

# **REGULATORY COMPLIANCE TEST REPORT**

# FCC CFR 47 15.247, RSS-247 Issue 2

Report No.: HPEN141-U2 Rev A (BLE)

Company: Hewlett Packard Enterprise

Model Name: ASIN0301



# **REGULATORY COMPLIANCE TEST REPORT**

Company: Hewlett Packard Enterprise

Model Name: ASIN0301

To: FCC CFR47 Part 15 Subpart C 15.247 (DTS), RSS-247 Issue 2

Test Report Serial No.: HPEN141-Rev A (BLE)

This report supersedes: NONE

Applicant: Hewlett Packard Enterprise Company 3333 Scott Blvd. Santa Clara, California 95054 USA

Issue Date: 5<sup>th</sup> September 2019

### This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com



MiCOM Labs is an ISO 17025 Accredited Testing Laboratory



# **Table of Contents**

| 1. ACCREDITATION, LISTINGS & RECOGNITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1.1. TESTING ACCREDITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                |
| 1.2. RECOGNITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                |
| 1.3. PRODUCT CERTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                |
| 2. DOCUMENT HISTORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                |
| 3. TEST RESULT CERTIFICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                |
| 4. REFERENCES AND MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |
| 4.1. Normative References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |
| 4.2. Test and Uncertainty Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                               |
| 5. PRODUCT DETAILS AND TEST CONFIGURATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
| 5.1. Technical Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |
| 5.2. Scope Of Test Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
| 5.3. Equipment Model(s) and Serial Number(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |
| 5.4. Antenna Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |
| 5.5. Cabling and I/O Ports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
| 5.6. Test Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |
| 5.7. Equipment Modifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |
| 5.8. Deviations from the Test Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |
| 6. TEST SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| 7. TEST EQUIPMENT CONFIGURATION(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |
| 7.1. Conducted Test Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |
| 7.2. Radiated Emissions - 3m Chamber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| 8. MEASUREMENT AND PRESENTATION OF TEST DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |
| 9. TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                               |
| 9. TEST RESULTS<br>9.1. 6 dB & 99% Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>20</b><br>20                                                                                                                  |
| 9. TEST RESULTS<br>9.1. 6 dB & 99% Bandwidth<br>9.2. Conducted Output Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>20</b><br>20<br>22                                                                                                            |
| 9. TEST RESULTS<br>9.1. 6 dB & 99% Bandwidth<br>9.2. Conducted Output Power<br>9.3. Power Spectral Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>20<br>22<br>25                                                                                                             |
| 9. TEST RESULTS.<br>9.1. 6 dB & 99% Bandwidth<br>9.2. Conducted Output Power.<br>9.3. Power Spectral Density.<br>9.4. Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>20</b><br>20<br>22<br>25<br>27                                                                                                |
| 9. TEST RESULTS.<br>9.1. 6 dB & 99% Bandwidth<br>9.2. Conducted Output Power.<br>9.3. Power Spectral Density.<br>9.4. Emissions.<br>9.4.1. Conducted Emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>20<br>22<br>25<br>27<br>27                                                                                                 |
| 9. TEST RESULTS.<br>9.1. 6 dB & 99% Bandwidth<br>9.2. Conducted Output Power.<br>9.3. Power Spectral Density.<br>9.4. Emissions.<br>9.4.1. Conducted Emissions.<br>9.4.1.1. Conducted Spurious Emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20<br>20<br>22<br>25<br>27<br>27<br>27                                                                                           |
| <ul> <li>9. TEST RESULTS.</li> <li>9.1. 6 dB &amp; 99% Bandwidth</li> <li>9.2. Conducted Output Power.</li> <li>9.3. Power Spectral Density.</li> <li>9.4. Emissions.</li> <li>9.4.1. Conducted Emissions.</li> <li>9.4.1.1. Conducted Spurious Emissions.</li> <li>9.4.1.2. Conducted Band-Edge Emissions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>20<br>22<br>25<br>27<br>27<br>27<br>29                                                                                     |
| <ul> <li>9. TEST RESULTS.</li> <li>9.1. 6 dB &amp; 99% Bandwidth</li> <li>9.2. Conducted Output Power.</li> <li>9.3. Power Spectral Density.</li> <li>9.4. Emissions.</li> <li>9.4.1. Conducted Emissions.</li> <li>9.4.1.1. Conducted Spurious Emissions.</li> <li>9.4.1.2. Conducted Band-Edge Emissions.</li> <li>9.4.2. Radiated Emissions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>20<br>22<br>25<br>27<br>27<br>27<br>29<br>31                                                                               |
| <ul> <li>9. TEST RESULTS.</li> <li>9.1. 6 dB &amp; 99% Bandwidth</li> <li>9.2. Conducted Output Power.</li> <li>9.3. Power Spectral Density.</li> <li>9.4. Emissions.</li> <li>9.4.1. Conducted Emissions.</li> <li>9.4.1.1. Conducted Spurious Emissions.</li> <li>9.4.1.2. Conducted Band-Edge Emissions.</li> <li>9.4.2. Radiated Emissions.</li> <li>9.4.2.3. TX Spurious &amp; Restricted Band Emissions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>22<br>25<br>27<br>27<br>27<br>27<br>29<br>31<br>31                                                                         |
| <ul> <li>9. TEST RESULTS.</li> <li>9.1. 6 dB &amp; 99% Bandwidth</li> <li>9.2. Conducted Output Power.</li> <li>9.3. Power Spectral Density.</li> <li>9.4. Emissions.</li> <li>9.4.1. Conducted Emissions.</li> <li>9.4.1.1. Conducted Spurious Emissions.</li> <li>9.4.1.2. Conducted Band-Edge Emissions.</li> <li>9.4.2. Radiated Emissions.</li> <li>9.4.2.3. TX Spurious &amp; Restricted Band Emissions.</li> <li>9.4.2.4. Restricted Edge &amp; Band-Edge Emissions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                           | 20<br>22<br>25<br>27<br>27<br>27<br>27<br>29<br>31<br>31<br>36                                                                   |
| <ul> <li>9. TEST RESULTS.</li> <li>9.1. 6 dB &amp; 99% Bandwidth</li> <li>9.2. Conducted Output Power.</li> <li>9.3. Power Spectral Density.</li> <li>9.4. Emissions.</li> <li>9.4.1. Conducted Emissions.</li> <li>9.4.1.1. Conducted Spurious Emissions.</li> <li>9.4.1.2. Conducted Band-Edge Emissions.</li> <li>9.4.2. Radiated Emissions.</li> <li>9.4.2.3. TX Spurious &amp; Restricted Band Emissions.</li> <li>9.4.2.4. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.4. Restricted Edge &amp; Band-Edge Emissions.</li> <li>4. APPENDIX - GRAPHICAL IMAGES.</li> </ul>                                                                                                                                                                                                                                                     | 20<br>22<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>31<br>31<br>36<br>38                                                       |
| <ul> <li>9. TEST RESULTS.</li> <li>9.1. 6 dB &amp; 99% Bandwidth</li> <li>9.2. Conducted Output Power.</li> <li>9.3. Power Spectral Density.</li> <li>9.4. Emissions.</li> <li>9.4.1. Conducted Emissions.</li> <li>9.4.1.1. Conducted Spurious Emissions.</li> <li>9.4.1.2. Conducted Band-Edge Emissions.</li> <li>9.4.2.3. TX Spurious &amp; Restricted Band Emissions.</li> <li>9.4.2.4. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.4. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.4. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.6. GRAPHICAL IMAGES.</li> <li>A.1. 6 dB &amp; 99% Bandwidth</li> </ul>                                                                                                                                                                                          | 20<br>22<br>25<br>27<br>27<br>27<br>27<br>27<br>31<br>31<br>36<br>38<br>39                                                       |
| <ul> <li>9. TEST RESULTS.</li> <li>9.1. 6 dB &amp; 99% Bandwidth</li> <li>9.2. Conducted Output Power.</li> <li>9.3. Power Spectral Density.</li> <li>9.4. Emissions.</li> <li>9.4.1. Conducted Emissions.</li> <li>9.4.1.1. Conducted Spurious Emissions.</li> <li>9.4.1.2. Conducted Band-Edge Emissions.</li> <li>9.4.2.3. TX Spurious &amp; Restricted Band Emissions.</li> <li>9.4.2.4. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.4. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.5. TX Spurious &amp; Restricted Band Emissions.</li> <li>9.4.2.6. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.7. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.8. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.9. Power Spectral Density</li></ul>                                    | 20<br>22<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>31<br>31<br>36<br>38<br>39<br>42                                           |
| <ul> <li>9. TEST RESULTS</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>22<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>31<br>31<br>36<br>39<br>42<br>48                                           |
| <ul> <li>9. TEST RESULTS</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>22<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>31<br>31<br>31<br>38<br>39<br>42<br>48<br>48                         |
| <ul> <li>9. TEST RESULTS.</li> <li>9.1. 6 dB &amp; 99% Bandwidth</li> <li>9.2. Conducted Output Power.</li> <li>9.3. Power Spectral Density.</li> <li>9.4. Emissions.</li> <li>9.4.1. Conducted Emissions.</li> <li>9.4.1.1. Conducted Spurious Emissions.</li> <li>9.4.1.2. Conducted Band-Edge Emissions.</li> <li>9.4.2. Radiated Emissions.</li> <li>9.4.2.3. TX Spurious &amp; Restricted Band Emissions.</li> <li>9.4.2.4. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.4. Restricted Edge &amp; Band-Edge Emissions.</li> <li>9.4.2.5. TX Spurious &amp; Restricted Band Emissions.</li> <li>9.4.2.6. RAPHICAL IMAGES.</li> <li>A.1.6 dB &amp; 99% Bandwidth.</li> <li>A.2. Power Spectral Density.</li> <li>A.3. Emissions.</li> <li>A.3.1. Conducted Emissions.</li> <li>A.3.1.1. Conducted Spurious Emissions.</li> </ul> | 20<br>20<br>22<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>31<br>31<br>31<br>36<br>38<br>42<br>48<br>48                         |
| <ul> <li>9. TEST RESULTS</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>22<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>31<br>31<br>31<br>33<br>39<br>42<br>48<br>48<br>48<br>48<br>51       |
| <ul> <li>9. TEST RESULTS</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>22<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>31<br>31<br>31<br>36<br>38<br>42<br>48<br>48<br>48<br>51<br>53       |
| <ul> <li>9. TEST RESULTS</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>22<br>25<br>27<br>27<br>27<br>27<br>27<br>27<br>31<br>31<br>36<br>38<br>39<br>42<br>48<br>48<br>48<br>51<br>53<br>53 |



# 1. ACCREDITATION, LISTINGS & RECOGNITION

# 1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>





# 1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

| Country   | Recognition Body                                                                                          | Status | Phase      | Identification No.                      |
|-----------|-----------------------------------------------------------------------------------------------------------|--------|------------|-----------------------------------------|
| USA       | Federal Communications<br>Commission (FCC)                                                                | ТСВ    | -          | US0159<br>Listing #: 102167             |
| Canada    | Industry Canada (IC)                                                                                      | FCB    | APEC MRA 2 | US0159<br>Listing #: 4143A-2<br>4143A-3 |
| Japan     | MIC (Ministry of Internal<br>Affairs and Communication)                                                   | CAB    | APEC MRA 2 | RCB 210                                 |
|           | VCCI                                                                                                      |        |            | A-0012                                  |
| Europe    | European Commission                                                                                       | NB     | EU MRA     | NB 2280                                 |
| Australia | Australian Communications<br>and Media Authority (ACMA)                                                   | CAB    | APEC MRA 1 |                                         |
| Hong Kong | Office of the<br>Telecommunication Authority<br>(OFTA)                                                    | CAB    | APEC MRA 1 |                                         |
| Korea     | Ministry of Information and<br>Communication Radio<br>Research Laboratory (RRL)                           | САВ    | APEC MRA 1 |                                         |
| Singapore | Infocomm Development<br>Authority (IDA)                                                                   | CAB    | APEC MRA 1 | US0159                                  |
| Taiwan    | National Communications<br>Commission (NCC)<br>Bureau of Standards,<br>Metrology and Inspection<br>(BSMI) | САВ    | APEC MRA 1 |                                         |
| Vietnam   | Ministry of Communication (MIC)                                                                           | CAB    | APEC MRA 1 |                                         |

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II - recognition for both product testing and certification



## 1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>



United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210



# 2. DOCUMENT HISTORY

| Document History |                                |                   |  |  |  |  |
|------------------|--------------------------------|-------------------|--|--|--|--|
| Revision         | Date                           | Comments          |  |  |  |  |
| Draft            | 6 <sup>th</sup> August 2019    | Draft for comment |  |  |  |  |
| Rev A            | 5 <sup>th</sup> September 2019 | Initial Release   |  |  |  |  |
|                  |                                |                   |  |  |  |  |
|                  |                                |                   |  |  |  |  |
|                  |                                |                   |  |  |  |  |
|                  |                                |                   |  |  |  |  |
|                  |                                |                   |  |  |  |  |

In the above table the latest report revision will replace all earlier versions.



# 3. TEST RESULT CERTIFICATE

|                 | Hewlett Packard Enterprise<br>3333 Scott Blvd.<br>Santa Clara, California 95054<br>USA | Tested By: | MiCOM Labs, Inc.<br>575 Boulder Court<br>Pleasanton California 94566<br>USA |
|-----------------|----------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|
| Model: /        | ASIN0301                                                                               | Telephone: | +1 925 462 0304                                                             |
| Equipment Type: | Mobile & Portable Client Device                                                        | Fax:       | +1 925 462 0306                                                             |
|                 | Conducted Testing: TWHXKRY005<br>Radiated Testing: TWHXKRY00P                          |            |                                                                             |
| Test Date(s): 2 | 2 <sup>nd</sup> August – 5 <sup>th</sup> September 2019                                | Website:   | www.micomlabs.com                                                           |

STANDARD(S)

TEST RESULTS

**EQUIPMENT COMPLIES** 

## FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

#### Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

#### Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.



Gordon Hurst President & CEO MiCOM Labs, Inc.

# 4. REFERENCES AND MEASUREMENT UNCERTAINTY

# 4.1. Normative References

| REF. | PUBLICATION               | YEAR                                    | TITLE                                                                                                                                                                                                          |
|------|---------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | KDB 662911 D01<br>v02r01  | Oct 31 2013                             | Guidance for measurement of output emission of devices<br>that employ single transmitter with multiple outputs or<br>systems with multiple transmitters operating<br>simultaneously in the same frequency band |
| II   | KDB 558074 D01<br>v05r02  | 2 <sup>nd</sup> April 2019              | Guidance for Compliance Measurements on Digital<br>Transmission System, Frequency Hopping Spread<br>Spectrum System, and Hybrid System Devices operating<br>under section 15.247 of the FCC Rules.             |
| Ш    | A2LA                      | August 2018                             | R105 - Requirement's When Making Reference to A2LA Accreditation Status                                                                                                                                        |
| IV   | ANSI C63.10               | 2013                                    | American National Standard for Testing Unlicensed<br>Wireless Devices                                                                                                                                          |
| v    | ANSI C63.4                | 2014                                    | American National Standards for Methods of<br>Measurement of Radio-Noise Emissions from Low-<br>Voltage Electrical and Electronic Equipment in the Range<br>of 9 kHz to 40 GHz                                 |
| VI   | CISPR 32                  | 2015                                    | Electromagnetic compatibility of multimedia equipment -<br>Emission requirements                                                                                                                               |
| VII  | ETSI TR 100 028           | 2001-12                                 | Parts 1 and 2 Electromagnetic compatibility and Radio<br>Spectrum Matters (ERM); Uncertainties in the<br>measurement of mobile radio equipment characteristics                                                 |
| VIII | FCC 47 CFR Part<br>15.247 | 2016                                    | Radio Frequency Devices; Subpart C – Intentional Radiators                                                                                                                                                     |
| IX   | ICES-003                  | Issue 6 Jan 2016;<br>Updated April 2019 | Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.                                                                                                            |
| x    | M 3003                    | Edition 3 Nov.2012                      | Expression of Uncertainty and Confidence in<br>Measurements                                                                                                                                                    |
| XI   | RSS-247 Issue 2           | Feb 2017                                | Digital Transmission Systems (DTSs), Frequency<br>Hopping System (FHSs) and Licence-Exempt Local Area<br>Network (LE-LEN) Devices                                                                              |
| XII  | RSS-Gen Issue 5           | March 2019<br>Amendment 1               | General Requirements for Compliance of Radio<br>Apparatus                                                                                                                                                      |
| XIII | FCC 47 CFR Part<br>2.1033 | 2016                                    | FCC requirements and rules regarding photographs and test setup diagrams.                                                                                                                                      |



## 4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.



# 5. PRODUCT DETAILS AND TEST CONFIGURATIONS

# 5.1. Technical Details

| Details                              | Description                                                  |
|--------------------------------------|--------------------------------------------------------------|
| Purpose:                             | Test of the Hewlett Packard Enterprise Aruba User Experience |
|                                      | Insight to FCC CFR 47 Part 15 Subpart C 15.247 (DTS) and     |
|                                      | RSS-247 Issue 2.                                             |
| Applicant:                           | Hewlett Packard Enterprise                                   |
|                                      | 3333 Scott Blvd.                                             |
|                                      | Santa Clara, California 95054<br>USA                         |
| Manufacturer:                        | -                                                            |
| Laboratory performing the tests:     |                                                              |
| Laboratory performing the tests.     | 575 Boulder Court                                            |
|                                      | Pleasanton California 94566 USA                              |
| Test report reference number:        |                                                              |
| Date EUT received:                   |                                                              |
|                                      | FCC Part 15 Subpart C 15.247 (DTS), RSS-247 Issue 2          |
| Dates of test (from - to):           | 2 <sup>nd</sup> August – 5 <sup>th</sup> September 2019      |
| No of Units Tested:                  | 2                                                            |
|                                      | Aruba User Experience Insight Sensor                         |
|                                      | ASIN0301                                                     |
| Location for use:                    |                                                              |
| Declared Frequency Range(s):         |                                                              |
| Type of Modulation:                  | GFSK                                                         |
| EUT Modes of Operation:              |                                                              |
|                                      | BLE : GFSK                                                   |
| Declared Nominal Output Power (dBm): |                                                              |
| Rated Input Voltage and Current:     |                                                              |
| Operating Temperature Range:         |                                                              |
| ITU Emission Designator:             |                                                              |
| Equipment Dimensions:                | 26cm x 7.2cm x 4.2cm                                         |
| Weight:                              | <1kg                                                         |
| Hardware Rev:                        |                                                              |
|                                      | 4.14.76-armada-18.12.3                                       |
| Product Application:                 | Mobile & Portable Client Devices                             |



## 5.2. Scope Of Test Program

#### Hewlett Packard Enterprise Company ASIN0301

The scope of the test program was to test the Hewlett Packard Enterprise ASIN0301, Aruba User Experience Insight configurations in the frequency ranges 2400 - 2483.5 MHz; for compliance against the following specification:

#### FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C - Intentional Radiators

#### IC RSS-247

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

#### Aruba Networks, Hewlett Packard Enterprise Company ASIN0301





# 5.3. Equipment Model(s) and Serial Number(s)

| Type (EUT/<br>Support) | Equipment Description              | Manufacturer                  | Model No.  | Serial No. |
|------------------------|------------------------------------|-------------------------------|------------|------------|
| EUT Conducted          | Mobile & Portable Client<br>Device | Hewlett Packard<br>Enterprise | ASIN0301   | TWHXKRY005 |
| EUT Radiated           | Mobile & Portable Client<br>Device | Hewlett Packard<br>Enterprise | ASIN0301   | TWHXKRY00P |
| Support                | POE Power Supply                   | D-Link                        | EBU-101-T2 |            |
| Support                | Test Equipment                     | MiCOM Labs                    | MiTest     | ML512      |

## 5.4. Antenna Details

| Туре       | Manufacturer                                                                               | Model | Family | Gain<br>(dBi) | BF Gain | Dir BW | X-Pol | Frequency<br>Band (MHz) |
|------------|--------------------------------------------------------------------------------------------|-------|--------|---------------|---------|--------|-------|-------------------------|
| integral   | Aruba                                                                                      | AR3   | STAMP  | 1.8           | -       | 360    | -     | 2400 - 2483.5           |
| Dir BW - D | BF Gain - Beamforming Gain<br>Dir BW - Directional BeamWidth<br>X-Pol - Cross Polarization |       |        |               |         |        |       |                         |

# 5.5. Cabling and I/O Ports

| Port Type       | Max Cable<br>Length | # of Ports | Screened | Connector Type | Data Type | Data Rate(s) |
|-----------------|---------------------|------------|----------|----------------|-----------|--------------|
| USB             | 5m                  | 1          | Yes      | USB            | Digital   | Unknown      |
| Ethernet PoE IN | >30m                | 1          | No       | RJ45           | Packet    | 10,100,1000  |

# 5.6. Test Configurations

Results for the following configurations are provided in this report:

| Operational<br>Mode(s) | Data Rate with<br>Highest Power | Channel Frequency<br>(MHz)<br>Low Mid High |          |          |  |
|------------------------|---------------------------------|--------------------------------------------|----------|----------|--|
| (802.11a/b/g/n/ac)     | MBit/s                          |                                            |          |          |  |
| 2400 - 2483.5 MHz      |                                 |                                            |          |          |  |
| BLE                    | 1                               | 2,402.00                                   | 2,440.00 | 2,480.00 |  |



## 5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

## 5.8. Deviations from the Test Standard

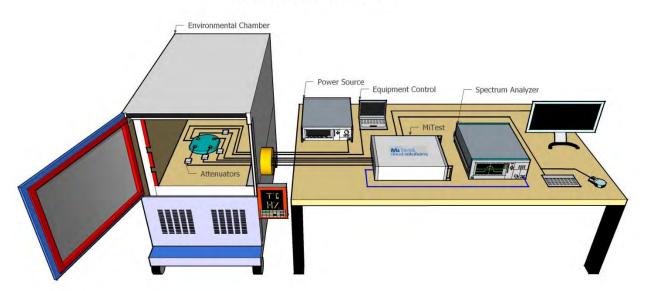
The following deviations from the test standard were required in order to complete the test program: 1. NONE



# 6. TEST SUMMARY

| Result   | Data Link                                                                                                                                                |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Complies | View Data                                                                                                                                                |
| Complies | View Data                                                                                                                                                |
| Complies | View Data                                                                                                                                                |
| Complies | -                                                                                                                                                        |
| Complies | -                                                                                                                                                        |
| Complies | View Data                                                                                                                                                |
| Complies | View Data                                                                                                                                                |
| Complies | -                                                                                                                                                        |
| Complies | View Data                                                                                                                                                |
| Complies | View Data                                                                                                                                                |
| Complies | See MiCOM Labs Test Report<br>HPEN141-G3 FCC Part 15B                                                                                                    |
| Complies | See MiCOM Labs Test Report<br>HPEN141-G3 FCC Part 15B                                                                                                    |
| Complies | See MiCOM Labs Test Report<br>HPEN141-FCC MPE                                                                                                            |
| Complies | -                                                                                                                                                        |
|          | Complies<br>Complies<br>Complies<br>Complies<br>Complies<br>Complies<br>Complies<br>Complies<br>Complies<br>Complies<br>Complies<br>Complies<br>Complies |

Simultaneous Transmission


The ASIN0301 operates using two technologies BLE and Wi-Fi, these modes of operation can transmit simultaneously. Simultaneous transmission testing was performed to ensure continuous compliance when operating in this mode. No issues were found on the ASIN0301 during the radiated spurious examination where both technologies operated simultaneously

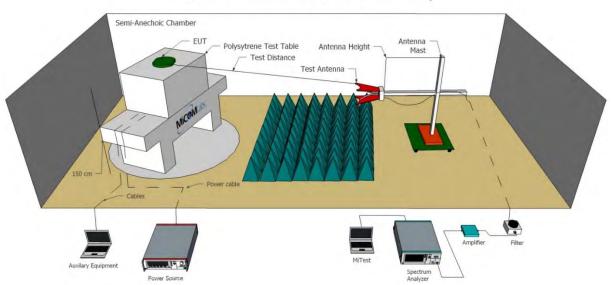


# 7. TEST EQUIPMENT CONFIGURATION(S)

# 7.1. Conducted Test Setup

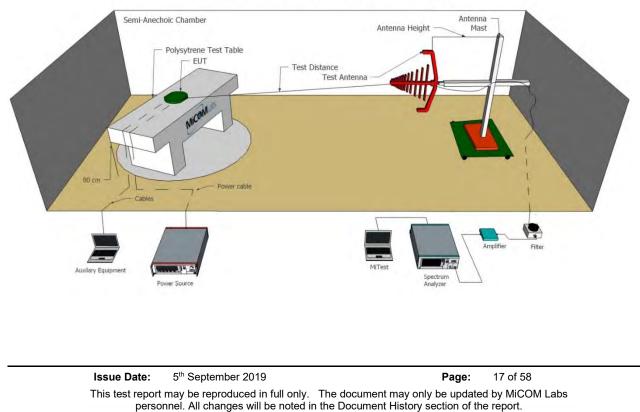
MiTest Automated Test System




A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

| Asset# | Description                                          | Manufacturer            | Model#         | Serial#       | Calibration<br>Due Date |
|--------|------------------------------------------------------|-------------------------|----------------|---------------|-------------------------|
| 249    | Resistance<br>Thermometer                            | Thermotronics           | GR2105-02      | 9340 #2       | 30 Oct 2019             |
| 361    | Desktop for RF#1,<br>Labview Software<br>installed   | Dell                    | Vostro 220     | WS RF#1       | Not Required            |
| 378    | Rohde & Schwarz 40<br>GHz Receiver with<br>Generator | Rhode &<br>Schwarz      | ESIB40         | 100107/040    | 12 Oct 2019             |
| 405    | DC Power Supply 0-60V                                | Agilent                 | 6654A          | MY4001826     | Cal when<br>used        |
| 408    | USB to GPIB interface                                | National<br>Instruments | GPIB-USB<br>HS | 14C0DE9       | Not Required            |
| 445    | PoE Injector                                         | D-Link                  | DPE-101GL      | QTAH1E2000625 | Not Required            |
| 461    | Spectrum Analyzer                                    | Agilent                 | E4440A         | MY46185537    | 20 Sep 2019             |
| 510    | Barometer/Thermometer                                | Control<br>Company      | 68000-49       | 170871375     | 11 Dec 2019             |
| 75     | Environmental Chamber                                | Thermatron              | SE-300-2-2     | 27946         | 24 Feb 2020             |




# 7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above and below 1GHz.



#### Radiated Emissions Above 1GHz Test Setup

#### Radiated Emissions Below 1GHz Test Setup



MiCOM Labs, 575 Boulder Court, Pleasanton, Čalifornia 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

| Asset# | Description                                             | Manufacturer            | Model#                       | Serial#     | Calibration<br>Due Date |  |
|--------|---------------------------------------------------------|-------------------------|------------------------------|-------------|-------------------------|--|
| 170    | Video System Controller<br>for Semi Anechoic<br>Chamber | Panasonic               | WV-CU101                     | 04R08507    | Not Required            |  |
| 298    | 3M Radiated Emissions<br>Chamber Maintenance<br>Check   | MiCOM                   | 3M Chamber                   | 298         | 21 Apr 2020             |  |
| 336    | Active Loop Antenna                                     | Emco                    | 6502                         | 00060498    | 29 Nov 2019             |  |
| 338    | Sunol 30 to 3000 MHz<br>Antenna                         | Sunol                   | JB3                          | A052907     | 4 Apr 2020              |  |
| 378    | Rohde & Schwarz 40<br>GHz Receiver with<br>Generator    | Rhode &<br>Schwarz      | ESIB40                       | 100107/040  | 12 Oct 2019             |  |
| 397    | Amp 10 - 2500MHz                                        | MiCOM Labs              | Amp 10 - 2500<br>MHz         | NA          | 12 Apr 2020             |  |
| 399    | ETS 1-18 GHz Horn<br>Antenna                            | ETS                     | 3117                         | 00154575    | 12 Oct 2019             |  |
| 406    | Amplifier for Radiated<br>Emissions                     | MiCOM Labs              | 40dB 1 to<br>18GHz Amp       | 0406        | 12 Apr 2020             |  |
| 410    | Desktop Computer                                        | Dell                    | Inspiron 620                 | WS38        | Not Required            |  |
| 411    | Mast/Turntable<br>Controller                            | Sunol Sciences          | SC98V                        | 060199-1D   | Not Required            |  |
| 412    | USB to GPIB Interface                                   | National<br>Instruments | GPIB-USB HS                  | 11B8DC2     | Not Required            |  |
| 413    | Mast Controller                                         | Sunol Science           | TWR95-4                      | 030801-3    | Not Required            |  |
| 415    | Turntable Controller                                    | Sunol Sciences          | Turntable<br>Controller      | None        | Not Required            |  |
| 416    | Gigabit ethernet filter                                 | ETS-Lingren             | Gigafoil<br>260366           | None        | Not Required            |  |
| 447    | MiTest Rad Emissions<br>Test Software                   | MiCOM                   | Test Software<br>Version 1.0 | 447         | Not Required            |  |
| 462    | Schwarzbeck cable from Antenna to Amplifier.            | Schwarzbeck             | AK 9513                      | 462         | 9 Oct 2019              |  |
| 463    | Schwarzbeck cable from Amplifier to Bulkhead.           | Schwarzbeck             | AK 9513                      | 463         | 9 Oct 2019              |  |
| 464    | Schwarzbeck cable from<br>Bulkhead to Receiver          | Schwarzbeck             | AK 9513                      | 464         | 9 Oct 2019              |  |
| 465    | Low Pass Filter DC-<br>1000 MHz                         | Mini-Circuits           | NLP-1200+                    | VUU01901402 | 9 Oct 2019              |  |
| 480    | Cable - Bulkhead to<br>Amp                              | SRC Haverhill           | 157-3050360                  | 480         | 24 Sep 2019             |  |
| 481    | Cable - Bulkhead to<br>Receiver                         | SRC Haverhill           | 151-3050787                  | 481         | 24 Sep 2019             |  |
| 510    | Barometer/Thermometer                                   | Control<br>Company      | 68000-49                     | 170871375   | 11 Dec 2019             |  |
| 518    | Cable - Amp to Antenna                                  | SRC Haverhill           | 157-3051574                  | 518         | 24 Sep 2019             |  |



# 8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using stateof-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.





The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)



# 9. TEST RESULTS

## 9.1. 6 dB & 99% Bandwidth

| Conducted Test Conditions for 6 dB and 99% Bandwidth |                                |                                                  |            |  |  |  |
|------------------------------------------------------|--------------------------------|--------------------------------------------------|------------|--|--|--|
| Standard:                                            | FCC CFR 47:15.247              | CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5 |            |  |  |  |
| Test Heading:                                        | 6 dB and 99 % Bandwidth        | 1 99 % Bandwidth Rel. Humidity (%):              |            |  |  |  |
| Standard Section(s):                                 | 15.247 (a)(2)<br>RSS-247 5.2 a | Pressure (mBars):                                | 999 - 1001 |  |  |  |
| Reference Document(s):                               | See Normative References       |                                                  |            |  |  |  |

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

#### Limits for 6 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.



#### Equipment Configuration for 6 dB & 99% Bandwidth

| Variant:                | GFSK                     | Duty Cycle (%):            | 64             |
|-------------------------|--------------------------|----------------------------|----------------|
| Data Rate:              | 1.00 MBit/s              | Antenna Gain (dBi):        | Not Applicable |
| Modulation:             | GFSK                     | Beam Forming Gain (Y)(dB): | Not Applicable |
| TPC:                    | Not Applicable           | Tested By:                 | SB             |
| Engineering Test Notes: | Mac Address 204C0380E4BE |                            |                |

#### **Test Measurement Results**

| Test<br>Frequency | Measured 6 dB Bandwidth (MHz)<br>Port(s) |   |   | 6 dB Bandwidth (MHz) |         | Limit  | Lowest<br>Margin |       |
|-------------------|------------------------------------------|---|---|----------------------|---------|--------|------------------|-------|
| MHz               | а                                        | b | с | d                    | Highest | Lowest | KHz              | MHz   |
| 2402.0            | <u>0.657</u>                             |   |   |                      | 0.657   | 0.657  | ≥500.0           | -0.16 |
| 2440.0            | <u>0.657</u>                             |   |   |                      | 0.657   | 0.657  | ≥500.0           | -0.16 |
| 2480.0            | <u>0.657</u>                             |   |   |                      | 0.657   | 0.657  | ≥500.0           | -0.16 |

| Test      | [            | Measured 99% E | Bandwidth (MHz) | Maximum<br>99% |       |  |
|-----------|--------------|----------------|-----------------|----------------|-------|--|
| Frequency |              | Por            | t(s)            | Bandwidth      |       |  |
| MHz       | а            | b              | С               | d              | (MHz) |  |
| 2402.0    | <u>1.026</u> |                |                 |                | 1.026 |  |
| 2440.0    | <u>1.026</u> |                |                 |                | 1.026 |  |
| 2480.0    | <u>1.030</u> |                |                 |                | 1.030 |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |



# 9.2. Conducted Output Power

| Conducted Test Conditions for Fundamental Emission Output Power |                                                                       |                                       |            |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|------------|--|--|--|
| Standard:                                                       | FCC CFR 47:15.247                                                     | FCC CFR 47:15.247 Ambient Temp. (°C): |            |  |  |  |
| Test Heading:                                                   | Output Power                                                          | Rel. Humidity (%):                    | 32 - 45    |  |  |  |
| Standard Section(s):                                            | 15.247 (b) & (c), ANSI 63.10<br>Section 11.9.2.3.1<br>RSS-247 5.4 (d) | Pressure (mBars):                     | 999 - 1001 |  |  |  |
| Reference Document(s):                                          | See Normative References                                              |                                       |            |  |  |  |

Test Procedure for Fundamental Emission Output Power Measurement In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed ( $\Sigma$ ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = A + G + Y+ 10 log (1/x) dBm

A = Total Power [10\*Log10 (10<sup>a/10</sup> + 10<sup>b/10</sup> + 10<sup>c/10</sup> + 10<sup>d/10</sup>)]

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

#### Limits for Fundamental Emission Output Power

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:

(3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### (c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-tomultipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.



(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.



#### Equipment Configuration for Average Output Power

| Variant:                | GFSK                     | Duty Cycle (%):            | 64.0           |
|-------------------------|--------------------------|----------------------------|----------------|
| Data Rate:              | 1.00 MBit/s              | Antenna Gain (dBi):        | 1.80           |
| Modulation:             | GFSK                     | Beam Forming Gain (Y)(dB): | Not Applicable |
| TPC:                    | Not Applicable           | Tested By:                 | SB             |
| Engineering Test Notes: | Mac Address 204C0380E4BE |                            |                |

#### **Test Measurement Results**

| Test<br>Frequency | N    | leasured Outp<br>Por | ut Power (dBn<br>t(s) | n) | Calculated<br>Total Power Σ<br>Port(s) + DCCF<br>(1.94 dB) | Limit | Margin | EUT Power<br>Setting |
|-------------------|------|----------------------|-----------------------|----|------------------------------------------------------------|-------|--------|----------------------|
| MHz               | а    | b                    | С                     | d  | dBm                                                        | dBm   | dB     |                      |
| 2402.0            | 0.73 |                      |                       |    | 2.67                                                       | 30.00 | -27.33 | 4.00                 |
| 2440.0            | 0.90 |                      |                       |    | 2.84                                                       | 30.00 | -27.16 | 4.00                 |
| 2480.0            | 1.12 |                      |                       |    | 3.06                                                       | 30.00 | -26.94 | 4.00                 |

#### **Traceability to Industry Recognized Test Methodologies**

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB



## 9.3. Power Spectral Density

| Conducted Test Conditions for Power Spectral Density |                          |                                                                  |            |  |  |  |
|------------------------------------------------------|--------------------------|------------------------------------------------------------------|------------|--|--|--|
| Standard:                                            | FCC CFR 47:15.247        | CC CFR 47:15.247         Ambient Temp. (°C):         24.0 - 27.5 |            |  |  |  |
| Test Heading:                                        | Power Spectral Density   | Rel. Humidity (%):                                               | 32 - 45    |  |  |  |
| Standard Section(s):                                 | 15.247 (e)               | Pressure (mBars):                                                | 999 - 1001 |  |  |  |
| Reference Document(s):                               | See Normative References |                                                                  |            |  |  |  |

#### Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

#### NOTE:

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

#### Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10  $(10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$ ] x = Duty Cycle

#### **Limits Power Spectral Density**

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.



#### Equipment Configuration for Power Spectral Density - Average

| Variant:                | GFSK           | Duty Cycle (%):            | 64.0           |
|-------------------------|----------------|----------------------------|----------------|
| Data Rate:              | 1.00 MBit/s    | Antenna Gain (dBi):        | 1.80           |
| Modulation:             | GFSK           | Beam Forming Gain (Y)(dB): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:                 | SB             |
| Engineering Test Notes: |                |                            |                |

| Test Measurement Results |                                                    |   |   |   |                                                |          |        |  |
|--------------------------|----------------------------------------------------|---|---|---|------------------------------------------------|----------|--------|--|
| Test<br>Frequency        | Measured Power Spectral Density Port(s) (dBm/3KHz) |   |   |   | Amplitude<br>Summation +<br>DCCF (+1.94<br>dB) | Limit    | Margin |  |
| MHz                      | а                                                  | b | С | d | dBm/3KHz                                       | dBm/3KHz | dB     |  |
| 2402.0                   | <u>-18.193</u>                                     |   |   |   | <u>-16.255</u>                                 | 8.0      | -24.3  |  |
| 2440.0                   | <u>-18.361</u>                                     |   |   |   | <u>-16.423</u>                                 | 8.0      | -24.4  |  |
| 2480.0                   | <u>-17.634</u>                                     |   |   |   | <u>-15.696</u>                                 | 8.0      | -23.7  |  |

#### Traceability to Industry Recognized Test Methodologies

| , |  | <u> </u> | 5                        |                                  |
|---|--|----------|--------------------------|----------------------------------|
|   |  |          | Work Instruction:        | WI-03 MEASURING RF SPECTRUM MASK |
|   |  |          | Measurement Uncertainty: | ±2.81 dB                         |

DCCF - Duty Cycle Correction Factor



## 9.4. Emissions

#### 9.4.1. Conducted Emissions

#### 9.4.1.1. Conducted Spurious Emissions

| Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions |                                                  |                    |            |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|------------|--|--|--|
| Standard:                                                                            | 24.0 - 27.5                                      |                    |            |  |  |  |
| Test Heading:                                                                        | Max Unwanted Emission Levels                     | Rel. Humidity (%): | 32 - 45    |  |  |  |
| Standard Section(s):                                                                 | Standard Section(s): 15.247 (e)<br>RSS-247 5.2 b |                    | 999 - 1001 |  |  |  |
| Reference Document(s):                                                               | See Normative References                         |                    |            |  |  |  |

#### Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

#### Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).



#### Equipment Configuration for Conducted Spurious Emissions - Peak

| Variant:                | GFSK                     | Duty Cycle (%):        | 64             |
|-------------------------|--------------------------|------------------------|----------------|
| Data Rate:              | 1.00 MBit/s              | Antenna Gain (dBi):    | Not Applicable |
| Modulation:             | GFSK                     | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable           | Tested By:             | SB             |
| Engineering Test Notes: | Mac Address 204C0380E4BE |                        |                |

**Test Measurement Results** 

| Test      | Frequency      | Conducted Spurious Emissions - Average (dBm) |        |        |       |        |       |        |       |
|-----------|----------------|----------------------------------------------|--------|--------|-------|--------|-------|--------|-------|
| Frequency | Range          | Port a                                       |        | Port b |       | Port c |       | Port d |       |
| MHz       | MHz            | SE                                           | Limit  | SE     | Limit | SE     | Limit | SE     | Limit |
| 2402.0    | 30.0 - 26000.0 | <u>-40.496</u>                               | -29.26 |        |       |        |       |        |       |
| 2440.0    | 30.0 - 26000.0 | <u>-39.527</u>                               | -29.13 |        |       |        |       |        |       |
| 2480.0    | 30.0 - 26000.0 | <u>-38.734</u>                               | -28.28 |        |       |        |       |        |       |
|           |                | -                                            |        |        | •     |        |       |        |       |

| Traceability to Industry Recognized Test Methodologies |                                         |  |  |  |  |
|--------------------------------------------------------|-----------------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-05 MEASUREMENT OF SPURIOUS EMISSIONS |  |  |  |  |
| Measurement Uncertainty:                               | <=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB     |  |  |  |  |



#### 9.4.1.2. Conducted Band-Edge Emissions

#### Equipment Configuration for Conducted Low Band-Edge Emissions - Peak

| Variant:                | GFSK                     | Duty Cycle (%):            | 64.0           |
|-------------------------|--------------------------|----------------------------|----------------|
| Data Rate:              | 1.00 MBit/s              | Antenna Gain (dBi):        | Not Applicable |
| Modulation:             | GFSK                     | Beam Forming Gain (Y)(dB): | Not Applicable |
| TPC:                    | Not Applicable           | Tested By:                 | SB             |
| Engineering Test Notes: | Mac Address 204C0380E4BE |                            |                |

#### **Test Measurement Results**

| Channel Frequency:    | 2402.0 MHz            | 402.0 MHz           |                       |                    |                        |        |  |
|-----------------------|-----------------------|---------------------|-----------------------|--------------------|------------------------|--------|--|
| Band-Edge Frequency:  | 2400.0 MHz            | 4400.0 MHz          |                       |                    |                        |        |  |
| Test Frequency Range: | 2350.0 - 2405.0       | 2350.0 - 2405.0 MHz |                       |                    |                        |        |  |
|                       | Band-E                | dge Markers ar      | nd Limit              | Revised Limit      |                        | Margin |  |
| Port(s)               | M1 Amplitude<br>(dBm) | Plot Limit<br>(dBm) | M2 Frequency<br>(MHz) | Amplitude<br>(dBm) | M2A Frequency<br>(MHz) | (MHz)  |  |
| а                     | <u>-47.05</u>         | -27.94              | 2401.30               |                    |                        | -1.300 |  |

#### Traceability to Industry Recognized Test Methodologies

| Work Instruction:        | WI-05 MEASUREMENT OF SPURIOUS EMISSIONS |
|--------------------------|-----------------------------------------|
| Measurement Uncertainty: | <=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB     |
|                          |                                         |



#### Equipment Configuration for Conducted High Band-Edge Emissions - Peak

| Variant:                | GFSK           | Duty Cycle (%):            | 64.0           |
|-------------------------|----------------|----------------------------|----------------|
| Data Rate:              | 1.00 MBit/s    | Antenna Gain (dBi):        | Not Applicable |
| Modulation:             | GFSK           | Beam Forming Gain (Y)(dB): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:                 | SB             |
| Engineering Test Notes: |                |                            |                |

#### **Test Measurement Results**

| Channel Frequency:    | 2480.0 MHz            | 2480.0 MHz          |                       |                    |                        |        |  |
|-----------------------|-----------------------|---------------------|-----------------------|--------------------|------------------------|--------|--|
| Band-Edge Frequency:  | 2483.5 MHz            | 2483.5 MHz          |                       |                    |                        |        |  |
| Test Frequency Range: | 2475.0 - 2524.0 M     | 2475.0 - 2524.0 MHz |                       |                    |                        |        |  |
|                       | Band-Edg              | ge Markers ar       | nd Limit              | Revised Limit      |                        | Margin |  |
| Port(s)               | M3 Amplitude<br>(dBm) | Plot Limit<br>(dBm) | M2 Frequency<br>(MHz) | Amplitude<br>(dBm) | M2A Frequency<br>(MHz) | (MHz)  |  |
| а                     | <u>-45.48</u>         | -27.65              | 2480.80               |                    |                        | -2.700 |  |

#### Traceability to Industry Recognized Test Methodologies

|  |  | Work Instruction:        | WI-05 MEASUREMENT OF SPURIOUS EMISSIONS |
|--|--|--------------------------|-----------------------------------------|
|  |  | Measurement Uncertainty: | <=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB     |
|  |  |                          |                                         |



#### 9.4.2. Radiated Emissions

#### 9.4.2.3. TX Spurious & Restricted Band Emissions

| Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands) |                                                             |                     |             |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------|-------------|--|--|--|
| Standard:                                                                                 | FCC CFR 47 Part 15 Subpart C<br>15.247 (DTS)                | Ambient Temp. (°C): | 20.0 - 24.5 |  |  |  |
| Test Heading:                                                                             | Test Heading: Radiated Spurious and Band-<br>Edge Emissions |                     | 32 - 45     |  |  |  |
| Standard Section(s):                                                                      | 15.205, 15.209                                              | Pressure (mBars):   | 999 - 1001  |  |  |  |
| Reference Document(s):                                                                    | See Normative References                                    |                     |             |  |  |  |

#### Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data. FS = R + AF + CORR - FO

where: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Example:

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 \* Log (level (mV/m))

40 dBmV/m = 100 mV/m

48 dBmV/m = 250 mV/m

#### Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| Frequency Band  |              |           |          |  |  |  |  |  |
|-----------------|--------------|-----------|----------|--|--|--|--|--|
| MHz MHz MHz GHz |              |           |          |  |  |  |  |  |
| 0.090-0.110     | 16.42-16.423 | 399.9-410 | 4.5-5.15 |  |  |  |  |  |

Issue Date: 5<sup>th</sup> September 2019

Page: 31 of 58

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

# Mic@MLabs.

| 0.495-0.505       | 16.69475-16.69525   | 608-614       | 5.35-5.46   |  |  |
|-------------------|---------------------|---------------|-------------|--|--|
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |  |  |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |  |  |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |  |  |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |  |  |
| 6.215-6.218       | 74.8-75.2           | 1660-1710     | 10.6-12.7   |  |  |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |  |  |
| 6.31175-6.31225   | 123-138             | 2200-2300     | 14.47-14.5  |  |  |
| 8.291-8.294       | 149.9-150.05        | 2310-2390     | 15.35-16.2  |  |  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |  |  |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900     | 22.01-23.12 |  |  |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |  |  |
| 12.29-12.293      | 167.72-173.2        | 3332-3339     | 31.2-31.8   |  |  |
| 12.51975-12.52025 | 240-285             | 3345.8-3358   | 36.43-36.5  |  |  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | Above 38.6  |  |  |
| 13.36-13.41       |                     |               |             |  |  |

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).



#### Equipment Configuration for TX Spurious & Restricted Band Emissions

| Antenna:                 | Aruba AR3      | Variant:        | BLE         |
|--------------------------|----------------|-----------------|-------------|
| Antenna Gain (dBi):      | 1.80           | Modulation:     | GFSK        |
| Beam Forming Gain (Y):   | Not Applicable | Duty Cycle (%): | 99          |
| Channel Frequency (MHz): | 2402.00        | Data Rate:      | 1.00 MBit/s |
| Power Setting:           | Max            | Tested By:      | SB          |

|     |                  |             |                     |            | 1000            | .00 - 18000.00 N    | /Hz        |           |            |                 |              |               |
|-----|------------------|-------------|---------------------|------------|-----------------|---------------------|------------|-----------|------------|-----------------|--------------|---------------|
| Num | Frequency<br>MHz | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB/m | Level<br>dBµV/m | Measurement<br>Type | Pol        | Hgt<br>cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |
| #1  | 4803.16          | 63.52       | -2.55               | -12.38     | 48.59           | Max Peak            | Vertical   | 101       | 59         | 74.0            | -25.4        | Pass          |
| #2  | 4803.16          | 52.72       | -2.55               | -12.38     | 37.79           | Max Avg             | Vertical   | 101       | 59         | 54.0            | -16.2        | Pass          |
| #3  | 4803.16          | 64.02       | -2.55               | -12.38     | 49.09           | Max Peak            | Horizontal | 102       | 80         | 74.0            | -24.9        | Pass          |
| #4  | 4803.16          | 53.47       | -2.55               | -12.38     | 38.54           | Max Avg             | Horizontal | 102       | 80         | 54.0            | -15.5        | Pass          |
| #5  | 7345.04          | 57.11       | -2.98               | -7.82      | 46.31           | Max Peak            | Horizontal | 179       | 355        | 74.0            | -27.7        | Pass          |
| #6  | 7345.04          | 43.85       | -2.98               | -7.82      | 33.05           | Max Avg             | Horizontal | 179       | 355        | 54.0            | -21.0        | Pass          |
| #7  | 11023.44         | 59.54       | -4.05               | -6.29      | 49.20           | Max Peak            | Horizontal | 115       | 1          | 74.0            | -24.8        | Pass          |
| #8  | 11023.44         | 46.29       | -4.05               | -6.29      | 35.95           | Max Avg             | Horizontal | 115       | 1          | 54.0            | -18.1        | Pass          |



#### Equipment Configuration for TX Spurious & Restricted Band Emissions

| Antenna:                 | Aruba AR3      | Variant:        | BLE         |
|--------------------------|----------------|-----------------|-------------|
| Antenna Gain (dBi):      | 1.80           | Modulation:     | GFSK        |
| Beam Forming Gain (Y):   | Not Applicable | Duty Cycle (%): | 99          |
| Channel Frequency (MHz): | 2440.00        | Data Rate:      | 1.00 MBit/s |
| Power Setting:           | Max            | Tested By:      | SB          |

|     | 1000.00 - 18000.00 MHz |             |                     |            |                 |                     |            |           |            |                 |              |               |  |  |
|-----|------------------------|-------------|---------------------|------------|-----------------|---------------------|------------|-----------|------------|-----------------|--------------|---------------|--|--|
| Num | Frequency<br>MHz       | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB/m | Level<br>dBµV/m | Measurement<br>Type | Pol        | Hgt<br>cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |  |  |
| #1  | 2439.80                | 55.01       | -1.79               | -12.08     | 41.14           | Fundamental         | Horizontal | 100       | 0          |                 |              |               |  |  |
| #2  | 4880.09                | 65.70       | -2.50               | -12.50     | 50.70           | Max Peak            | Vertical   | 102       | 50         | 74.0            | -23.3        | Pass          |  |  |
| #3  | 4880.09                | 57.82       | -2.50               | -12.50     | 42.82           | Max Avg             | Vertical   | 102       | 50         | 54.0            | -11.2        | Pass          |  |  |
| #4  | 4880.09                | 66.33       | -2.50               | -12.50     | 51.33           | Max Peak            | Horizontal | 101       | 68         | 74.0            | -22.7        | Pass          |  |  |
| #5  | 4880.09                | 58.70       | -2.50               | -12.50     | 43.70           | Max Avg             | Horizontal | 101       | 68         | 54.0            | -10.3        | Pass          |  |  |



#### Equipment Configuration for TX Spurious & Restricted Band Emissions

| Antenna:                 | Aruba AR3      | Variant:        | BLE         |
|--------------------------|----------------|-----------------|-------------|
| Antenna Gain (dBi):      | 1.80           | Modulation:     | GFSK        |
| Beam Forming Gain (Y):   | Not Applicable | Duty Cycle (%): | 99          |
| Channel Frequency (MHz): | 2480.00        | Data Rate:      | 1.00 MBit/s |
| Power Setting:           | Max            | Tested By:      | SB          |

|     | 1000.00 - 18000.00 MHz |             |                     |            |                 |                     |            |           |            |                 |              |               |  |
|-----|------------------------|-------------|---------------------|------------|-----------------|---------------------|------------|-----------|------------|-----------------|--------------|---------------|--|
| Num | Frequency<br>MHz       | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB/m | Level<br>dBµV/m | Measurement<br>Type | Pol        | Hgt<br>cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |  |
| #1  | 4960.55                | 65.95       | -2.55               | -12.13     | 51.27           | Max Peak            | Vertical   | 102       | 47         | 74.0            | -22.7        | Pass          |  |
| #2  | 4960.55                | 55.63       | -2.55               | -12.13     | 40.95           | Max Avg             | Vertical   | 102       | 47         | 54.0            | -13.1        | Pass          |  |
| #3  | 4960.55                | 67.88       | -2.55               | -12.13     | 53.20           | Max Peak            | Horizontal | 108       | 68         | 74.0            | -20.8        | Pass          |  |
| #4  | 4960.55                | 58.07       | -2.55               | -12.13     | 43.39           | Max Avg             | Horizontal | 108       | 68         | 54.0            | -10.6        | Pass          |  |
| #5  | 15443.70               | 61.68       | -4.72               | -3.92      | 53.04           | Max Peak            | Horizontal | 101       | 267        | 74.0            | -21.0        | Pass          |  |
| #6  | 15443.70               | 48.14       | -4.72               | -3.92      | 39.50           | Max Avg             | Horizontal | 101       | 267        | 54.0            | -14.5        | Pass          |  |



#### 9.4.2.4. Restricted Edge & Band-Edge Emissions

| Arub             | a AR3                        | Band-Edge Freq | Limit 74.0dBµV/m | Limit 54.0dBµV/m | Power Setting |  |
|------------------|------------------------------|----------------|------------------|------------------|---------------|--|
| Operational Mode | Operating<br>Frequency (MHz) | MHz            | dBµV/m           | dBµV/m           | Fower Setting |  |
| BLE              | 2402.00                      | 2390.00        | 58.83            | 47.54            | Max           |  |

#### Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions

| Antenna:                 | Aruba AR3      | Variant:        | BLE         |
|--------------------------|----------------|-----------------|-------------|
| Antenna Gain (dBi):      | 1.80           | Modulation:     | GFSK        |
| Beam Forming Gain (Y):   | Not Applicable | Duty Cycle (%): | 99          |
| Channel Frequency (MHz): | 2402.00        | Data Rate:      | 1.00 MBit/s |
| Power Setting:           | Max            | Tested By:      | SB          |

|     | 2310.00 - 2422.00 MHz |             |                     |            |                 |                     |          |        |            |                 |              |               |  |
|-----|-----------------------|-------------|---------------------|------------|-----------------|---------------------|----------|--------|------------|-----------------|--------------|---------------|--|
| Num | Frequency<br>MHz      | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB/m | Level<br>dBµV/m | Measurement<br>Type | Pol      | Hgt cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |  |
| #1  | 2368.36               | 17.45       | -1.75               | 31.84      | 47.54           | Max Avg             | Vertical | 152    | 49         | 54.0            | -6.5         | Pass          |  |
| #2  | 2390.00               | 28.64       | -1.77               | 31.96      | 58.83           | Max Peak            | Vertical | 152    | 49         | 74.0            | -15.2        | Pass          |  |
| #3  | 2390.00               |             |                     |            |                 | Restricted-<br>Band |          |        |            |                 |              |               |  |

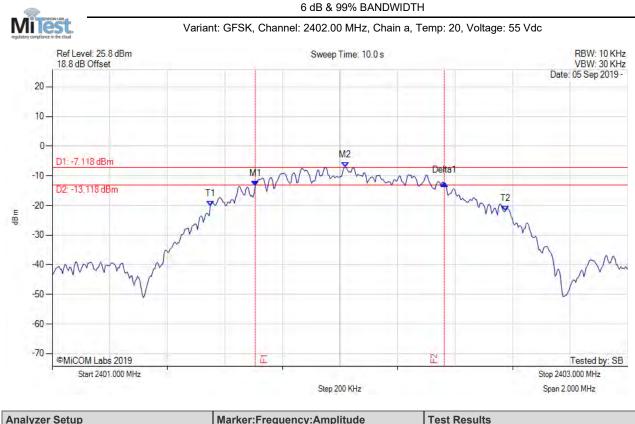


| Aruba AR3        |                              | Band-Edge Freq | Limit 74.0dBµV/m | Limit 54.0dBµV/m | Power Setting |
|------------------|------------------------------|----------------|------------------|------------------|---------------|
| Operational Mode | Operating<br>Frequency (MHz) | MHz            | dBµV/m           | dBµV/m           | Power Setting |
| BLE              | 2480.00                      | 2483.50        | 62.15            | 48.12            | Max           |

#### Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions

| Antenna:                 | Aruba AR3      | Variant:        | BLE         |
|--------------------------|----------------|-----------------|-------------|
| Antenna Gain (dBi):      | 1.80           | Modulation:     | GFSK        |
| Beam Forming Gain (Y):   | Not Applicable | Duty Cycle (%): | 99          |
| Channel Frequency (MHz): | 2480.00        | Data Rate:      | 1.00 MBit/s |
| Power Setting:           | Max            | Tested By:      | SB          |

#### **Test Measurement Results**

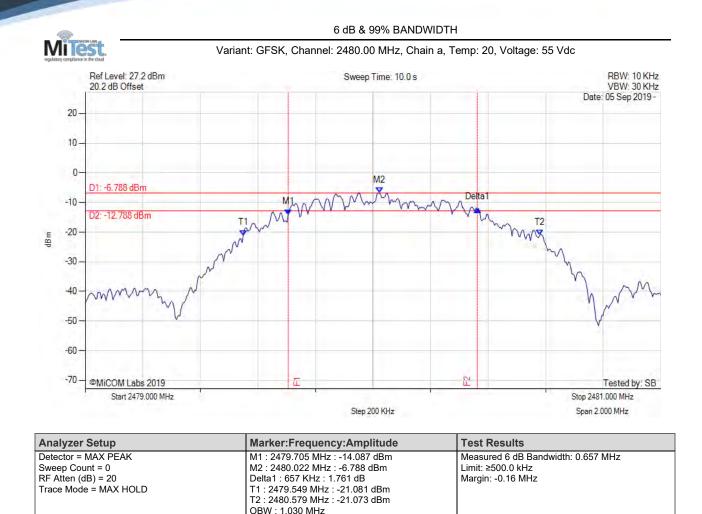

|     | 2452.00 - 2520.00 MHz |             |                     |            |                 |                     |          |        |            |                 |              |               |
|-----|-----------------------|-------------|---------------------|------------|-----------------|---------------------|----------|--------|------------|-----------------|--------------|---------------|
| Num | Frequency<br>MHz      | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB/m | Level<br>dBµV/m | Measurement<br>Type | Pol      | Hgt cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |
| #2  | 2485.00               | 17.57       | -1.78               | 32.33      | 48.12           | Max Avg             | Vertical | 148    | 39         | 54.0            | -5.9         | Pass          |
| #3  | 2512.80               | 31.66       | -1.83               | 32.32      | 62.15           | Max Peak            | Vertical | 148    | 39         | 74.0            | -11.9        | Pass          |
| #1  | 2483.50               |             |                     |            |                 | Restricted-<br>Band |          |        |            |                 |              |               |



## A. APPENDIX - GRAPHICAL IMAGES

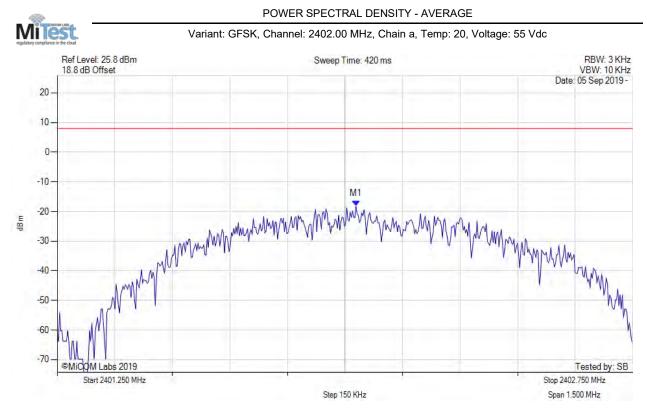


### A.1. 6 dB & 99% Bandwidth



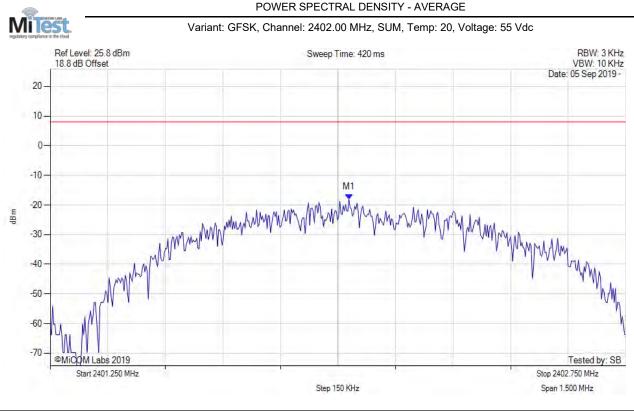

| Analyzer Setup        | Marker:Frequency:Amplitude      | Test Results                       |
|-----------------------|---------------------------------|------------------------------------|
| Detector = MAX PEAK   | M1 : 2401.705 MHz : -13.494 dBm | Measured 6 dB Bandwidth: 0.657 MHz |
| Sweep Count = 0       | M2 : 2402.018 MHz : -7.118 dBm  | Limit: ≥500.0 kHz                  |
| RF Atten (dB) = 20    | Delta1 : 657 KHz : 1.043 dB     | Margin: -0.16 MHz                  |
| Trace Mode = MAX HOLD | T1 : 2401.549 MHz : -20.368 dBm | -                                  |
|                       | T2 : 2402.575 MHz : -21.863 dBm |                                    |
|                       | OBW : 1.026 MHz                 |                                    |
|                       |                                 |                                    |





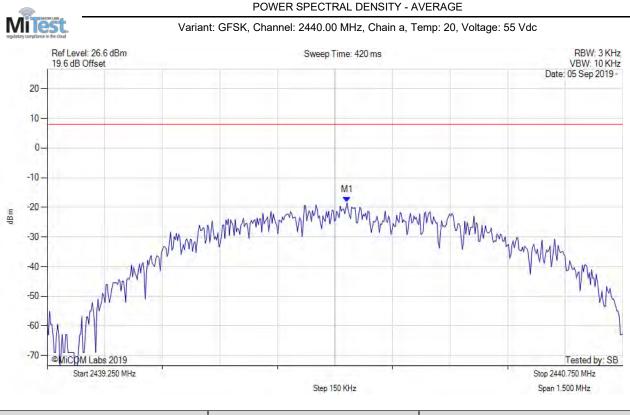




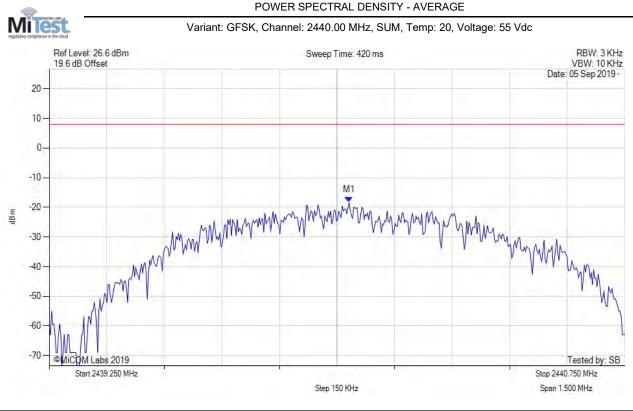

## A.2. Power Spectral Density




| Analyzer Setup                                                                   | Marker:Frequency:Amplitude      | Test Results       |
|----------------------------------------------------------------------------------|---------------------------------|--------------------|
| Detector = AVERAGE<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 2402.029 MHz : -18.193 dBm | Limit: ≤ 8.000 dBm |

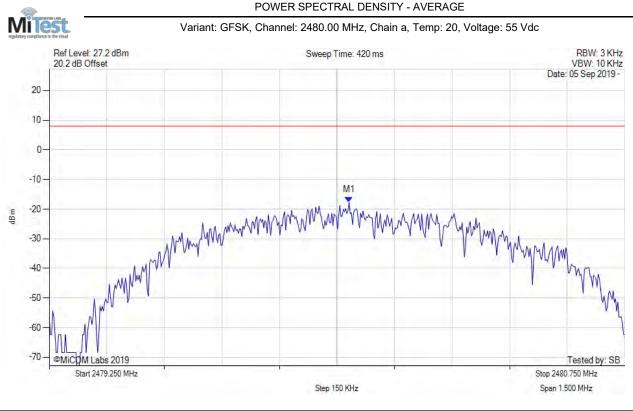





| Analyzer Setup     | Marker:Frequency:Amplitude              | Test Results     |
|--------------------|-----------------------------------------|------------------|
| Detector = AVERAGE | M1 : 2402.000 MHz : -18.193 dBm         | Limit: ≤ 8.0 dBm |
| Sweep Count = 0    | M1 + DCCF : 2402.000 MHz : -16.255 dBm  | Margin: -24.3 dB |
| RF Atten (dB) = 20 | Duty Cycle Correction Factor : +1.94 dB | -                |
| Trace Mode = VIEW  |                                         |                  |

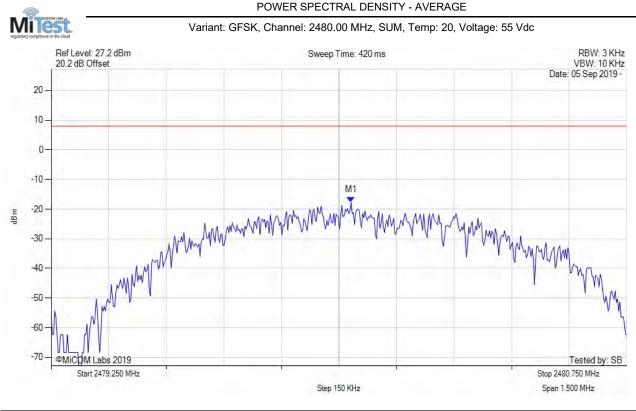





| Analyzer Setup     | Marker:Frequency:Amplitude      | Test Results       |
|--------------------|---------------------------------|--------------------|
| Detector = AVERAGE | M1 : 2440.032 MHz : -18.361 dBm | Limit: ≤ 8.000 dBm |
| Sweep Count = 0    |                                 |                    |
| RF Atten (dB) = 20 |                                 |                    |
| Trace Mode = VIEW  |                                 |                    |






| Analyzer Setup     | Marker:Frequency:Amplitude              | Test Results     |
|--------------------|-----------------------------------------|------------------|
| Detector = AVERAGE | M1 : 2440.000 MHz : -18.361 dBm         | Limit: ≤ 8.0 dBm |
| Sweep Count = 0    | M1 + DCCF : 2440.000 MHz : -16.423 dBm  | Margin: -24.4 dB |
| RF Atten (dB) = 20 | Duty Cycle Correction Factor : +1.94 dB |                  |
| Trace Mode = VIEW  |                                         |                  |

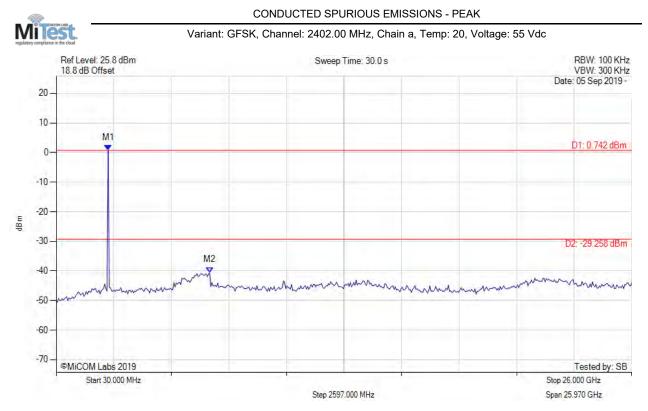




| Analyzer Setup     | Marker:Frequency:Amplitude      | Test Results       |
|--------------------|---------------------------------|--------------------|
| Detector = AVERAGE | M1 : 2480.032 MHz : -17.634 dBm | Limit: ≤ 8.000 dBm |
| Sweep Count = 0    |                                 |                    |
| RF Atten (dB) = 20 |                                 |                    |
| Trace Mode = VIEW  |                                 |                    |

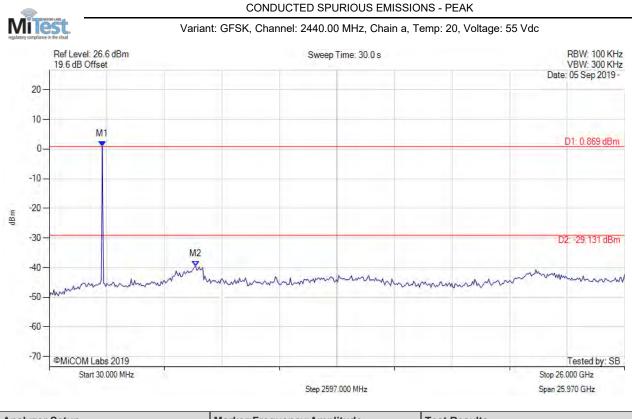





| Analyzer Setup     | Marker:Frequency:Amplitude              | Test Results     |
|--------------------|-----------------------------------------|------------------|
| Detector = AVERAGE | M1 : 2480.000 MHz : -17.634 dBm         | Limit: ≤ 8.0 dBm |
| Sweep Count = 0    | M1 + DCCF : 2480.000 MHz : -15.696 dBm  | Margin: -23.7 dB |
| RF Atten (dB) = 20 | Duty Cycle Correction Factor : +1.94 dB | -                |
| Trace Mode = VIEW  |                                         |                  |

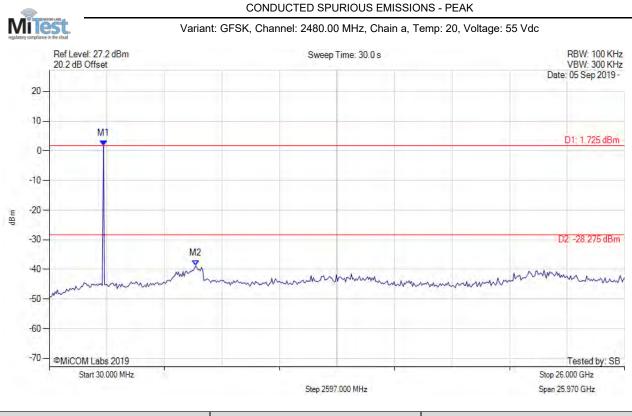


### A.3. Emissions


### A.3.1. Conducted Emissions

### A.3.1.1. Conducted Spurious Emissions

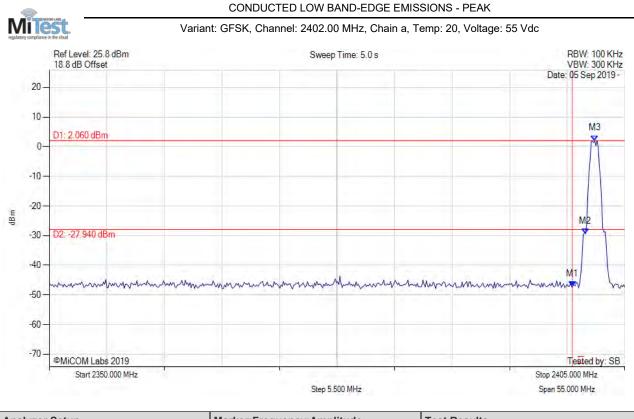



| Analyzer Setup                         | Marker:Frequency:Amplitude                                       | Test Results                           |
|----------------------------------------|------------------------------------------------------------------|----------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0 | M1 : 2371.984 MHz : 0.742 dBm<br>M2 : 6951.864 MHz : -40.496 dBm | Limit: -29.26 dBm<br>Margin: -11.24 dB |
| RF Atten (dB) = 20                     | MZ . 0951.004 MHZ40.490 dBIII                                    | Margin 11.24 db                        |
| Trace Mode = VIEW                      |                                                                  |                                        |





| Analyzer Setup      | Marker:Frequency:Amplitude      | Test Results      |  |
|---------------------|---------------------------------|-------------------|--|
| Detector = MAX PEAK | M1 : 2424.028 MHz : 0.869 dBm   | Limit: -29.13 dBm |  |
| Sweep Count = 0     | M2 : 6639.599 MHz : -39.527 dBm | Margin: -10.40 dB |  |
| RF Atten (dB) = 20  |                                 |                   |  |
| Trace Mode = VIEW   |                                 |                   |  |






| Analyzer Setup      | Marker:Frequency:Amplitude      | Test Results      |
|---------------------|---------------------------------|-------------------|
| Detector = MAX PEAK | M1 : 2476.072 MHz : 1.725 dBm   | Limit: -28.28 dBm |
| Sweep Count = 0     | M2 : 6639.599 MHz : -38.734 dBm | Margin: -10.45 dB |
| RF Atten (dB) = 20  |                                 |                   |
| Trace Mode = VIEW   |                                 |                   |

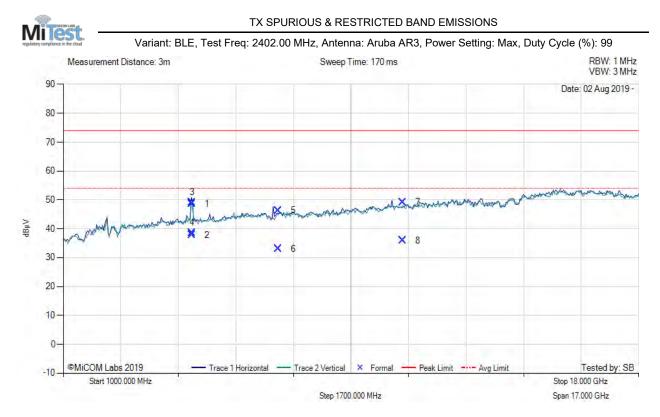


### A.3.1.2. Conducted Band-Edge Emissions



| Analyzer Setup      | Marker:Frequency:Amplitude      | Test Results                   |
|---------------------|---------------------------------|--------------------------------|
| Detector = MAX PEAK | M1 : 2400.000 MHz : -47.053 dBm | Channel Frequency: 2402.00 MHz |
| Sweep Count = 0     | M2 : 2401.253 MHz : -29.363 dBm |                                |
| RF Atten (dB) = 20  | M3 : 2402.134 MHz : 2.060 dBm   |                                |
| Trace Mode = VIEW   |                                 |                                |




#### CONDUCTED HIGH BAND-EDGE EMISSIONS - PEAK MîTê Variant: GFSK, Channel: 2480.00 MHz, Chain a, Temp: 20, Voltage: 55 Vdc RBW: 100 KHz VBW: 300 KHz Ref Level: 27.2 dBm Sweep Time: 5.0 s 20.2 dB Offset Date: 05 Sep 2019 -20 10 M1 D1: 2.346 dBm 0--10 -20 M2 dBm D2: -27.654 dBm -30--40-M3 mmmmmmmmmm manna mm 1.1. mannummer -50 -60 -70 -@MiCOM Labs 2019 ů. Tested by: SB Start 2475.000 MHz Stop 2524.000 MHz Step 4.900 MHz Span 49.000 MHz

| Analyzer Setup      | Marker:Frequency:Amplitude      | Test Results                   |
|---------------------|---------------------------------|--------------------------------|
| Detector = MAX PEAK | M1 : 2480.008 MHz : 2.346 dBm   | Channel Frequency: 2480.00 MHz |
| Sweep Count = 0     | M2 : 2480.794 MHz : -25.679 dBm |                                |
| RF Atten (dB) = 20  | M3 : 2483.500 MHz : -45.476 dBm |                                |
| Trace Mode = VIEW   |                                 |                                |



### A.3.2. Radiated Emissions

### A.3.2.3. TX Spurious & Restricted Band Emissions



|     | 1000.00 - 18000.00 MHz |             |                     |            |                 |                     |            |           |            |                 |              |               |  |  |  |
|-----|------------------------|-------------|---------------------|------------|-----------------|---------------------|------------|-----------|------------|-----------------|--------------|---------------|--|--|--|
| Num | Frequency<br>MHz       | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB/m | Level<br>dBµV/m | Measurement<br>Type | Pol        | Hgt<br>cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |  |  |  |
| 1   | 4803.16                | 63.52       | -2.55               | -12.38     | 48.59           | Max Peak            | Vertical   | 101       | 59         | 74.0            | -25.4        | Pass          |  |  |  |
| 2   | 4803.16                | 52.72       | -2.55               | -12.38     | 37.79           | Max Avg             | Vertical   | 101       | 59         | 54.0            | -16.2        | Pass          |  |  |  |
| 3   | 4803.16                | 64.02       | -2.55               | -12.38     | 49.09           | Max Peak            | Horizontal | 102       | 80         | 74.0            | -24.9        | Pass          |  |  |  |
| 4   | 4803.16                | 53.47       | -2.55               | -12.38     | 38.54           | Max Avg             | Horizontal | 102       | 80         | 54.0            | -15.5        | Pass          |  |  |  |
| 5   | 7345.04                | 57.11       | -2.98               | -7.82      | 46.31           | Max Peak            | Horizontal | 179       | 355        | 74.0            | -27.7        | Pass          |  |  |  |
| 6   | 7345.04                | 43.85       | -2.98               | -7.82      | 33.05           | Max Avg             | Horizontal | 179       | 355        | 54.0            | -21.0        | Pass          |  |  |  |
| 7   | 11023.44               | 59.54       | -4.05               | -6.29      | 49.20           | Max Peak            | Horizontal | 115       | 1          | 74.0            | -24.8        | Pass          |  |  |  |
| 8   | 11023.44               | 46.29       | -4.05               | -6.29      | 35.95           | Max Avg             | Horizontal | 115       | 1          | 54.0            | -18.1        | Pass          |  |  |  |

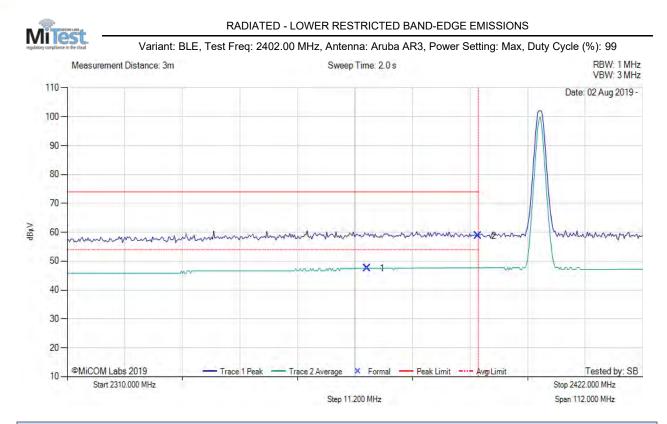


#### TX SPURIOUS & RESTRICTED BAND EMISSIONS Mile Variant: BLE, Test Freq: 2440.00 MHz, Antenna: Aruba AR3, Power Setting: Max, Duty Cycle (%): 99 RBW: 1 MHz Measurement Distance: 3m Sweep Time: 170 ms VBW: 3 MHz 90 -Date: 02 Aug 2019 -80 70 60 man And Mangala × 2 50 dBµV 40-30 20 10 0-@MiCOM Labs 2019 - Avg Limit Tested by: SB Trace 2 Vertical × Formal Peak Limit Trace 1 Horizontal -10-Start 1000.000 MHz Stop 18.000 GHz Step 1700.000 MHz Span 17.000 GHz

|     | 1000.00 - 18000.00 MHz |             |                     |            |                 |                     |            |           |            |                 |              |               |  |  |  |
|-----|------------------------|-------------|---------------------|------------|-----------------|---------------------|------------|-----------|------------|-----------------|--------------|---------------|--|--|--|
| Num | Frequency<br>MHz       | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB/m | Level<br>dBµV/m | Measurement<br>Type | Pol        | Hgt<br>cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |  |  |  |
| 1   | 2439.80                | 55.01       | -1.79               | -12.08     | 41.14           | Fundamental         | Horizontal | 100       | 0          |                 |              |               |  |  |  |
| 2   | 4880.09                | 65.70       | -2.50               | -12.50     | 50.70           | Max Peak            | Vertical   | 102       | 50         | 74.0            | -23.3        | Pass          |  |  |  |
| 3   | 4880.09                | 57.82       | -2.50               | -12.50     | 42.82           | Max Avg             | Vertical   | 102       | 50         | 54.0            | -11.2        | Pass          |  |  |  |
| 4   | 4880.09                | 66.33       | -2.50               | -12.50     | 51.33           | Max Peak            | Horizontal | 101       | 68         | 74.0            | -22.7        | Pass          |  |  |  |
| 5   | 4880.09                | 58.70       | -2.50               | -12.50     | 43.70           | Max Avg             | Horizontal | 101       | 68         | 54.0            | -10.3        | Pass          |  |  |  |

back to matrix

54 of 58 Page:

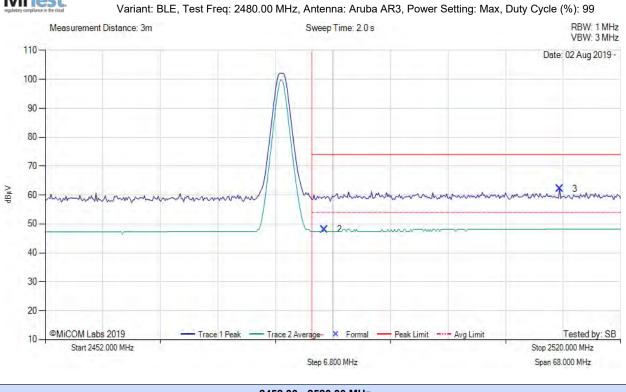



#### TX SPURIOUS & RESTRICTED BAND EMISSIONS Mile Variant: BLE, Test Freq: 2480.00 MHz, Antenna: Aruba AR3, Power Setting: Max, Duty Cycle (%): 99 RBW: 1 MHz Measurement Distance: 3m Sweep Time: 170 ms VBW: 3 MHz 90 -Date: 02 Aug 2019 -80 70 60 M. M.S.M 50 1 dBµV 40-X 6 30 20 10 0-@MiCOM Labs 2019 - Avg Limit Tested by: SB Trace 2 Vertical × Formal Peak Limit Trace 1 Horizontal -10-Start 1000.000 MHz Stop 18.000 GHz Step 1700.000 MHz Span 17.000 GHz

|     | 1000.00 - 18000.00 MHz |             |                     |            |                 |                     |            |           |            |                 |              |               |  |  |  |
|-----|------------------------|-------------|---------------------|------------|-----------------|---------------------|------------|-----------|------------|-----------------|--------------|---------------|--|--|--|
| Num | Frequency<br>MHz       | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB/m | Level<br>dBµV/m | Measurement<br>Type | Pol        | Hgt<br>cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |  |  |  |
| 1   | 4960.55                | 65.95       | -2.55               | -12.13     | 51.27           | Max Peak            | Vertical   | 102       | 47         | 74.0            | -22.7        | Pass          |  |  |  |
| 2   | 4960.55                | 55.63       | -2.55               | -12.13     | 40.95           | Max Avg             | Vertical   | 102       | 47         | 54.0            | -13.1        | Pass          |  |  |  |
| 3   | 4960.55                | 67.88       | -2.55               | -12.13     | 53.20           | Max Peak            | Horizontal | 108       | 68         | 74.0            | -20.8        | Pass          |  |  |  |
| 4   | 4960.55                | 58.07       | -2.55               | -12.13     | 43.39           | Max Avg             | Horizontal | 108       | 68         | 54.0            | -10.6        | Pass          |  |  |  |
| 5   | 15443.70               | 61.68       | -4.72               | -3.92      | 53.04           | Max Peak            | Horizontal | 101       | 267        | 74.0            | -21.0        | Pass          |  |  |  |
| 6   | 15443.70               | 48.14       | -4.72               | -3.92      | 39.50           | Max Avg             | Horizontal | 101       | 267        | 54.0            | -14.5        | Pass          |  |  |  |



### A.3.2.4. Restricted Edge & Band-Edge Emissions




|     | 2310.00 - 2422.00 MHz |             |                     |            |                 |                     |          |           |            |                 |              |               |  |  |  |
|-----|-----------------------|-------------|---------------------|------------|-----------------|---------------------|----------|-----------|------------|-----------------|--------------|---------------|--|--|--|
| Num | Frequency<br>MHz      | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB/m | Level<br>dBµV/m | Measurement<br>Type | Pol      | Hgt<br>cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |  |  |  |
| 1   | 2368.36               | 17.45       | -1.75               | 31.84      | 47.54           | Max Avg             | Vertical | 152       | 49         | 54.0            | -6.5         | Pass          |  |  |  |
| 2   | 2390.00               | 28.64       | -1.77               | 31.96      | 58.83           | Max Peak            | Vertical | 152       | 49         | 74.0            | -15.2        | Pass          |  |  |  |
| 3   | 2390.00               |             |                     |            |                 | Restricted-<br>Band |          |           |            |                 |              |               |  |  |  |



## Millest -----

### RADIATED - UPPER RESTRICTED BAND-EDGE EMISSIONS



|     | 2452.00 - 2520.00 MHz |             |                     |            |                 |                     |          |           |            |                 |              |               |  |  |  |
|-----|-----------------------|-------------|---------------------|------------|-----------------|---------------------|----------|-----------|------------|-----------------|--------------|---------------|--|--|--|
| Num | Frequency<br>MHz      | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB/m | Level<br>dBµV/m | Measurement<br>Type | Pol      | Hgt<br>cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |  |  |  |
| 2   | 2485.00               | 17.57       | -1.78               | 32.33      | 48.12           | Max Avg             | Vertical | 148       | 39         | 54.0            | -5.9         | Pass          |  |  |  |
| 3   | 2512.80               | 31.66       | -1.83               | 32.32      | 62.15           | Max Peak            | Vertical | 148       | 39         | 74.0            | -11.9        | Pass          |  |  |  |
| 1   | 2483.50               |             |                     |            |                 | Restricted-<br>Band |          |           | -          |                 |              |               |  |  |  |





575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com