

FCC / IC RF REPORT

Certification

Applicant Name: Hewlett Packard Enterprise Col	mpany	Date of Issue:	
		October 22, 2019 Test Site/Location:	
Address:			
3333 Scott Blvd		EMCE Engineering	
Santa Clara, CA 95054, USA		1726 Ringwood Avenue San Jose, California USA	
		Report No.: EMCE-R-1910-003	
FCC ID:	Q9DARCN9012		
IC:	4675A-ARCN9012		
APPLICANT:	Hewlett Packard Enterprise Company		
Model:	ARCN9012		
EUT Type:	9012 Gateway		
RF Peak Output Power:	8.72 dBm (7.45 mW)	8.72 dBm (7.45 mW)	
Frequency Range:	2402 MHz -2480 MHz		
Modulation Type	GFSK		
FCC Classification:	Digital Transmission System (DTS)		
FCC Rule Part(s):	Part 15.247		
IC Rule Part(s):	RSS-247 Issue 2 (February 2017), RSS-Gen Issue 5(April 2018)		

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

Steve In Test Engineer Certification Division

Dally

Sunwoo Kim Technical Manager Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the EMCE Engineering, Inc.

Report No.: EMCE-R-1910-003

This document may not be copied or reproduced (reprinted) without written consent by EMCE Engineering, Inc. EMCE Engineering, Inc., 1726 Ringwood Avenue, San Jose, CA 95131, USA TEL: +1-510-933-8848 FAX: +1-510-933-8849

Report History

TEST REPORT NO.	DATE	DESCRIPTION
EMCE-R-1910-003	October 22, 2019	First Issue

Table of Contents

1. EUT DESCRIPTION	,
2. METHODOLOGY	į
EUT CONFIGURATION	į
EUT EXERCISE	į
GENERAL TEST PROCEDURES	į
DESCRIPTION OF TEST MODES	į
3. INSTRUMENT CALIBRATION	j
4. FACILITIES AND ACCREDITATIONS	j
FACILITIES	j
EQUIPMENT	j
5. ANTENNA REQUIREMENTS	j
6. MEASUREMENT UNCERTAINTY	,
7. DESCRIPTION OF TESTS	i
8. SUMMARY TEST OF RESULTS	j
9. TEST RESULT	•
9.1 DUTY CYCLE	•
9.2 6 dB BANDWIDTH MEASUREMENT	•
9.3 99% BANDWIDTH	,
9.4 OUTPUT POWER	1
9.5 POWER SPECTRAL DENSITY)
9.6 CONDUCTED BAND EDGE & SPURIOUS EMISSIONS	6
9.6 RADIATED SPURIOUS EMISSIONS	,
9.7 RADIATED RESTRICTED BAND EDGES	6
9.8 RECEIVER SPURIOUS EMISSIONS	,
9.6 POWERLINE CONDUCTED EMISSIONS	6
10. LIST OF TEST EQUIPMENT)
11. ANNEX A TEST SETUP PHOTO	

1. EUT DESCRIPTION

Model	ARCN9012
ЕИТ Туре	9012 Gateway
Power Supply	100 – 240 VAC, 3 A, 50 - 60 Hz
Frequency Range	2402 MHz - 2480 MHz
Max. RF Output Power	Peak : 8.72 dBm (7.45 mW)
Modulation Type	GFSK
Number of Channels	40 Channels
Antenna Specification	Antenna Type: chip antenna Peak Gain: -4.5 dBi
Firmware Version	ArubaOS Version 8.6.0.0-mm-dev
Hardware Version	Pilot
Date(s) of Tests	September 12, 2019 ~ September 27, 2019

* Firmware and Hardware Version are as received by the client.

2. METHODOLOGY

FCC KDB 558074 D01 DTS Measurement Guidance v05r02 dated April 2nd, 2019 entitled "Guidance for Performing Compliance Measurements on Digital Transmission Systems(DTS) and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C / the RSS-GEN issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. Also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013)

Conducted Antenna Terminal

KDB 558074 v05r02

DESCRIPTION OF TEST MODES

The EUT has been tested under Diag mode + BLE Test mode operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC (Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at 1726 Ringwood Avenue, San Jose, California 95131, USA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test

Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

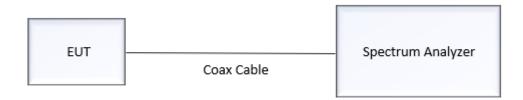
- * The antennas of this E.U.T are permanently attached.
- * The E.U.T Complies with the requirement of §15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	2.55
Radiated Disturbance (9 kHz ~ 30 MHz)	3.20
Radiated Disturbance (30 MHz ~ 1 GHz)	4.73
Radiated Disturbance (1 GHz ~ 18 GHz)	5.21
Radiated Disturbance (18 GHz ~ 40 GHz)	5.18



7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to the zero-span measurement method, 6 (b) in KDB 558074 D01 v05r02.

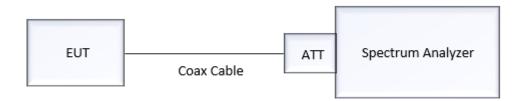
The largest available value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (≥ RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10*log(1/Duty Cycle)

7.2. 6 dB Bandwidth


<u>Limit</u>

Test Requirements and limit, §15.247(a)(2) / RSS-247(Issue 2) Section 5.2.

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

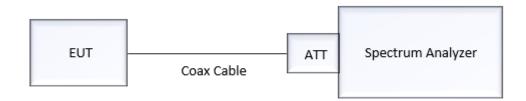
Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Section 8.2 in KDB 558074 D01 v05r02, Subclause 11.8 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer, setting X dB as 6 dB.


7.3. Output Power

<u>Limit</u>

Test Requirements and limit, §15.247(b)(3) / RSS-247(Issue2) Section 5.4.4.

The maximum permissible conducted output power is 1 Watt.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

TX condition of the EUT is the actual operating mode by BT LE test program.

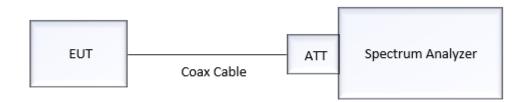
The Spectrum Analyzer is set to

- Peak Power (Section 8.3.1.1 in KDB 558074 D01 v05r02, Subclause 11.9.1.1 in ANSI 63.10-2013)
 - 1) RBW \geq DTS Bandwidth
 - 2) VBW \geq 3 x RBW
 - 3) SPAN \geq 3 x RBW
 - 4) Detector Mode = Peak
 - 5) Sweep = auto couple
 - 6) Trace Mode = max hold
 - 7) Allow trace to fully stabilize.
 - 8) Use peak marker function to determine the peak amplitude level
- Average Power (Section 8.3.2.2 in KDB 558074 D01 v05r02, Subclause 11.9.2.2 in ANSI 63.10-2013)
 - 1) We use the spectrum analyzer's integrated band power measurement function.
 - 2) Measure the duty cycle
 - 3) Set span to at least 1.5 times the OBW
 - 4) RBW = 1-5 % of the OBW, not to exceed 1 MHz.
 - 5) VBW \geq 3 x RBW.

- 6) Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- 7) Sweep time = auto.
- 8) Detector = RMS (i.e., power averaging)
- 9) Do not use sweep triggering. Allow the sweep to "free run".
- 10) Trace average at least 100 traces in power averaging (RMS) mode.
- 11) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges.
- 12) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power (Peak) = Reading Value + ATT loss + Cable loss
- Conducted Output Power (Average) = Reading Value + ATT loss + Cable loss + Duty Cycle Factor


7.4. Power Spectral Density

<u>Limit</u>

Test Requirements and limit, §15.247(e) / RSS-247(Issue 2) Section 5.2.

The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3kHz BW.

Test Configuration

Test Procedure

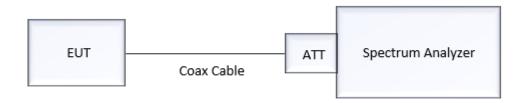
The transmitter output is connected to the Spectrum Analyzer.

We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

The spectrum analyzer is set to :

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set span to at least 1.5 times the OBW.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = power averaging (rms) or sample detector (when rms not available).
- 7) Ensure that the number of measurement points in the sweep \geq [2 ×span / RBW].
- 8) Employ trace averaging (rms) modeover a minimum of 100 traces
- 9) Use the peak marker function to determine the maximum amplitude level.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
 If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11) if then duty factor shall be added to adjust the result if the duty cycle is less than 98%

7.5. Conducted Band Edge (Out of Band Emissions) & Conducted Spurious Emissions


<u>Limit</u>

Test Requirements and limit, §15.247(d) / RSS-247(Issue 2) Section 5.5.

The maximum conducted (average) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 30 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 8.5 in KDB 558074 v05r02, Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points $\geq 2^*$ Span/RBW
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

Factors for frequency

- frau 1			
Freq [MHz]	Factor [dB]	Freq [MHz]	Factor [dB]
30	20.13	11000	21.19
100	20.31	12000	21.32
200	20.21	13000	21.44
300	20.16	14000	21.39
400	20.22	15000	21.51
500	20.15	16000	21.66
600	20.26	17000	21.72
700	20.17	18000	21.88
800	20.23	19000	21.92
900	20.21	20000	22.04
1000	20.19	21000	22.17
2000	20.38	22000	22.31
2400*	20.42	23000	22.57
2500*	20.51	24000	22.41
3000	20.53	25000	22.53
4000	20.61		•
5000	20.97		
6000	20.73		
7000	21.01		
8000	20.88		
	1	1	

21.11

21.21

Note :

1. '*' is fundamental frequency range.

9000

10000

2. Factor = Attenuator loss + Cable loss + EUT Cable loss

7.6. Radiated Test

<u>Limit</u>

FCC

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30	30	30

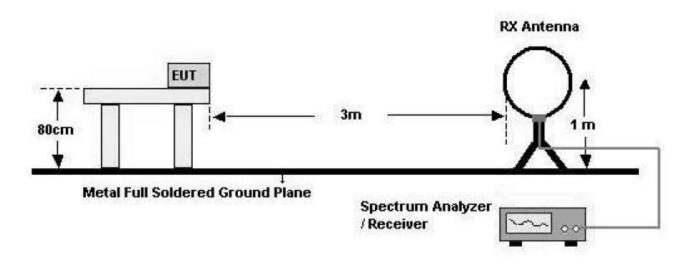
<u>IC</u>

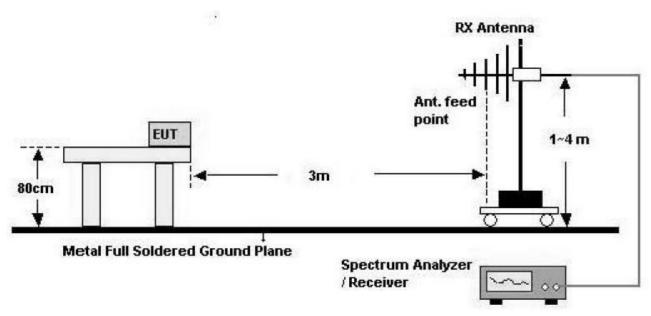
Frequency (MHz)	Field Strength (uA/m)	Measurement Distance (m)
0.009 - 0.490	6.37/F(kHz)	300
0.490 - 1.705	63.7/F(kHz)	30
1.705 – 30	0.08	30

FCC & IC

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

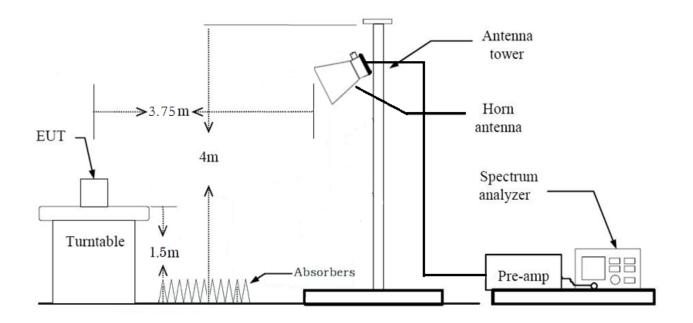
Receiver Spurious Emissions


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3



Test Configuration

Below 30 MHz


30 MHz - 1 GHz

Above 1 GHz

Test Procedure of Radiated spurious emissions (Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor (0.009 MHz 0.490 MHz) = $40*\log(3 \text{ m/300 m}) = -80 \text{ dB}$

Measurement Distance: 3 m

7. Distance Correction Factor (0.490 MHz - 30 MHz) = 40*log(3 m/30 m) = - 40 dB

Measurement Distance: 3 m

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \ge 3*RBW
- 9. Total = Reading Value + Antenna Factor (A.F) + Cable Loss (C.L) + Distance Factor (D.F)

10. Although these tests were performed at a test site other than an open field site, adequate comparison measurements were confirmed against an open field site. Therefore, sufficient test were made to demonstrate that the alternative site produces Result that correlate with the one of test made in an open field site based on KDB 414788

Sample validation

Reference-signal Frequency [kHz]	Reading [dBuV]	Measurement Distance [m]	Extrapolation Factor	Total [dBuV/m]
135	70.1	3	80.0	-9.9
135	47.4	10	59.1	-11.7

Test Procedure of Radiated spurious emissions (Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. Spectrum Setting
 - (1) Measurement Type (Peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW ≥ 3*RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - *In general, (1) is used mainly
- 6. Total = Reading Value + Antenna Factor (A.F) + Cable Loss (C.L)

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).

*Distance extrapolation factor = 20*log (test distance / specific distance) (dB)

- 7. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 8. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 9. The unit was tested with its standard battery.
- 10. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ 3*RBW
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\geq 1/\tau$ Hz, where τ = pulse width in seconds
 - The actual setting value of VBW = 1 kHz
- 11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 12. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Test Procedure of Radiated Restricted Band Edge

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).

*Distance extrapolation factor = 20*log (test distance / specific distance) (dB)

- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ 3*RBW
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\ge 1/\tau$ Hz, where τ = pulse width in seconds

The actual setting value of VBW = 1 kHz

10. Total

= Reading Value + Antenna Factor (A.F) + Cable Loss (C.L) + Distance Factor (D.F)

7.7. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

*Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

7.8. Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode: Stand alone
- Worst case: Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions: X
 - Radiated Restricted Band Edge: X
- 3. All packet length of operation were investigated and the test results are worst case in highest packet length.

(Worst case: 37 Byte)

Conducted test

1. The EUT was configured with packet length of highest power.

(Packet length of highest power: 37 Byte)

8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	IC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§15.247(a)(2)	RSS-247, 5.2.(a)	> 500 kHz		PASS
Occupied Bandwidth	N/A	RSS-GEN, 6.7	N/A		PASS
Conducted Maximum Peak Output Power	§15.247(b)(3) R		< 1 Watt		N/A
Power Spectral Density	§15.247(e)	§15.247(e) RSS-247, 5.2.(b) <		Conducted	PASS
Band Edge (Out of Band Emissions)	§15.247(d)	RSS-247, 5.5	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§15.207	RSS-GEN, 8.8	cf. Section 7.7		PASS
Radiated Spurious Emissions	§15.247(d), 15.205, 15.209	RSS-GEN, 8.9	cf. Section 7.6		PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	RSS-GEN, 8.9 RSS-GEN, 8.10	cf. Section 7.6	Radiated	PASS
Receiver Spurious Emissions	N/A	RSS-GEN, 7.3	cf. Section 7.8		PASS

9. TEST RESULT

9.1 DUTY CYCLE

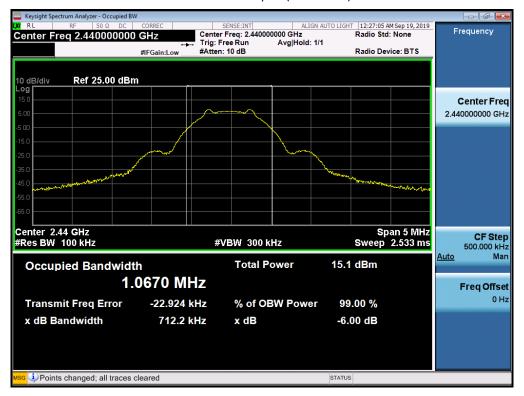
T _{on}	T _{total}	Duty Cycle	Duty Cycle Factor	
(ms)	(ms)		(dB)	
1	1	1	0	

9.2 6 dB BANDWIDTH MEASUREMENT

Channel	6 dB Bandwidth (kHz)	Limit (kHz)	
Channel	Result		
0	712.6		
19	712.2	> 500	
39	711.0		

Test Plots

 SENSE:INT
 ALIGN AUTO LIGHT
 12:03:05 AM Sep 19, 2019


 Center Freq: 2.402000000 GHz
 Radio Std: None

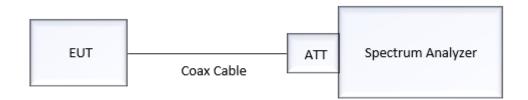
 Trig: Free Run
 Avg|Hold: 1/1

 #Atten: 10 dB
 Device Run
 Keysight Spectrum Analyzer - Occupied BW Frequency Center Freq 2.402000000 GHz #IFGain:Low Ref 25.00 dBm Center Freq 2.402000000 GHz Span 5 MHz Sweep 2.533 ms Center 2.402 GHz #Res BW 100 kHz **CF** Step #VBW 300 kHz 500.000 kHz Auto Man **Total Power** 15.0 dBm **Occupied Bandwidth** 1.0644 MHz Freq Offset 0 Hz -22.386 kHz **Transmit Freq Error** % of OBW Power 99.00 % x dB Bandwidth 712.6 kHz x dB -6.00 dB Points changed; all traces cleared STATUS

6 dB Bandwidth plot (Low-CH 0)


6 dB Bandwidth plot (Mid-CH 19)

6 dB Bandwidth plot (High-CH 39)



9.3 99% BANDWIDTH

Limit, RSS-Gen(Issue 5) Section 6.7

The 99 % bandwidth is used to determine the conducted power limits.

TEST CONFIGURATION

TEST PROCEDURE

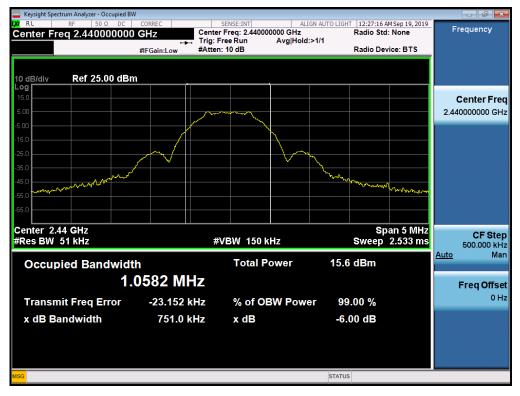
The transmitter output is connected to the spectrum analyzer.

RBW = $1\% \sim 5\%$ of the occupied bandwidth VBW $\coloneqq 3 \times RBW$ Detector = Peak Trace mode = max hold Sweep = auto couple Allow the trace to stabilize

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.

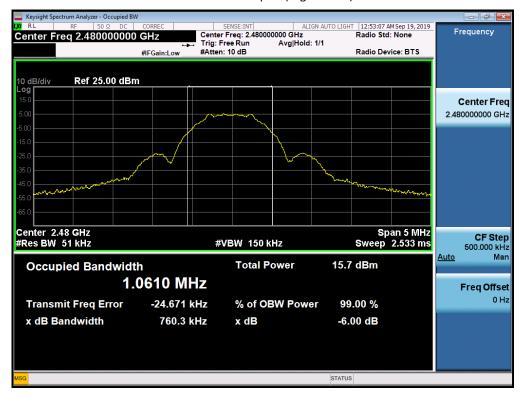
TEST RESULTS

LE Mode		Measured Bandwidth (kHz)
Frequency [MHz] Channel No.		Result
2402	0	1053.1
2440	19	1058.2
2480	39	1061.0



RESULT PLOTS

99% Bandwidth plot (Low-CH 0)


99% Bandwidth plot (Mid-CH 19)

99% Bandwidth plot (High-CH 39)

9.4 OUTPUT POWER

Peak Power

LE Mode Frequency[MHz] Channel No.		Measured Power(dBm)	Limit (dBm)	
		Result		
2402	0	8.49	30	
2440	19	8.62	30	
2480	39	8.72	30	

Average Power

LE Mode Frequency[MHz] Channel No.		Measured Power(dBm) + Duty Cycle Factor(dB)	Limit (dBm)	
		Result		
2402	0	8.22	30	
2440	19	8.30	30	
2480	39	8.52	30	

Note :

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the attenuator and cable combination.

2. Spectrum offset = Attenuator loss + Cable loss

Test Plots

Peak Power

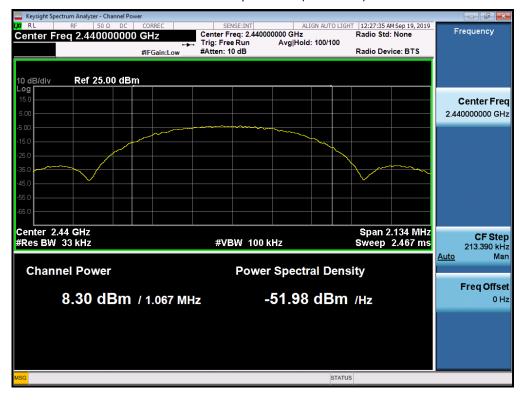
Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

	ectrum Analyzer - Swept SA					- 7
Center Fi	RF 50 Ω DC req 2.440000000	CORREC CORREC	SENSE:INT	ALIGN AUTO LIGH #Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
	•	PNO: Wide +++ IFGain:Low	Trig: Free Run Atten: 36 dB	Avg Hold: 1/1	DET PPPPP	
				Mkr1	2.440 239 GHz	Auto Tune
10 dB/div	Ref 25.00 dBm				8.624 dBm	
9			Ĭ			Center Freq
15.0				1		2.440000000 GHz
5.00						Start Freq
-5.00						2.438500000 GHz
- And						
-15.0						Stop Freq
05.0						2.441500000 GHz
-25.0						
-35.0						CF Step 300.000 kHz
						Auto Man
-45.0						
-55.0						Freq Offset
-33.0						0 Hz
-65.0						
						Scale Type
Center 2.4	140000 GHz				3pan 3.000 Minz	Log <u>Lin</u>
#Res BW		#VBW	3.0 MHz	Sweep 1	.532 ms (1000 pts)	
мsg 🗘 Point	ts changed; all traces	cleared		STATU	S	

Conducted Output Power (High-CH 39)

Average Power


Keysight Spectrum Analyzer - Channel P
 SENSE:INT
 ALIGN AUTO LIGHT
 12:03:36 AM Sep 19, 2019

 Center Freq: 2.402000000 GHz
 Radio Std: None

 Trig: Free Run
 Avg|Hold: 100/100
 Radio Device: BTS
 Frequency Center Freq 2.402000000 GHz #IFGain:Low Ref 25.00 dBm Center Freq 2.402000000 GHz Center 2.402 GHz #Res BW 33 kHz Span 2.129 MHz Sweep 2.467 ms **CF** Step #VBW 100 kHz 212.878 kHz Auto Man **Channel Power Power Spectral Density** Freq Offset 8.22 dBm / 1.064 MHz -52.05 dBm /Hz 0 Hz STATUS

Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

Conducted Output Power (High-CH 39)

9.5 POWER SPECTRAL DENSITY

Frequency (MHz)	Channel No.	PSD (dBm/3kHz)		
		Result (dBm/3kHz)	Limit (dBm/3kHz)	
2402	0	-6.189	8.000	
2440	19	-6.035	8.000	
2480	39	-6.025	8.000	

Note :

1. Spectrum reading values are not plot data.

The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

2. Spectrum offset = Attenuator loss + Cable loss

Test Plots

Keysight Spectrum Analyzer - Swept SA ALIGN AUTO LIGHT 12:03:49 AM Sep 19, 2019 #Avg Type: RMS TRACE 23:49 AM Sep 19, 2019 Avg|Hold: 1/1 Type Management Frequency Freq 2.402000000 GHz Center Trig: Free Run Atten: 26 dB DET PPPPP PNO: Wide Auto Tune Mkr1 2.402 226 3 GHz -6.189 dBm Ref 15.00 dBm 10 dB/div **Center Freq** 2.402000000 GHz 1 www.www.www.www.www.www. Start Freq A. 2.401465578 GHz and the second second mm Stop Freq 2.402534422 GHz CF Step 106.884 kHz Auto Man **Freq Offset** 0 Hz Scale Type Center 2.4020000 GHz #Res BW 3.0 kHz Span 1.069 MHz Sweep 36.23 ms (1000 pts) Log <u>Lin</u> #VBW 9.1 kHz Points changed; all traces cleared STATUS


Power Spectral Density (Low-CH 0)

Power Spectral Density (Mid-CH 19)

🧱 Keysight Spectrum Analyzer - Swept SA				
RL RF 50 Ω DC Center Freq 2.440000000	CORREC SENS	E:INT ALIGN AUTO LIGH #Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 15.00 dBm	PNO: Wide ↔ Trig: Free IFGain:Low Atten: 26 d	dB	2.440 225 1 GHz -6.035 dBm	Auto Tune
5.00		1		Center Freq 2.440000000 GHz
-5.00 -15.0	www.hannwww.mnmi	arman and and a second	Walker Walker & a	Start Freq 2.439465813 GHz
-25.0				Stop Freq 2.440534187 GHz
-45.0				CF Step 106.837 kHz <u>Auto</u> Man
-65.0				Freq Offset 0 Hz
				Scale Type
Center 2.4400000 GHz #Res BW 3.0 kHz	#VBW 9.1 kHz	Sween	Span 1.068 MHz 36.23 ms (1000 pts)	Log <u>Lin</u>
MRCS DW 3.0 KHZ		Sweep		

Power Spectral Density (High-CH 39)

9.6 CONDUCTED BAND EDGE & SPURIOUS EMISSIONS

TEST RESULTS

Out of Band Emissions at the Band Edge

Frequency			Test Result					
[MHz]	Channel No.	Position	Measured Level [dB]	Limit [dBc]	Pass/Fail			
2402	0	Lower	40.76	20	Pass			
2480	39	Upper	40.41	20	Pass			

Conducted Spurious Emissions

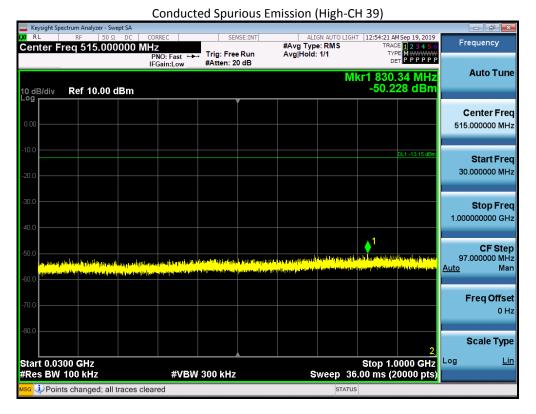
Frequency			Test Result					
[MHz]	Channel No.	Position	Measured Level [dBc]	Limit [dBc]	Pass/Fail			
2402	0	Lower	46.57	20	Pass			
2440	19	Middle	45.36	20	Pass			
2480	39	Upper	45.32	20	Pass			

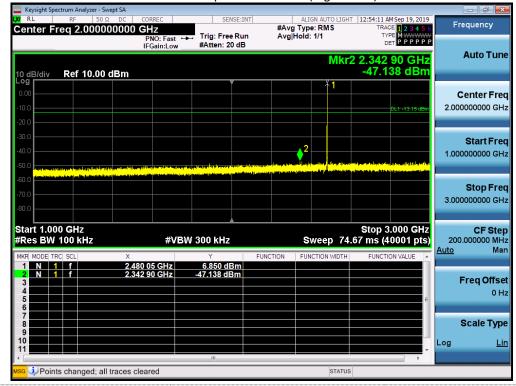
Test Plots (Conducted BandEdge)

Keysight Spectrum Analyzer - Swept SA ALIGN AUTO LIGHT 12:04:08 AM Sep 19, 2019 #Avg Type: RMS TRACE 23:45 6 Avg|Hold: 1/1 TYPE MWWWW Frequency Center Freq 2.400000000 GHz Trig: Free Run Atten: 36 dB PNO: Wide IFGain:Low Auto Tune ΔMkr1 2.248 MHz 40.757 dB Ref 25.00 dBm 10 dB/div **Center Freq** 2.400000000 GHz Δ2 Start Freq 2.396000000 GHz Stop Freq 2.404000000 GHz X2 und CF Step 800.000 kHz hada Auto Man Freq Offset 0 Hz Scale Type Center 2.400000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 4.000 ms (1001 pts) Log <u>Lin</u> #VBW 300 kHz STATUS

Low-CH 0

High-CH 39


Report No.: EMCE-R-1910-003

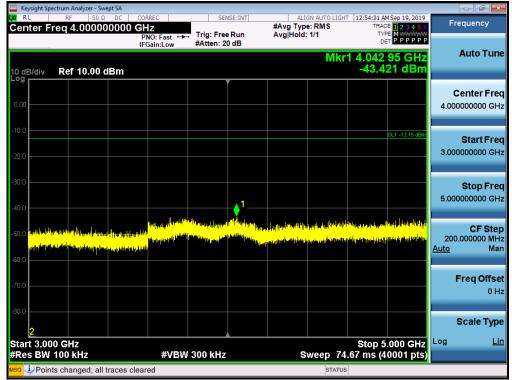

Test Plots (Conducted Spurious Emission)

30 MHz ~ 1 GHz

1 GHz ~ 3 GHz

Conducted Spurious Emission (High-CH 39)

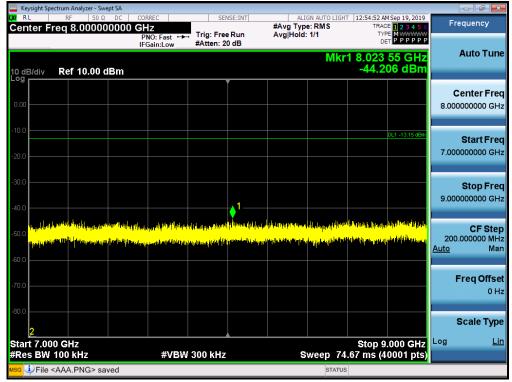
Report No.: EMCE-R-1910-003

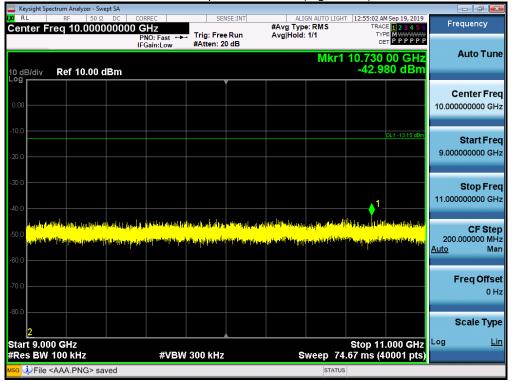

This document may not be copied or reproduced (reprinted) without written consent by EMCE Engineering, Inc. EMCE Engineering, Inc., 1726 Ringwood Avenue, San Jose, CA 95131, USA TEL: +1-510-933-8848 FAX: +1-510-933-8849

3 GHz ~ 5 GHz

Conducted Spurious Emission (High-CH 39)

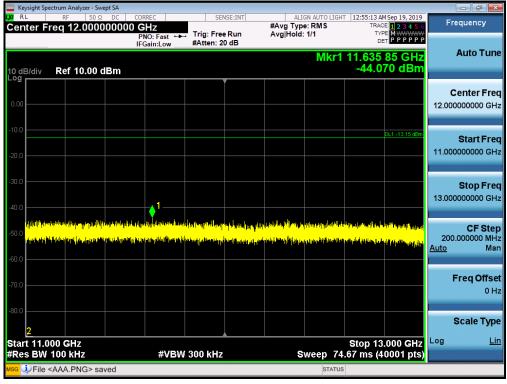
5 GHz ~ 7 GHz

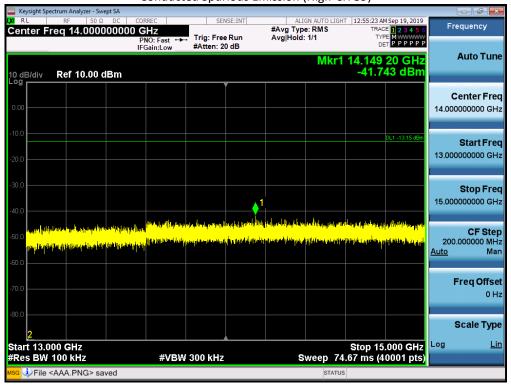




7 GHz ~ 9 GHz

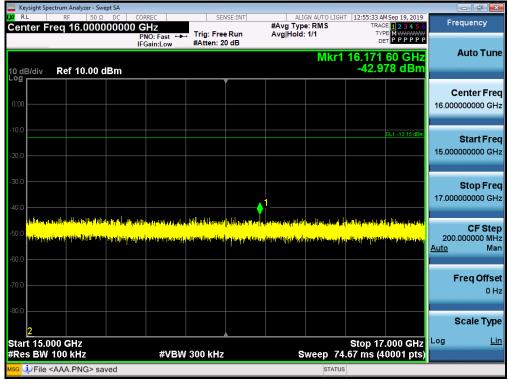
Conducted Spurious Emission (High-CH 39)


9 GHz ~ 11 GHz


11 GHz ~ 13 GHz

Conducted Spurious Emission (High-CH 39)

13 GHz ~ 15 GHz

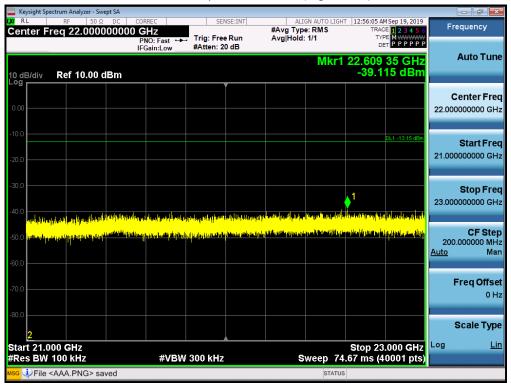


15 GHz ~ 17 GHz

Conducted Spurious Emission (High-CH 39)

17 GHz ~ 19 GHz

Keysight Spectrum Analyzer - Swept SA				
X/RL RF 50Ω DC Center Freq 18.000000000		SE:INT ALIGN AUTO LIGHT #Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 10.00 dBm	PNO: Fast FRO: Fast FGain:Low Trig: Free #Atten: 20	dB	18.469 10 GHz -40.215 dBm	Auto Tune
				Center Freq 18.000000000 GHz
-10.0			DL1 -13:15 dBm	Start Fred 17.000000000 GHz
-30.0		nethearth fill for the first of the state of	a han hating a sura sa	Stop Freq 19.000000000 GHz
ente (Mar ^{an} bar an in the Park and an	ally population of the formula of the formation of the fo	na processo processo da la construcción de la construcción de la construcción de la construcción de la constru Cal: esca família esta de la família de la construcción de la construcción de la construcción de la construcción	en en sajta fasta esta arraz a la con a	CF Step 200.000000 MHz <u>Auto</u> Mar
-70.0				Freq Offse 0 H:
2 Start 17.000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 74	Stop 19.000 GHz .67 ms (40001 pts)	Scale Type Log <u>Lin</u>
^{MSG} 💐 File <aaa.png> saved</aaa.png>		STATUS		



19 GHz ~ 21 GHz

🤤 Keysight Spectrum Analyzer - Swept SA 👘				
KE RF 50 Ω DC Center Freq 20.00000000	0 GHz	ISE:INT ALIGN AUTO LIGH #Avg Type: RMS Run Avg Hold: 1/1	TRACE 12:55:54 AM Sep 19, 2019 TRACE 123456 TYPE MWWWW	Frequency
10 dB/div Ref 10.00 dBm	PNO: Fast ↔ Trig: Free IFGain:Low #Atten: 20) dB	19.144 90 GHz -40.425 dBm	Auto Tune
0.00				Center Freq 20.000000000 GHz
-10.0			DL1 -13.15 dBm	Start Freq 19.000000000 GHz
-30.0 -40.0 4mg/j-al/inetia/fe///pea/peaker/11/14	den Marana de de la La constalia de la constalia de la desta	U. ang lang tang pang	ang ja attalakan jula la ata ang basang sa mala "	Stop Freq 21.000000000 GHz
-50.0 <mark>20192/2014/2014/2014/2014/2014/2014/2014/201</mark>				CF Step 200.000000 MHz <u>Auto</u> Man
-70.0				Freq Offset 0 Hz
2 Start 19.000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 74	Stop 21.000 GHz I.67 ms (40001 pts)	Scale Type
<mark>мsg</mark> 🧼File <aaa.png> saved</aaa.png>		STATU	s	

Conducted Spurious Emission (High-CH 39)

21 GHz ~ 23 GHz

23 GHz ~ 25 GHz

🔤 Keysight Spectrum Analyzer - Swept SA 🚽				
X RL RF 50 Ω DC Center Freq 24.00000000	00 GHz	ALIGN AUTO L #Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 10.00 dB m	PNO: Fast ↔ Trig: Free IFGain:Low #Atten: 20) dB	түре Минини Det РРРРРРР r1 24.159 85 GHz -38.474 dBm	Auto Tune
0.00				Center Freq 24.00000000 GHz
-10.0			DL1 -13.15 dBm	Start Freq 23.000000000 GHz
-30.0	un de la companya de		II folgeget standarde frankfilder stil fagaget i se s	Stop Freq 25.00000000 GHz
-50.0 (244), A. BOYMUN BOYMUN BOYMUN BOYMUN BOYMUN	<mark>nethelik og ef at ocken tillerek (konkenen en till</mark>	<mark>yani yan Alanakin yiya antisi nyan, isis Nopus yanyan dinisi</mark> ya	<mark>na dig (na dagang sala si_{n (}na jadapada dagan).</mark>	CF Step 200.000000 MH: <u>Auto</u> Mar
-70.0				Freq Offse 0 H:
-80.0 2 Start 23.000 GHz	49/DW 2000 LU		Stop 25.000 GHz	Scale Type
#Res BW 100 kHz wsg	#VBW 300 kHz		74.67 ms (40001 pts) TUS	

9.6 RADIATED SPURIOUS EMISSIONS

9 kHz – 30MHz

CH 0

Frequency	ANT. POL	Reading	XA.F.+C.L.	Total	Limit	Margin	Measurement
[kHz]	[H/V]	[dBuV]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Туре
176	Н	3	19.8	22.8	102.2	79.4	QP
24	V	9.2	20.4	29.6	120.0	90.4	QP
172	V	7.5	19.8	27.3	102.8	75.5	QP
1.088	V	10.4	20.1	30.5	66.85	36.35	QP

Notes:

1. The measurement distance is 3 meters.

2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)

3. Limit line = specific Limits (dBuV) + Distance extrapolation factor

4. Corrected reading: Antenna Factor + Cable loss + Read Level

5. The other Frequencies are attenuated more than 20 dB below the permissible limits. In order to simplify the report, attached worst-case mode result.

Frequency Range : Below 1 GHz

CH 0

Frequency [MHz]	ANT. POL [H/V]	Reading [dBuV]	ЖА.Ғ.+С.L. [dB]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
30.909	V	21	-1.1	19.9	40	20.1	QP
315.415	V	26	-6.1	19.9	46	26.1	QP

CH 19

Frequency [MHz]	ANT. POL [H/V]	Reading [dBuV]	ЖА.Ғ.+С.L. [dB]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
30.91	V	24.8	-1.1	23.7	40	16.3	QP
315.135	V	25.4	-6.1	19.3	46	26.7	QP

CH 39

Frequency [MHz]	ANT. POL [H/V]	Reading [dBuV]	ЖА.Ғ.+С.L. [dB]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
30.102	V	21.1	-0.5	20.6	40	19.4	QP
313.937	V	25.6	-6.1	19.5	46	26.5	QP

Notes:

1. Corrected reading: Antenna Factor + Cable loss + Read Level

Frequency Range : Above 1 GHz

Operation Mode: CH 0

Frequency MHz Polarization	Polarization	Reading dB(uV)		Level dB(uV/m)		Limit dB(uV/m)		Margin dB		
	AV	РК	Factor	AV	РК	AV	РК	AV	РК	
4804.408	V	38.8	50.1	-2.7	36.1	47.4	54	74	17.9	26.6
4804.343	Н	42.6	52.1	-2.7	39.9	49.4	54	74	14.1	24.6
7206.328	V	40.2	50.1	2.5	42.7	52.6	54	74	11.3	21.4
15918.28	V	28.9	43.1	15.1	44	58.2	54	74	10	15.8
24834.1	V	35.5	48.7	5.0	40.5	53.7	54	74	13.5	20.3

Operation Mode: CH 19

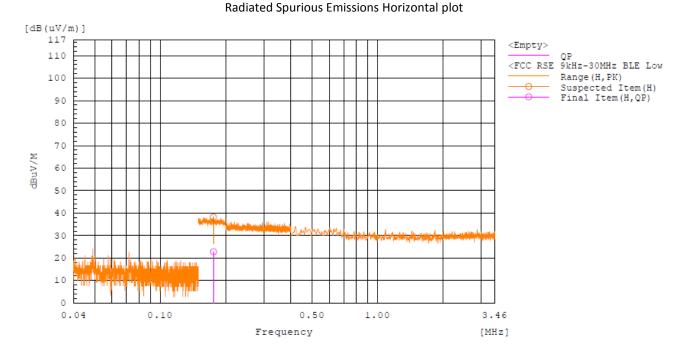
Frequency MHz Polarization	Polarization	Reading dB(uV)		Level dB(uV/m)		Limit dB(uV/m)		Margin dB		
	AV	РК	Factor	AV	РК	AV	РК	AV	РК	
4879.512	Н	44.2	53.3	-2.7	41.5	50.6	54	74	12.5	23.4
4879.757	V	45.9	53.5	-2.7	43.2	50.8	54	74	10.8	23.2
7319.122	Н	46.7	55.6	2.8	49.5	58.4	54	74	4.5	15.6
7320.675	V	45.4	54.5	2.8	48.2	57.3	54	74	5.8	16.7
16530.61	V	29.4	42.6	15.3	44.7	57.9	54	74	9.3	16.1

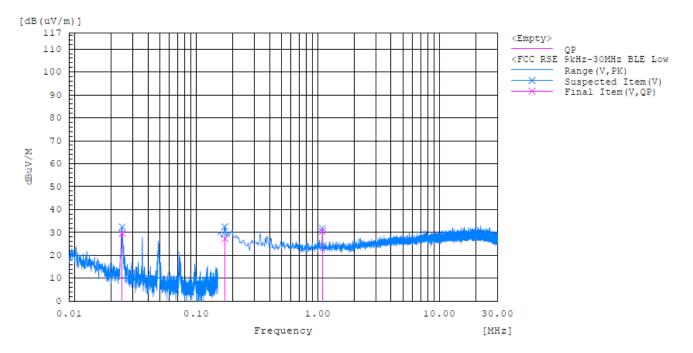
Operation Mode: CH 39

Frequency MHz Polarization	Polarization	Reading dB(uV)		Level dB(uV/m)		Limit dB(uV/m)		Margin dB		
	AV	РК	Factor	AV	РК	AV	РК	AV	РК	
4959.988	V	42.3	51.3	-2.5	39.8	48.8	54	74	14.2	25.2
4960.296	Н	44.8	53.4	-2.5	42.3	50.9	54	74	11.7	23.1
7440.438	Н	42.8	52.2	2.9	45.7	55.1	54	74	8.3	18.9
7440.803	V	45.9	55	2.9	48.8	57.9	54	74	5.2	16.1
16522.32	V	29.4	42.5	15.3	44.7	57.8	54	74	9.3	16.2

Notes:

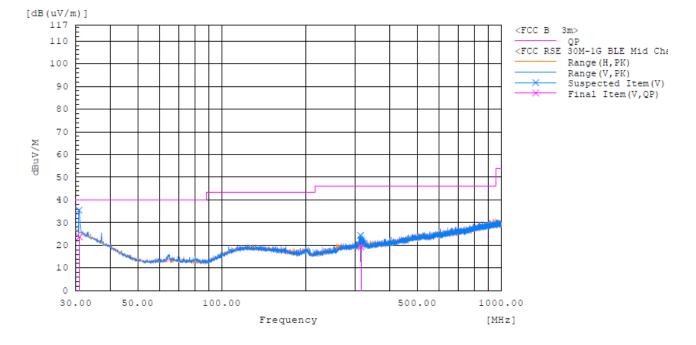
1. Corrected reading: Antenna Factor + Cable loss + Read Level


2. AV Level = Measured Power(dBm) +Duty Cycle Factor(dB)

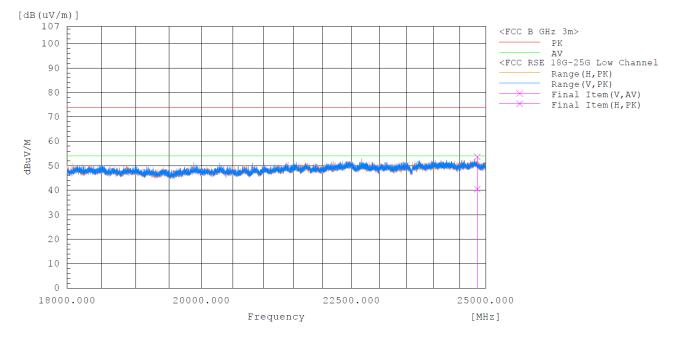


Test Plots

9 kHz – 30MHz


Radiated Spurious Emissions Vertical plot

Radiated Spurious Emissions plot Below 1 GHz


Radiated Spurious Emissions plot 1 GHz ~ 18 GHz

Radiated Spurious Emissions plot 18 GHz ~ 25 GHz

Note:

Plot of worst case are only reported.

9.7 RADIATED RESTRICTED BAND EDGES

Operating Frequency

Channel No.

2402 MHz		
0		

Frequency	Polarization		Reading dB(uV)		_	vel V/m)	Lin dB(u'	-	Ma d	-
MHz		AV	РК	Factor	AV	РК	AV	РК	AV	РК
2390	V	34	47	-8.2	25.8	38.8	54	74	28.2	35.2
2390	Н	35	48.3	-8.2	26.8	40.1	54	74	27.2	33.9

Operating Frequency

Channel No.

2480 MHz

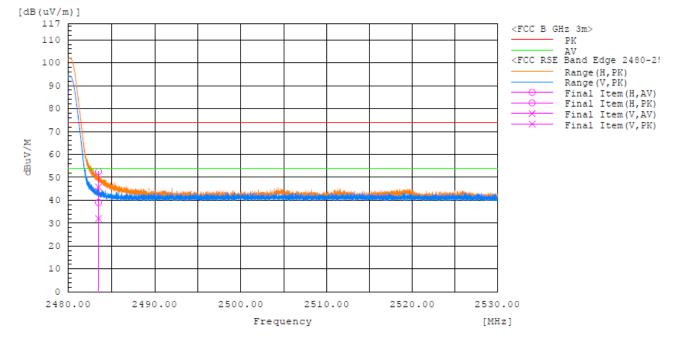
39

Frequency	Frequency MHz Polarization		Reading dB(uV)		Level dB(uV/m)		Limit dB(uV/m)		Margin dB	
IVIHZ		AV	РК	Factor	AV	РК	AV	РК	AV	РК
2483.5	V	39.7	53.5	-7.7	32	45.8	54	74	22	28.2
2483.5	Н	46.7	60.2	-7.7	39	52.5	54	74	15	21.5

Notes:

1. Corrected reading: Antenna Factor + Cable loss + Read Level

2. AV Level = Measured Power(dBm) +Duty Cycle Factor(dB)



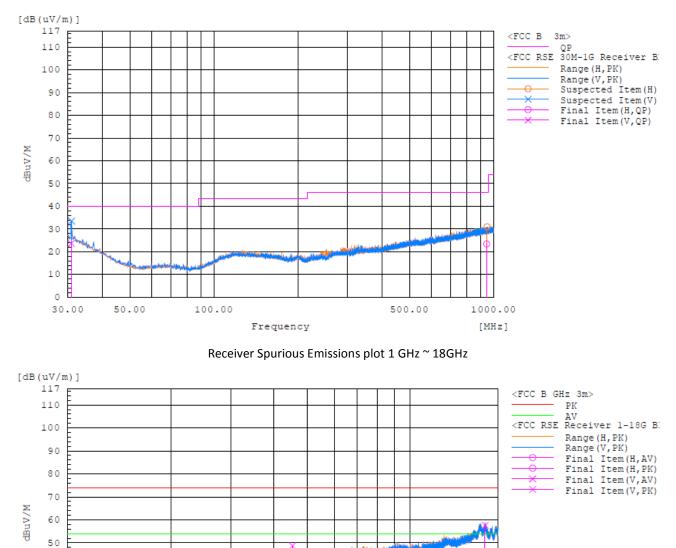
Test Plots

9.8 RECEIVER SPURIOUS EMISSIONS

Frequency Range : Below 1 GHz

Frequency [MHz]	ANT. POL [H/V]	Reading [dBuV]	ЖА.Ғ.+С.L. [dB]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
32.066	V	36.4	-1.9	34.5	40	5.5	QP
43.543	V	47.6	-10.2	37.4	40	2.6	QP

Note:


1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

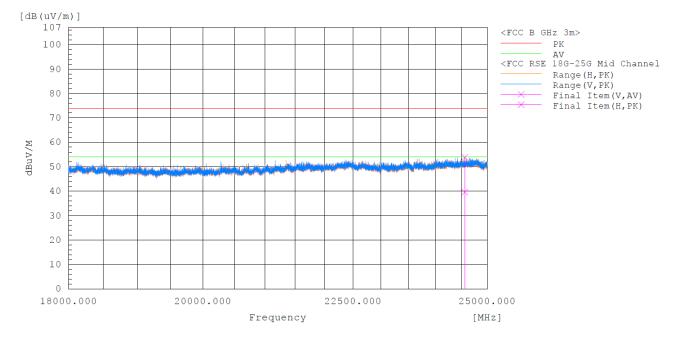
Frequency	Polarization	Rea dB(ding uV)	Level dB(uV/m)	Limit dB(uV/m)	Margin dB
MHz		AV	Factor	AV	AV	AV
4802	V	43.5	-3.3	40.2	54	13.8
4802	Н	44.8	-3.3	41.5	54	12.5
17835.7	V	30.5	13.8	44.3	54	9.7
24563.9	V	34.7	4.9	39.6	54	14.4

Receiver Spurious Emissions plot Below 1 GHz

2000.00

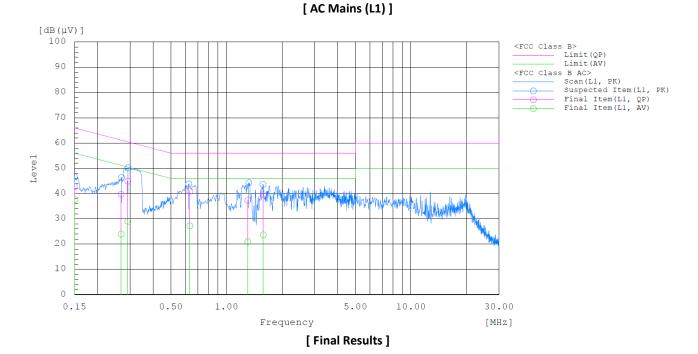
5000.00

Frequency


10000.00

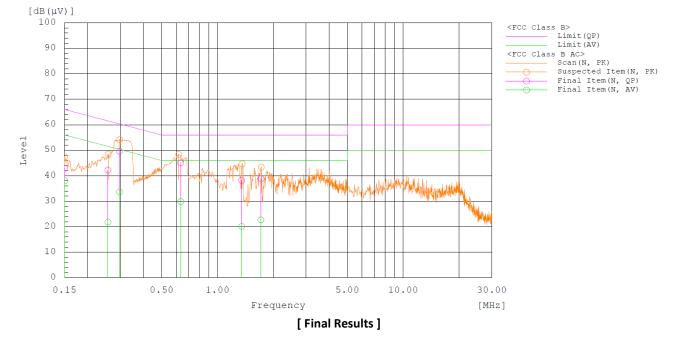
18000.00 [MHz]

Receiver Spurious Emissions plot 18 GHz ~ 25 GHz


Note:

Plot of worst case are only reported.

9.6 POWERLINE CONDUCTED EMISSIONS


Frequency MHz	Reading Line dB(μV)		Corr.	Level dB(μV)		Limit dB(µV)		Margin dB		
		QP	CAV	dB	QP	CAV	QP	CAV	QP	CAV
0.15	L1	33.1	28.1	9.6	42.7	37.7	66	56	23.3	18.3
0.269	L1	30.1	14.4	9.6	39.7	24	61.2	51.2	21.5	27.2
0.292	L1	35.4	19.5	9.6	45	29.1	60.5	50.5	15.5	21.4
0.632	L1	31.4	17.7	9.6	41	27.3	56	46	15	18.7
1.304	L1	27.7	11.3	9.7	37.4	21	56	46	18.6	25
1.58	L1	29.9	14	9.7	39.6	23.7	56	46	16.4	22.3

Note : Quasi-peak(Final Result) = Reading Value + Correction Factor

[AC Mains (N)]

Frequency MHz	Line	Reading dB(μV)		Corr.	Level dB(µV)		Limit dB(µV)		Margin dB	
IVIEZ		QP	CAV	dB	QP	CAV	QP	CAV	QP	CAV
0.15	Ν	33.3	28.5	9.6	42.9	38.1	66	56	23.1	17.9
0.257	Ν	32.6	12.3	9.6	42.2	21.9	61.5	51.5	19.3	29.6
0.296	Ν	40	24.1	9.6	49.6	33.7	60.3	50.3	10.7	16.6
0.633	Ν	35.5	20.3	9.6	45.1	29.9	56	46	10.9	16.1
1.348	N	28.5	10.5	9.7	38.2	20.2	56	46	17.8	25.8
1.709	Ν	29.2	13.1	9.6	38.8	22.7	56	46	17.2	23.3

Note : Quasi-peak(Final Result) = Reading Value + Correction Factor

10. LIST OF TEST EQUIPMENT

No.	Instrument	Model No.	Due to Calibration	Manufacture	Serial No.
\boxtimes	Signal Analyzer (20 Hz ~ 40.0 GHz)	ESU40	2019-12-20	ROHDE & SCHWARZ	100529
\boxtimes	Signal Analyzer (3 Hz ~50 GHz)	N9030A	2020-02-15	AGILENT	MY53311083
\boxtimes	BI-LOG Antenna (30 MHz ~ 1 GHz)	JB6	2020-11-29	Sunol	A071116
\boxtimes	Attenuator (20 dB, DC ~ 26.5 GHz)	8493C	2019-12-20	НР	09072
\boxtimes	POWER AMP (1 GHz ~ 18 GHz)	PAM-118A	2020-08-22	Com-Power Corporation	18040074
\boxtimes	POWER AMP (0.3GHz ~ 1GHz)	PAM-103A	2020-01-18	Com-Power Corporation	18020005
\boxtimes	Horn Antenna (1 GHz ~ 18 GHz)	DRH-118	2020-05-24	Sunol	A070516
\boxtimes	Loop Antenna (0.009 ~ 30 MHz)	HLA 6121	2020-08-27	Teseq	43964
\boxtimes	Horn Antenna (18 GHz ~ 40 GHz)	DRH-1840	2020-02-20	Sunol	17120
\boxtimes	POWER AMP (18 GHz ~ 40 GHz)	CBL184050-45-01	2020-02-20	CERNEX,Inc.	43964
\boxtimes	ISM Band Reject filter (2370 ~ 2400 - 2483.5 ~2520 MHz)	WRCJV12	2020-01-18	Wainwright	4
\boxtimes	EMI Test Receiver	ESR3	2019-12-20	Rohde & Schwarz	102363
\boxtimes	LISN	3816/2SH	2020-01-19	EMCO	00205729
\boxtimes	LISN	ENV216	2020-01-19	Rohde & Schwarz	101349

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date

Report No.: EMCE-R-1910-003

11. ANNEX A TEST SETUP PHOTO

The setup photo will be provided as a separate document