.530 76.000 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest Lowest	Measured 6 dB Bandwidth (MHz) 6 dB Bandwidth (MHz) Port(s) a b c d Highest Lowest 76.530 76.000 76.530 76.000 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Image: state of the s

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11ax-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results										
Test	Measured 6 dB Bandwidth (MHz)				6 dB Bandy	width (MU-)				
Frequency		Por	t(s)		6 dB Bandwidth (MHz)					
MHz	а	b	С	d	Highest	Lowest				
5745.0	<u>18.330</u>	<u>18.400</u>			18.400	18.330				
5785.0	<u>18.200</u>	<u>18.400</u>			18.400	18.200				
5825.0	<u>18.200</u>	<u>18.470</u>			18.470	18.200				
						•		-		

Test Frequency	M	easured 99% E Por		lz)	99% Bandv	vidth (MHz)	
MHz	а	b	с	d	Highest	Lowest	
5745.0	<u>18.756</u>	<u>18.808</u>			18.808	18.756	
5785.0	<u>18.741</u>	<u>18.775</u>			18.775	18.741	
5825.0	<u>18.746</u>	<u>18.796</u>			18.796	18.746	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11ax-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measure	ment Results							
Test Frequency	Measured 6 dB Bandwidth (MHz)							
		Po	rt(s)		6 ub Ballu	6 dB Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest		
5755.0	<u>37.070</u>	<u>36.130</u>			37.070	36.130		
5795.0	<u>36.930</u>	<u>36.930</u>			36.930	36.930		
Test	М	easured 99% I	Bandwidth (MF	łz)	00% Bond			
Frequency		Dout(o)				99% Bandwidth (MHz)		

	· · · ·				99% Bandwidth (MHz)		
Frequency		Port(s)					
MHz	а	b	С	d	Highest	Lowest	
5755.0	<u>37.450</u>	<u>37.578</u>			37.578	37.450	
5795.0	<u>37.446</u>	<u>37.504</u>			37.504	37.446	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11ax-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results										
Me	easured 6 dB I	Bandwidth (MF	łz)	6 dB Bondy						
	Por	rt(s)		o ub balluv						
а	b	С	d	Highest	Lowest					
<u>77.600</u>	<u>77.600</u>			77.600	77.600					
M	Measured 99% Bandwidth (MHz)									
	Port(s)				viatn (MHZ)					
а	b	С	d	Highest	Lowest					
77.394	<u>77.472</u>			77.472	77.394					
	M a 77.600 M	Measured 6 dB I Poil a b 77.600 77.600 Measured 99% I Poil a b	Measured 6 dB Bandwidth (MH Port(s) a b c 77.600 77.600 Measured 99% Bandwidth (MH Port(s) a b c	Measured 6 dB Bandwidth (MHz) Port(s) a b c d 77.600 77.600 Measured 99% Bandwidth (MHz) Port(s) Port(s) a b c d	Measured 6 dB Bandwidth (MHz) 6 dB Bandwidth (MHz) Port(s) a b c d 77.600 77.600 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) 99% Bandwidth (MHz) a b c d	Measured 6 dB Bandwidth (MHz) 6 dB Bandwidth (MHz) Port(s) 6 dB Bandwidth (MHz) a b c d Highest Lowest 77.600 77.600 77.600 77.600 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest Lowest	Measured 6 dB Bandwidth (MHz) 6 dB Bandwidth (MHz) Port(s) a b c d Highest Lowest 77.600 77.600 77.600 77.600 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Image: state of the s			

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test Measurement Results								
Test	Me	easured 6 dB E	Bandwidth (MH	łz)				
Frequency	Port(s)				6 dB Bandwidth (MHz)			
MHz	а	b	С	d	Highest	Lowest		
5745.0	<u>17.530</u>	<u>17.530</u>			17.530	17.530		
5785.0	<u>17.530</u>	<u>17.530</u>			17.530	17.530		
5825.0	<u>17.530</u>	<u>17.600</u>			17.600	17.530		

Test Frequency	M	easured 99% E Por	,	lz)	99% Bandv	vidth (MHz)	
MHz	а	b	С	d	Highest	Lowest	
5745.0	<u>18.027</u>	<u>17.947</u>			18.027	17.947	
5785.0	<u>17.974</u>	<u>17.939</u>			17.974	17.939	
5825.0	<u>18.002</u>	<u>17.943</u>			18.002	17.943	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	99.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	4.30
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	3.00
TPC:	Not Applicable	Tested By:	GMH
Engineering Test Notes:			

Test	M	easured 6 dB l	Bandwidth (Mł	Hz)	6 dB Bandwidth (MU=)			
Frequency	Port(s)				6 dB Bandwidth (MHz)			
MHz	а	b	с	d	Highest	Lowest		
5755.0	<u>35.870</u>	<u>35.870</u>			35.870	35.870		
5795.0	<u>35.870</u>	<u>35.870</u>			35.870	35.870		
Test	M	easured 99% I	Bandwidth (MH	łz)	00% Danah			
Frequency		Bo	#(a)		99% Bandy	vidth (MHz)		

	1631				,	99% Bandy	vidth (MUz)	
Fre	equency		Por	t(s)		55% Banuv		
	MHz	а	b	С	d	Highest	Lowest	
4	5755.0	<u>36.965</u>	<u>36.728</u>			36.965	36.728	
4	5795.0	<u>36.817</u>	<u>36.621</u>			36.817	36.621	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

A. APPENDIX - GRAPHICAL IMAGES

 Issue Date:
 25th June 2021
 Page:
 71 of 226

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

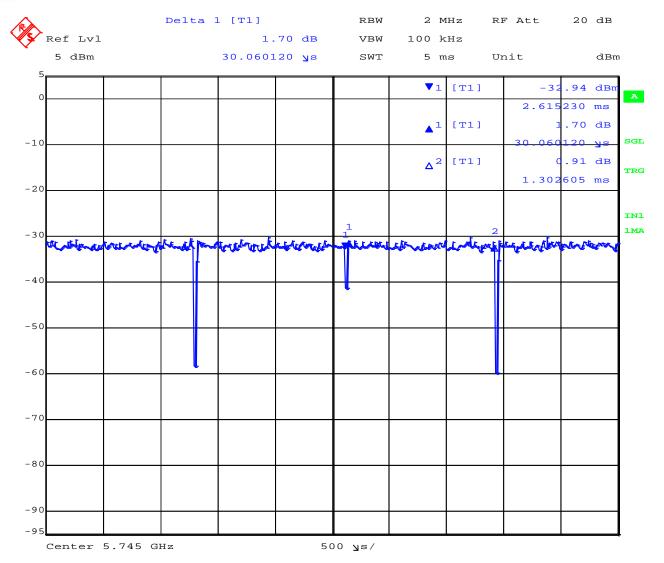
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

A.1. Duty Cycle

MiC@MLabs.

802.11a Duty Cycle = 97.25%

Date:


Back to Matrix

25th June 2021 Issue Date: Page: 72 of 226 This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

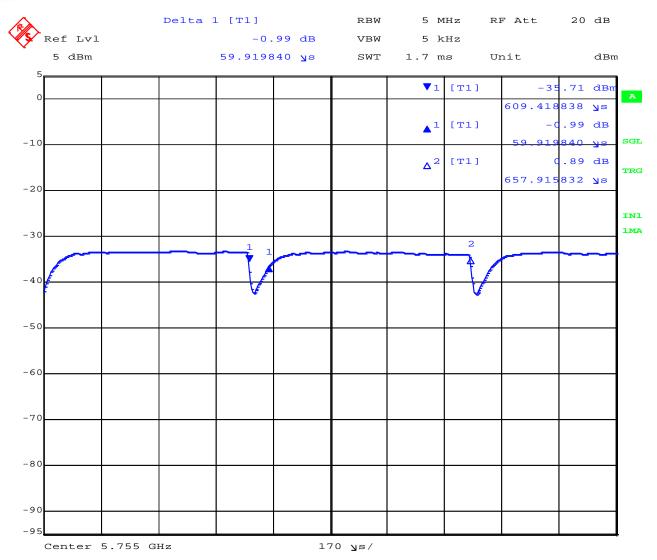
Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

802.11n HT-20 Duty Cycle = 97.75%

MiC@MLabs.

Date:

15.JUN.2021 09:06:44

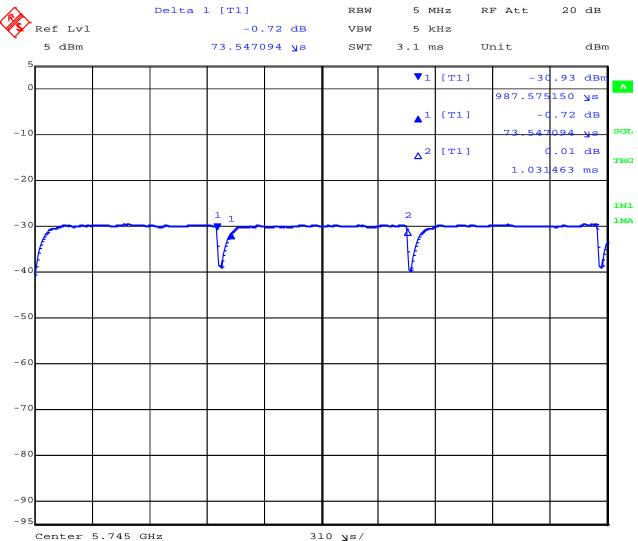

 25^{th} June 2021 Issue Date: This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Page: 73 of 226

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

802.11n HT-40 Duty Cycle = 91.75%

MiC@MLabs.


Date:

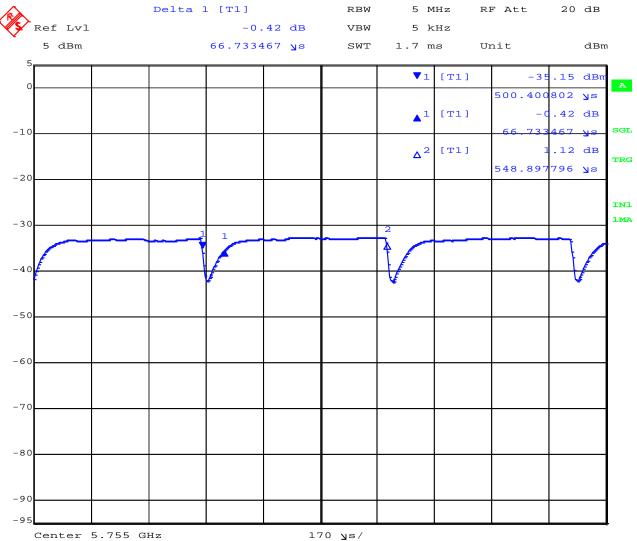
15.JUN.2021 09:12:15

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

802.11ax-20 Duty Cycle = 93.35%

MiC@MLabs.

Date:


15.JUN.2021 09:09:11

Back to Matrix

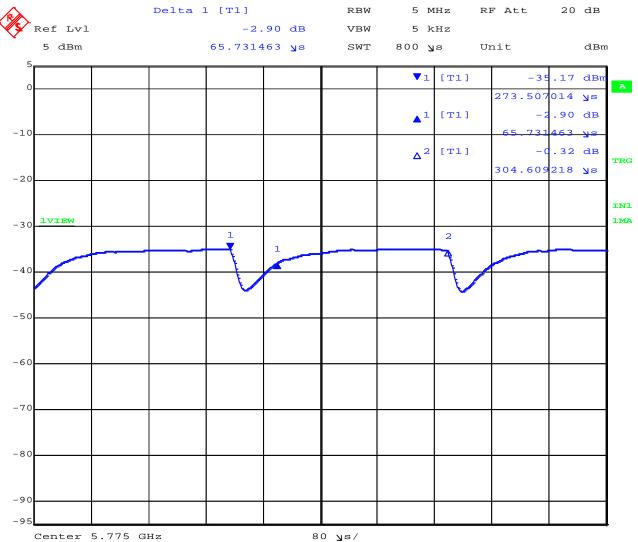
Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

802.11ax-40 Duty Cycle = 89.27%

MiC@MLabs.

Date:

15.JUN.2021 09:13:39


Back to Matrix

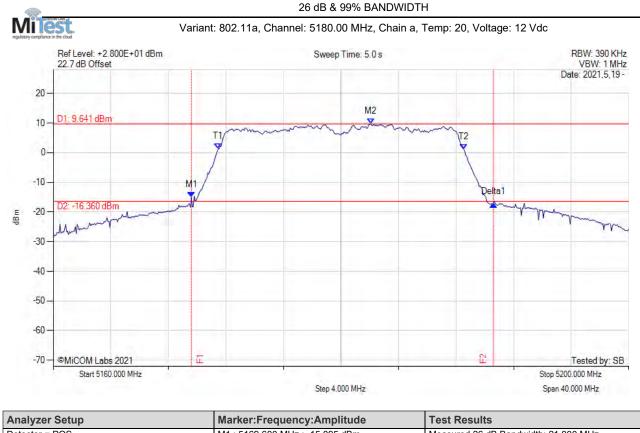
To: Serial #:

Hewlett Packard Enterprise Company ASIN0304 Title: FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

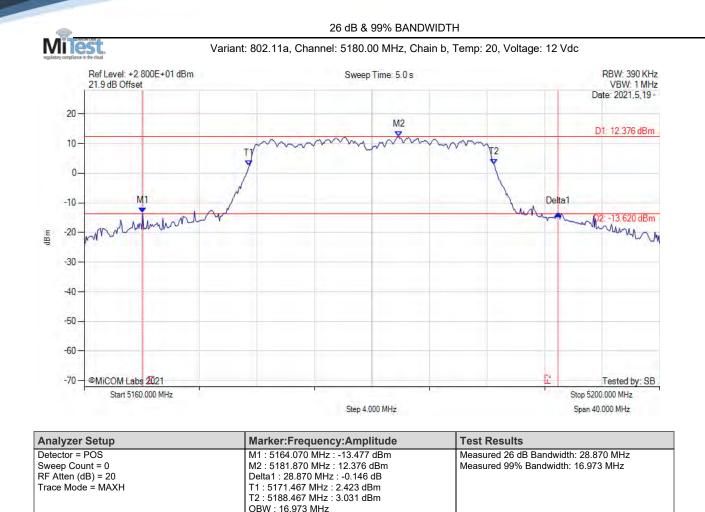
802.11ax-80 Duty Cycle = 82.28%

MiC@MLabs.

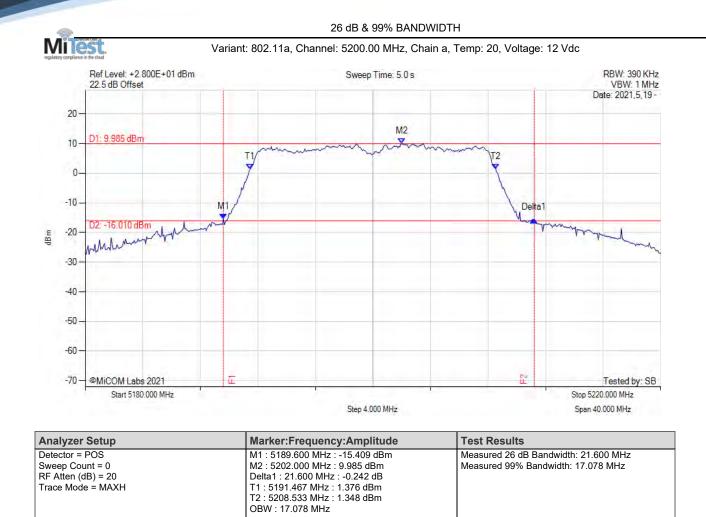
Date:


15.JUN.2021 09:15:22

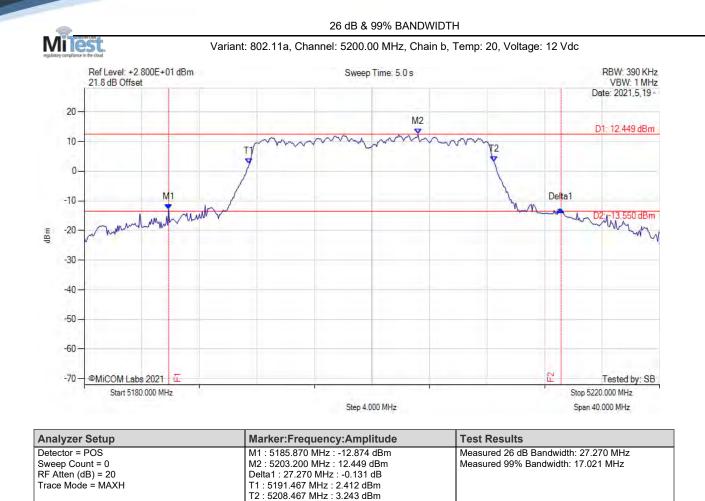
Back to Matrix

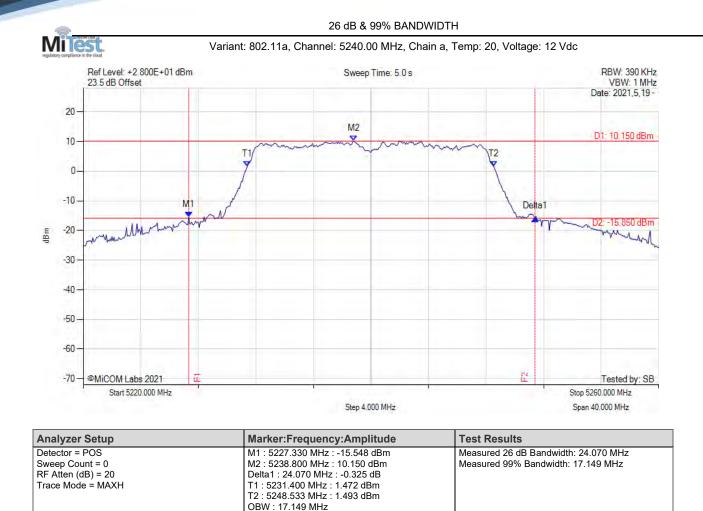

Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

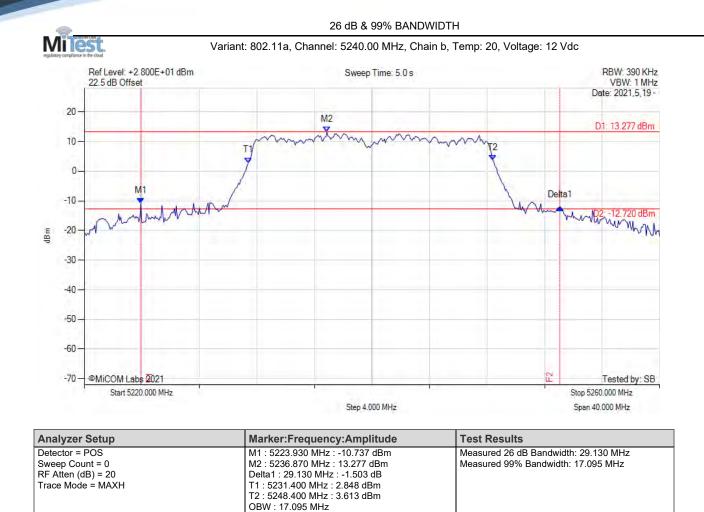
A.2. 26 dB & 99% Bandwidth



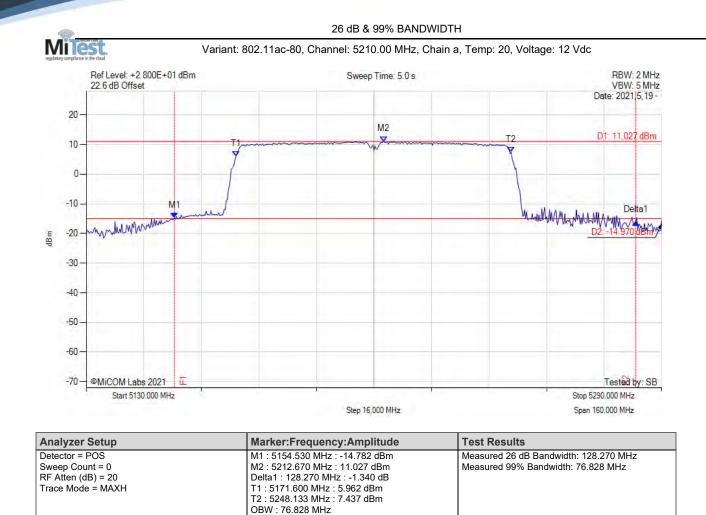
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = POS	M1 : 5169.600 MHz : -15.095 dBm	Measured 26 dB Bandwidth: 21.000 MHz	
Sweep Count = 0	M2 : 5182.070 MHz : 9.641 dBm	Measured 99% Bandwidth: 17.070 MHz	
RF Atten (dB) = 20	Delta1 : 21.000 MHz : -2.215 dB		
Trace Mode = MAXH	T1 : 5171.467 MHz : 1.333 dBm		
	T2 : 5188.533 MHz : 1.186 dBm		
	OBW : 17.070 MHz		

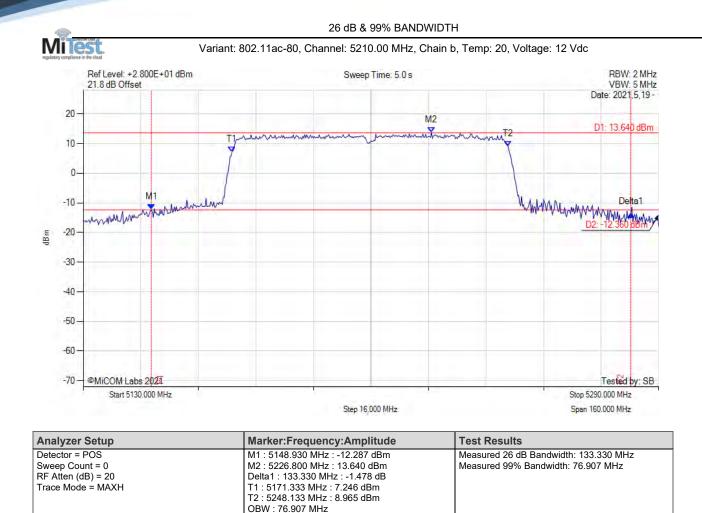


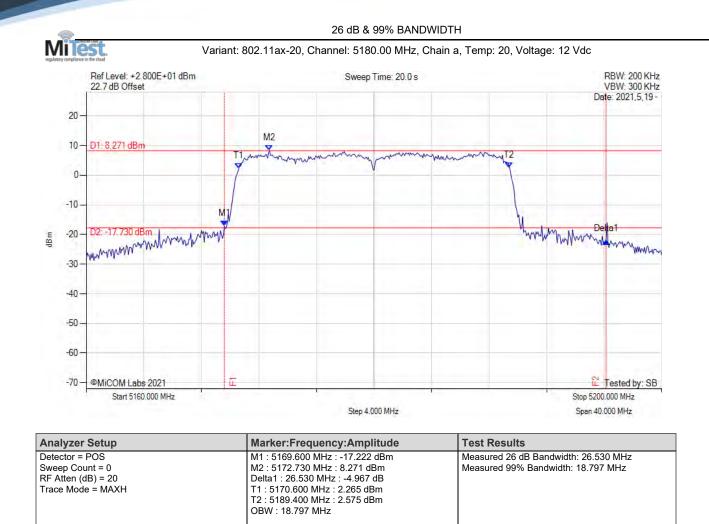


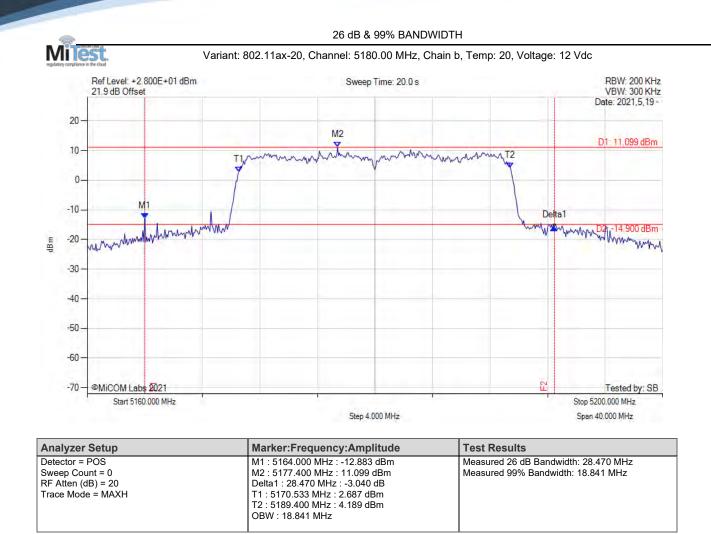


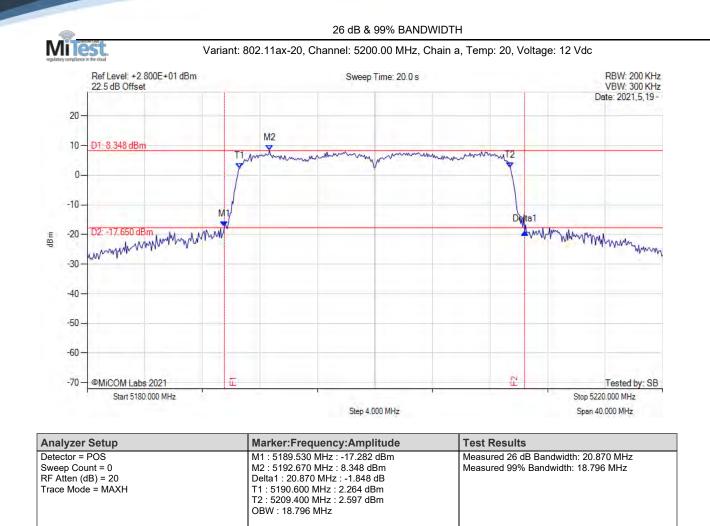
OBW : 17.021 MHz

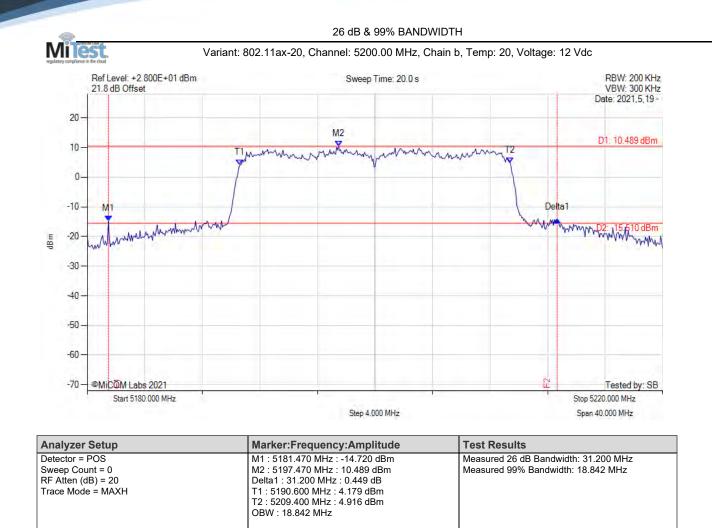


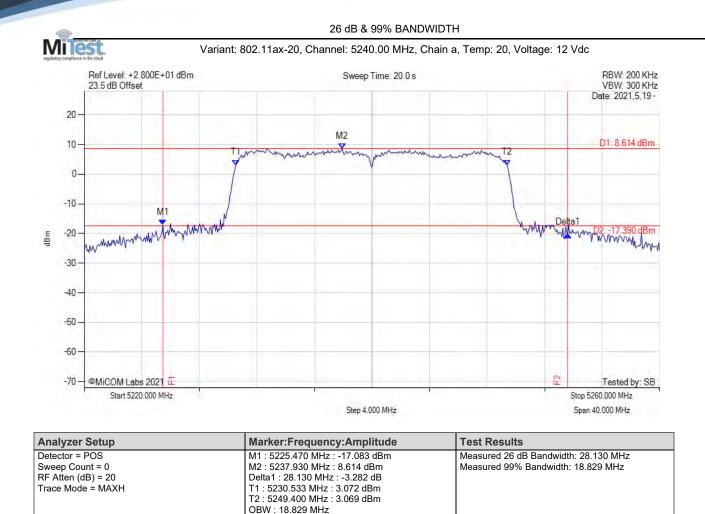


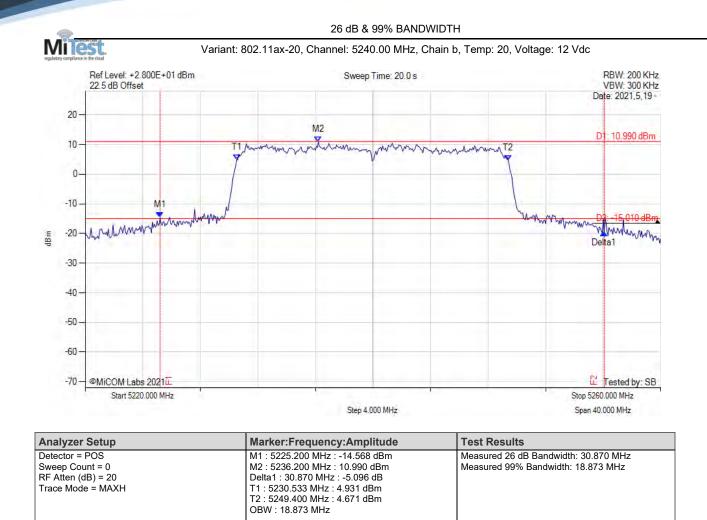


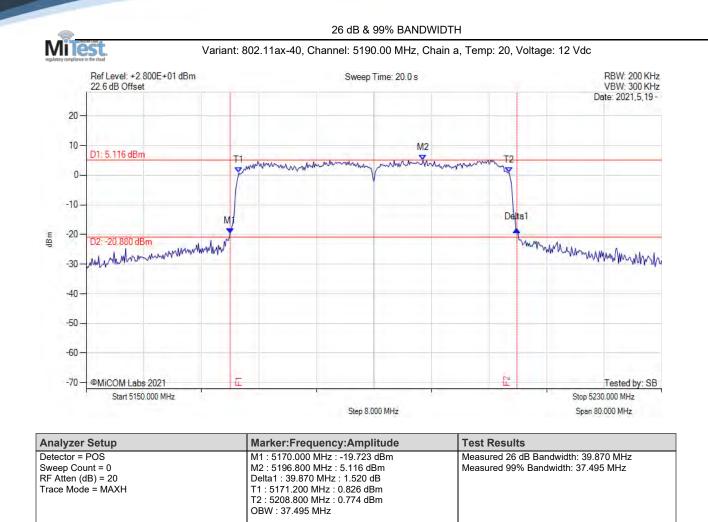


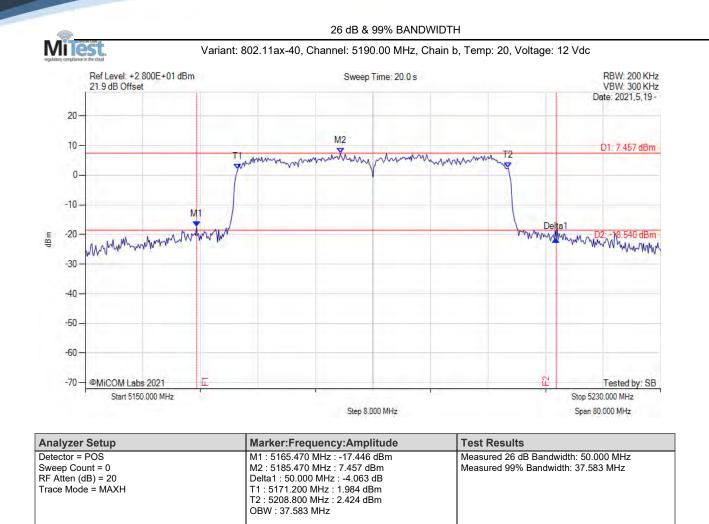


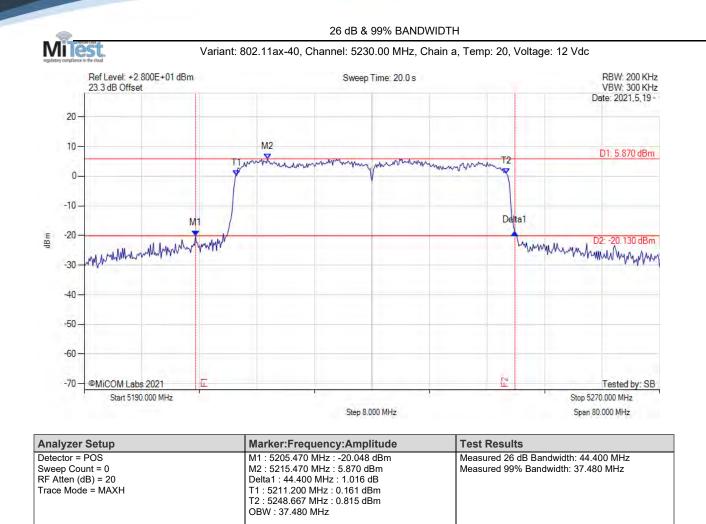


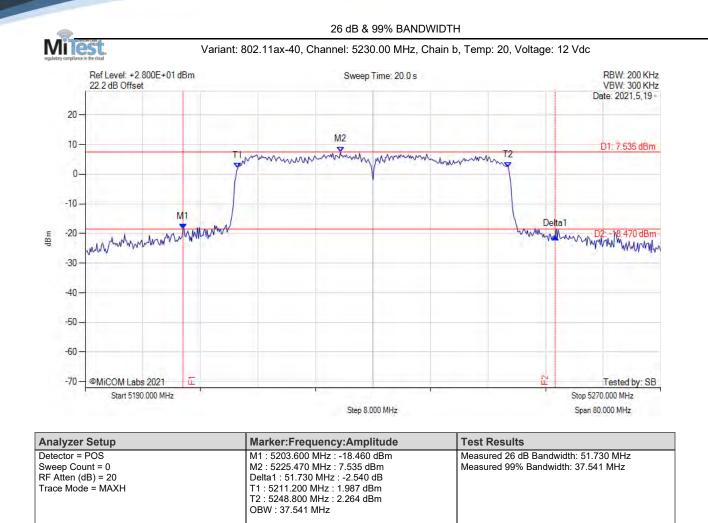


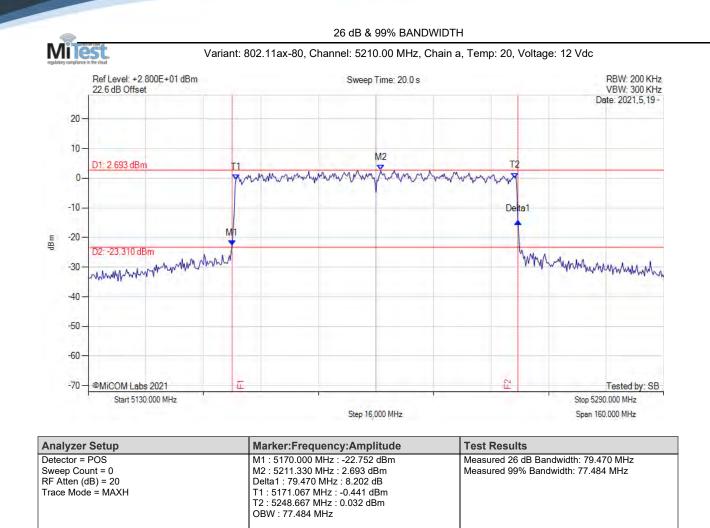


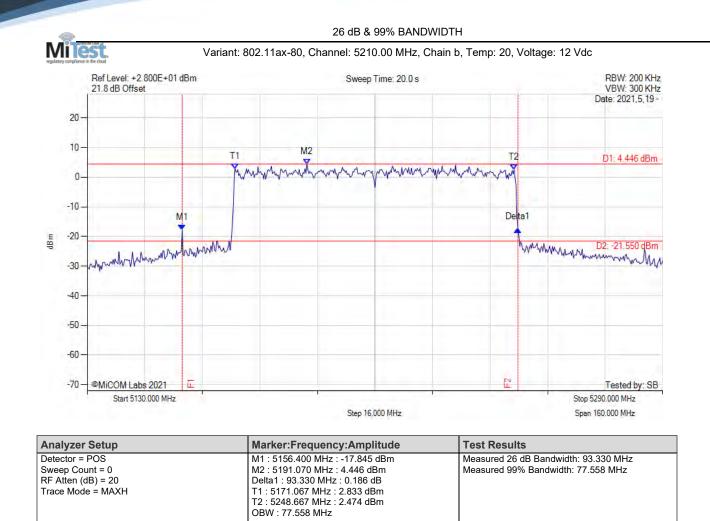


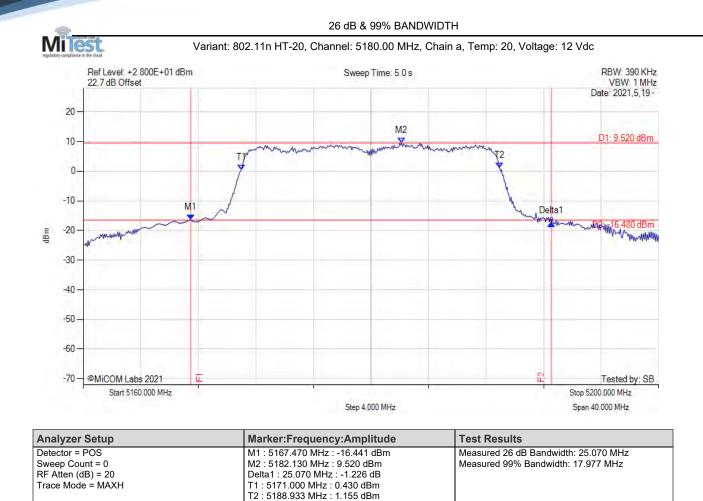


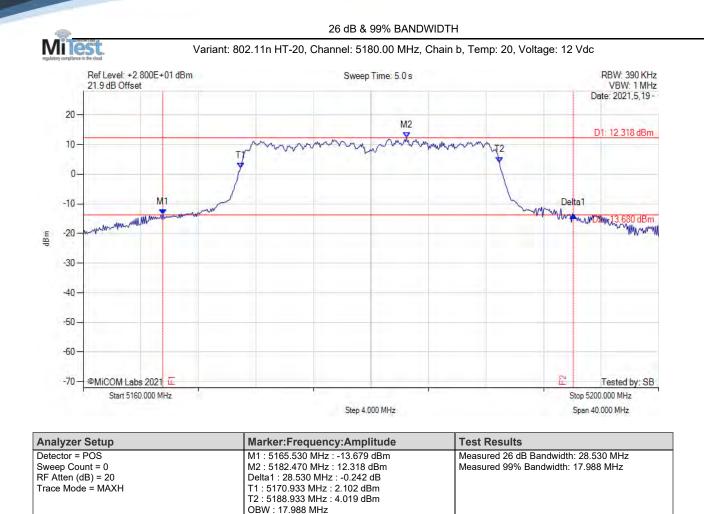


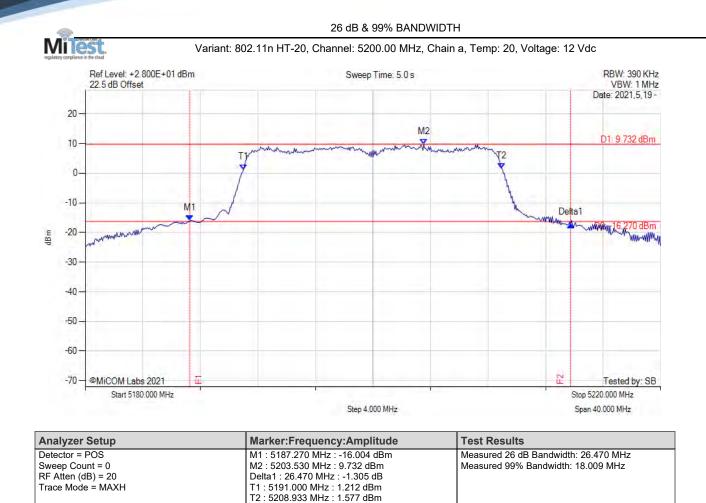




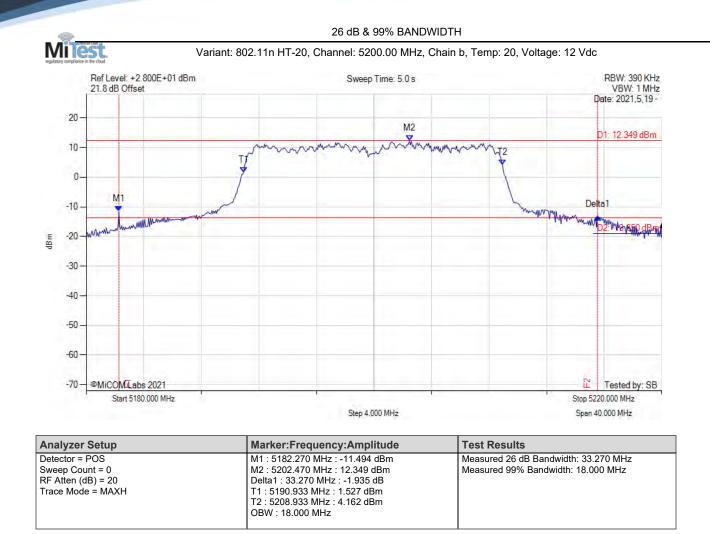




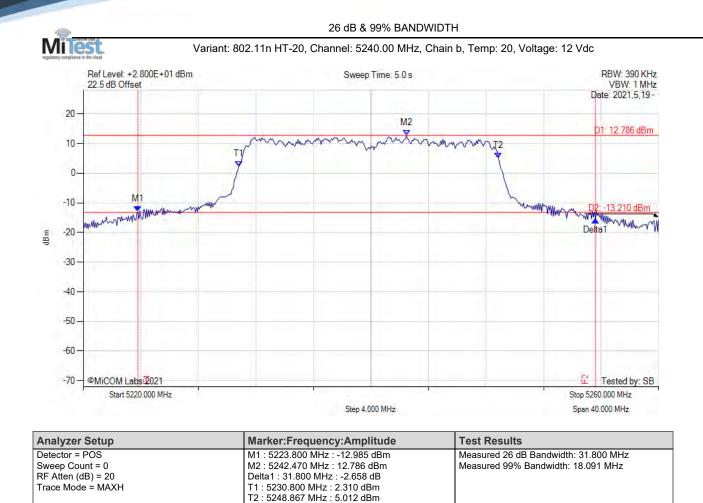


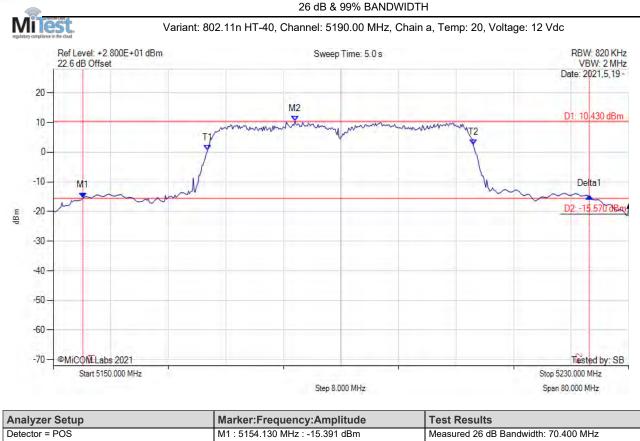


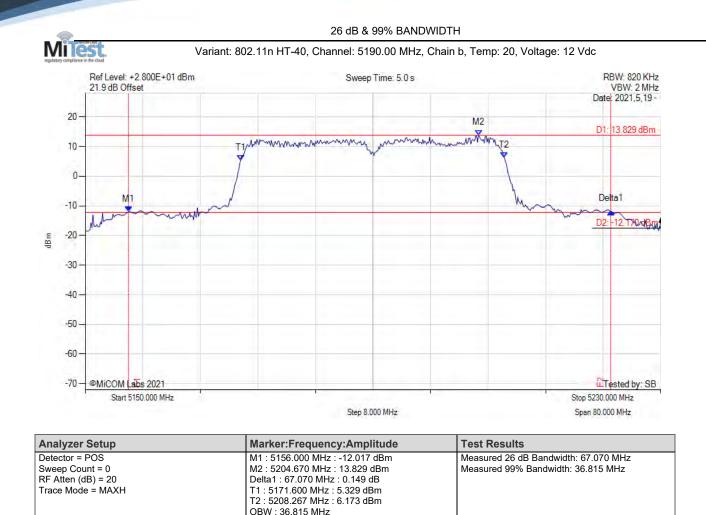
OBW : 17.977 MHz

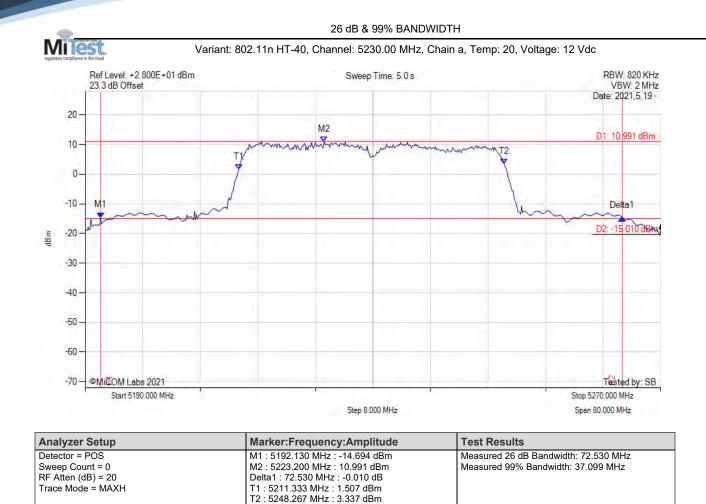


OBW : 18.009 MHz

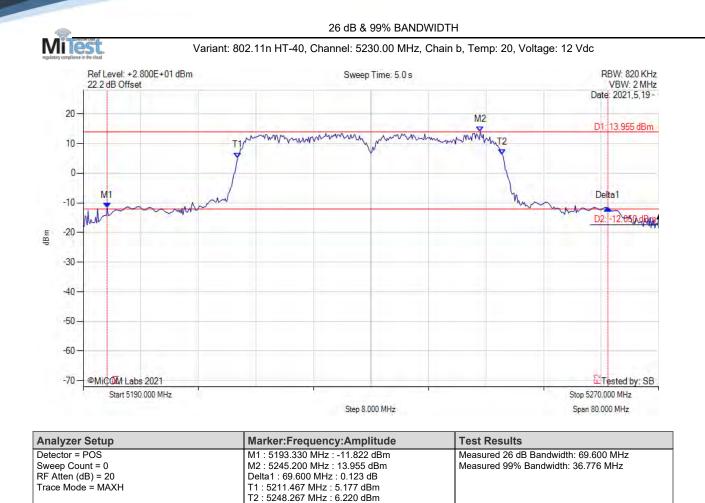


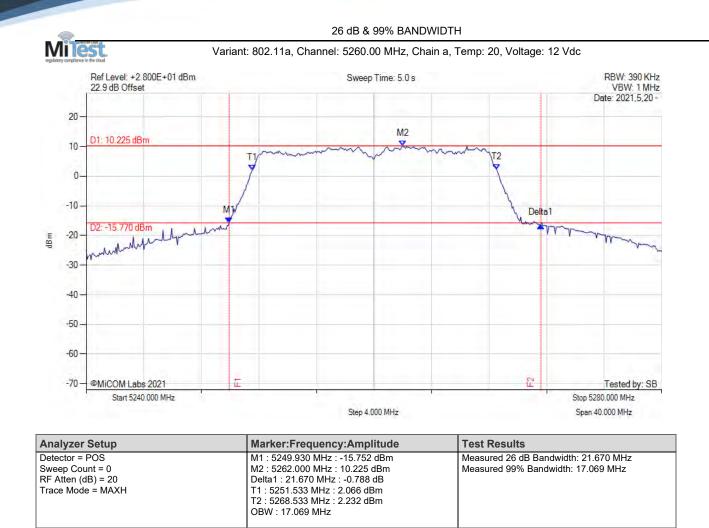

OBW : 18.071 MHz

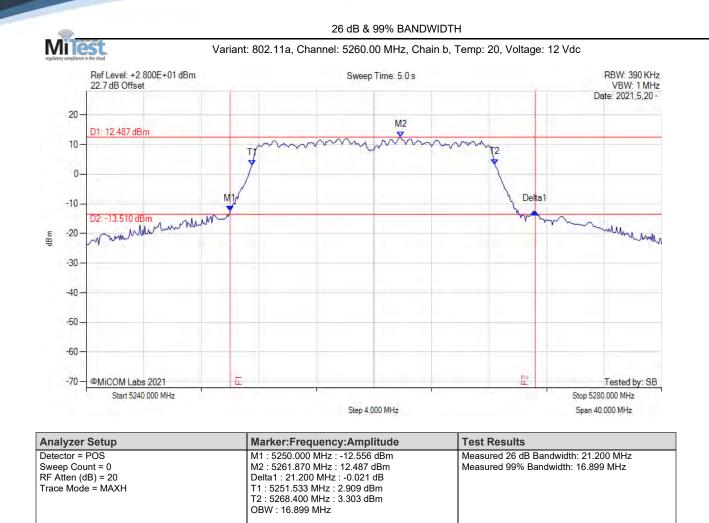

OBW : 18.091 MHz



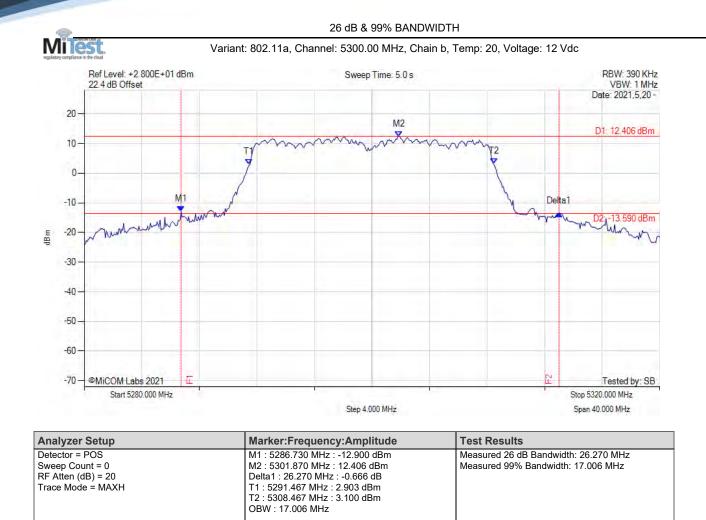
Analyzer Setup	Marker:Frequency:Amplitude	lest Results
Detector = POS	M1 : 5154.130 MHz : -15.391 dBm	Measured 26 dB Bandwidth: 70.400 MHz
Sweep Count = 0	M2 : 5183.600 MHz : 10.430 dBm	Measured 99% Bandwidth: 37.016 MHz
RF Atten (dB) = 20	Delta1 : 70.400 MHz : 0.536 dB	
Trace Mode = MAXH	T1 : 5171.467 MHz : 0.595 dBm	
	T2 : 5208.400 MHz : 2.440 dBm	
	OBW : 37.016 MHz	




OBW : 37.099 MHz



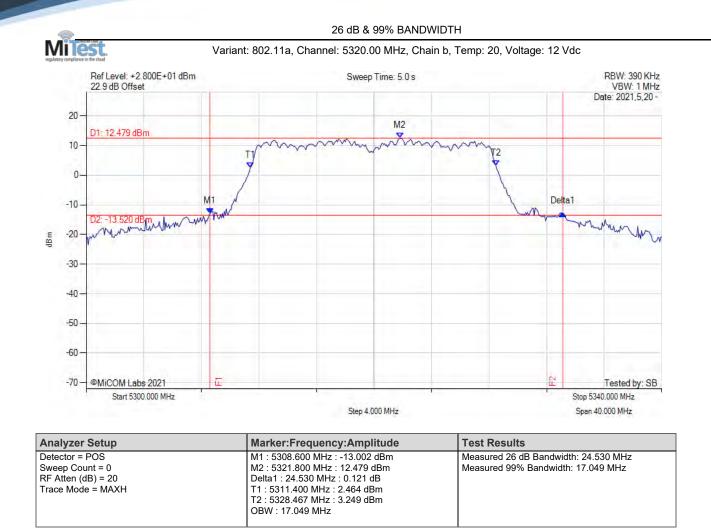
OBW : 36.776 MHz



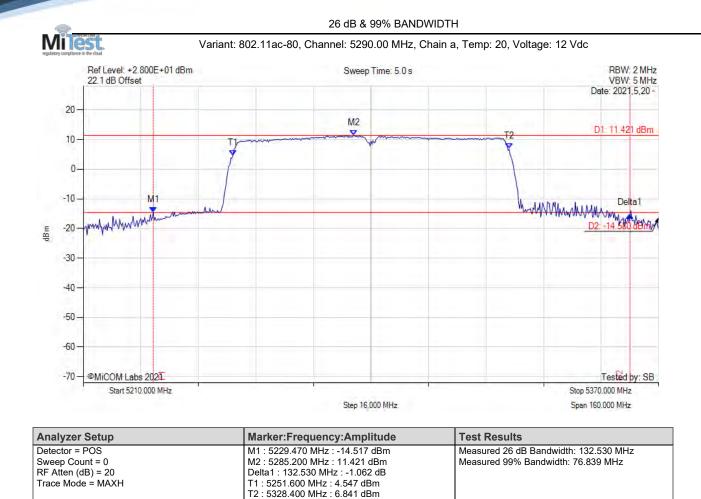
Title: To: Serial #:

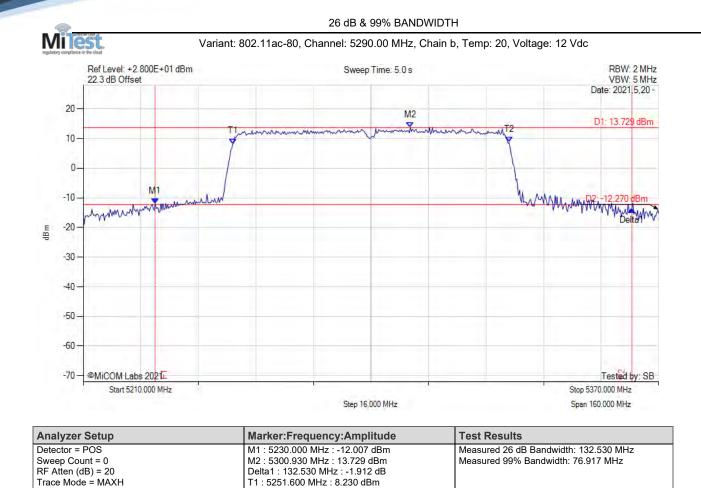
Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)



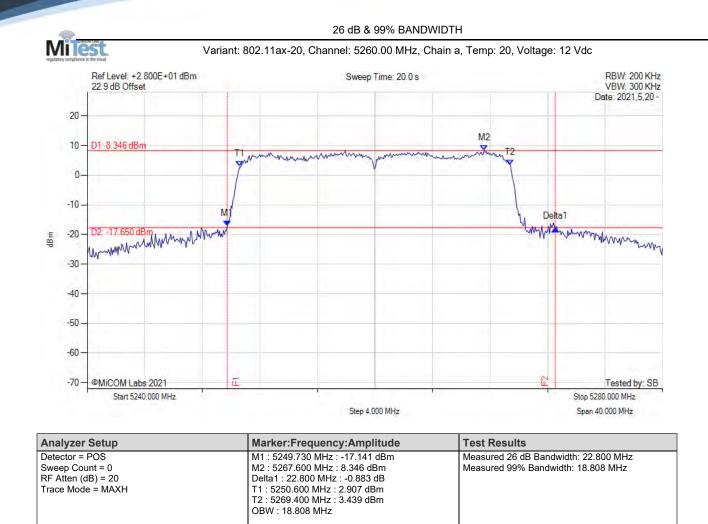


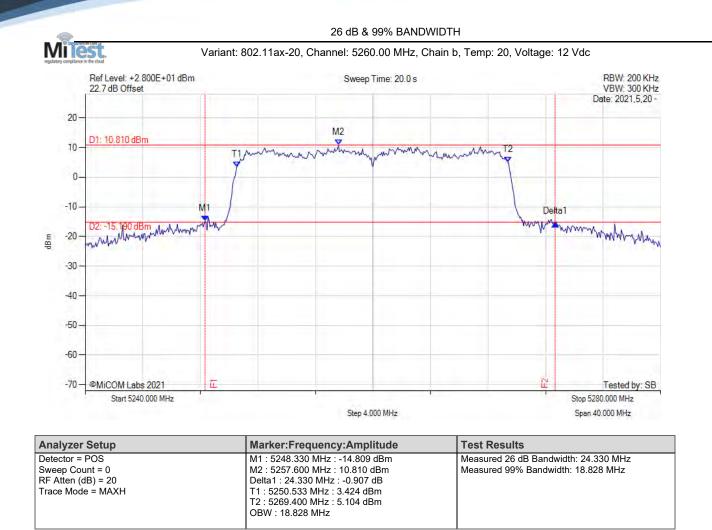
Title: To: Serial #:


Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

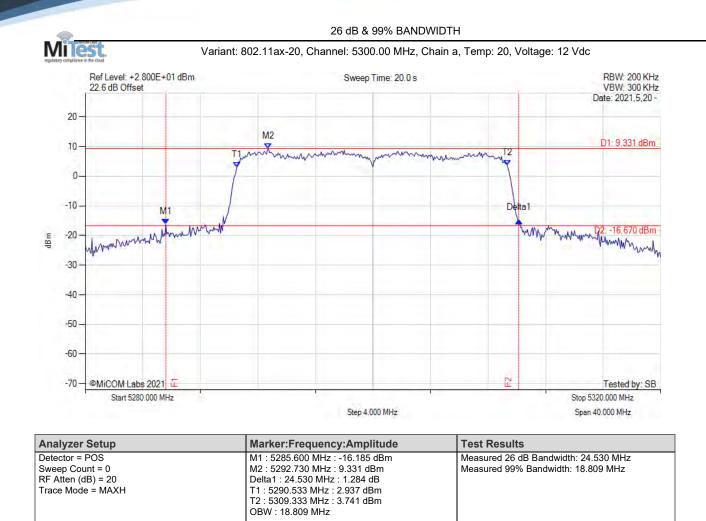


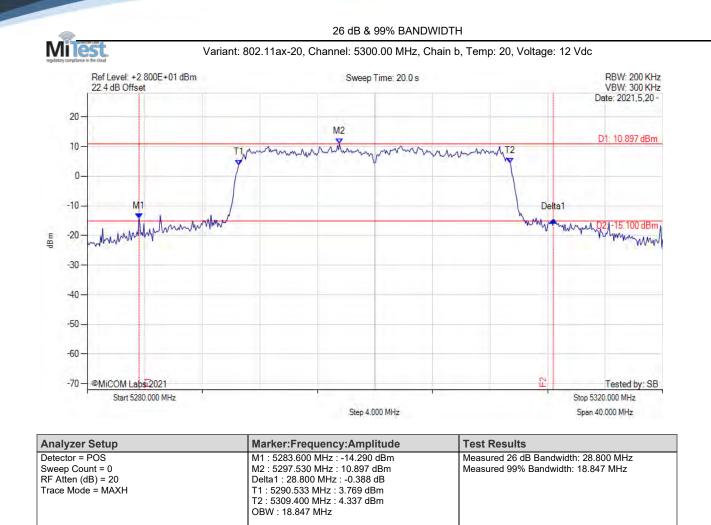
OBW : 76.839 MHz

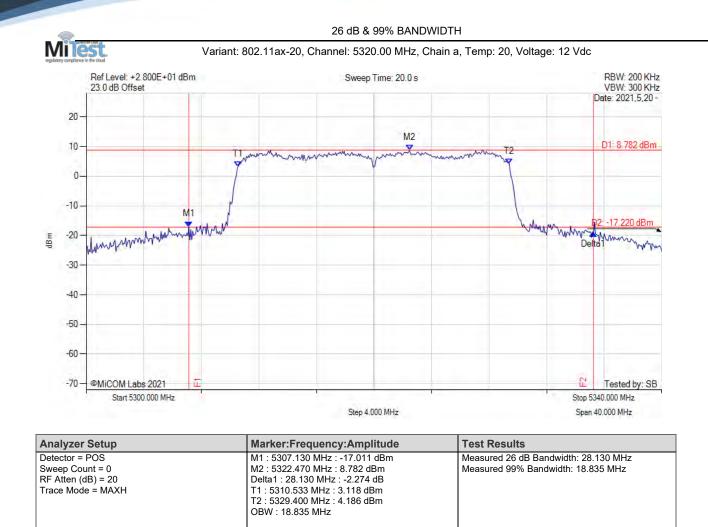


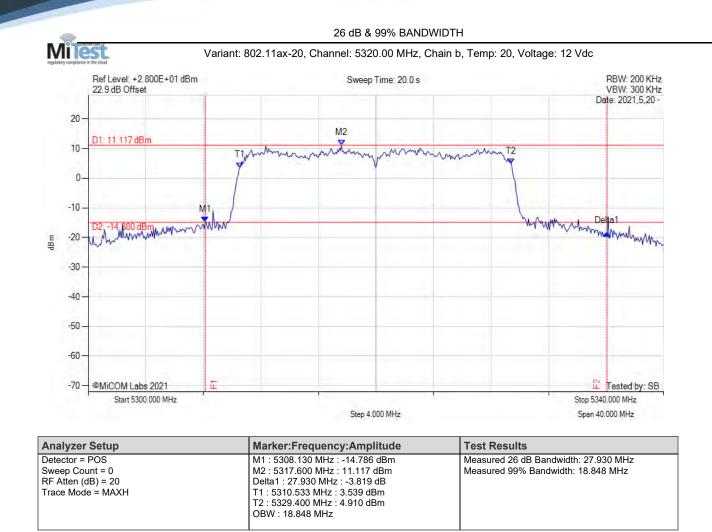

T2: 5328.400 MHz: 8.731 dBm

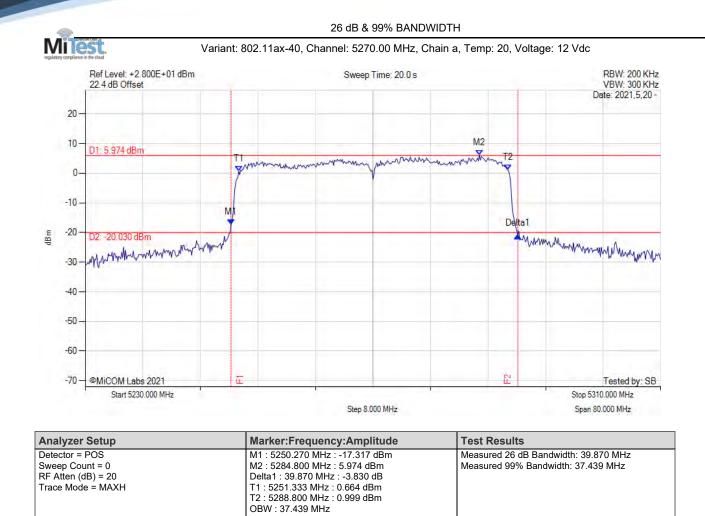
OBW : 76.917 MHz



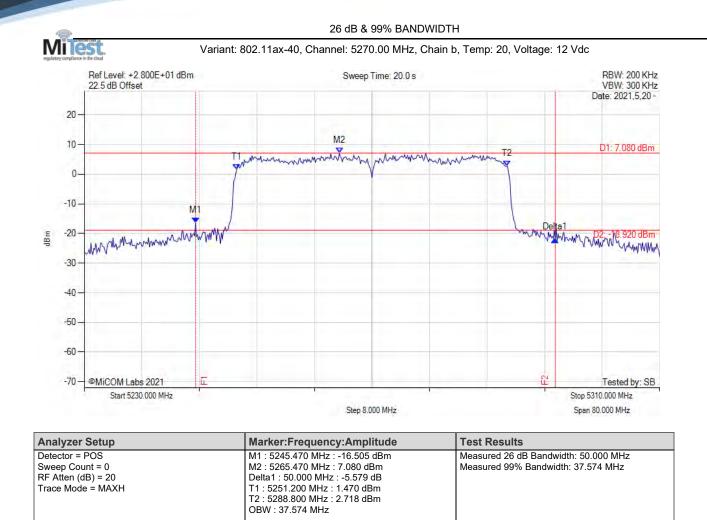


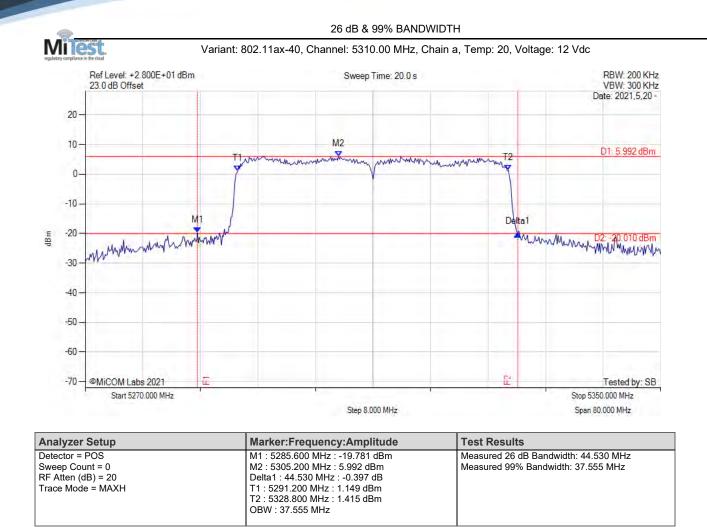


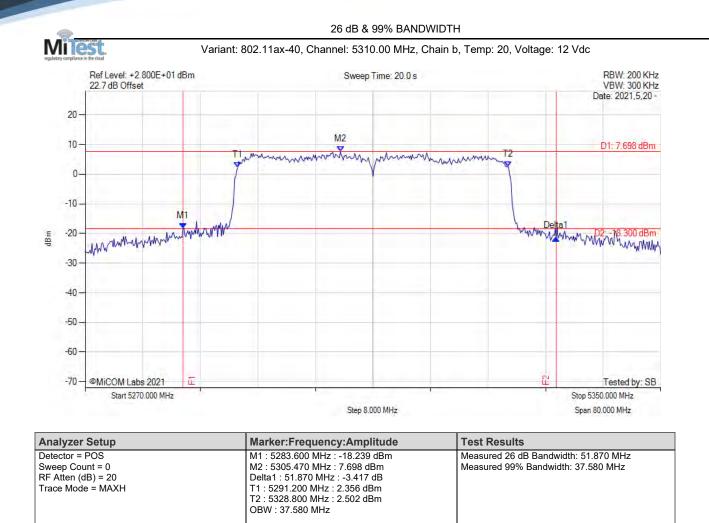


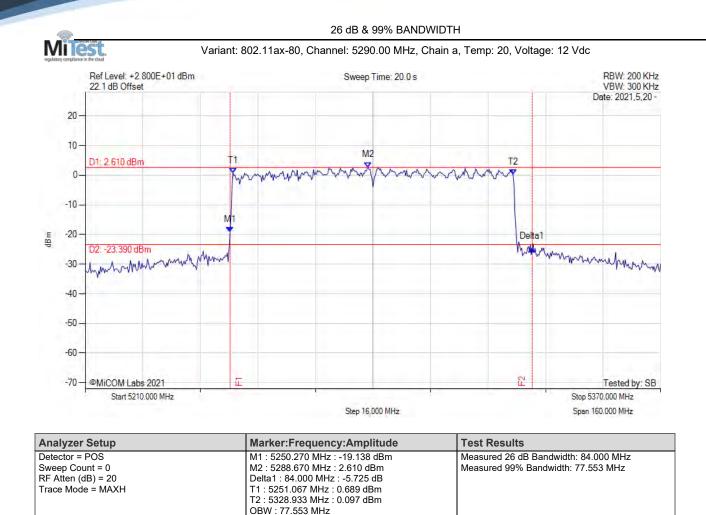


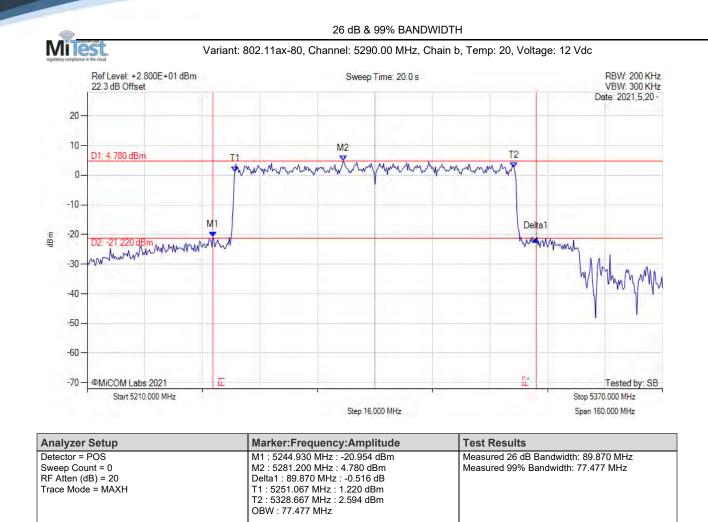
Serial #:

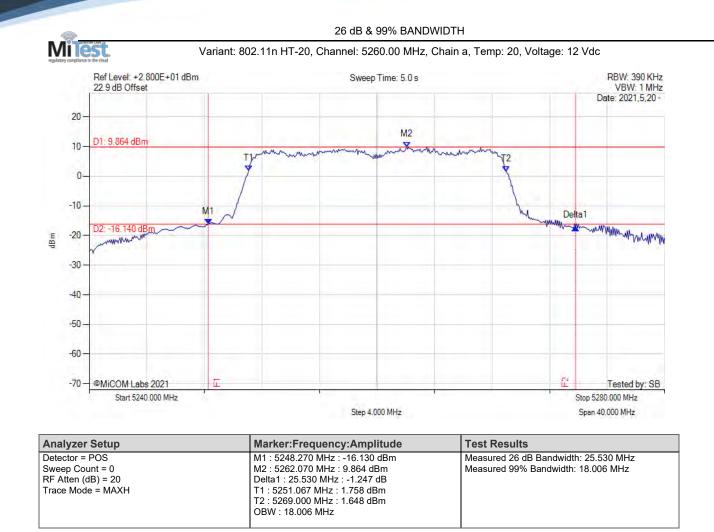

Title: Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 To: HPEN155-U9 Rev A (UNII)

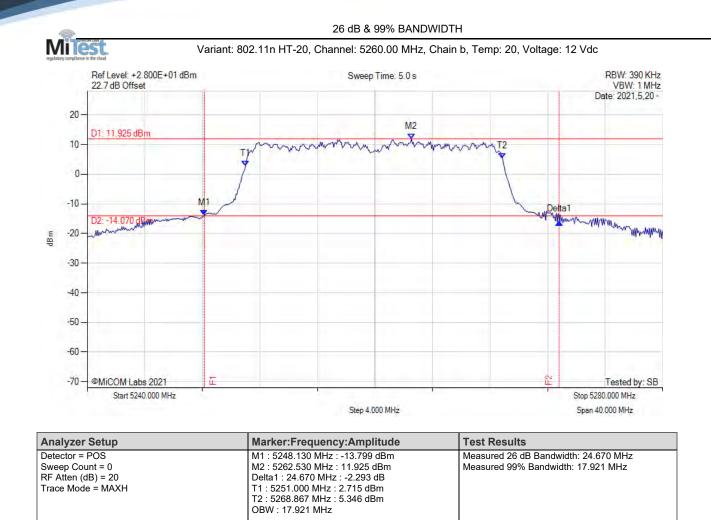


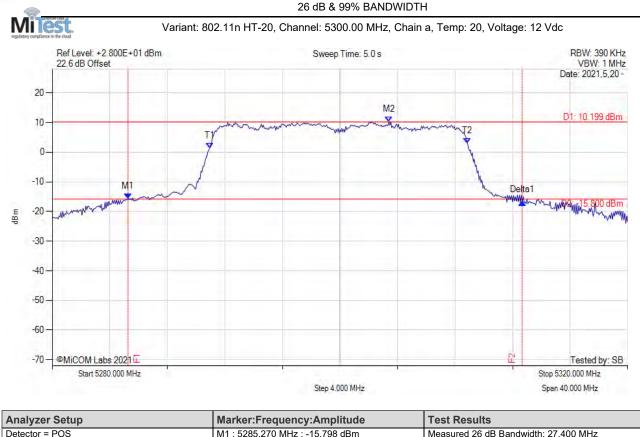






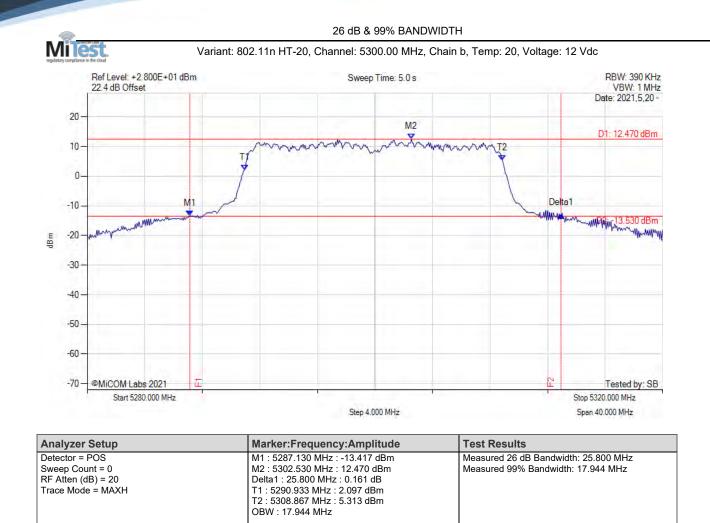


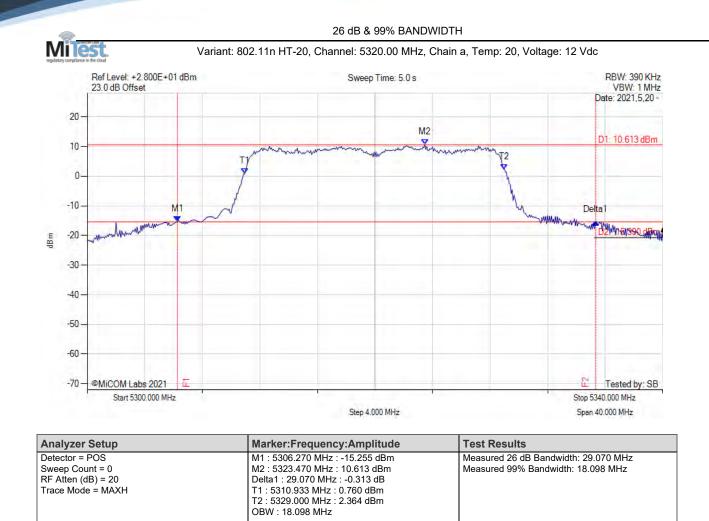




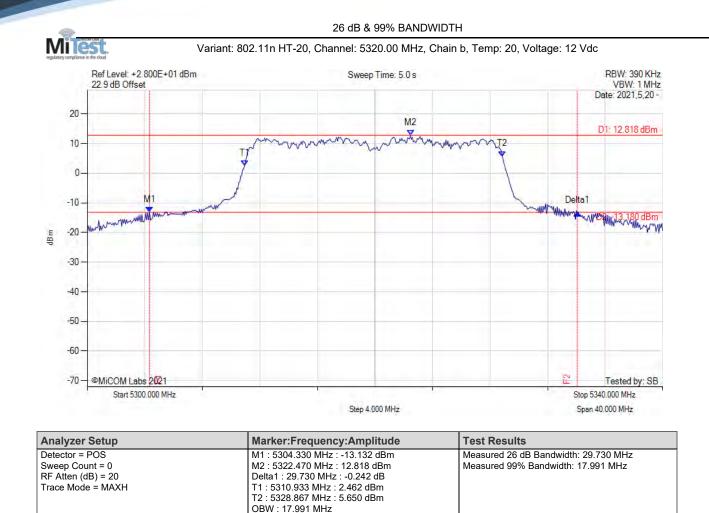
Title: To: Serial #:

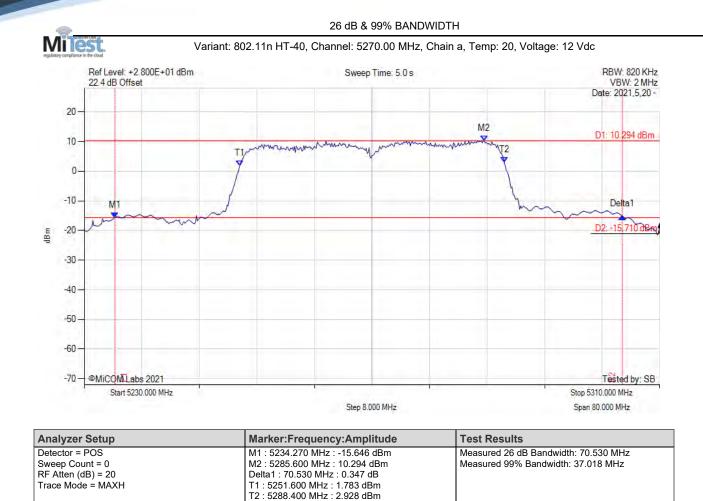
Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

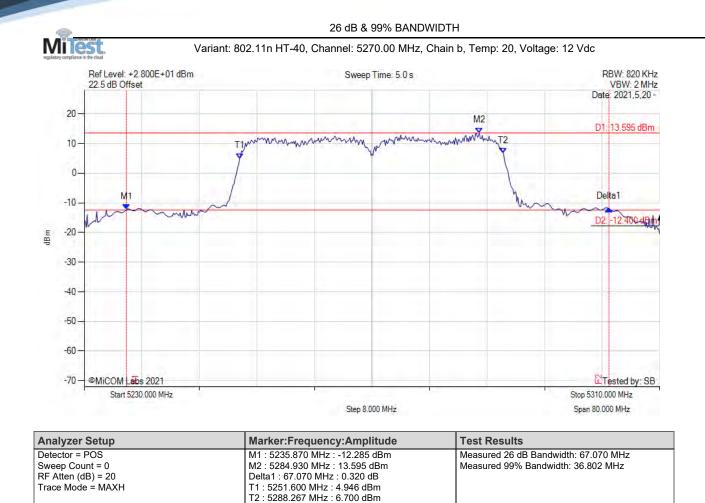


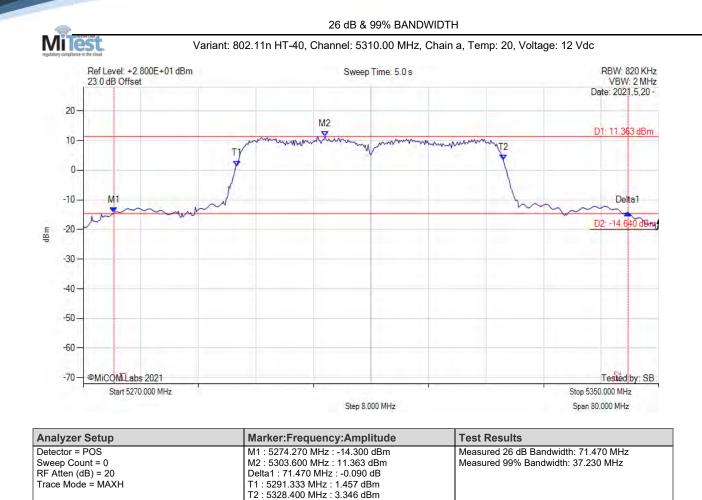


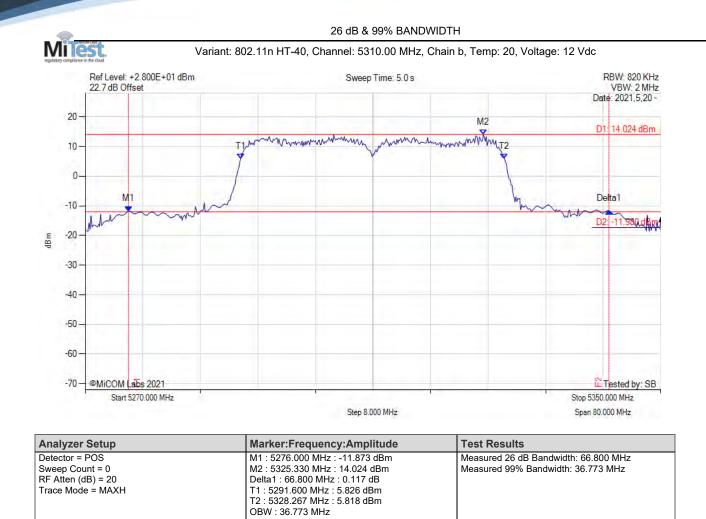
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 5285.270 MHz : -15.798 dBm	Measured 26 dB Bandwidth: 27.400 MHz
Sweep Count = 0	M2 : 5303.400 MHz : 10.199 dBm	Measured 99% Bandwidth: 18.014 MHz
RF Atten (dB) = 20	Delta1 : 27.400 MHz : -1.120 dB	
Trace Mode = MAXH	T1 : 5290.933 MHz : 1.269 dBm	
	T2 : 5308.867 MHz : 2.985 dBm	
	OBW : 18.014 MHz	

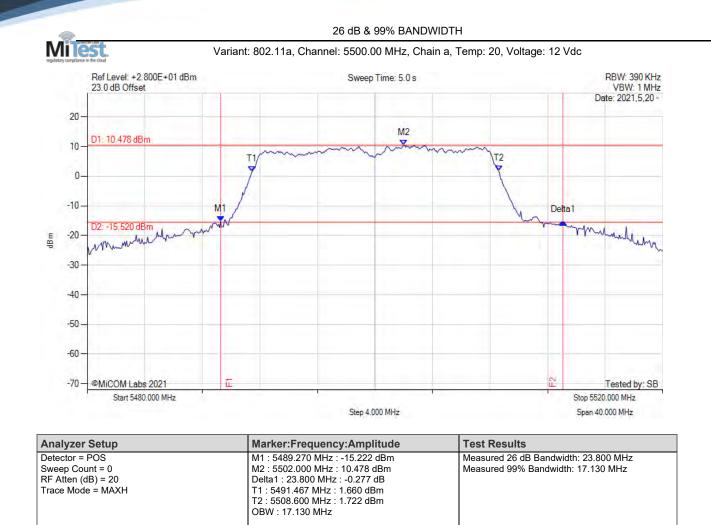




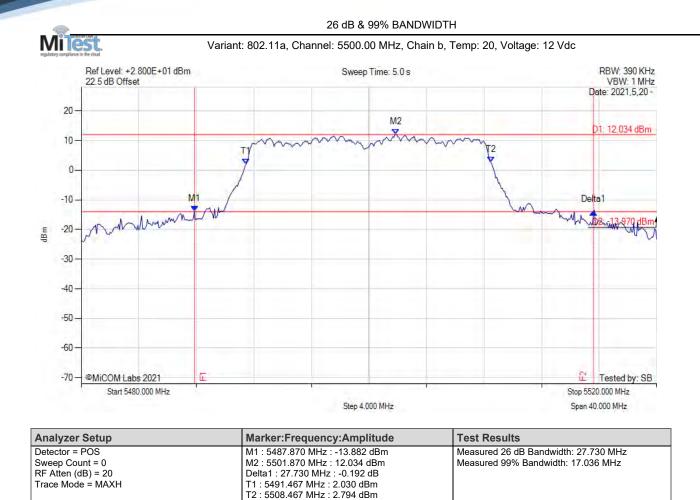


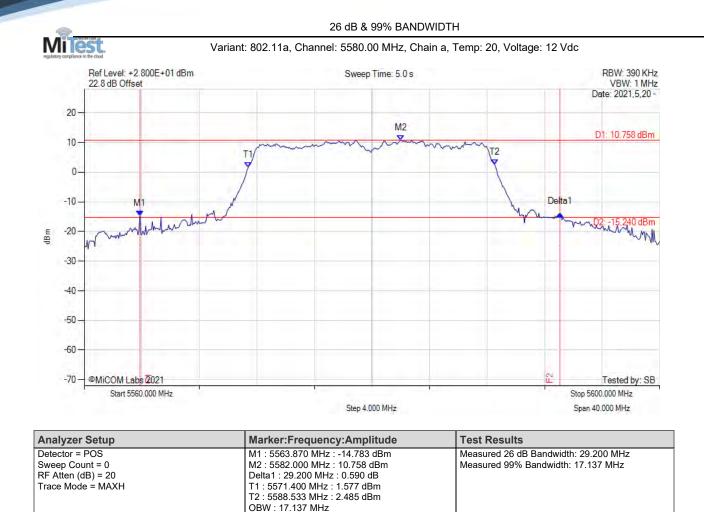

OBW : 37.018 MHz


OBW : 36.802 MHz

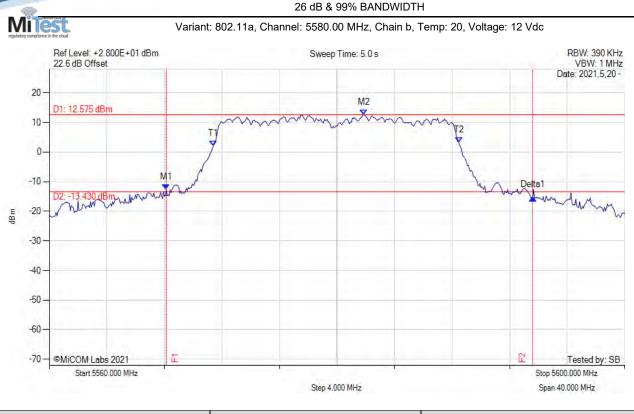


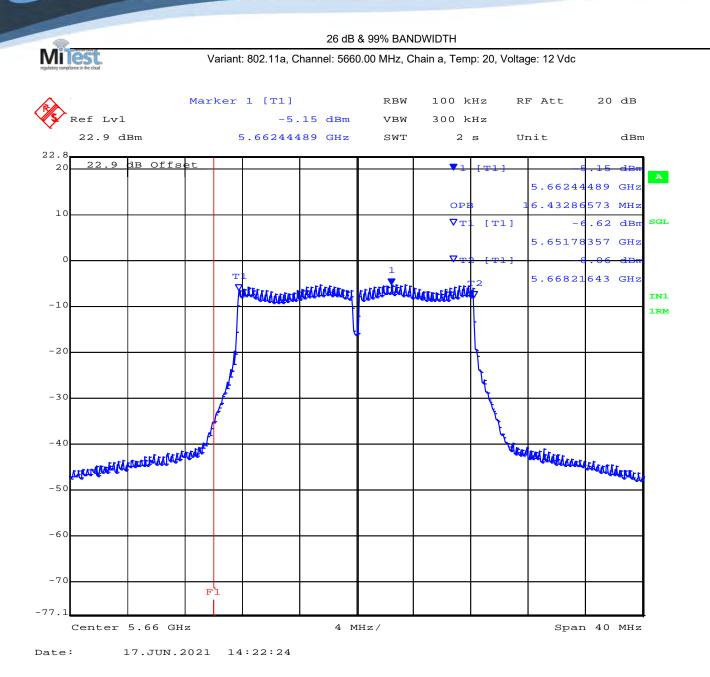
OBW : 37.230 MHz





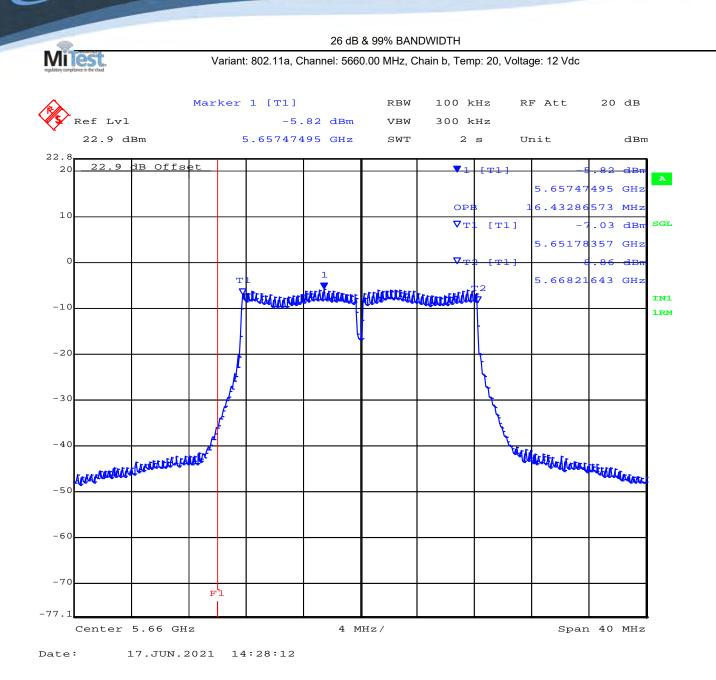
OBW : 17.036 MHz




Serial #:

Title: Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 To: HPEN155-U9 Rev A (UNII)

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH		Measured 26 dB Bandwidth: 25.470 MHz Measured 99% Bandwidth: 17.037 MHz


back to matrix

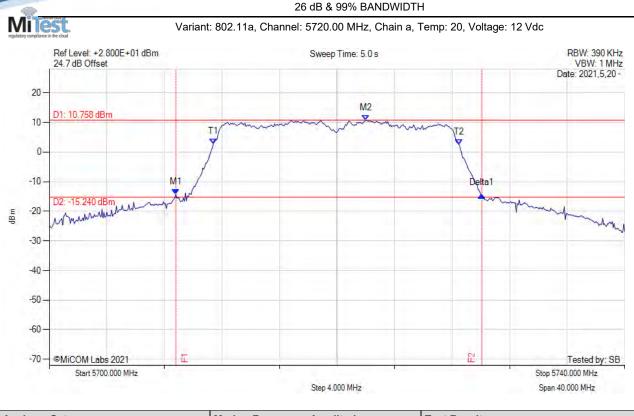
 Issue Date:
 25th June 2021
 Page:
 142 of 226

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

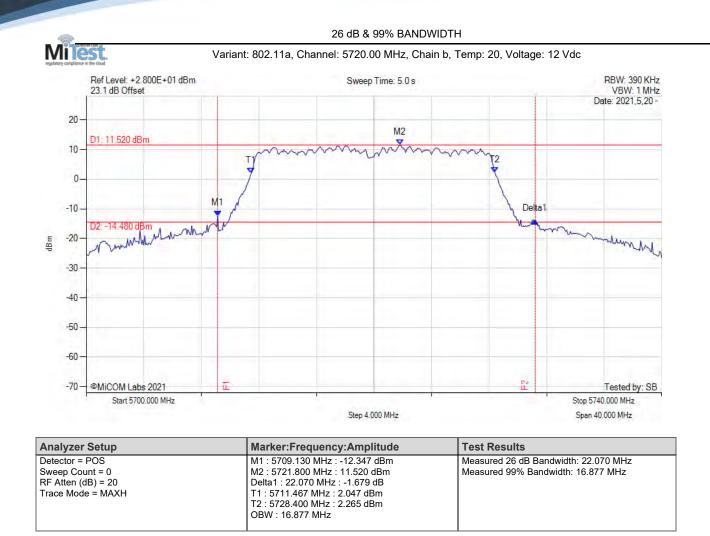
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

back to matrix

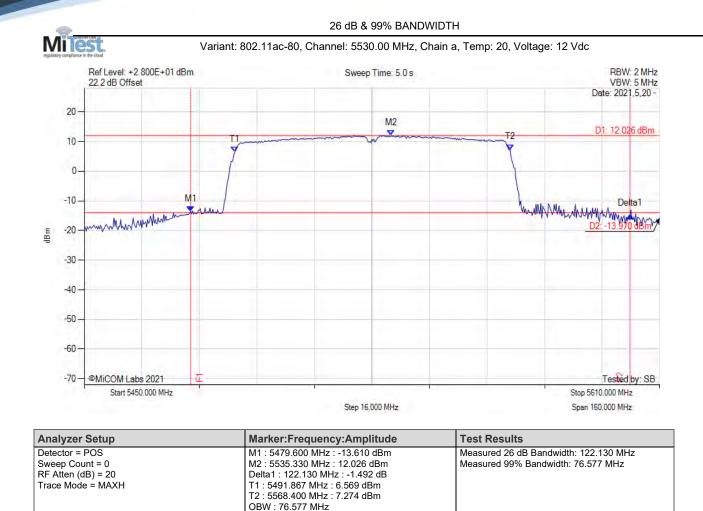
 Issue Date:
 25th June 2021
 Page:
 143 of 226


 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

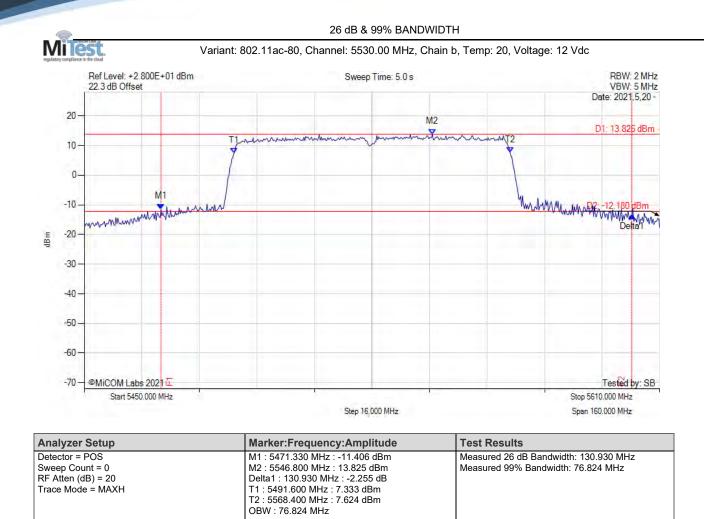
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

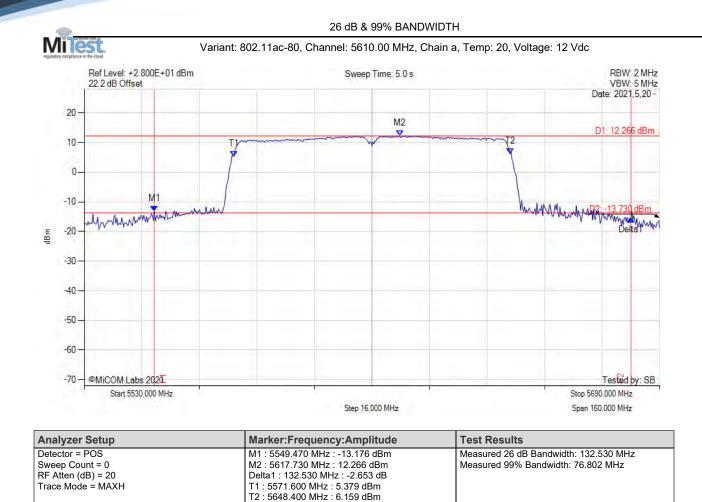

Title: To: Serial #:

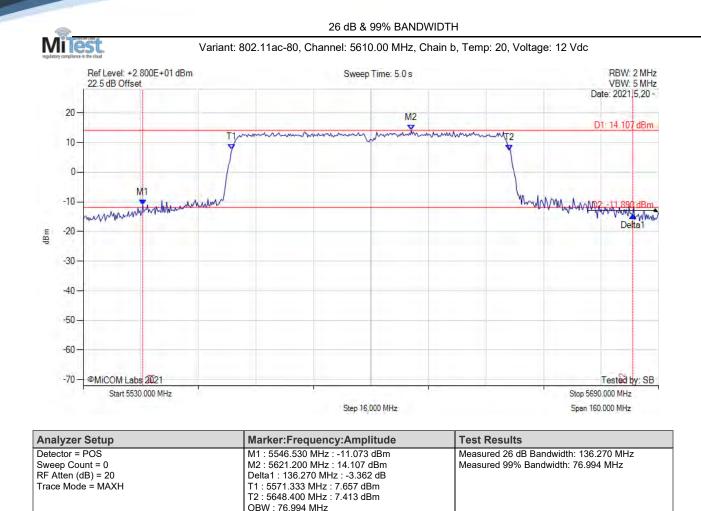
Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

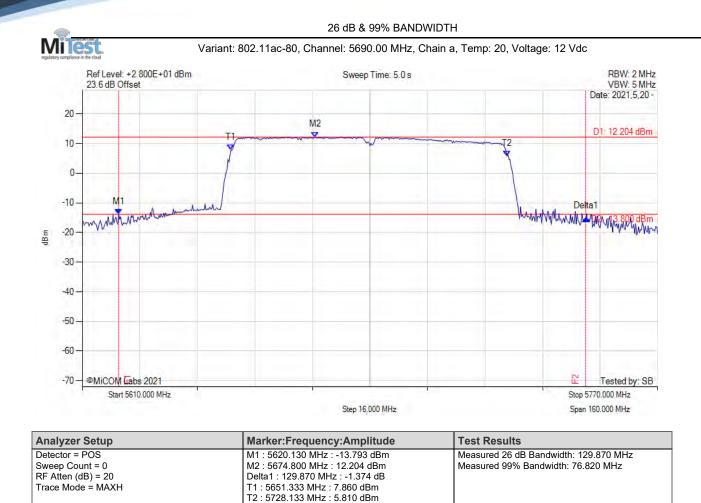


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 5708.800 MHz : -14.269 dBm M2 : 5722.000 MHz : 10.758 dBm Delta1 : 21.270 MHz : -0.385 dB T1 : 5711.400 MHz : 2.629 dBm T2 : 5728.467 MHz : 2.557 dBm OBW : 17.084 MHz	Measured 26 dB Bandwidth: 21.270 MHz Measured 99% Bandwidth: 17.084 MHz

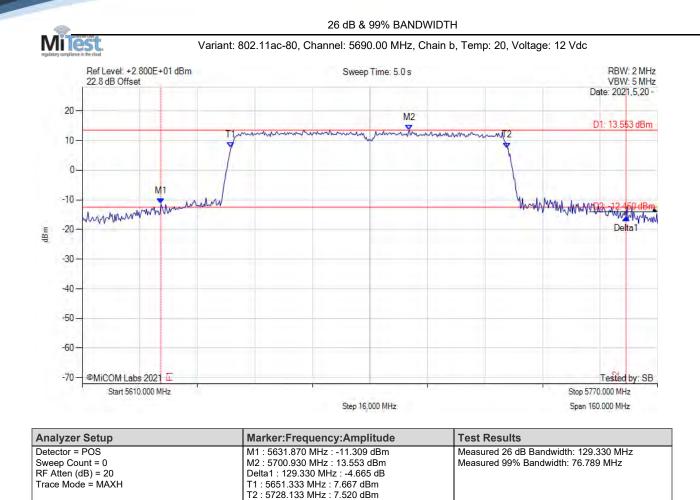


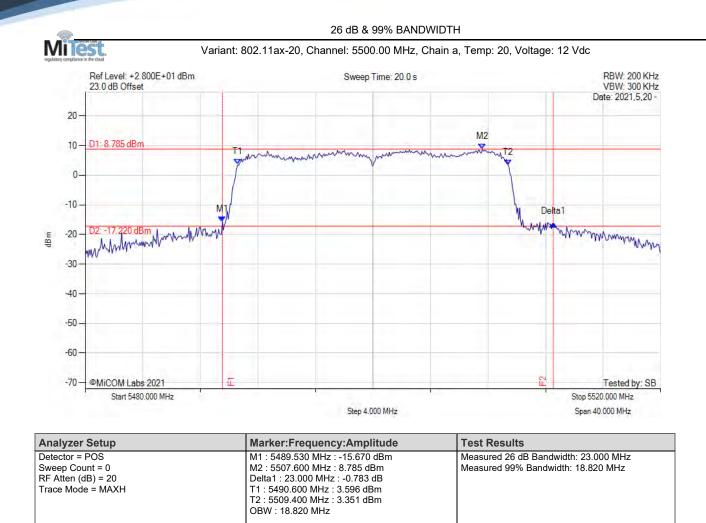


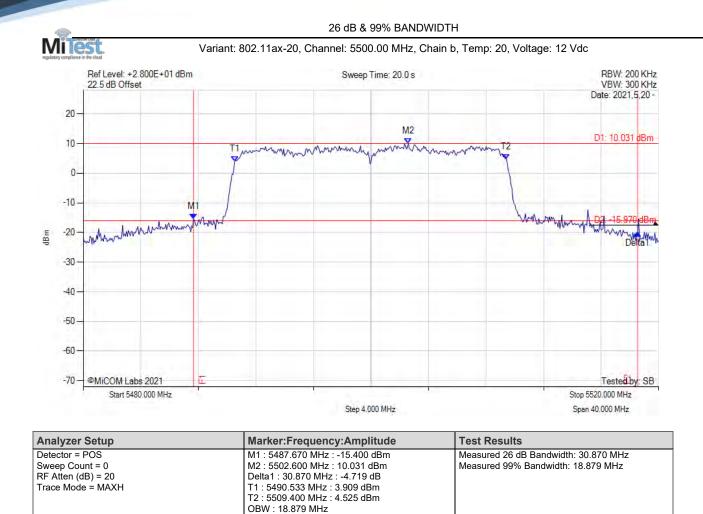




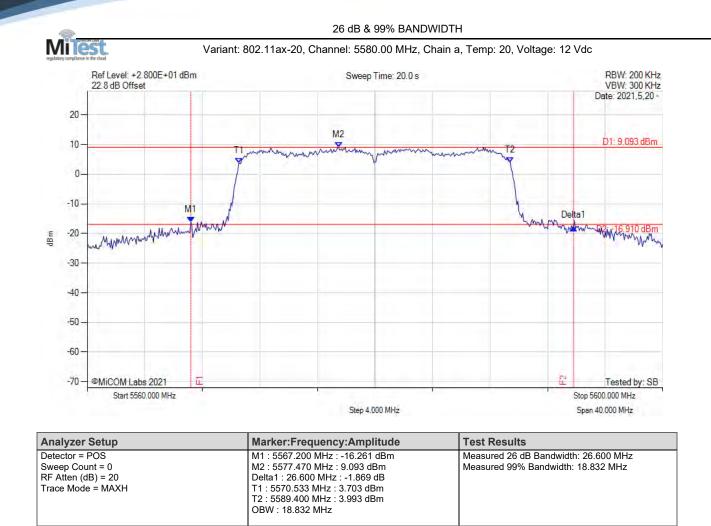
OBW : 76.802 MHz

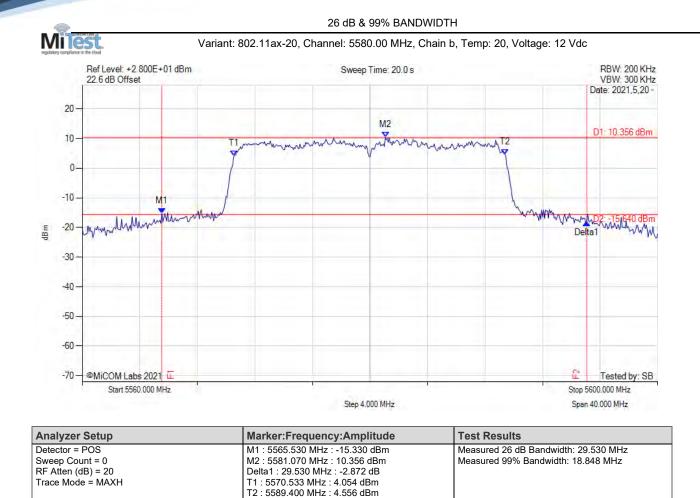


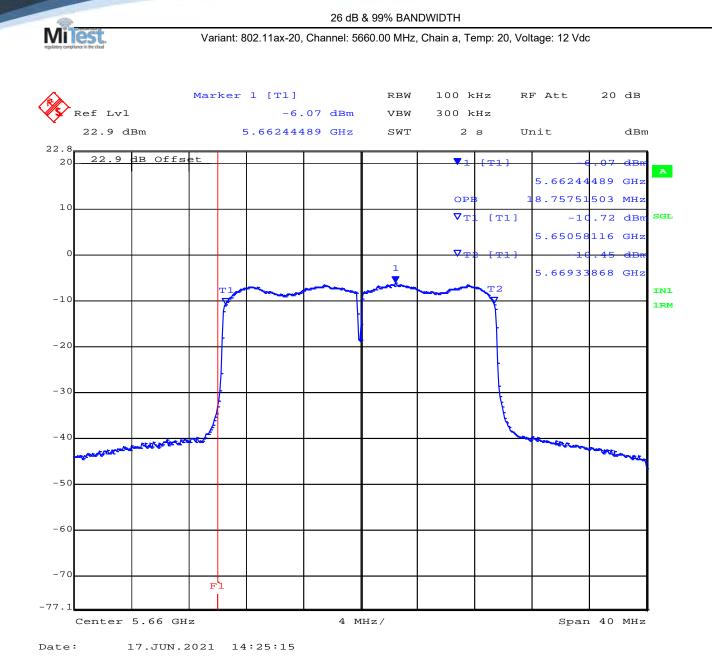

OBW : 76.820 MHz



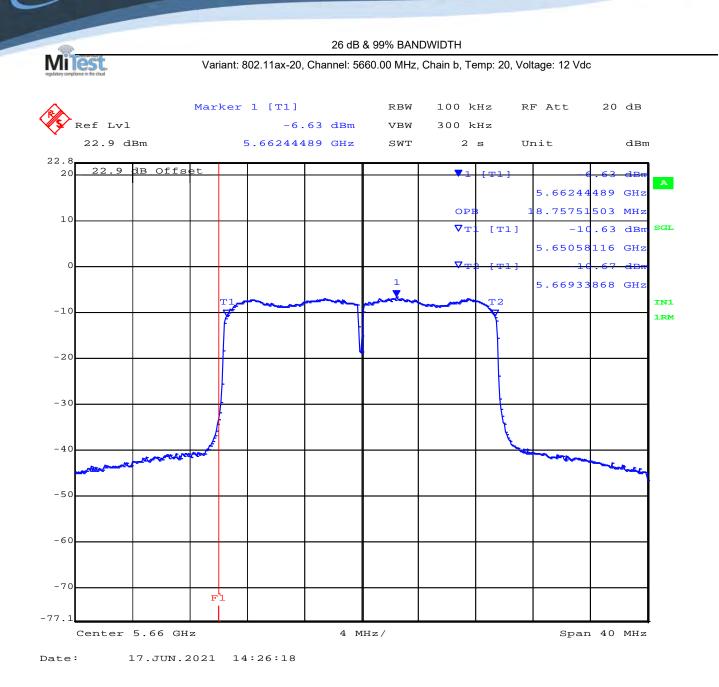
OBW : 76.789 MHz







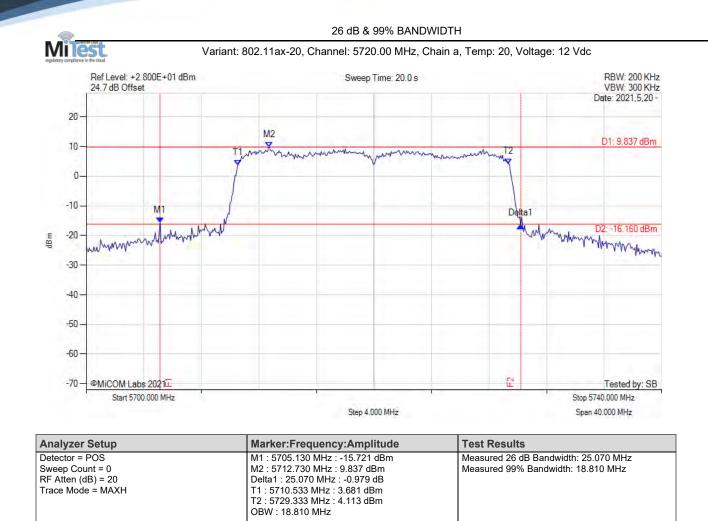
OBW : 18.848 MHz


back to matrix

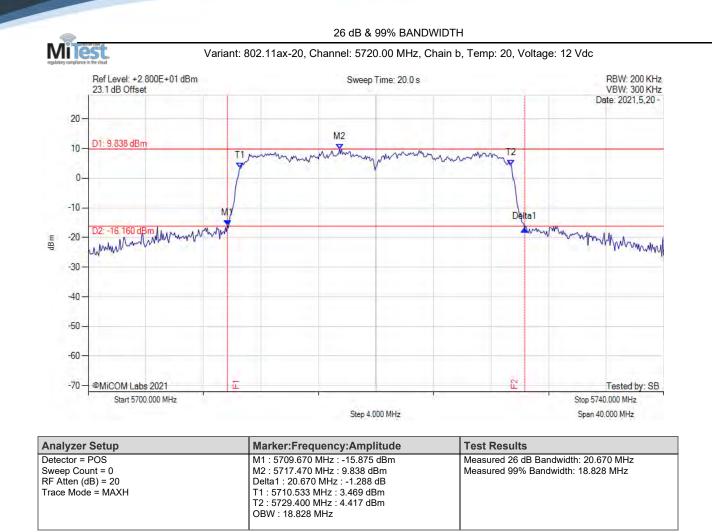
 Issue Date:
 25th June 2021
 Page:
 156 of 226

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

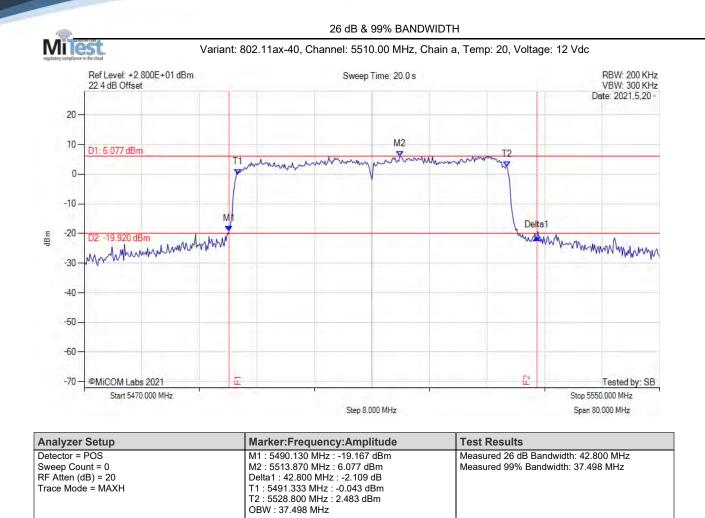
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

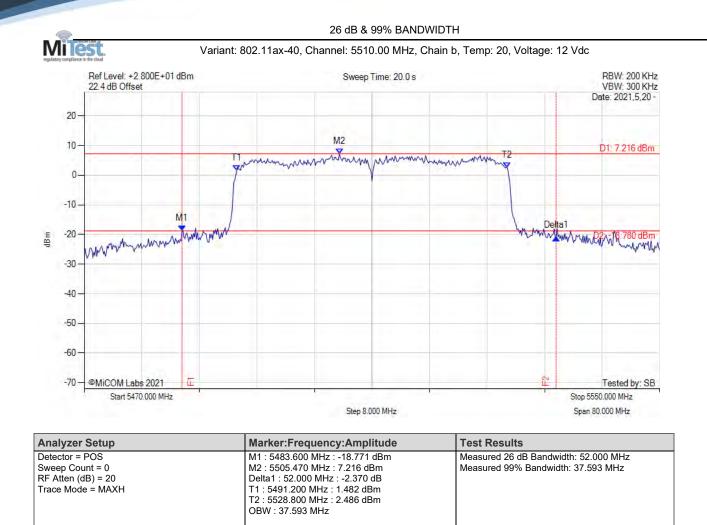

back to matrix

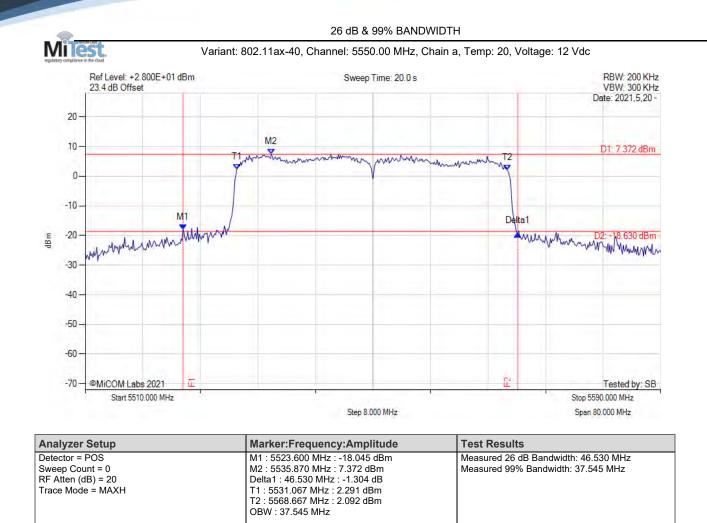
 Issue Date:
 25th June 2021
 Page:
 157 of 226

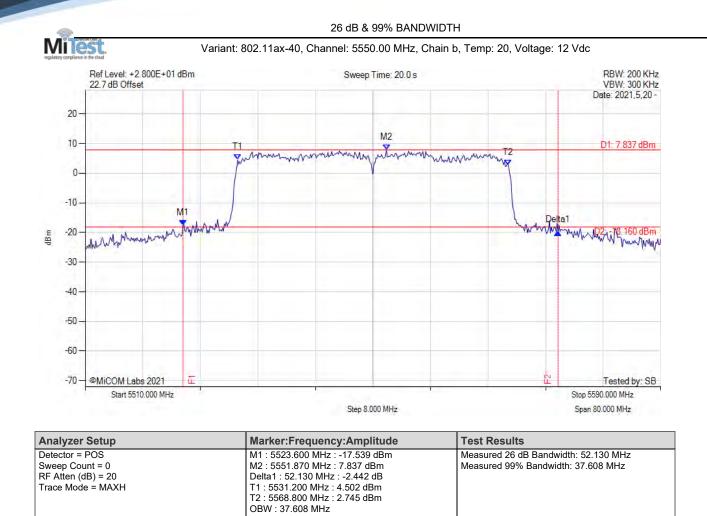

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

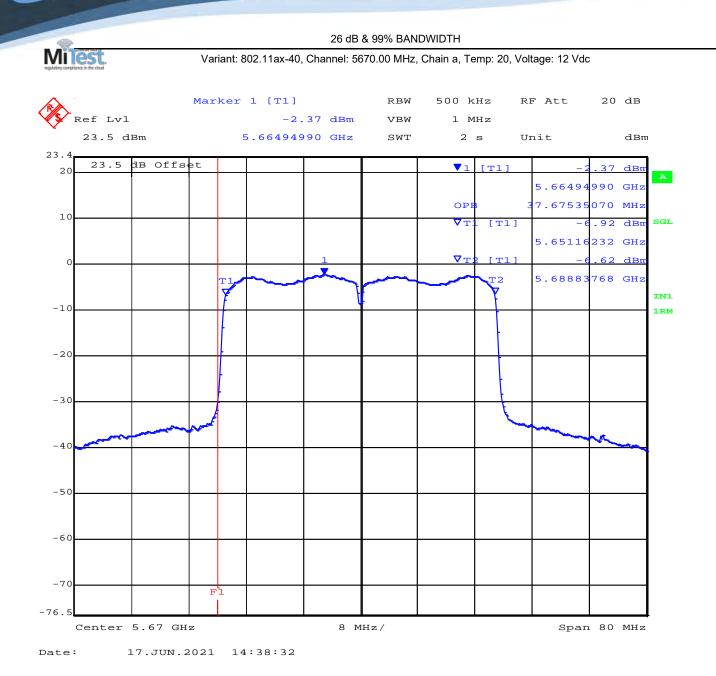
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

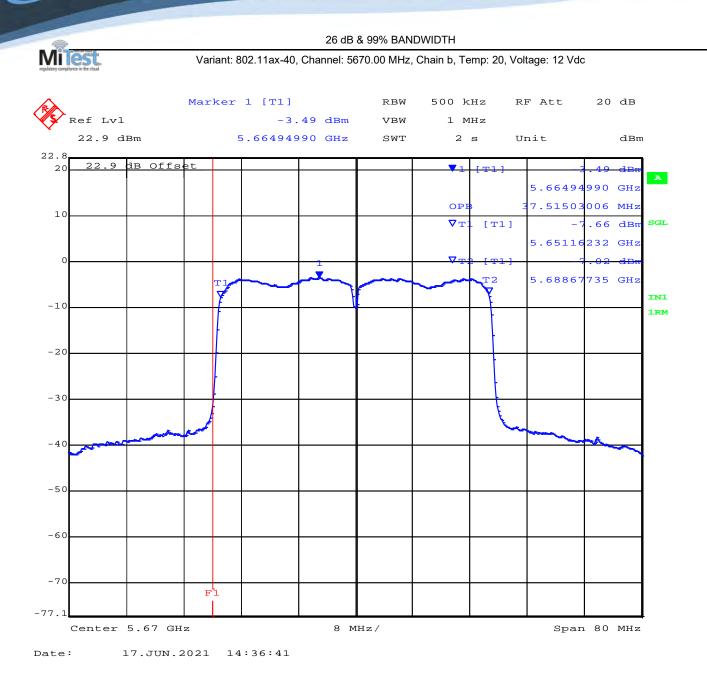






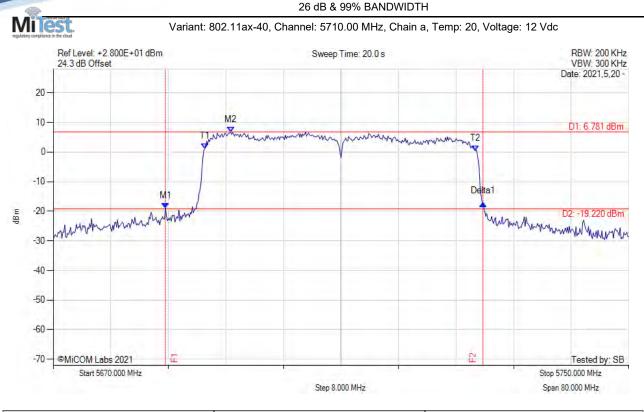


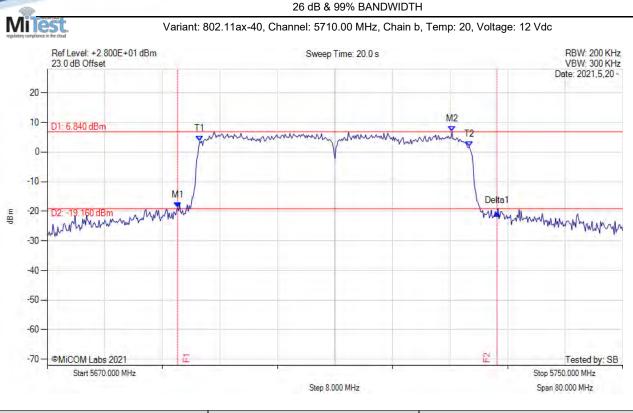



back to matrix

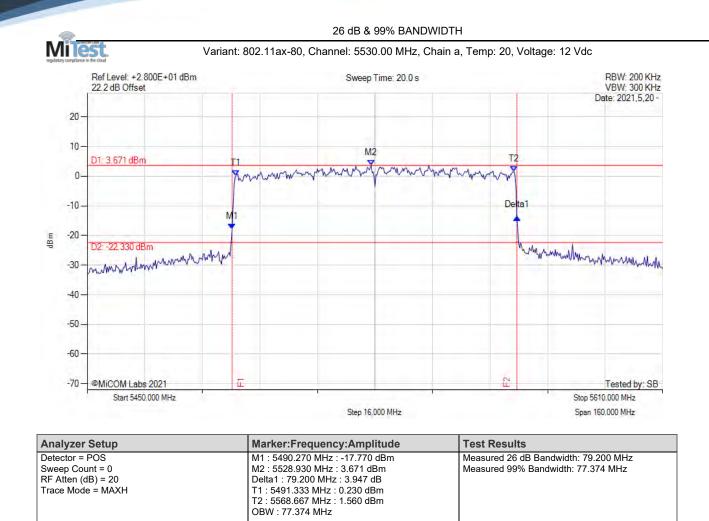
 Issue Date:
 25th June 2021
 Page:
 164 of 226

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

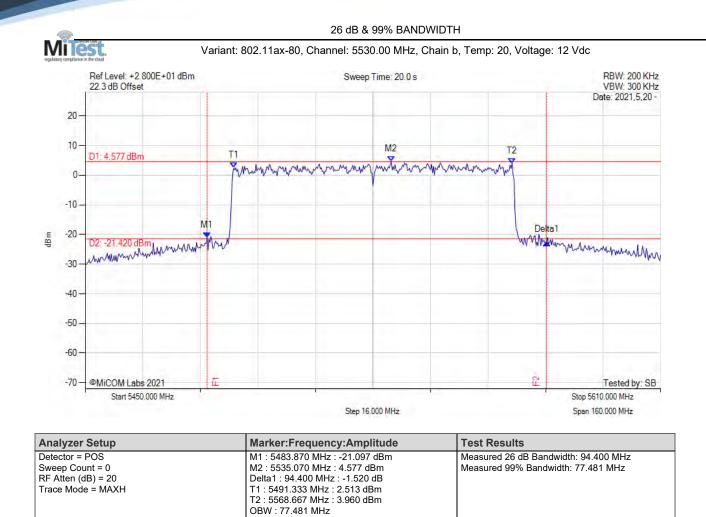

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com


Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

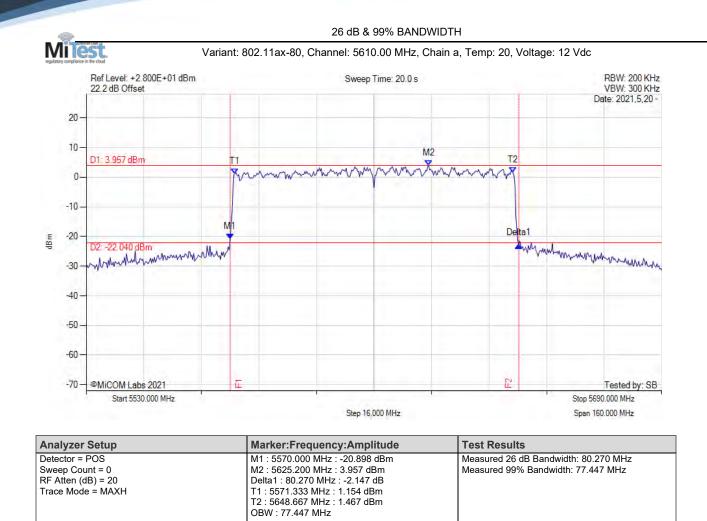
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 5685.600 MHz : -18.946 dBm M2 : 5694.670 MHz : 6.781 dBm Delta1 : 44.130 MHz : 1.619 dB T1 : 5691.067 MHz : 1.031 dBm T2 : 5728.667 MHz : 0.462 dBm OBW : 37.479 MHz	Measured 26 dB Bandwidth: 44.130 MHz Measured 99% Bandwidth: 37.479 MHz

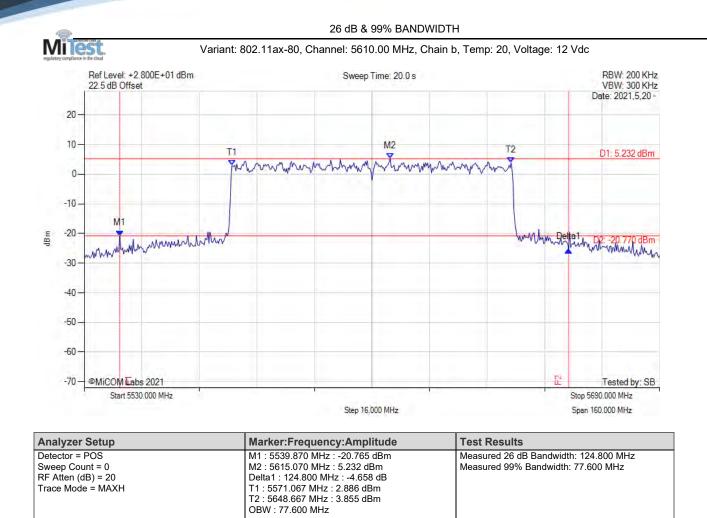


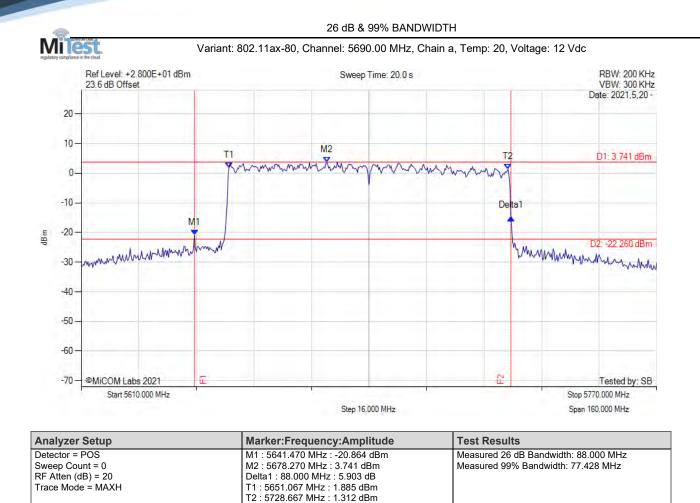
Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

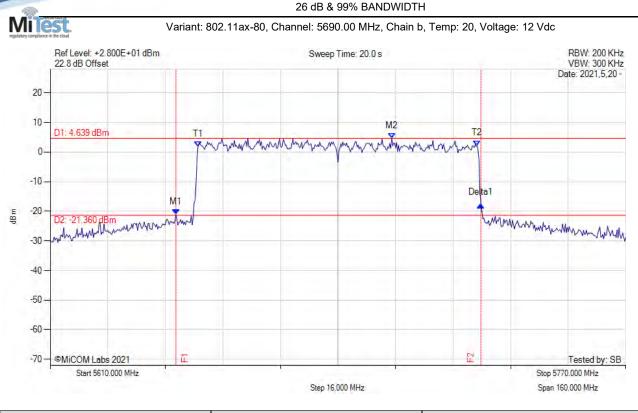


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
		Measured 26 dB Bandwidth: 44.400 MHz Measured 99% Bandwidth: 37.551 MHz

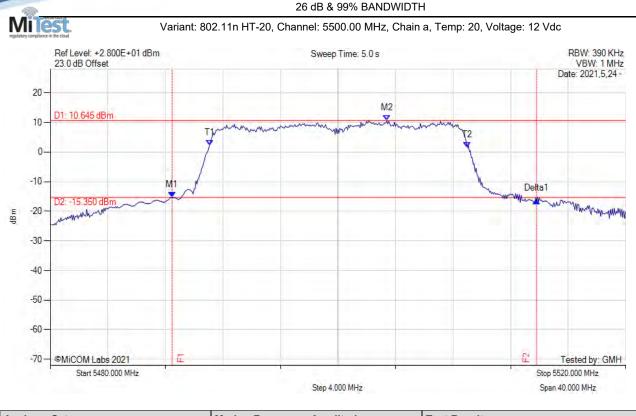




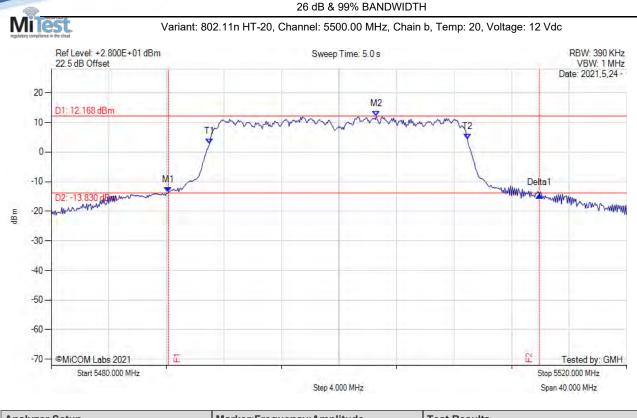




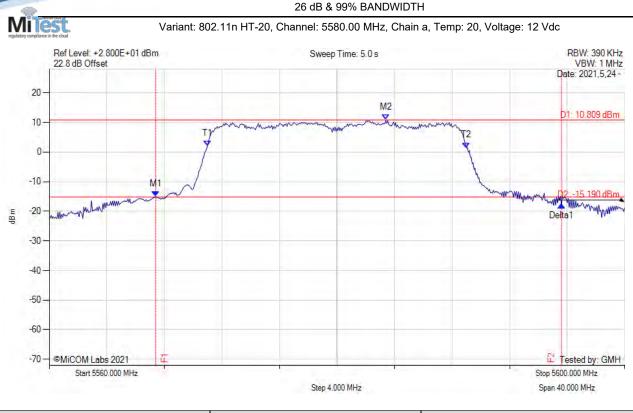
OBW : 77.428 MHz


Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

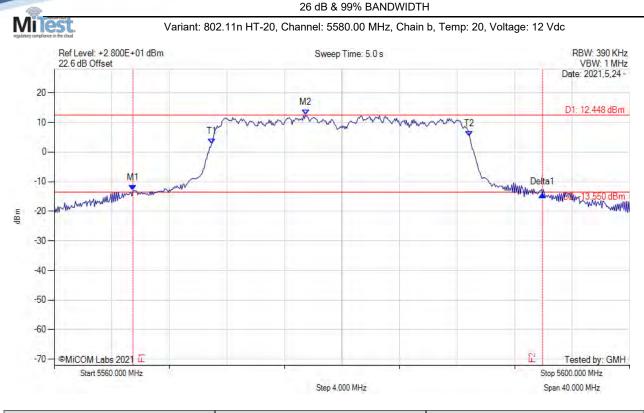
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 5644.930 MHz : -21.185 dBm M2 : 5704.930 MHz : 4.639 dBm Delta1 : 84.800 MHz : 3.359 dB T1 : 5651.067 MHz : 1.787 dBm T2 : 5728.667 MHz : 2.160 dBm OBW : 77.494 MHz	Measured 26 dB Bandwidth: 84.800 MHz Measured 99% Bandwidth: 77.494 MHz


Hewlett Packard Enterprise Company ASIN0304
FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
HPEN155-U9 Rev A (UNII)

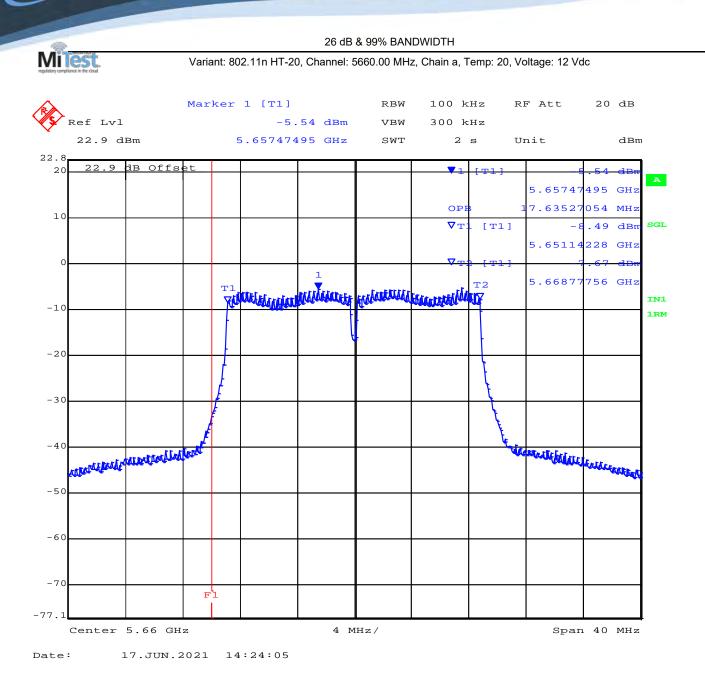
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 5488.470 MHz : -15.341 dBm M2 : 5503.400 MHz : 10.645 dBm Delta1 : 25.330 MHz : -1.191 dB T1 : 5491.067 MHz : 2.293 dBm T2 : 5509.000 MHz : 1.506 dBm OBW : 17.973 MHz	Measured 26 dB Bandwidth: 25.330 MHz Measured 99% Bandwidth: 17.973 MHz


Hewlett Packard Enterprise Company ASIN0304
FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
HPEN155-U9 Rev A (UNII)

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH		Measured 26 dB Bandwidth: 25.800 MHz Measured 99% Bandwidth: 17.937 MHz

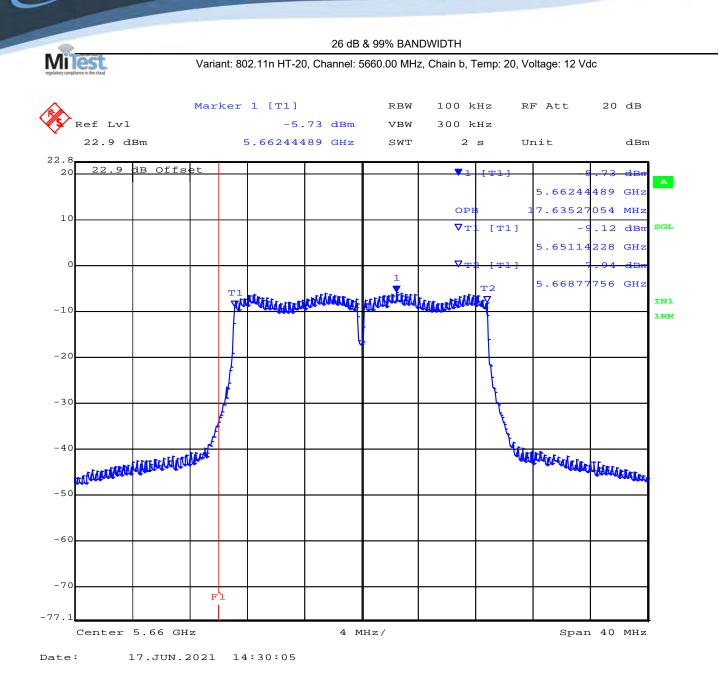

Hewlett Packard Enterprise Company ASIN0304
FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
HPEN155-U9 Rev A (UNII)

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH		Measured 26 dB Bandwidth: 28.200 MHz Measured 99% Bandwidth: 18.025 MHz



itle: Hewlett Packard Enterprise Company ASIN0304 To: FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 al #: HPEN155-U9 Rev A (UNII)

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH		Measured 26 dB Bandwidth: 28.470 MHz Measured 99% Bandwidth: 17.985 MHz


back to matrix

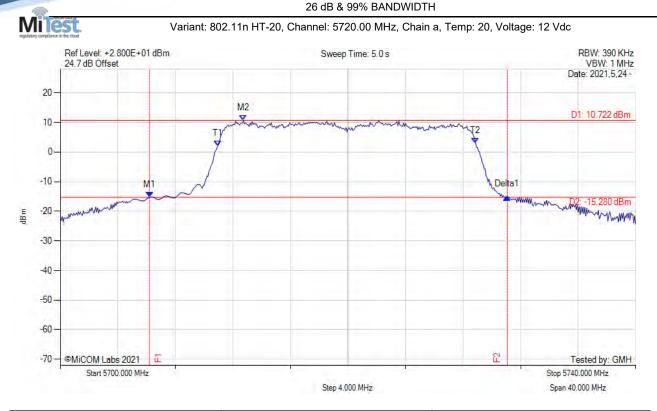
 Issue Date:
 25th June 2021
 Page:
 178 of 226

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

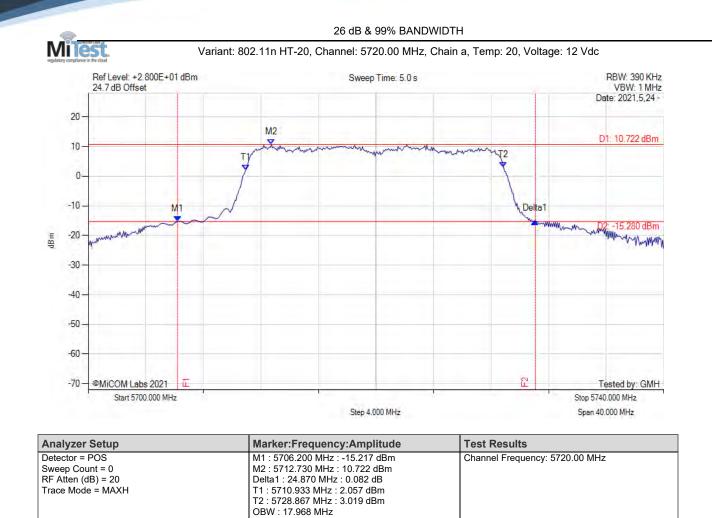
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

back to matrix

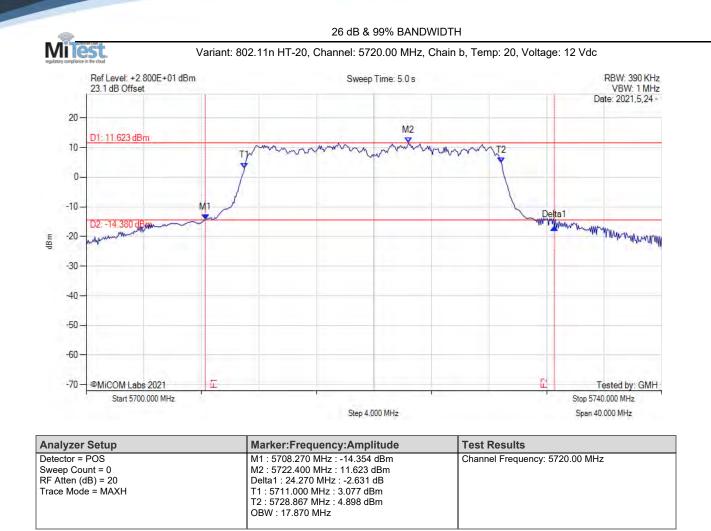
 Issue Date:
 25th June 2021
 Page:
 179 of 226


 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

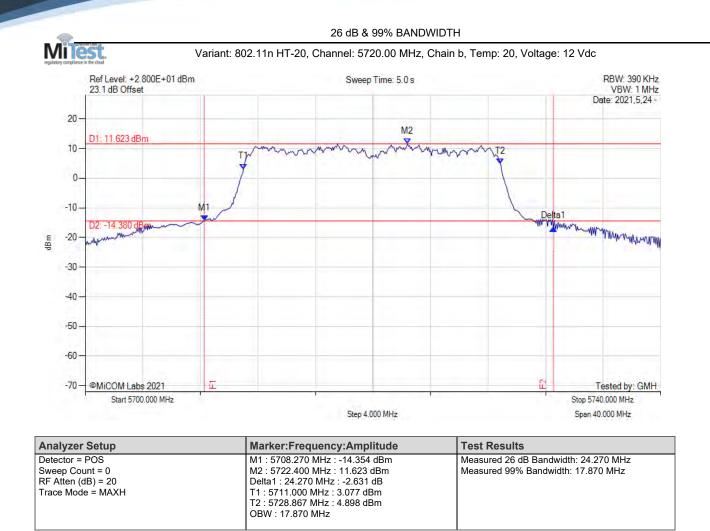
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

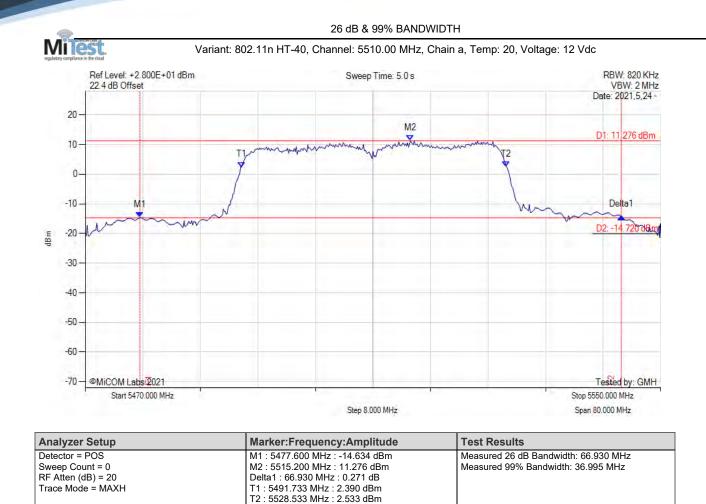

To: Serial #:

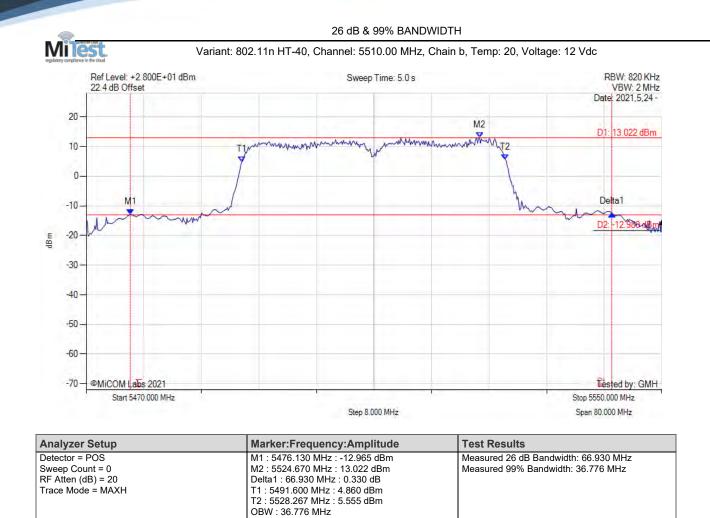
Title: Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

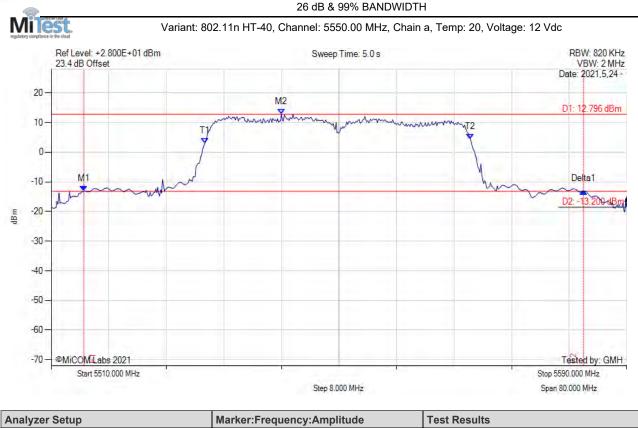


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH	M1 : 5706.200 MHz : -15.217 dBm M2 : 5712.730 MHz : 10.722 dBm Delta1 : 24.870 MHz : 0.082 dB T1 : 5710.933 MHz : 2.057 dBm T2 : 5728.867 MHz : 3.019 dBm OBW : 17.968 MHz	Measured 26 dB Bandwidth: 24.870 MHz Measured 99% Bandwidth: 17.968 MHz

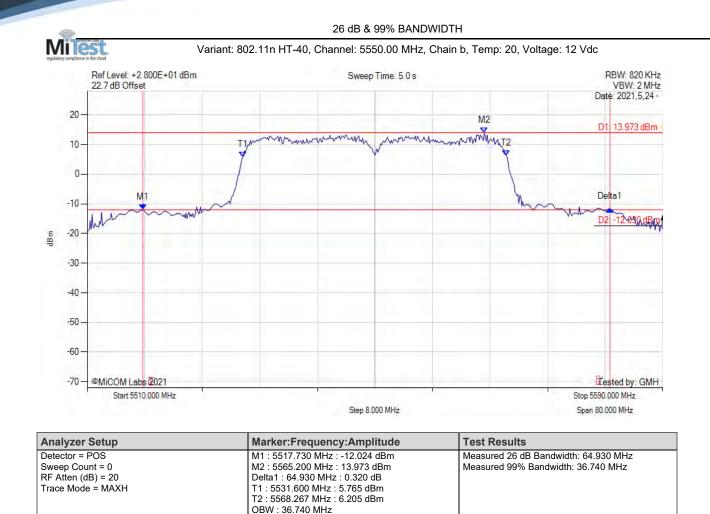


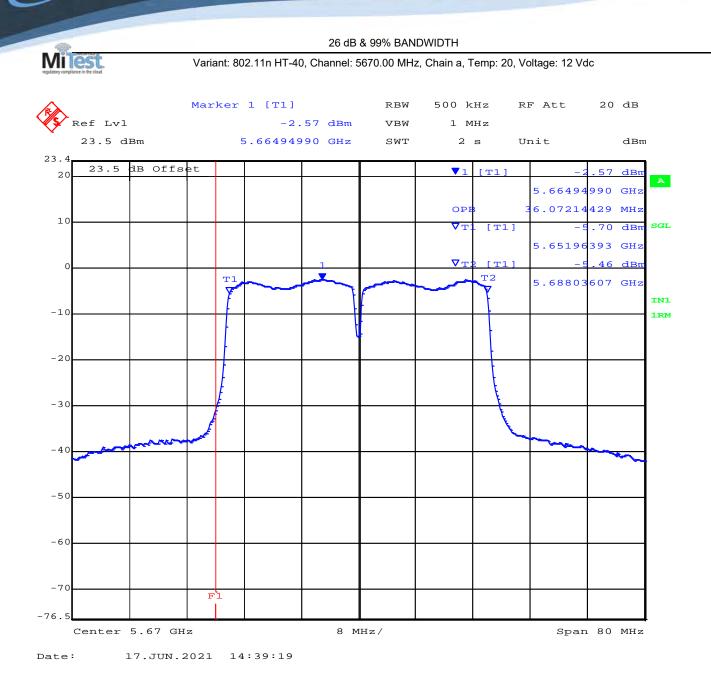




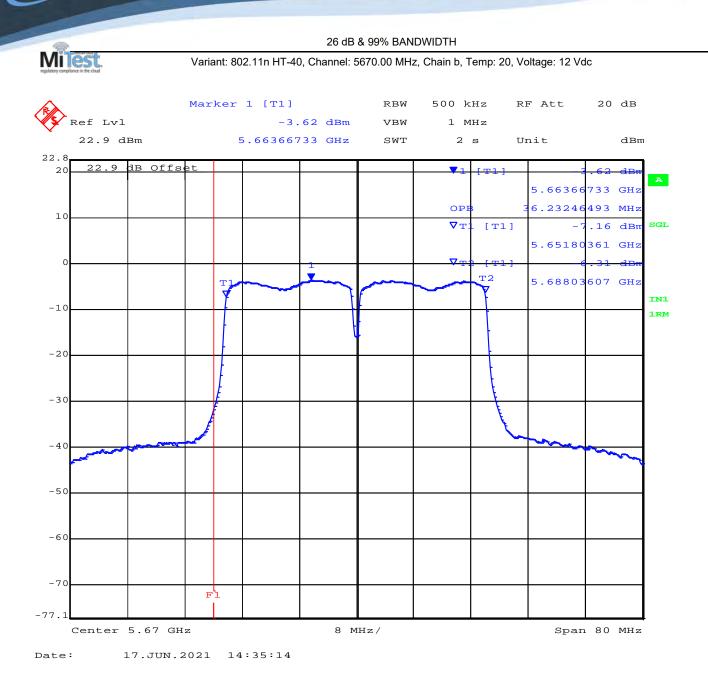


OBW : 36.995 MHz





Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 5514.530 MHz : -13.087 dBm	Measured 26 dB Bandwidth: 69.470 MHz
Sweep Count = 0	M2 : 5542.000 MHz : 12.796 dBm	Measured 99% Bandwidth: 37.068 MHz
RF Atten (dB) = 20	Delta1 : 69.470 MHz : -0.095 dB	
Trace Mode = MAXH	T1 : 5531.333 MHz : 2.974 dBm	
	T2 : 5568.267 MHz : 4.389 dBm	
	OBW : 37.068 MHz	


back to matrix

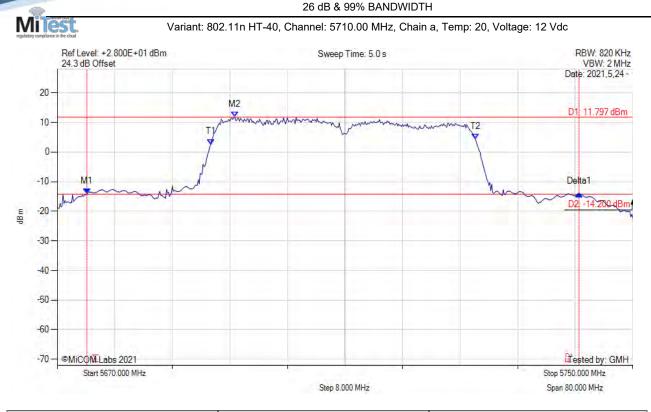
 Issue Date:
 25th June 2021
 Page:
 188 of 226

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

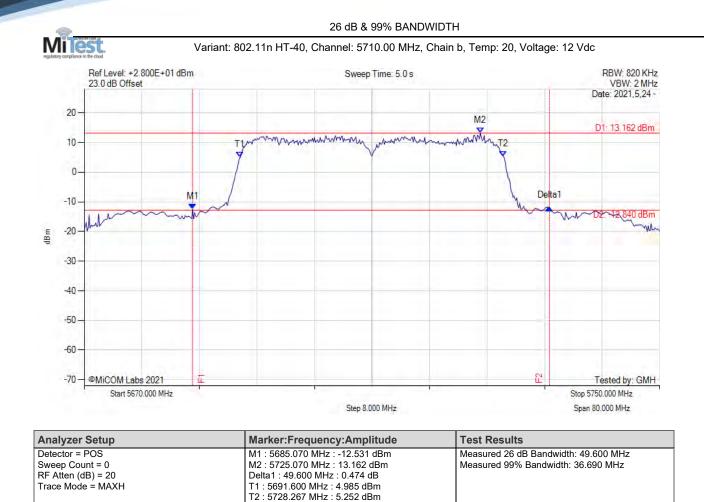
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

back to matrix

 Issue Date:
 25th June 2021
 Page:
 189 of 226

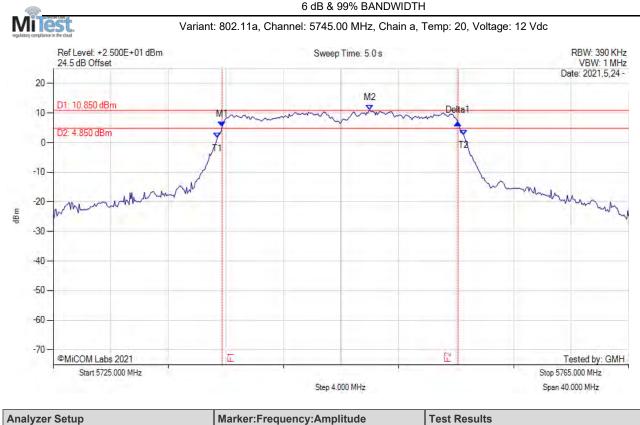

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

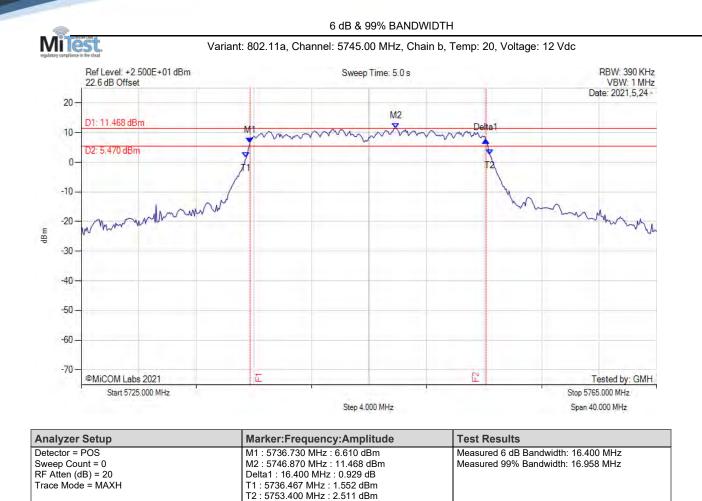

To: Serial #:

Title: Hewlett Packard Enterprise Company ASIN0304 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 HPEN155-U9 Rev A (UNII)

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAXH		Measured 26 dB Bandwidth: 68.400 MHz Measured 99% Bandwidth: 36.929 MHz

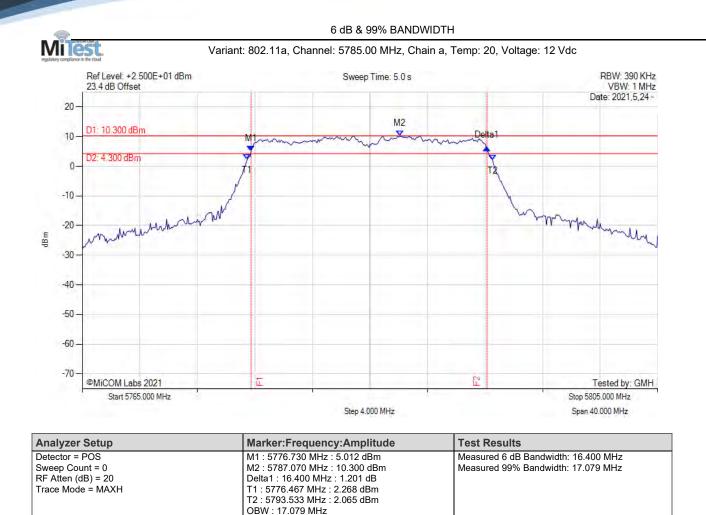


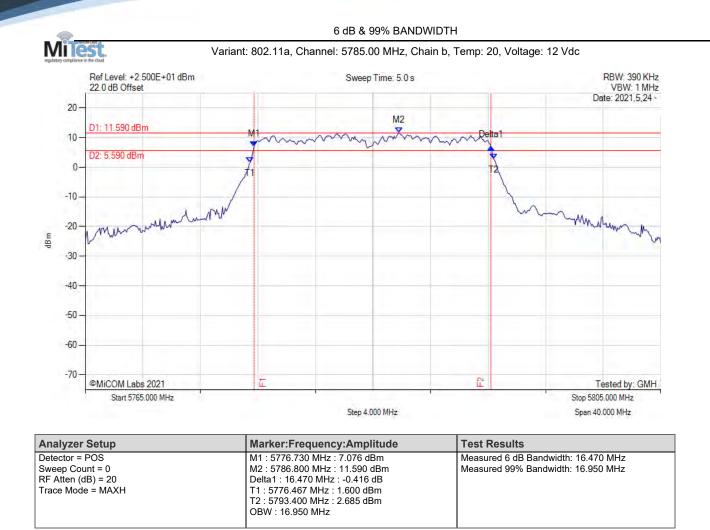
OBW : 36.690 MHz


Hewlett Packard Enterprise Company ASIN0304
 FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2
 HPEN155-U9 Rev A (UNII)

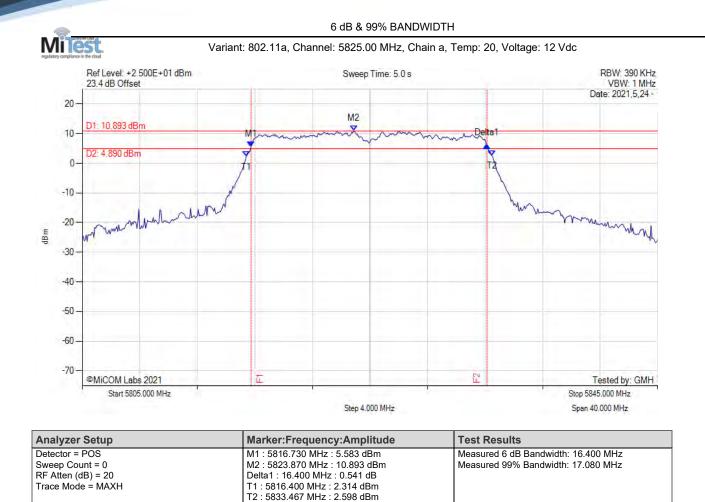
A.3. 6 dB & 99% Bandwidth

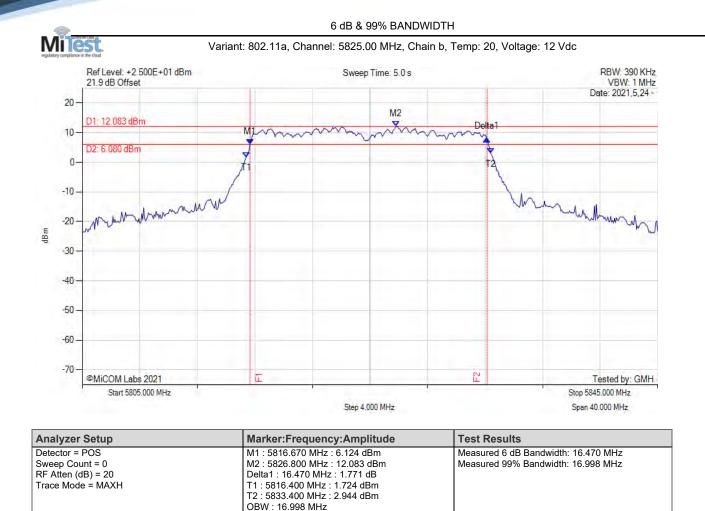
Analyzer Setup	warker:Frequency:Amplitude	Test Results	
Detector = POS	M1 : 5736.730 MHz : 5.271 dBm	Measured 6 dB Bandwidth: 16.400 MHz	
Sweep Count = 0	M2 : 5747.000 MHz : 10.850 dBm	Measured 99% Bandwidth: 17.137 MHz	
RF Atten (dB) = 20	Delta1 : 16.400 MHz : 1.404 dB		
Trace Mode = MAXH	T1 : 5736.400 MHz : 1.539 dBm		
	T2 : 5753.533 MHz : 2.651 dBm		
	OBW : 17.137 MHz		



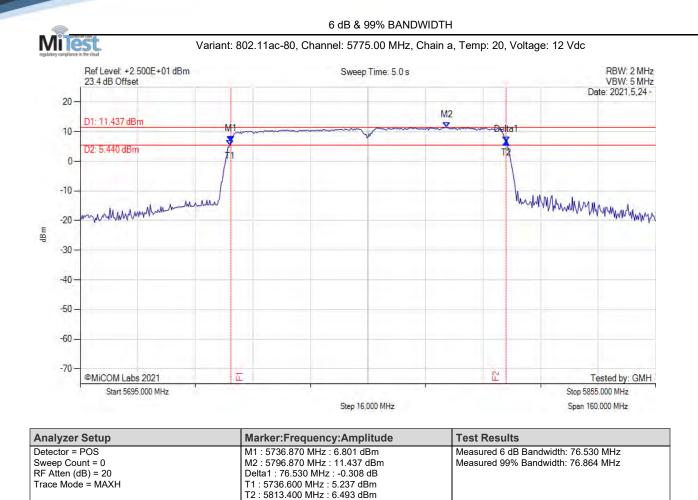

OBW : 16.958 MHz

	Issue Date:	25 th June 2021	Page:	193 of 226
	This test report	may be reproduced in full only.	The document may only be update	ed by MiCOM Labs
	perso	nnel. All changes will be noted in	the Document History section of th	ne report.
MiCOM	Labs, 575 Boulder Cou	rt, Pleasanton, California 94566 USA,	Phone: +1 (925) 462 0304, Fax: +1 (92	25) 462 0306, www.micomlabs.com

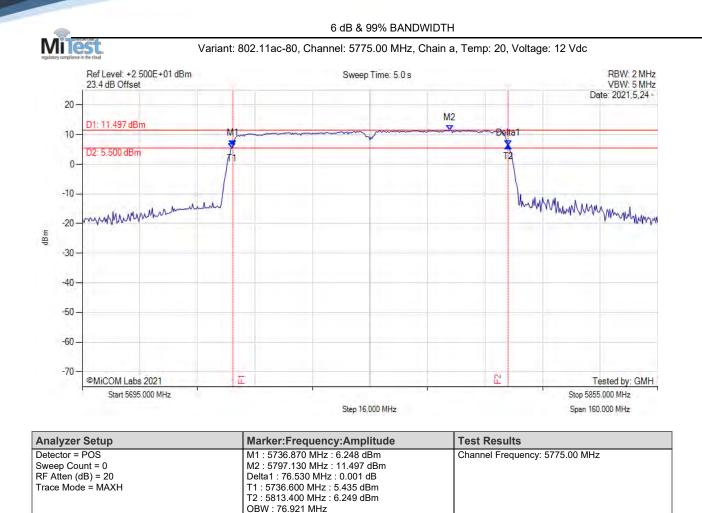


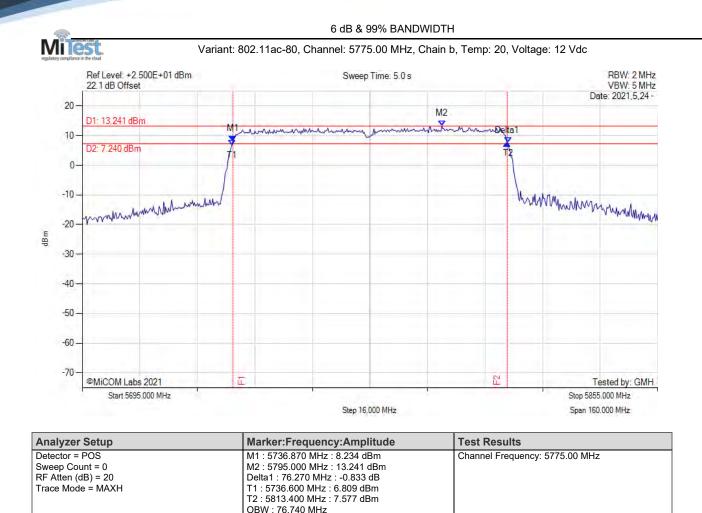


itle: Hewlett Packard Enterprise Company ASIN0304 To: FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 al #: HPEN155-U9 Rev A (UNII)

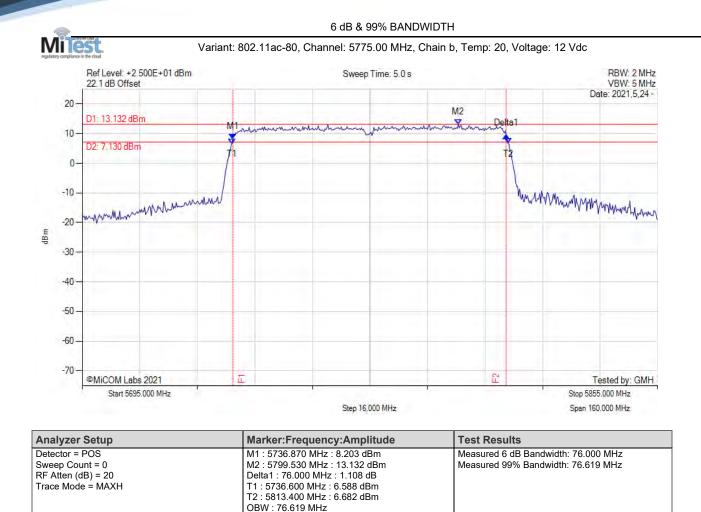


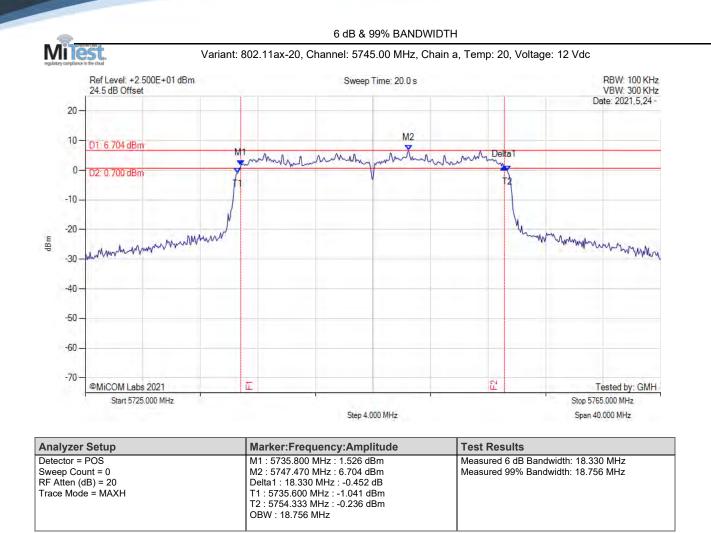
OBW : 17.080 MHz

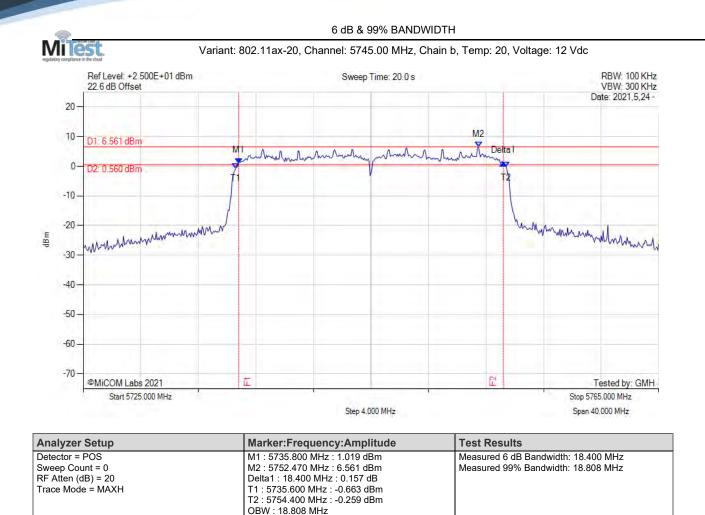


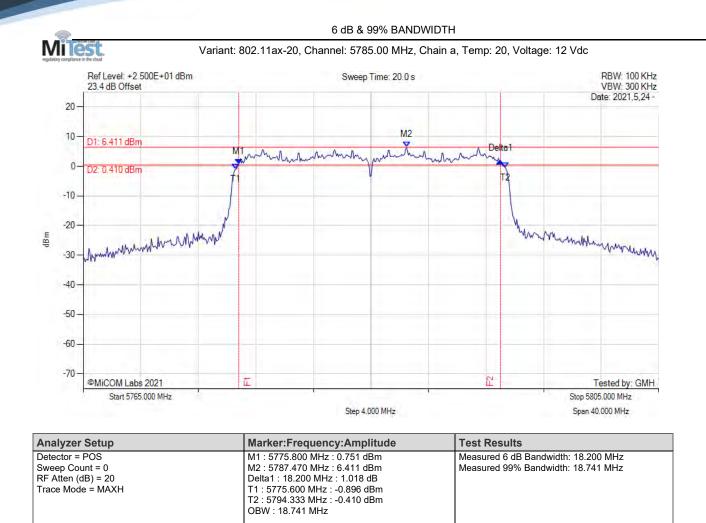


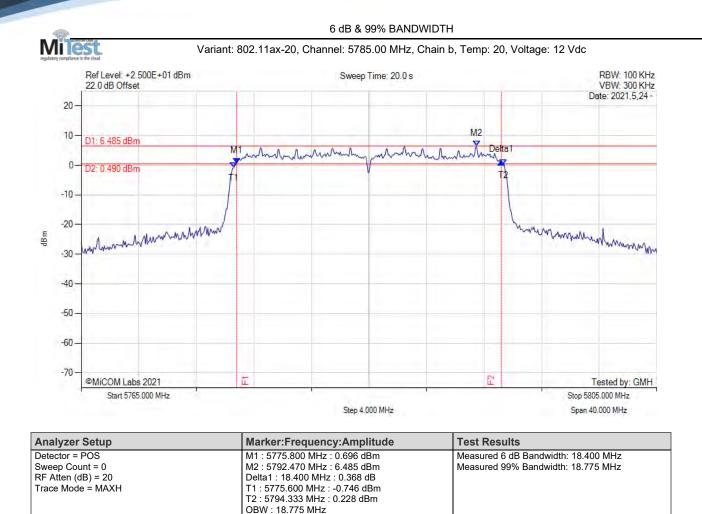
OBW : 76.864 MHz

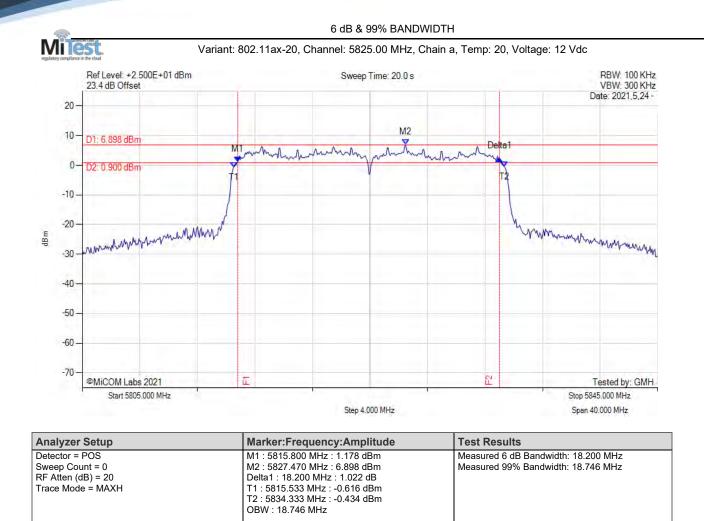


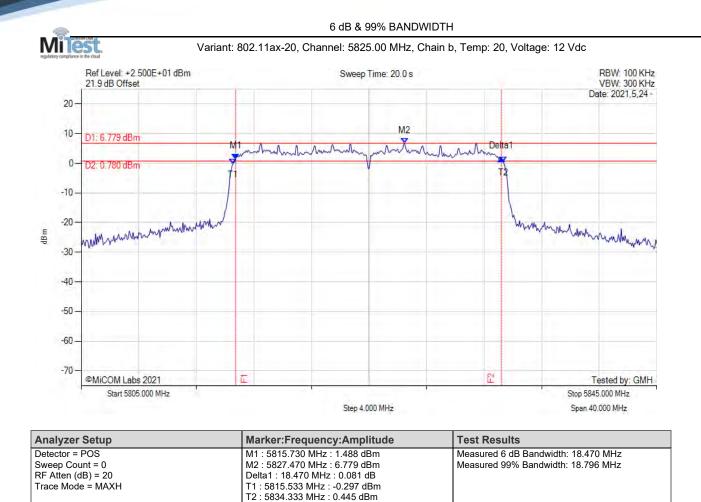


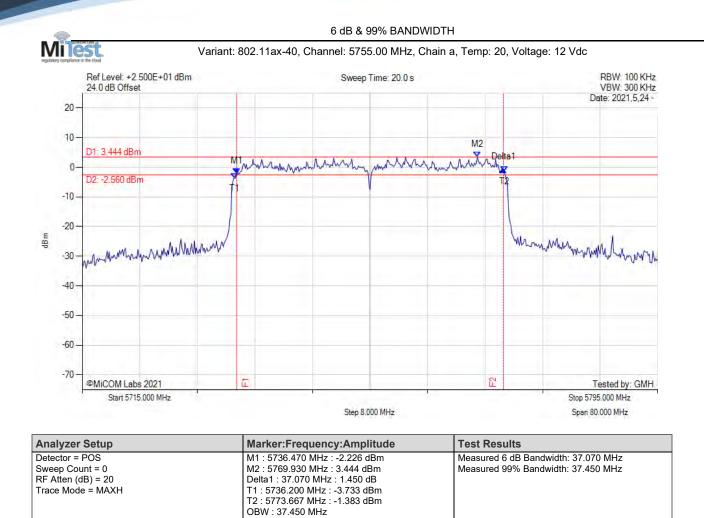


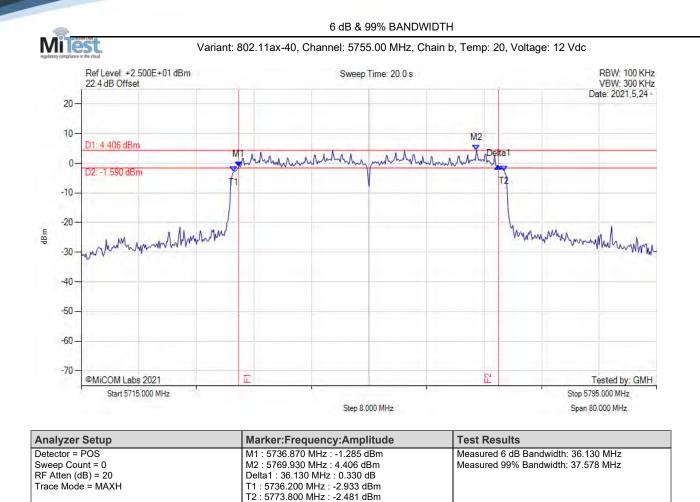




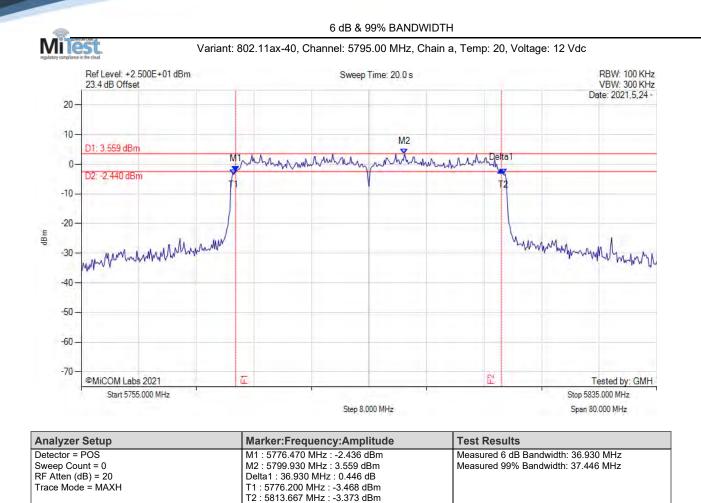


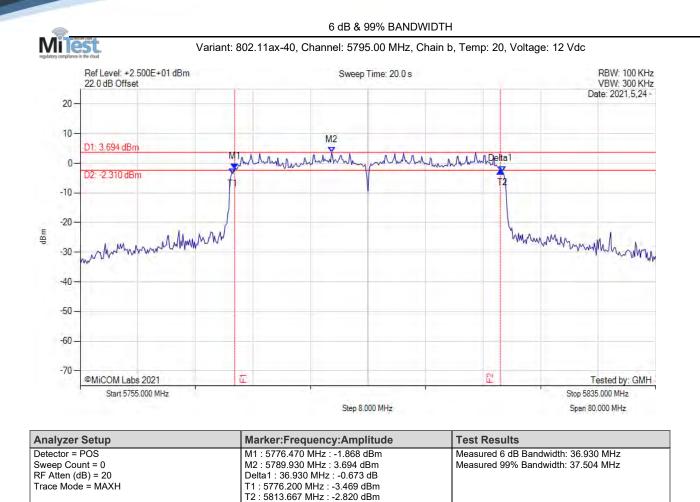




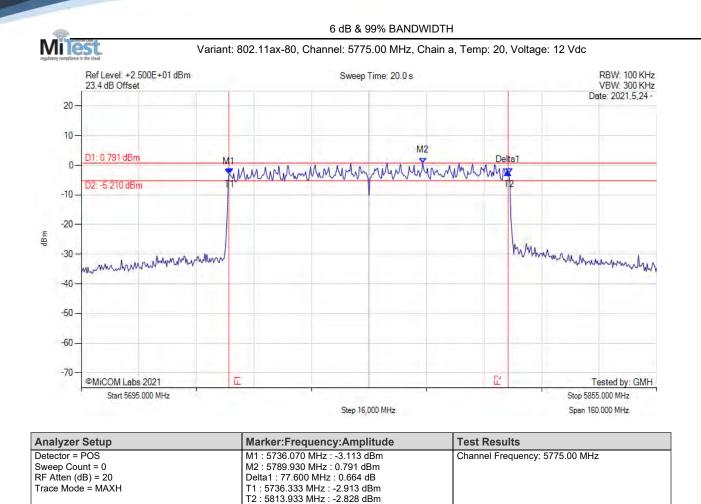


OBW : 18.796 MHz

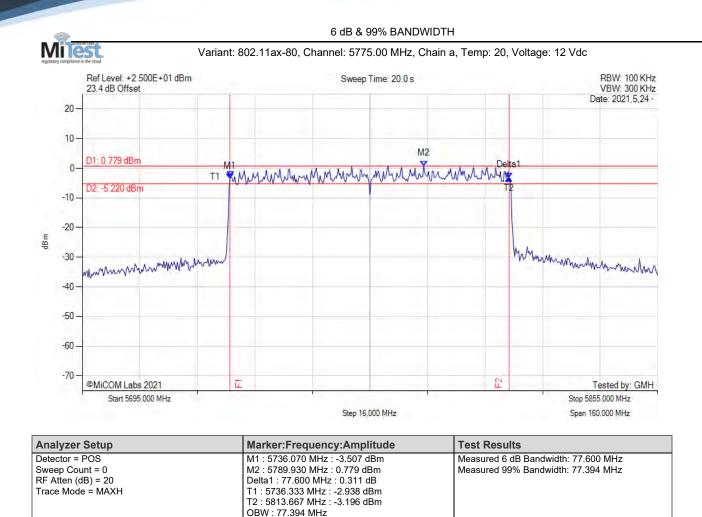



OBW : 37.578 MHz

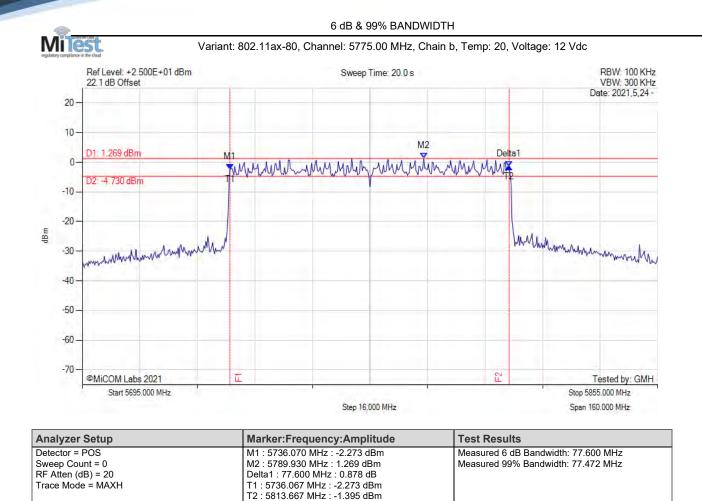
OBW : 37.446 MHz



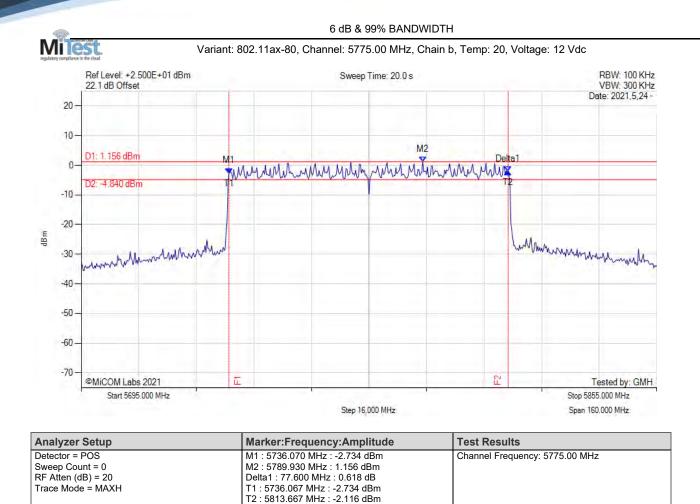
OBW : 37.504 MHz


itle: Hewlett Packard Enterprise Company ASIN0304 To: FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 II #: HPEN155-U9 Rev A (UNII)

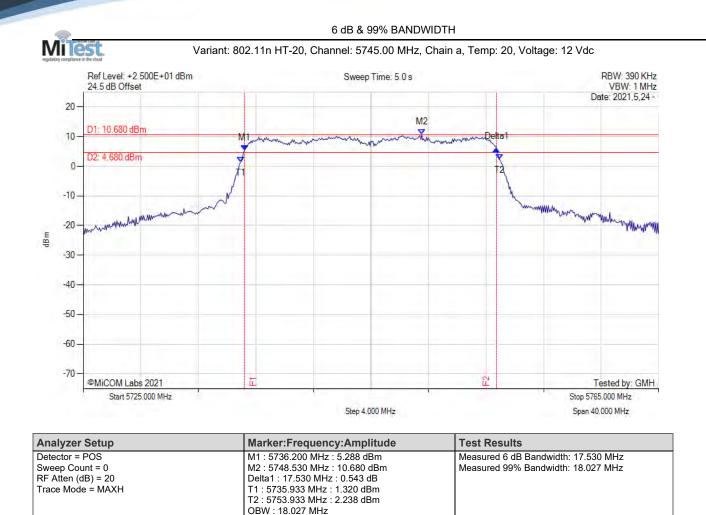
OBW : 77.475 MHz



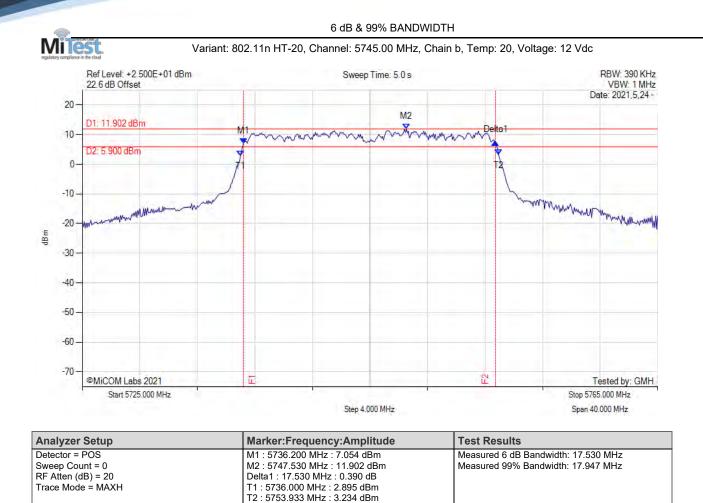
itle: Hewlett Packard Enterprise Company ASIN0304 To: FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 II #: HPEN155-U9 Rev A (UNII)


itle: Hewlett Packard Enterprise Company ASIN0304 To: FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 al #: HPEN155-U9 Rev A (UNII)

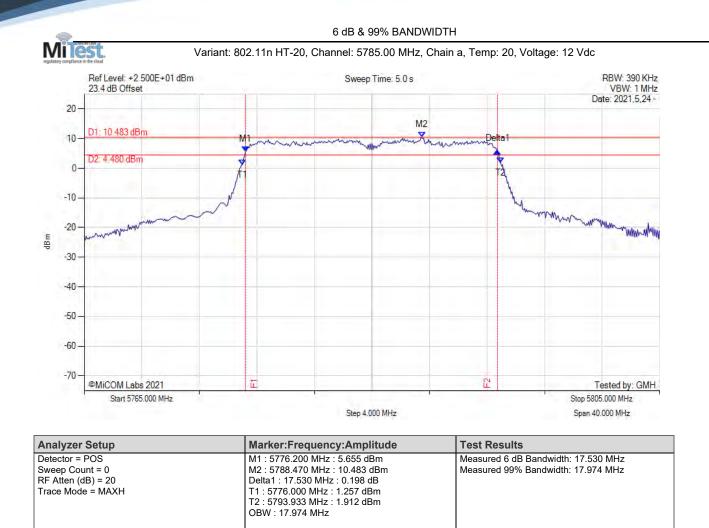
OBW : 77.472 MHz

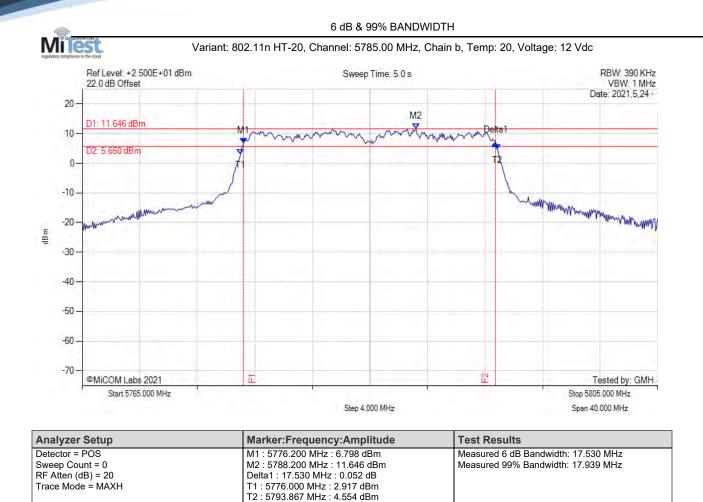


itle: Hewlett Packard Enterprise Company ASIN0304 To: FCC Part 15 Subpart E 15.407, ISED RSS-247 Issue 2 II #: HPEN155-U9 Rev A (UNII)

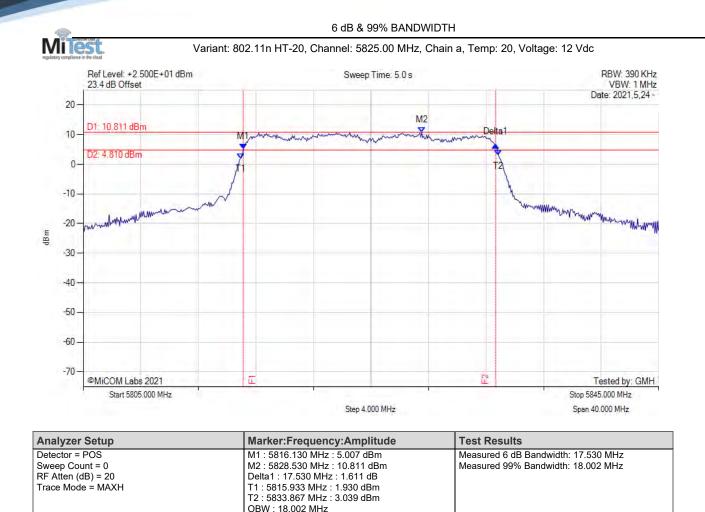


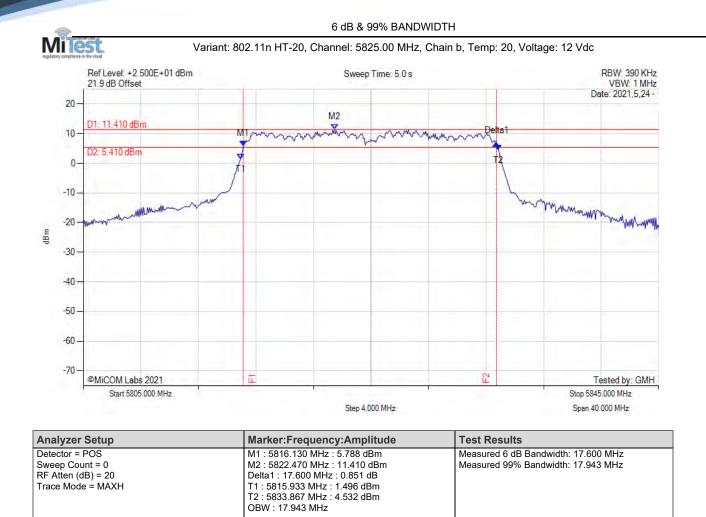
OBW : 77.500 MHz



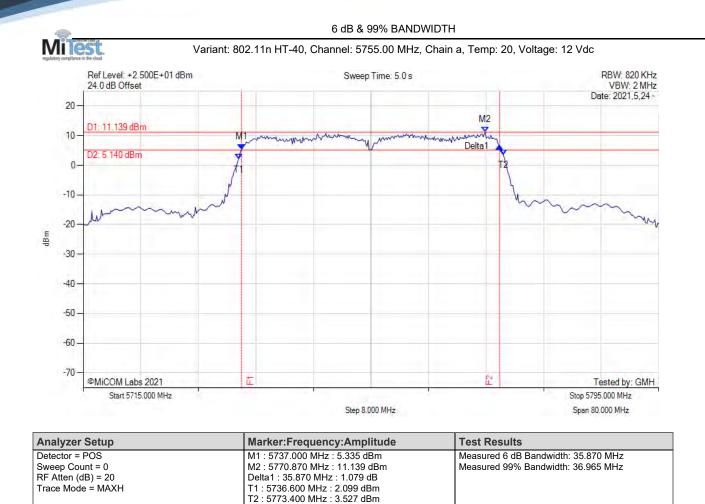


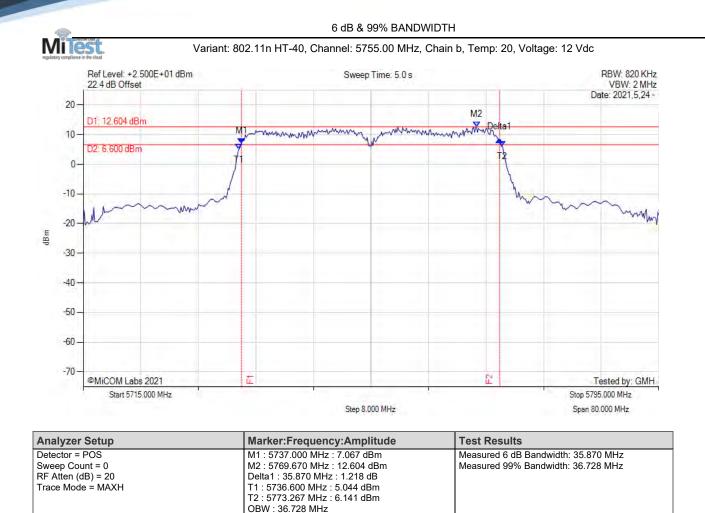
OBW : 17.947 MHz

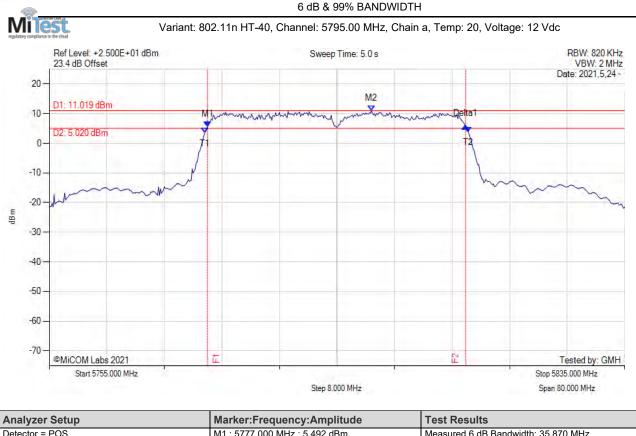




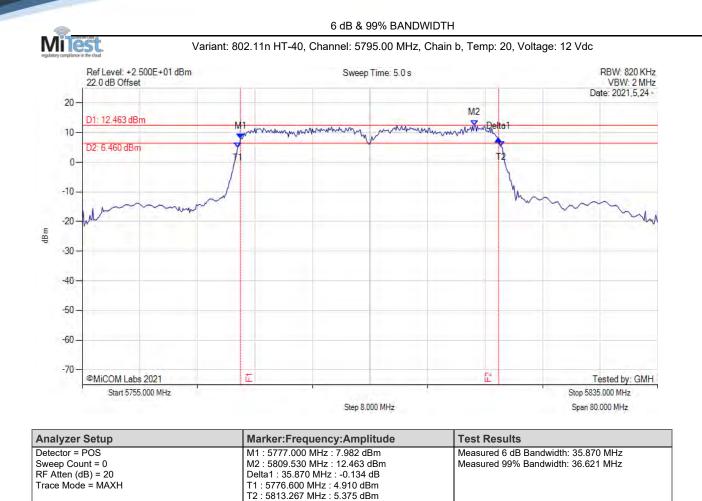
OBW : 17.939 MHz







OBW : 36.965 MHz



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 5777.000 MHz : 5.492 dBm	Measured 6 dB Bandwidth: 35.870 MHz
Sweep Count = 0	M2 : 5799.800 MHz : 11.019 dBm	Measured 99% Bandwidth: 36.817 MHz
RF Atten (dB) = 20	Delta1 : 35.870 MHz : 0.413 dB	
Trace Mode = MAXH	T1 : 5776.600 MHz : 3.427 dBm	
	T2 : 5813.267 MHz : 3.771 dBm	
	OBW : 36.817 MHz	

OBW : 36.621 MHz

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com