

FCC MPE REPORT

Certification

Applicant Name: Hewlett Packard Enterprise Company Address: 3333 Scott Blvd Santa Clara, CA 95054, USA		Date of Issue: October 22, 2019 Test Site/Location: EMCE Engineering 1726 Ringwood Avenue San Jose, California USA Report No.: EMCE-R-1910-004	
FCC ID:	Q9DARCN9012		
IC:	4675A-ARCN9012		
APPLICANT:	Hewlett Packard Enterprise Company		
Model:	ARCN9012		

EUT Type: 9012 Gateway

The measurements shown in this report were made in accordance with the procedures specified in §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

EMCE Engineering, Inc. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Steve In Test Engineer Certification Division

Dally

Sunwoo Kim Technical Manager Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the EMCE Engineering, Inc.

Report No.: EMCE-R-1910-004

This document may not be copied or reproduced (reprinted) without written consent by EMCE Engineering, Inc. EMCE Engineering, Inc., 1726 Ringwood Avenue, San Jose, CA 95131, USA TEL: +1-510-933-8848 FAX: +1-510-933-8849

Report History

TEST REPORT NO.	DATE	DESCRIPTION
EMCE-R-1910-004	October 22, 2019	First Issue

RF Exposure Statement

1. LIMITS

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposures						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)		
0.3 - 1.34	614	1.63	*(100)	30		
1.34 - 30	824/f	2.19/f	*(180/f²)	30		
30 - 300	27.5	0.073	0.2	30		
300 - 1500			f/1500	30		
1500 - 100.000			1.0	30		

- F = frequency in MHz
- * = Plane-wave equivalent power density

2. MAXIMUM PERMISSIBLE EXPOSURE Prediction

Prediction of MPE limit at a given distance

$S = PG/4\pi R^2$

- S = Power density
- P = power input to antenna
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator
- R = distance to the center of radiation of the antenna

3. RESULTS

3-1. Bluetooth LE

Average Conducted Output Power (dBm)	8.72	dBm
Average Conducted Output Power (mW)	7.45	mW
Prediction distance	20.000	cm
Prediction frequency	2402 ~ 2480	MHz
Antenna Gain(typical)	-4.5	dBi
Antenna Gain(numeric)	0.36	-
Power density at prediction frequency(S)	0.000526	mW/cm²
MPE limit for uncontrolled exposure at prediction frequency	1.000	mW/cm²