

802.11ax-HE20 / CH33 802.11ax-HE160 / CH47 (Low Edge) Marker 1 ∆ 26.8488 s State of the state o
Image: Section Address Section Addres Section Address Section Address Section
Image: Contert 6.115000000 GHz Fixed> Center 6.115000000 GHz Sweep 30.00 s (6001 pts)
00 Lateral and the second state of the second
Res BW 8 MHz #VBW 8.0 MHz Sweep 30.00 s (8001 pts) Of Res BW 8 MHz #VBW 8.0 MHz Sweep 30.00 s (8001 pts) Off
2 F 1 1 1.311s -13.93 dBm Properties▶ 2 F 1 1 1.364 s -11.79 dBm Properties▶ 3 6 6 6 6 6 6 6 6 6 7 Properties▶ Properties▶ Properties▶ 11.79 dBm Properties▶ Properties▶ Properties▶ 11.79 dBm
7 7 7 7 8 9
*i = /*i = /*i MSG ITATUS MSG ITATUS
802.11ax-HE160 / CH47 (Middle) 802.11ax-HE160 / CH47 (High Edge)
In Registration Andjace Senget Sa. In Registration Andjace Senge
In the second
00 00 00 00 00 00 00 00 00 00 00 00 00 Fixed> 800 Fixed><
Center 6.183000000 GHz Res BW 8 MHz #VBW 8.0 MHz Span 0 Hz Sweep 30.00 s (8001 pts) Center 6.26000000 GHz Res BW 8 MHz #VBW 8.0 MHz Span 0 Hz Sweep 30.00 s (8001 pts) Off Miniz of 1 #VBW 8.0 MHz Sweep 30.00 s (8001 pts) Off Miniz of 1 Sweep 30.00 s (8001 pts) Off
I N I 1738 s 118.58 dBm Outcome Participation Partipation Participation
More 1 of 2

Test Result of EUT ceased transmission (NII-6 Band)									
802.11ax-HE20 / CH97	802.11ax-HE80 / CH103 (Low Edge)								
Trigging Spectrum Anapter Snept 5A Cold Science Marker 1 & 26,8238 s FNO: Fast +	Image: Second Second Andrew Adverter Second Seco								
100 100 <td>102 200 200 200 200 200 200 200</td>	102 200 200 200 200 200 200 200								
60 70 80 80 Center 6.435000000 GHz Span 0 Hz	400 400 400 400 Center 6.430000000 GHz Span 0 Hz								
Res BW 8 MHz #VEW 8.0 MHz Sweep 30.00 s (8001 pts) Off More Moder Incl Stul X Y Function Function	Res BW 8 MHz #VEW 8.0 MHz Sweep 30.00 s (8001 pts) Off Mail Moder Incl Sci. x Y Function								
2 F 1 t 1779 s 47236 dBm 3 4 4 1779 s 47236 dBm 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 F 1 t 10// 1048 s 10// 1688 dBm 3 F 1 t 1848 s 1688 dBm 5 F 1 t 1848 s 1688 dBm 6 F 1 t 1848 s 1688 dBm 6 F 1 t 1848 s 1688 dBm								
More 9 10 11	7 9 10 11								
NGG STATUS	aso asiata								
802.11ax-HE80 / CH103 (Middle)	802.11ax-HE80 / CH103 (High Edge)								
Image: Second System Analyses - Sweet SA School SMM ALION AUTO 014157 PMAny 06, 2003 Marker Marker 2 27,9263 s PNO; Fast +→→ Fast +→→ Fast +→→ Arg Type: Log-Pwr Troce Type: Log-Pwr Marker Fig. 1 = 0.0 Fast +→→ Fast +→→ Fast +→→ Select Marker Select Marker Select Marker Fig. 1 = 0.0 Select Marker	Image: Specify Spectrum Analyses: Specify Spectrum Analyses: Specify Spectrum Analyses: Specify Specify Spectrum Analyses: Specify S								
100 met 1 - 61.29 dBm - 61.29 dBm Normal	10 gradie Ref 0.00 dBm -57.82 dBm 10 gradie Ref 0.00 dBm 10 gradie Ref								
600 Delta	400 400 400 Later of the Community of Concerning Concerning States on States of Concerning Concern								
-700 700	.700								
Center 6.465000000 GHz Res BW 8 MHz #VBW 8.0 MHz Sweep 30.00 s (8001 pts) Off	Center 6.50000000 GHz Res BW 8 MHz #VBW 8.0 MHz Sweep 30.00 s (8001 pts) Off								
T N 1 t 17730 3 - 1498 dBm 2 N 1 t 27793 3 -5123 dBm 3 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Tork TUN TUNK TUNK								
More 10 11	More 10 11								
MSG STATUS	MSG STATUS								

Test Result of EUT ceased transmission (NII-7 Band)								
802.11ax-HE20 / CH153	802.11ax-HE160 / CH143 (Low Edge)							
Marker 1 Δ 27.2275 s PNO: Fast ->> Trig: Free Run Hierariu 10 dB Aug Type: Log-Pwr Avg Type: Log-Pwr Log-Pwr Trig: Free Run Log-Pwr Marker Trice 1 23 29 Wer 17.2021 Marker Marker 10 dB/div Ref 0.00 dBm -	Image/Sectors/Endpand/Sectors/ State Sector Allow and/o Octors/ Marker Marker 1 Δ 26,5563 s PMO: Fast → IFGainS.cow Trig: Free Run Atten: 10 dB Avg Type: Log-Pwr Avg Type: Log-Pwr Trice: Free Run Cert Printing Marker 10 dB/dlv/ Ref 0.00 dBm 0.57 dB Select Marker 1							
100 102 102 Normal 000 100 </td <td>All and the second seco</td>	All and the second seco							
400								
Center 6.715000000 GHz Span 0 Hz Res BW 8 MHz #VBW 8.0 MHz Sweep 30.00 s (800 1 pts) Off	Center 6.59000000 GHz Span 0 Hz Span 0 Hz Span 0 Hz Off Res BW 8 MHz #VBW 8.0 MHz Sweep 30.00 s (8001 pts) Off Off Off							
1 Δ2 1 1 2723 (Δ) 20349 2 F 1 t 1.389 -133248m 3 4 - -133248m -133248m - - 6 - - - - - - 7 - - - - - - -	A2 1 L A2 6 56 μ(Δ) 0.67 dB 2 F 1 t 1.851 μ -17.01 dBm 3 4 4 4 4 4 4 4 4 6 4							
More 10 10 10 10 10 10 10 10 10 10 10 10 10	More 10 11							
	802.11ax-nE1607Cn143(night Edge)							
2 set 100 a. Ac set (M) AU(M + MTO 0.2123 20 MMor 10. 2023 Marker Marker 2 27.8775 s PNO. Fast → Trig: Free Run IFGeind.ow Trig: Free Run Atten: 10 dB Avg Type: Log-Pwr trig: Free Run Atten: 10 dB Trig: Free Run cer Immer Atten: 10 dB Marker Select Marker 2	29 36 360 a.c. Alline luffic 011232 DMary 10.a.22 Marker Marker 2 28.2488 s PNO: Fast → IFGeint.cow Trig: Free Run Attan: 10 dB Avg Type: Log-Pwr critic Trig: Free Run critic Marker Select Marker Select Marker Select Marker Select Marker Select Marker 2							
10 dBia/v Ref 0.00 dBm -01,44 dBm	10 adddw Ref 0.00 dBm -00,77 dBm 10 addbw -00,77 d							
00 Fixed≻	700 Fixed>							
Center 6.665000000 CHz Span 0 Hz Res BW 8 MHz Sweep 30.00 s (8001 pts) Mrr MOR Fros SL x y FUNCTON MULTION MORTH FUNCTIONAULE IN	Center 6.740000000 GHz Span 0 Hz Span 0 Hz Span 0 Hz Sweep 30.00 s (8001 pHz) Off MM Noot First Stut x Y FUNCTON							
1 N 1 t 1715a -1681dBm 2 N 1 t 2788 -61.41dBm 3 U 1 t 2788 -61.41dBm 6 U 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 N 1 t 1.844 s) -18.75 dBm 2 N 1 t 28.25 s) -60.77 dBm							
More 10 11 11 11 10 10 10 10 10 10 10 10 10	More 10 11 11 10 10 10 10 10 10 10 10 10 10							

Test Result of EUT ceased transmission (NII-8 Band)									
802.11ax-HE20 / CH213	802.11ax-HE160 / CH207 (Low Edge)								
Weight Spectrum Andram - Snept 5. State 1 State 2.01 State 2.01 Marker 1 A 100 AUTO 02.261 A MMark 17.2020 Marker Marker 1 & 27.1000 s PNO: Fast -+	Bit Reystal Spectrum Andram - Suppl 5. State of the second s								
100 </th <th>Normal Normal 300</th>	Normal Normal 300								
400 Longer and a second a second at	400 been Filing of the second								
Res EW 8 MHz #VEW 8.0 MHz Sweep 30.00 s (8001 pts) Off Mex Mode THC SL X Y FUNCTION	Res BW 8 MHz #VEW 8.0 MHz Sweep 30.00 s (8001 pts) Off Meximace find scill x Y Function								
2 f 1 t 1380 s -13.92 dBm 5 t 1 t 1380 s -13.92 dBm 6 t 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Properties►								
7 8 9 10 10 11 11 10 10 10 10 10 10 10 10 10	7 9 10 11 11								
eso status	anara ana								
802.11ax-HE160 / CH207 (Middle)	802.11ax-HE160 / CH207 (High Edge)								
Image: Sector Analyse: Sample Samp	Image: Specify Spectrom Analyses: Sweet SA Skeet EMM ALIGN AUTO 07/22:18 PMMay 10, 2923 Marker 2 27,7238 s PNO: Fast ++ Trig: Free Run HFGsint.ow Aug Type: Log-Pwr Trig: C P 2 3 4 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 300 1 300 1								
	400 400 401								
700 400 400	700 400 400								
Center 6.985000000 GHz Res BW 8 MHz #VBW 8.0 MHz Sweep 30.00 s (8001 pts) Off	Center 7.060000000 GHz Res BW 8 MHz #VBW 8.0 MHz Sweep 30.00 s (8001 pts) Off								
No 1	INE NOCETHCISCL X Y P PUNCTON FOUCTON HOTH FORCTONVALUE - 1 N 1 t 1479 a -2033 dBm 3 1 t 27.72 a -5195 dBm 4 4 7 1 t 27.72 a -5195 dBm								
More 10 11	7 7 9 7 10 10 11 10								
MSG STATUS	MSG								

A.8 Radiated Spurious Emission Test Result

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	1				
Remark	1. Average measurement was not performed if peak level lower than average limit.						
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8769.0	32.0	13.2	45.3	88.2	-42.9	Peak	Horizontal
*	9857.0	33.0	14.3	47.3	88.2	-40.9	Peak	Horizontal
	11166.0	32.2	17.3	49.5	74.0	-24.5	Peak	Horizontal
	12194.5	30.9	17.6	48.5	74.0	-25.5	Peak	Horizontal
*	8743.5	32.5	13.1	45.6	88.2	-42.6	Peak	Vertical
*	9993.0	33.1	14.5	47.6	88.2	-40.6	Peak	Vertical
	11429.5	31.7	17.7	49.4	74.0	-24.6	Peak	Vertical
	12160.5	31.5	17.5	49.0	74.0	-25.0	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBuV/m can be determined by adding a "conversion" factor of 95.2dB to the Limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	49			
Remark	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8718.0	32.8	13.1	45.9	88.2	-42.3	Peak	Horizontal
*	10018.5	33.3	14.6	47.9	88.2	-40.3	Peak	Horizontal
	11268.0	31.9	17.6	49.5	74.0	-24.5	Peak	Horizontal
	12245.5	30.6	18.0	48.6	74.0	-25.4	Peak	Horizontal
*	8786.0	32.8	13.3	46.1	88.2	-42.1	Peak	Vertical
*	10248.0	33.6	15.2	48.8	88.2	-39.4	Peak	Vertical
	11506.0	31.9	17.7	49.6	74.0	-24.4	Peak	Vertical
	12254.0	30.8	18.0	48.8	74.0	-25.2	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss = 1)	Test Channel	93			
Remark	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8769.0	33.0	13.2	46.2	88.2	-42.0	Peak	Horizontal
*	9780.5	32.9	14.2	47.1	88.2	-41.1	Peak	Horizontal
	10979.0	31.7	17.4	49.1	74.0	-24.9	Peak	Horizontal
	11744.0	31.8	17.5	49.3	74.0	-24.7	Peak	Horizontal
*	8769.0	32.3	13.2	45.5	88.2	-42.7	Peak	Vertical
*	9908.0	33.8	14.1	47.9	88.2	-40.3	Peak	Vertical
	11217.0	31.1	17.8	48.9	74.0	-25.1	Peak	Vertical
	12228.5	31.0	17.7	48.7	74.0	-25.3	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	97			
Remark	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8777.5	32.2	13.3	45.5	88.2	-42.7	Peak	Horizontal
*	10231.0	31.4	15.0	46.4	88.2	-41.8	Peak	Horizontal
	11098.0	31.9	16.8	48.7	74.0	-25.3	Peak	Horizontal
	11871.5	31.1	17.1	48.2	74.0	-25.8	Peak	Horizontal
*	8888.0	32.2	13.4	45.6	88.2	-42.6	Peak	Vertical
*	10001.5	33.1	14.3	47.4	88.2	-40.8	Peak	Vertical
	11115.0	32.3	17.5	49.8	74.0	-24.2	Peak	Vertical
	11446.5	31.5	17.6	49.1	74.0	-24.9	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	105			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8896.5	32.0	13.5	45.5	88.2	-42.7	Peak	Horizontal
*	9738.0	33.5	14.1	47.6	88.2	-40.6	Peak	Horizontal
	10902.5	32.0	17.3	49.3	74.0	-24.7	Peak	Horizontal
	11574.0	31.0	18.0	49.0	74.0	-25.0	Peak	Horizontal
*	8845.5	32.3	13.5	45.8	88.2	-42.4	Peak	Vertical
*	10231.0	33.7	15.0	48.7	88.2	-39.5	Peak	Vertical
	11242.5	31.4	17.5	48.9	74.0	-25.1	Peak	Vertical
	11786.5	31.6	17.3	48.9	74.0	-25.1	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	113			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8828.5	31.5	13.4	44.9	88.2	-43.3	Peak	Horizontal
*	10248.0	32.5	15.2	47.7	88.2	-40.5	Peak	Horizontal
	11200.0	31.1	17.9	49.0	74.0	-25.0	Peak	Horizontal
	12220.0	31.2	17.6	48.8	74.0	-25.2	Peak	Horizontal
*	8743.5	32.2	13.1	45.3	88.2	-42.9	Peak	Vertical
*	9925.0	33.1	14.3	47.4	88.2	-40.8	Peak	Vertical
	10868.5	32.3	17.0	49.3	74.0	-24.7	Peak	Vertical
	11506.0	31.5	17.7	49.2	74.0	-24.8	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	117			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8820.0	32.1	13.5	45.6	88.2	-42.6	Peak	Horizontal
*	9738.0	33.5	14.1	47.6	88.2	-40.6	Peak	Horizontal
	11106.5	33.0	17.2	50.2	74.0	-23.8	Peak	Horizontal
	12254.0	30.8	18.0	48.8	74.0	-25.2	Peak	Horizontal
*	8794.5	31.5	13.4	44.9	88.2	-43.3	Peak	Vertical
*	10256.5	32.8	15.1	47.9	88.2	-40.3	Peak	Vertical
	10681.5	32.9	16.3	49.2	74.0	-24.8	Peak	Vertical
	11812.0	31.5	17.4	48.9	74.0	-25.1	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	153			
Remark	1. Average measurement was not perf	ormed if peak level low	er than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8803.0	32.6	13.4	46.0	88.2	-42.2	Peak	Horizontal
*	10350.0	32.0	15.6	47.6	88.2	-40.6	Peak	Horizontal
	11115.0	32.1	17.5	49.6	74.0	-24.4	Peak	Horizontal
	12143.5	30.6	17.5	48.1	74.0	-25.9	Peak	Horizontal
*	8803.0	32.6	13.4	46.0	88.2	-42.2	Peak	Vertical
*	9865.5	32.8	14.3	47.1	88.2	-41.1	Peak	Vertical
	11115.0	32.1	17.5	49.6	74.0	-24.4	Peak	Vertical
	12237.0	30.6	17.9	48.5	74.0	-25.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	181			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8616.0	32.0	12.9	44.9	88.2	-43.3	Peak	Horizontal
*	9925.0	32.8	14.3	47.1	88.2	-41.1	Peak	Horizontal
	11242.5	33.2	17.5	50.7	74.0	-23.3	Peak	Horizontal
	12313.5	30.9	17.5	48.4	74.0	-25.6	Peak	Horizontal
*	8726.5	31.0	13.2	44.2	88.2	-44.0	Peak	Vertical
*	9942.0	33.2	14.6	47.8	88.2	-40.4	Peak	Vertical
	10698.5	33.4	16.6	50.0	74.0	-24.0	Peak	Vertical
	12254.0	31.5	18.0	49.5	74.0	-24.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	185			
Remark	1. Average measurement was not perf	formed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8828.5	31.9	13.4	45.3	88.2	-42.9	Peak	Horizontal
*	10188.5	33.3	14.6	47.9	88.2	-40.3	Peak	Horizontal
	10783.5	32.0	17.0	49.0	74.0	-25.0	Peak	Horizontal
	11633.5	31.9	17.6	49.5	74.0	-24.5	Peak	Horizontal
*	8718.0	31.8	13.1	44.9	88.2	-43.3	Peak	Vertical
*	9891.0	33.8	14.2	48.0	88.2	-40.2	Peak	Vertical
	10843.0	31.8	17.3	49.1	74.0	-24.9	Peak	Vertical
	11514.5	31.4	17.6	49.0	74.0	-25.0	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	189			
Remark	1. Average measurement was not perf	formed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8854.0	32.7	13.6	46.3	88.2	-41.9	Peak	Horizontal
*	10197.0	32.4	14.7	47.1	88.2	-41.1	Peak	Horizontal
	11200.0	31.4	17.9	49.3	74.0	-24.7	Peak	Horizontal
	12322.0	30.4	17.6	48.0	74.0	-26.0	Peak	Horizontal
*	8956.0	32.4	13.4	45.8	88.2	-42.4	Peak	Vertical
*	10248.0	33.5	15.2	48.7	88.2	-39.5	Peak	Vertical
	10953.5	32.5	16.8	49.3	74.0	-24.7	Peak	Vertical
	11744.0	31.5	17.5	49.0	74.0	-25.0	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	213			
Remark	1. Average measurement was not perf	formed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8633.0	32.2	12.9	45.1	88.2	-43.1	Peak	Horizontal
*	10035.5	33.2	14.4	47.6	88.2	-40.6	Peak	Horizontal
	10809.0	32.0	17.3	49.3	74.0	-24.7	Peak	Horizontal
	11455.0	31.6	17.3	48.9	74.0	-25.1	Peak	Horizontal
*	8939.0	32.2	13.4	45.6	88.2	-42.6	Peak	Vertical
*	9823.0	33.4	14.2	47.6	88.2	-40.6	Peak	Vertical
	10732.5	31.1	16.5	47.6	74.0	-26.4	Peak	Vertical
	11829.0	31.4	17.1	48.5	74.0	-25.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=1)	Test Channel	229			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8845.5	31.9	13.5	45.4	88.2	-42.8	Peak	Horizontal
*	10231.0	33.0	15.0	48.0	88.2	-40.2	Peak	Horizontal
	10707.0	33.0	16.5	49.5	74.0	-24.5	Peak	Horizontal
	12135.0	31.8	17.3	49.1	74.0	-24.9	Peak	Horizontal
*	8939.0	32.1	13.4	45.5	88.2	-42.7	Peak	Vertical
*	10333.0	33.1	15.7	48.8	88.2	-39.4	Peak	Vertical
	11106.5	32.5	17.2	49.7	74.0	-24.3	Peak	Vertical
	11650.5	31.5	17.7	49.2	74.0	-24.8	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	3			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8913.5	31.9	13.6	45.5	88.2	-42.7	Peak	Horizontal
*	10027.0	32.7	14.6	47.3	88.2	-40.9	Peak	Horizontal
	11293.5	31.9	17.8	49.7	74.0	-24.3	Peak	Horizontal
	12415.5	31.3	17.0	48.3	74.0	-25.7	Peak	Horizontal
*	8777.5	31.6	13.3	44.9	88.2	-43.3	Peak	Vertical
*	10290.5	32.7	15.2	47.9	88.2	-40.3	Peak	Vertical
	11174.5	31.7	17.3	49.0	74.0	-25.0	Peak	Vertical
	11684.5	31.0	17.4	48.4	74.0	-25.6	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	51			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8820.0	31.9	13.5	45.4	88.2	-42.8	Peak	Horizontal
*	9840.0	32.7	14.1	46.8	88.2	-41.4	Peak	Horizontal
	11276.5	31.2	17.9	49.1	74.0	-24.9	Peak	Horizontal
	12160.5	30.8	17.5	48.3	74.0	-25.7	Peak	Horizontal
*	8786.0	31.3	13.3	44.6	88.2	-43.6	Peak	Vertical
*	10188.5	33.9	14.6	48.5	88.2	-39.7	Peak	Vertical
	10987.5	31.5	17.3	48.8	74.0	-25.2	Peak	Vertical
	11591.0	30.7	17.7	48.4	74.0	-25.6	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	91			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8786.0	32.2	13.3	45.5	88.2	-42.7	Peak	Horizontal
*	10248.0	33.1	15.2	48.3	88.2	-39.9	Peak	Horizontal
	10809.0	32.3	17.3	49.6	74.0	-24.4	Peak	Horizontal
	11438.0	32.0	17.7	49.7	74.0	-24.3	Peak	Horizontal
*	8726.5	32.3	13.2	45.5	88.2	-42.7	Peak	Vertical
*	10214.0	32.3	14.7	47.0	88.2	-41.2	Peak	Vertical
	11208.5	31.8	17.8	49.6	74.0	-24.4	Peak	Vertical
	12135.0	31.2	17.3	48.5	74.0	-25.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	99			
Remark	1. Average measurement was not per	formed if peak level lowe	er than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8743.5	31.9	13.1	45.0	88.2	-43.2	Peak	Horizontal
*	9925.0	33.6	14.3	47.9	88.2	-40.3	Peak	Horizontal
	10775.0	31.6	17.1	48.7	74.0	-25.3	Peak	Horizontal
	11769.5	32.1	16.9	49.0	74.0	-25.0	Peak	Horizontal
*	8624.5	32.2	12.9	45.1	88.2	-43.1	Peak	Vertical
*	10256.5	32.6	15.1	47.7	88.2	-40.5	Peak	Vertical
	10979.0	32.2	17.4	49.6	74.0	-24.4	Peak	Vertical
	12262.5	31.0	17.7	48.7	74.0	-25.3	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	107			
Remark	1. Average measurement was not perf	1. Average measurement was not performed if peak level lower than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8760.5	31.9	13.2	45.1	88.2	-43.1	Peak	Horizontal
*	10528.5	32.5	16.1	48.6	88.2	-39.6	Peak	Horizontal
	10979.0	31.4	17.4	48.8	74.0	-25.2	Peak	Horizontal
	12313.5	30.5	17.5	48.0	74.0	-26.0	Peak	Horizontal
*	8769.0	31.3	13.2	44.5	88.2	-43.7	Peak	Vertical
*	10299.0	32.5	15.4	47.9	88.2	-40.3	Peak	Vertical
	10996.0	31.8	17.3	49.1	74.0	-24.9	Peak	Vertical
	11438.0	31.7	17.7	49.4	74.0	-24.6	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	115			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8777.5	31.8	13.3	45.1	88.2	-43.1	Peak	Horizontal
*	9661.5	33.6	13.9	47.5	88.2	-40.7	Peak	Horizontal
	10911.0	31.8	17.6	49.4	74.0	-24.6	Peak	Horizontal
	11659.0	31.2	17.8	49.0	74.0	-25.0	Peak	Horizontal
*	8760.5	32.0	13.2	45.2	88.2	-43.0	Peak	Vertical
*	10103.5	32.7	14.4	47.1	88.2	-41.1	Peak	Vertical
	11200.0	31.0	17.9	48.9	74.0	-25.1	Peak	Vertical
	11735.5	31.1	17.5	48.6	74.0	-25.4	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-04-15			
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	123			
Remark	1. Average measurement was not perf	1. Average measurement was not performed if peak level lower than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	10027.0	35.0	14.2	49.2	88.2	-39.0	Peak	Horizontal
*	10460.5	33.8	15.6	49.4	88.2	-38.8	Peak	Horizontal
	10902.5	33.0	17.0	50.0	74.0	-24.0	Peak	Horizontal
	11888.5	33.4	17.1	50.5	74.0	-23.5	Peak	Horizontal
*	9993.0	35.3	14.0	49.3	88.2	-38.9	Peak	Vertical
*	10494.5	34.7	15.5	50.2	88.2	-38.0	Peak	Vertical
	10826.0	33.4	16.8	50.2	74.0	-23.8	Peak	Vertical
	11574.0	33.4	17.7	51.1	74.0	-22.9	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	147			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8718.0	32.0	13.1	45.1	88.2	-43.1	Peak	Horizontal
*	10486.0	33.1	15.9	49.0	88.2	-39.2	Peak	Horizontal
	11115.0	31.5	17.5	49.0	74.0	-25.0	Peak	Horizontal
	11557.0	31.5	17.4	48.9	74.0	-25.1	Peak	Horizontal
*	8854.0	32.2	13.6	45.8	88.2	-42.4	Peak	Vertical
*	9976.0	32.7	14.6	47.3	88.2	-40.9	Peak	Vertical
	10775.0	32.1	17.1	49.2	74.0	-24.8	Peak	Vertical
	11701.5	31.0	17.5	48.5	74.0	-25.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-04-15			
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	179			
Remark	1. Average measurement was not perf	1. Average measurement was not performed if peak level lower than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	9559.5	35.1	13.5	48.6	88.2	-39.6	Peak	Horizontal
*	10367.0	34.7	15.2	49.9	88.2	-38.3	Peak	Horizontal
	10817.5	33.9	16.8	50.7	74.0	-23.3	Peak	Horizontal
	11412.5	32.9	17.3	50.2	74.0	-23.8	Peak	Horizontal
*	9721.0	34.4	13.8	48.2	88.2	-40.0	Peak	Vertical
*	10452.0	34.0	15.6	49.6	88.2	-38.6	Peak	Vertical
	10800.5	33.4	16.7	50.1	74.0	-23.9	Peak	Vertical
	12313.5	32.5	17.6	50.1	74.0	-23.9	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang					
Test Site	WZ-AC2	Test Date	2023-02-13					
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	187					
Remark	1. Average measurement was not performed if peak level lower than average limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the							
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8709.5	32.5	12.9	45.4	88.2	-42.8	Peak	Horizontal
*	10273.5	32.9	15.1	48.0	88.2	-40.2	Peak	Horizontal
	10834.5	31.7	17.5	49.2	74.0	-24.8	Peak	Horizontal
	11115.0	31.8	17.5	49.3	74.0	-24.7	Peak	Horizontal
*	8930.5	32.7	13.5	46.2	88.2	-42.0	Peak	Vertical
*	10579.5	33.0	16.0	49.0	88.2	-39.2	Peak	Vertical
	10987.5	31.6	17.3	48.9	74.0	-25.1	Peak	Vertical
	12262.5	30.6	17.7	48.3	74.0	-25.7	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang					
Test Site	WZ-AC2	Test Date	2023-04-15					
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	195					
Remark	1. Average measurement was not performed if peak level lower than average limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the							
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	9721.0	35.1	13.8	48.9	88.2	-39.3	Peak	Horizontal
*	10333.0	34.8	15.4	50.2	88.2	-38.0	Peak	Horizontal
	10843.0	34.0	16.7	50.7	74.0	-23.3	Peak	Horizontal
	11506.0	32.8	17.6	50.4	74.0	-23.6	Peak	Horizontal
*	9755.0	34.9	13.6	48.5	88.2	-39.7	Peak	Vertical
*	10341.5	34.2	15.2	49.4	88.2	-38.8	Peak	Vertical
	11106.5	33.1	16.7	49.8	74.0	-24.2	Peak	Vertical
	11591.0	32.6	17.6	50.2	74.0	-23.8	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang					
Test Site	WZ-AC2	Test Date	2023-02-13					
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	211					
Remark	1. Average measurement was not performed if peak level lower than average limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the							
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8786.0	32.4	13.3	45.7	88.2	-42.5	Peak	Horizontal
*	10171.5	32.7	14.5	47.2	88.2	-41.0	Peak	Horizontal
	10928.0	32.1	17.0	49.1	74.0	-24.9	Peak	Horizontal
	12262.5	30.8	17.7	48.5	74.0	-25.5	Peak	Horizontal
*	8786.0	31.9	13.3	45.2	88.2	-43.0	Peak	Vertical
*	10265.0	33.6	15.1	48.7	88.2	-39.5	Peak	Vertical
	10826.0	32.0	17.6	49.6	74.0	-24.4	Peak	Vertical
	11701.5	31.9	17.5	49.4	74.0	-24.6	Average	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang					
Test Site	WZ-AC2	Test Date	2023-02-13					
Test Mode	802.11ax-HE40 (Nss=1)	Test Channel	227					
Remark	1. Average measurement was not performed if peak level lower than average limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the							
	report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8709.5	32.8	12.9	45.7	88.2	-42.5	Peak	Horizontal
*	9967.5	33.1	14.5	47.6	88.2	-40.6	Peak	Horizontal
	10834.5	31.7	17.5	49.2	74.0	-24.8	Peak	Horizontal
	11633.5	32.2	17.6	49.8	74.0	-24.2	Peak	Horizontal
*	8811.5	30.0	13.5	43.5	88.2	-44.7	Peak	Vertical
*	9848.5	33.3	14.2	47.5	88.2	-40.7	Peak	Vertical
	10996.0	31.3	17.3	48.6	74.0	-25.4	Peak	Vertical
	11565.5	30.8	17.8	48.6	74.0	-25.4	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=1)	Test Channel	7				
Remark	1. Average measurement was not perf	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8752.0	31.8	13.1	44.9	88.2	-43.3	Peak	Horizontal
*	10265.0	33.1	15.1	48.2	88.2	-40.0	Peak	Horizontal
	10987.5	31.8	17.3	49.1	74.0	-24.9	Peak	Horizontal
	11514.5	31.6	17.6	49.2	74.0	-24.8	Peak	Horizontal
*	8726.5	32.4	13.2	45.6	88.2	-42.6	Peak	Vertical
*	10248.0	33.0	15.2	48.2	88.2	-40.0	Peak	Vertical
	10826.0	31.9	17.6	49.5	74.0	-24.5	Peak	Vertical
	11735.5	31.7	17.5	49.2	74.0	-24.8	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE80 (Nss=1)	Test Channel	55			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8760.5	32.6	13.2	45.8	88.2	-42.4	Peak	Horizontal
*	10511.5	33.2	16.0	49.2	88.2	-39.0	Peak	Horizontal
	11089.5	31.9	16.9	48.8	74.0	-25.2	Peak	Horizontal
	11565.5	31.3	17.8	49.1	74.0	-24.9	Peak	Horizontal
*	8871.0	32.8	13.3	46.1	88.2	-42.1	Peak	Vertical
*	10239.5	32.9	15.1	48.0	88.2	-40.2	Peak	Vertical
	10851.5	31.8	17.1	48.9	74.0	-25.1	Peak	Vertical
	11514.5	31.5	17.6	49.1	74.0	-24.9	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE80 (Nss=1)	Test Channel	87			
Remark	1. Average measurement was not per	formed if peak level lowe	er than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8752.0	32.1	13.1	45.2	88.2	-43.0	Peak	Horizontal
*	9865.5	34.0	14.3	48.3	88.2	-39.9	Peak	Horizontal
	10987.5	32.0	17.3	49.3	74.0	-24.7	Peak	Horizontal
	12279.5	31.7	17.2	48.9	74.0	-25.1	Peak	Horizontal
*	8947.5	31.7	13.4	45.1	88.2	-43.1	Peak	Vertical
*	10503.0	32.5	15.9	48.4	88.2	-39.8	Peak	Vertical
	10826.0	31.2	17.6	48.8	74.0	-25.2	Peak	Vertical
	11718.5	31.3	17.5	48.8	74.0	-25.2	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE80 (Nss=1)	Test Channel	103			
Remark	1. Average measurement was not per	formed if peak level lowe	er than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8854.0	31.8	13.6	45.4	88.2	-42.8	Peak	Horizontal
*	10214.0	33.6	14.7	48.3	88.2	-39.9	Peak	Horizontal
	11030.0	32.1	17.0	49.1	74.0	-24.9	Peak	Horizontal
	11531.5	32.0	17.4	49.4	74.0	-24.6	Peak	Horizontal
*	8607.5	33.3	12.7	46.0	88.2	-42.2	Peak	Vertical
*	10435.0	32.3	16.1	48.4	88.2	-39.8	Peak	Vertical
	10996.0	31.7	17.3	49.0	74.0	-25.0	Peak	Vertical
	12177.5	32.0	17.3	49.3	74.0	-24.7	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=1)	Test Channel	119				
Remark	1. Average measurement was not perf	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8718.0	33.1	13.1	46.2	88.2	-42.0	Peak	Horizontal
*	9806.0	33.9	14.2	48.1	88.2	-40.1	Peak	Horizontal
	10860.0	32.1	17.0	49.1	74.0	-24.9	Peak	Horizontal
	11463.5	32.3	17.2	49.5	74.0	-24.5	Peak	Horizontal
*	8624.5	32.3	12.9	45.2	88.2	-43.0	Peak	Vertical
*	10554.0	32.3	16.0	48.3	88.2	-39.9	Peak	Vertical
	10987.5	32.2	17.3	49.5	74.0	-24.5	Peak	Vertical
	11574.0	31.5	18.0	49.5	74.0	-24.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=1)	Test Channel	151				
Remark	1. Average measurement was not perf	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8607.5	32.6	12.7	45.3	88.2	-42.9	Peak	Horizontal
*	9925.0	33.5	14.3	47.8	88.2	-40.4	Peak	Horizontal
	10834.5	32.4	17.5	49.9	74.0	-24.1	Peak	Horizontal
	11616.5	31.7	17.6	49.3	74.0	-24.7	Peak	Horizontal
*	8752.0	33.0	13.1	46.1	88.2	-42.1	Peak	Vertical
*	9738.0	33.6	14.1	47.7	88.2	-40.5	Peak	Vertical
	11268.0	32.3	17.6	49.9	74.0	-24.1	Peak	Vertical
	11973.5	31.6	17.0	48.6	74.0	-25.4	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE80 (Nss=1)	Test Channel	183			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8590.5	32.7	12.5	45.2	88.2	-43.0	Peak	Horizontal
*	10010.0	33.6	14.4	48.0	88.2	-40.2	Peak	Horizontal
	10868.5	32.3	17.0	49.3	74.0	-24.7	Peak	Horizontal
	11599.5	32.2	17.7	49.9	74.0	-24.1	Peak	Horizontal
*	8794.5	32.1	13.4	45.5	88.2	-42.7	Peak	Vertical
*	9984.5	33.3	14.6	47.9	88.2	-40.3	Peak	Vertical
	10996.0	32.0	17.3	49.3	74.0	-24.7	Peak	Vertical
	12254.0	31.7	18.0	49.7	74.0	-24.3	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE80 (Nss=1)	Test Channel	199			
Remark	1. Average measurement was not perf	1. Average measurement was not performed if peak level lower than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8735.0	32.0	13.2	45.2	88.2	-43.0	Peak	Horizontal
*	10537.0	33.0	16.0	49.0	88.2	-39.2	Peak	Horizontal
	11208.5	32.9	17.8	50.7	74.0	-23.3	Peak	Horizontal
	11650.5	31.8	17.7	49.5	74.0	-24.5	Peak	Horizontal
*	8854.0	32.8	13.6	46.4	88.2	-41.8	Peak	Vertical
*	10044.0	33.6	14.2	47.8	88.2	-40.4	Peak	Vertical
	10834.5	31.7	17.5	49.2	74.0	-24.8	Peak	Vertical
	11820.5	31.8	17.2	49.0	74.0	-25.0	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=1)	Test Channel	215				
Remark	1. Average measurement was not perf	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8726.5	32.5	13.2	45.7	88.2	-42.5	Peak	Horizontal
*	10248.0	33.8	15.2	49.0	88.2	-39.2	Peak	Horizontal
	11225.5	32.0	17.5	49.5	74.0	-24.5	Peak	Horizontal
	12041.5	31.7	17.3	49.0	74.0	-25.0	Peak	Horizontal
*	8658.5	32.2	12.7	44.9	88.2	-43.3	Peak	Vertical
*	10265.0	34.7	15.1	49.8	88.2	-38.4	Peak	Vertical
	11183.0	32.3	17.5	49.8	74.0	-24.2	Peak	Vertical
	11591.0	31.5	17.7	49.2	74.0	-24.8	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE160 (Nss=1)	Test Channel	15			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8777.5	32.8	13.3	46.1	88.2	-42.1	Peak	Horizontal
*	10265.0	34.7	15.1	49.8	88.2	-38.4	Peak	Horizontal
	11183.0	32.3	17.5	49.8	74.0	-24.2	Peak	Horizontal
	12611.0	32.0	17.8	49.8	74.0	-24.2	Peak	Horizontal
*	8973.0	33.8	13.5	47.3	88.2	-40.9	Peak	Vertical
*	10205.5	33.1	14.7	47.8	88.2	-40.4	Peak	Vertical
	10953.5	31.9	16.8	48.7	74.0	-25.3	Peak	Vertical
	11650.5	31.0	17.7	48.7	74.0	-25.3	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=1)	Test Channel	47				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below lir	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8786.0	32.4	13.3	45.7	88.2	-42.5	Peak	Horizontal
*	10265.0	32.8	15.1	47.9	88.2	-40.3	Peak	Horizontal
	10885.5	33.0	17.0	50.0	74.0	-24.0	Peak	Horizontal
	11642.0	30.9	17.7	48.6	74.0	-25.4	Peak	Horizontal
*	8616.0	32.1	12.9	45.0	88.2	-43.2	Peak	Vertical
*	10520.0	33.2	16.1	49.3	88.2	-38.9	Peak	Vertical
	11565.5	31.8	17.8	49.6	74.0	-24.4	Peak	Vertical
	12271.0	32.1	17.4	49.5	74.0	-24.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE160 (Nss=1)	Test Channel	79			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8692.5	30.7	13.0	43.7	88.2	-44.5	Peak	Horizontal
*	9933.5	32.8	14.5	47.3	88.2	-40.9	Peak	Horizontal
	11115.0	32.6	17.5	50.1	74.0	-23.9	Peak	Horizontal
	11727.0	31.8	17.5	49.3	74.0	-24.7	Peak	Horizontal
*	8743.5	32.5	13.1	45.6	88.2	-42.6	Peak	Vertical
*	9976.0	34.3	14.6	48.9	88.2	-39.3	Peak	Vertical
	11293.5	31.1	17.8	48.9	74.0	-25.1	Peak	Vertical
	12152.0	30.8	17.5	48.3	74.0	-25.7	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE160 (Nss=1)	Test Channel	111			
Remark	1. Average measurement was not per	formed if peak level lowe	er than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8786.0	32.4	13.3	45.7	88.2	-42.5	Peak	Horizontal
*	9984.5	33.9	14.6	48.5	88.2	-39.7	Peak	Horizontal
	10911.0	31.7	17.6	49.3	74.0	-24.7	Peak	Horizontal
	12075.5	31.4	17.1	48.5	74.0	-25.5	Peak	Horizontal
*	8752.0	32.4	13.1	45.5	88.2	-42.7	Peak	Vertical
*	9721.0	33.2	14.1	47.3	88.2	-40.9	Peak	Vertical
	10605.0	33.6	16.4	50.0	74.0	-24.0	Peak	Vertical
	11659.0	31.7	17.8	49.5	74.0	-24.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=1)	Test Channel	143				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8964.5	33.1	13.4	46.5	88.2	-41.7	Peak	Horizontal
*	10477.5	33.6	15.9	49.5	88.2	-38.7	Peak	Horizontal
	11302.0	32.3	17.6	49.9	74.0	-24.1	Peak	Horizontal
	12254.0	30.2	18.0	48.2	74.0	-25.8	Peak	Horizontal
*	8964.5	33.1	13.4	46.5	88.2	-41.7	Peak	Vertical
*	10477.5	33.6	15.9	49.5	88.2	-38.7	Peak	Vertical
	11123.5	33.0	17.4	50.4	74.0	-23.6	Peak	Vertical
	11599.5	31.9	17.7	49.6	74.0	-24.4	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=1)	Test Channel	175				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8760.5	32.0	13.2	45.2	88.2	-43.0	Peak	Horizontal
*	10231.0	32.7	15.0	47.7	88.2	-40.5	Peak	Horizontal
	11166.0	32.2	17.3	49.5	74.0	-24.5	Peak	Horizontal
	12636.5	32.3	17.3	49.6	74.0	-24.4	Peak	Horizontal
*	8760.5	31.6	13.2	44.8	88.2	-43.4	Peak	Vertical
*	10571.0	32.5	15.9	48.4	88.2	-39.8	Peak	Vertical
	11047.0	32.9	16.9	49.8	74.0	-24.2	Peak	Vertical
	11744.0	31.5	17.5	49.0	74.0	-25.0	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=1)	Test Channel	207				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8718.0	32.1	13.1	45.2	88.2	-43.0	Peak	Horizontal
*	9831.5	33.4	14.1	47.5	88.2	-40.7	Peak	Horizontal
	10834.5	31.5	17.5	49.0	74.0	-25.0	Peak	Horizontal
	11582.5	32.1	17.8	49.9	74.0	-24.1	Peak	Horizontal
*	8718.0	32.4	13.1	45.5	88.2	-42.7	Peak	Vertical
*	10265.0	33.3	15.1	48.4	88.2	-39.8	Peak	Vertical
	11140.5	31.9	17.2	49.1	74.0	-24.9	Peak	Vertical
	12254.0	30.3	18.0	48.3	74.0	-25.7	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	1				
Remark	1. Average measurement was not per	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8939.0	32.5	13.4	45.9	88.2	-42.3	Peak	Horizontal
*	9823.0	32.9	14.2	47.1	88.2	-41.1	Peak	Horizontal
	11021.5	33.3	17.0	50.3	74.0	-23.7	Peak	Horizontal
	11650.5	31.5	17.7	49.2	74.0	-24.8	Peak	Horizontal
*	8777.5	32.2	13.3	45.5	88.2	-42.7	Peak	Vertical
*	10333.0	32.3	15.7	48.0	88.2	-40.2	Peak	Vertical
	11506.0	31.5	17.7	49.2	74.0	-24.8	Peak	Vertical
	12262.5	31.8	17.7	49.5	74.0	-24.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	49				
Remark	1. Average measurement was not per	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8828.5	32.0	13.4	45.4	88.2	-42.8	Peak	Horizontal
*	9772.0	33.5	14.2	47.7	88.2	-40.5	Peak	Horizontal
	11013.0	32.5	16.9	49.4	74.0	-24.6	Peak	Horizontal
	12322.0	31.7	17.6	49.3	74.0	-24.7	Peak	Horizontal
*	8837.0	32.5	13.3	45.8	88.2	-42.4	Peak	Vertical
*	10078.0	33.2	14.3	47.5	88.2	-40.7	Peak	Vertical
	10766.5	32.4	16.8	49.2	74.0	-24.8	Peak	Vertical
	11642.0	31.9	17.7	49.6	74.0	-24.4	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	93			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8845.5	32.9	13.5	46.4	88.2	-41.8	Peak	Horizontal
*	9797.5	33.2	14.2	47.4	88.2	-40.8	Peak	Horizontal
	10783.5	32.7	17.0	49.7	74.0	-24.3	Peak	Horizontal
	11506.0	31.5	17.7	49.2	74.0	-24.8	Peak	Horizontal
*	8735.0	32.4	13.2	45.6	88.2	-42.6	Peak	Vertical
*	10222.5	33.1	14.8	47.9	88.2	-40.3	Peak	Vertical
	10834.5	32.3	17.5	49.8	74.0	-24.2	Peak	Vertical
	11591.0	32.7	17.7	50.4	74.0	-23.6	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	97				
Remark	1. Average measurement was not perf	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8709.5	31.9	12.9	44.8	88.2	-43.4	Peak	Horizontal
*	9925.0	33.5	14.3	47.8	88.2	-40.4	Peak	Horizontal
	10919.5	32.2	17.3	49.5	74.0	-24.5	Peak	Horizontal
	11659.0	31.7	17.8	49.5	74.0	-24.5	Peak	Horizontal
*	8701.0	31.9	12.9	44.8	88.2	-43.4	Peak	Vertical
*	9976.0	32.6	14.6	47.2	88.2	-41.0	Peak	Vertical
	11115.0	31.5	17.5	49.0	74.0	-25.0	Peak	Vertical
	12143.5	30.7	17.5	48.2	74.0	-25.8	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	105			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8811.5	32.6	13.5	46.1	88.2	-42.1	Peak	Horizontal
*	9899.5	33.1	14.2	47.3	88.2	-40.9	Peak	Horizontal
	10826.0	32.3	17.6	49.9	74.0	-24.1	Peak	Horizontal
	12254.0	31.1	18.0	49.1	74.0	-24.9	Peak	Horizontal
*	8845.5	31.7	13.5	45.2	88.2	-43.0	Peak	Vertical
*	10001.5	33.1	14.3	47.4	88.2	-40.8	Peak	Vertical
	10826.0	31.7	17.6	49.3	74.0	-24.7	Peak	Vertical
	11812.0	32.1	17.4	49.5	74.0	-24.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	113			
Remark	1. Average measurement was not perf	formed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8964.5	32.7	13.4	46.1	88.2	-42.1	Peak	Horizontal
*	10528.5	32.5	16.1	48.6	88.2	-39.6	Peak	Horizontal
	10911.0	31.7	17.6	49.3	74.0	-24.7	Peak	Horizontal
	12245.5	30.7	18.0	48.7	74.0	-25.3	Peak	Horizontal
*	8837.0	33.3	13.3	46.6	88.2	-41.6	Peak	Vertical
*	10528.5	33.0	16.1	49.1	88.2	-39.1	Peak	Vertical
	10877.0	32.4	16.9	49.3	74.0	-24.7	Peak	Vertical
	12135.0	31.6	17.3	48.9	74.0	-25.1	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	117			
Remark	1. Average measurement was not perf	formed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8743.5	33.1	13.1	46.2	88.2	-42.0	Peak	Horizontal
*	9789.0	32.8	14.2	47.0	88.2	-41.2	Peak	Horizontal
	11106.5	32.4	17.2	49.6	74.0	-24.4	Peak	Horizontal
	11616.5	31.1	17.6	48.7	74.0	-25.3	Peak	Horizontal
*	8692.5	32.2	13.0	45.2	88.2	-43.0	Peak	Vertical
*	10171.5	33.6	14.5	48.1	88.2	-40.1	Peak	Vertical
	10894.0	32.4	17.1	49.5	74.0	-24.5	Peak	Vertical
	12203.0	31.5	17.6	49.1	74.0	-24.9	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	153			
Remark	1. Average measurement was not perf	ormed if peak level low	er than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8658.5	30.6	12.7	43.3	88.2	-44.9	Peak	Horizontal
*	9780.5	34.4	14.2	48.6	88.2	-39.6	Peak	Horizontal
	10834.5	32.4	17.5	49.9	74.0	-24.1	Peak	Horizontal
	11820.5	31.7	17.2	48.9	74.0	-25.1	Peak	Horizontal
*	8896.5	31.7	13.5	45.2	88.2	-43.0	Peak	Vertical
*	9857.0	33.2	14.3	47.5	88.2	-40.7	Peak	Vertical
	10766.5	32.2	16.8	49.0	74.0	-25.0	Peak	Vertical
	11693.0	31.7	17.5	49.2	74.0	-24.8	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	181			
Remark	1. Average measurement was not perf	formed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8811.5	32.2	13.5	45.7	88.2	-42.5	Peak	Horizontal
*	10265.0	33.1	15.1	48.2	88.2	-40.0	Peak	Horizontal
	10826.0	31.3	17.6	48.9	74.0	-25.1	Peak	Horizontal
	12109.5	31.2	17.4	48.6	74.0	-25.4	Peak	Horizontal
*	8811.5	32.2	13.5	45.7	88.2	-42.5	Peak	Vertical
*	10256.5	33.0	15.1	48.1	88.2	-40.1	Peak	Vertical
	10987.5	32.7	17.3	50.0	74.0	-24.0	Peak	Vertical
	11497.5	32.0	17.5	49.5	74.0	-24.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	185			
Remark	1. Average measurement was not perf	formed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8922.0	32.0	13.6	45.6	88.2	-42.6	Peak	Horizontal
*	10307.5	33.3	15.4	48.7	88.2	-39.5	Peak	Horizontal
	11625.0	31.5	17.6	49.1	74.0	-24.9	Peak	Horizontal
	12169.0	31.5	17.5	49.0	74.0	-25.0	Peak	Horizontal
*	8760.5	32.8	13.2	46.0	88.2	-42.2	Peak	Vertical
*	9950.5	34.7	14.5	49.2	88.2	-39.0	Peak	Vertical
	11115.0	32.3	17.5	49.8	74.0	-24.2	Peak	Vertical
	11523.0	32.0	17.6	49.6	74.0	-24.4	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	189				
Remark	1. Average measurement was not perf	formed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8769.0	31.9	13.2	45.1	88.2	-43.1	Peak	Horizontal
*	10248.0	32.8	15.2	48.0	88.2	-40.2	Peak	Horizontal
	11047.0	32.0	16.9	48.9	74.0	-25.1	Peak	Horizontal
	12322.0	30.6	17.6	48.2	74.0	-25.8	Peak	Horizontal
*	8760.5	32.3	13.2	45.5	88.2	-42.7	Peak	Vertical
*	9925.0	33.4	14.3	47.7	88.2	-40.5	Peak	Vertical
	11455.0	32.6	17.3	49.9	74.0	-24.1	Peak	Vertical
	12194.5	31.7	17.6	49.3	74.0	-24.7	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	213			
Remark	1. Average measurement was not perf	formed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8803.0	32.5	13.4	45.9	88.2	-42.3	Peak	Horizontal
*	10358.5	32.8	15.8	48.6	88.2	-39.6	Peak	Horizontal
	10834.5	32.1	17.5	49.6	74.0	-24.4	Peak	Horizontal
	12322.0	31.5	17.6	49.1	74.0	-24.9	Peak	Horizontal
*	8879.5	31.9	13.3	45.2	88.2	-43.0	Peak	Vertical
*	9840.0	33.9	14.1	48.0	88.2	-40.2	Peak	Vertical
	10987.5	32.2	17.3	49.5	74.0	-24.5	Peak	Vertical
	11514.5	32.1	17.6	49.7	74.0	-24.3	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE20 (Nss=2)	Test Channel	229			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8854.0	32.2	13.6	45.8	88.2	-42.4	Peak	Horizontal
*	10256.5	32.7	15.1	47.8	88.2	-40.4	Peak	Horizontal
	10851.5	32.3	17.1	49.4	74.0	-24.6	Peak	Horizontal
	11684.5	32.2	17.4	49.6	74.0	-24.4	Peak	Horizontal
*	8854.0	32.1	13.6	45.7	88.2	-42.5	Peak	Vertical
*	10248.0	32.5	15.2	47.7	88.2	-40.5	Peak	Vertical
	10996.0	32.1	17.3	49.4	74.0	-24.6	Peak	Vertical
	11735.5	31.1	17.5	48.6	74.0	-25.4	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	3				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8743.5	31.9	13.1	45.0	88.2	-43.2	Peak	Horizontal
*	9738.0	32.9	14.1	47.0	88.2	-41.2	Peak	Horizontal
	10911.0	31.7	17.6	49.3	74.0	-24.7	Peak	Horizontal
	12305.0	31.4	17.4	48.8	74.0	-25.2	Peak	Horizontal
*	8794.5	32.0	13.4	45.4	88.2	-42.8	Peak	Vertical
*	9865.5	33.5	14.3	47.8	88.2	-40.4	Peak	Vertical
	10690.0	32.7	16.6	49.3	74.0	-24.7	Peak	Vertical
	11217.0	31.8	17.8	49.6	74.0	-24.4	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	51			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8811.5	31.8	13.5	45.3	88.2	-42.9	Peak	Horizontal
*	10341.5	32.7	15.6	48.3	88.2	-39.9	Peak	Horizontal
	11174.5	32.7	17.3	50.0	74.0	-24.0	Peak	Horizontal
	12237.0	30.4	17.9	48.3	74.0	-25.7	Peak	Horizontal
*	8786.0	31.9	13.3	45.2	88.2	-43.0	Peak	Vertical
*	9891.0	33.7	14.2	47.9	88.2	-40.3	Peak	Vertical
	11574.0	31.2	18.0	49.2	74.0	-24.8	Peak	Vertical
	12203.0	31.4	17.6	49.0	74.0	-25.0	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	91			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8701.0	31.5	12.9	44.4	88.2	-43.8	Peak	Horizontal
*	9891.0	33.7	14.2	47.9	88.2	-40.3	Peak	Horizontal
	10826.0	31.6	17.6	49.2	74.0	-24.8	Peak	Horizontal
	12653.5	31.8	17.4	49.2	74.0	-24.8	Peak	Horizontal
*	8811.5	31.9	13.5	45.4	88.2	-42.8	Peak	Vertical
*	10231.0	34.4	15.0	49.4	88.2	-38.8	Peak	Vertical
	10843.0	32.7	17.3	50.0	74.0	-24.0	Peak	Vertical
	11642.0	31.7	17.7	49.4	74.0	-24.6	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	99				
Remark	1. Average measurement was not per	formed if peak level lowe	er than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8820.0	32.2	13.5	45.7	88.2	-42.5	Peak	Horizontal
*	9891.0	33.9	14.2	48.1	88.2	-40.1	Peak	Horizontal
	11140.5	33.0	17.2	50.2	74.0	-23.8	Peak	Horizontal
	11744.0	31.8	17.5	49.3	74.0	-24.7	Peak	Horizontal
*	8675.5	32.5	12.8	45.3	88.2	-42.9	Peak	Vertical
*	9916.5	33.4	14.1	47.5	88.2	-40.7	Peak	Vertical
	11064.0	31.9	17.3	49.2	74.0	-24.8	Peak	Vertical
	11905.5	32.0	16.9	48.9	74.0	-25.1	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	107				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8777.5	32.8	13.3	46.1	88.2	-42.1	Peak	Horizontal
*	10239.5	33.0	15.1	48.1	88.2	-40.1	Peak	Horizontal
	10996.0	32.0	17.3	49.3	74.0	-24.7	Peak	Horizontal
	11506.0	32.4	17.7	50.1	74.0	-23.9	Peak	Horizontal
*	8599.0	33.0	12.5	45.5	88.2	-42.7	Peak	Vertical
*	10333.0	32.3	15.7	48.0	88.2	-40.2	Peak	Vertical
	11225.5	31.7	17.5	49.2	74.0	-24.8	Peak	Vertical
	12254.0	30.7	18.0	48.7	74.0	-25.3	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	115			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8718.0	32.1	13.1	45.2	88.2	-43.0	Peak	Horizontal
*	9644.5	34.1	14.0	48.1	88.2	-40.1	Peak	Horizontal
	10775.0	32.4	17.1	49.5	74.0	-24.5	Peak	Horizontal
	11803.5	31.9	17.4	49.3	74.0	-24.7	Peak	Horizontal
*	8726.5	32.1	13.2	45.3	88.2	-42.9	Peak	Vertical
*	10001.5	33.2	14.3	47.5	88.2	-40.7	Peak	Vertical
	11268.0	31.4	17.6	49.0	74.0	-25.0	Peak	Vertical
	11650.5	30.9	17.7	48.6	74.0	-25.4	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-04-15			
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	123			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	9661.5	35.3	13.6	48.9	88.2	-39.3	Peak	Horizontal
*	10265.0	34.2	14.7	48.9	88.2	-39.3	Peak	Horizontal
	11072.5	34.0	16.7	50.7	74.0	-23.3	Peak	Horizontal
	11497.5	32.9	17.5	50.4	74.0	-23.6	Peak	Horizontal
*	9636.0	34.5	13.6	48.1	88.2	-40.1	Peak	Vertical
*	10205.5	34.4	14.2	48.6	88.2	-39.6	Peak	Vertical
	11123.5	33.6	16.9	50.5	74.0	-23.5	Peak	Vertical
	12330.5	33.1	17.4	50.5	74.0	-23.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	147			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8786.0	31.6	13.3	44.9	88.2	-43.3	Peak	Horizontal
*	9882.5	33.1	14.2	47.3	88.2	-40.9	Peak	Horizontal
	10843.0	32.1	17.3	49.4	74.0	-24.6	Peak	Horizontal
	11718.5	31.4	17.5	48.9	74.0	-25.1	Peak	Horizontal
*	8769.0	32.7	13.2	45.9	88.2	-42.3	Peak	Vertical
*	10562.5	33.3	15.9	49.2	88.2	-39.0	Peak	Vertical
	11285.0	32.4	18.0	50.4	74.0	-23.6	Peak	Vertical
	12220.0	31.0	17.6	48.6	74.0	-25.4	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-04-15			
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	179			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	9721.0	34.4	13.8	48.2	88.2	-40.0	Peak	Horizontal
*	10333.0	33.3	15.4	48.7	88.2	-39.5	Peak	Horizontal
	11132.0	33.0	17.0	50.0	74.0	-24.0	Peak	Horizontal
	12330.5	32.3	17.4	49.7	74.0	-24.3	Peak	Horizontal
*	9593.5	35.0	13.6	48.6	88.2	-39.6	Peak	Vertical
*	10197.0	35.0	14.3	49.3	88.2	-38.9	Peak	Vertical
	11132.0	33.7	17.0	50.7	74.0	-23.3	Peak	Vertical
	11497.5	32.8	17.5	50.3	74.0	-23.7	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	187			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8777.5	32.7	13.3	46.0	88.2	-42.2	Peak	Horizontal
*	10299.0	32.9	15.4	48.3	88.2	-39.9	Peak	Horizontal
	10979.0	31.8	17.4	49.2	74.0	-24.8	Peak	Horizontal
	12254.0	30.2	18.0	48.2	74.0	-25.8	Peak	Horizontal
*	8718.0	32.0	13.1	45.1	88.2	-43.1	Peak	Vertical
*	10273.5	33.3	15.1	48.4	88.2	-39.8	Peak	Vertical
	10817.5	32.4	17.4	49.8	74.0	-24.2	Peak	Vertical
	12203.0	31.3	17.6	48.9	74.0	-25.1	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-04-15			
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	195			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	9670.0	34.6	13.6	48.2	88.2	-40.0	Peak	Horizontal
*	10367.0	34.4	15.2	49.6	88.2	-38.6	Peak	Horizontal
	11514.5	32.9	17.5	50.4	74.0	-23.6	Peak	Horizontal
	12330.5	32.1	17.4	49.5	74.0	-24.5	Peak	Horizontal
*	9746.5	35.2	13.6	48.8	88.2	-39.4	Peak	Vertical
*	10290.5	34.6	14.7	49.3	88.2	-38.9	Peak	Vertical
	10911.0	33.2	17.2	50.4	74.0	-23.6	Peak	Vertical
	11582.5	32.4	17.7	50.1	74.0	-23.9	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	211			
Remark	1. Average measurement was not perf	ormed if peak level low	er than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8896.5	33.1	13.5	46.6	88.2	-41.6	Peak	Horizontal
*	10239.5	34.2	15.1	49.3	88.2	-38.9	Peak	Horizontal
	10911.0	32.3	17.6	49.9	74.0	-24.1	Peak	Horizontal
	11727.0	31.7	17.5	49.2	74.0	-24.8	Peak	Horizontal
*	8633.0	33.7	12.9	46.6	88.2	-41.6	Peak	Vertical
*	9789.0	32.5	14.2	46.7	88.2	-41.5	Peak	Vertical
	10911.0	31.6	17.6	49.2	74.0	-24.8	Peak	Vertical
	12262.5	31.7	17.7	49.4	74.0	-24.6	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE40 (Nss=2)	Test Channel	227			
Remark	1. Average measurement was not perf	ormed if peak level low	er than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8879.5	31.9	13.3	45.2	88.2	-43.0	Peak	Horizontal
*	10299.0	32.3	15.4	47.7	88.2	-40.5	Peak	Horizontal
	11565.5	32.4	17.8	50.2	74.0	-23.8	Peak	Horizontal
	12245.5	30.4	18.0	48.4	74.0	-25.6	Peak	Horizontal
*	8709.5	32.7	12.9	45.6	88.2	-42.6	Peak	Vertical
*	10248.0	32.5	15.2	47.7	88.2	-40.5	Peak	Vertical
	11157.5	32.1	17.4	49.5	74.0	-24.5	Peak	Vertical
	12602.5	31.3	17.6	48.9	74.0	-25.1	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=2)	Test Channel	7				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8871.0	32.2	13.3	45.5	88.2	-42.7	Peak	Horizontal
*	10528.5	33.9	16.1	50.0	88.2	-38.2	Peak	Horizontal
	10826.0	31.7	17.6	49.3	74.0	-24.7	Peak	Horizontal
	12092.5	31.2	17.1	48.3	74.0	-25.7	Peak	Horizontal
*	8888.0	32.3	13.4	45.7	88.2	-42.5	Peak	Vertical
*	9848.5	33.1	14.2	47.3	88.2	-40.9	Peak	Vertical
	11132.0	32.4	17.3	49.7	74.0	-24.3	Peak	Vertical
	12271.0	31.4	17.4	48.8	74.0	-25.2	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=2)	Test Channel	55				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8692.5	32.2	13.0	45.2	88.2	-43.0	Peak	Horizontal
*	9976.0	33.2	14.6	47.8	88.2	-40.4	Peak	Horizontal
	10809.0	31.9	17.3	49.2	74.0	-24.8	Peak	Horizontal
	11438.0	31.9	17.7	49.6	74.0	-24.4	Peak	Horizontal
*	8896.5	31.7	13.5	45.2	88.2	-43.0	Peak	Vertical
*	10358.5	32.2	15.8	48.0	88.2	-40.2	Peak	Vertical
	11429.5	31.9	17.7	49.6	74.0	-24.4	Peak	Vertical
	12220.0	30.9	17.6	48.5	74.0	-25.5	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=2)	Test Channel	87				
Remark	1. Average measurement was not per	formed if peak level lowe	er than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8599.0	32.7	12.5	45.2	88.2	-43.0	Peak	Horizontal
*	10290.5	33.3	15.2	48.5	88.2	-39.7	Peak	Horizontal
	10902.5	32.3	17.3	49.6	74.0	-24.4	Peak	Horizontal
	12245.5	30.9	18.0	48.9	74.0	-25.1	Peak	Horizontal
*	8701.0	32.6	12.9	45.5	88.2	-42.7	Peak	Vertical
*	10528.5	32.7	16.1	48.8	88.2	-39.4	Peak	Vertical
	11157.5	31.6	17.4	49.0	74.0	-25.0	Peak	Vertical
	12126.5	31.0	17.3	48.3	74.0	-25.7	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=2)	Test Channel	103				
Remark	1. Average measurement was not per	formed if peak level lowe	er than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8777.5	32.0	13.3	45.3	88.2	-42.9	Peak	Horizontal
*	10290.5	34.4	15.2	49.6	88.2	-38.6	Peak	Horizontal
	10953.5	33.1	16.8	49.9	74.0	-24.1	Peak	Horizontal
	12313.5	32.0	17.5	49.5	74.0	-24.5	Peak	Horizontal
*	8726.5	32.4	13.2	45.6	88.2	-42.6	Peak	Vertical
*	10273.5	33.0	15.1	48.1	88.2	-40.1	Peak	Vertical
	10996.0	31.3	17.3	48.6	74.0	-25.4	Peak	Vertical
	12262.5	31.1	17.7	48.8	74.0	-25.2	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=2)	Test Channel	119				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8777.5	32.4	13.3	45.7	88.2	-42.5	Peak	Horizontal
*	10324.5	32.8	15.6	48.4	88.2	-39.8	Peak	Horizontal
	11106.5	32.5	17.2	49.7	74.0	-24.3	Peak	Horizontal
	12339.0	32.5	17.1	49.6	74.0	-24.4	Peak	Horizontal
*	8709.5	32.6	12.9	45.5	88.2	-42.7	Peak	Vertical
*	10239.5	32.8	15.1	47.9	88.2	-40.3	Peak	Vertical
	11064.0	32.0	17.3	49.3	74.0	-24.7	Peak	Vertical
	12245.5	30.4	18.0	48.4	74.0	-25.6	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=2)	Test Channel	151				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8743.5	32.0	13.1	45.1	88.2	-43.1	Peak	Horizontal
*	9729.5	32.9	14.1	47.0	88.2	-41.2	Peak	Horizontal
	11098.0	32.2	16.8	49.0	74.0	-25.0	Peak	Horizontal
	12237.0	30.6	17.9	48.5	74.0	-25.5	Peak	Horizontal
*	8769.0	32.4	13.2	45.6	88.2	-42.6	Peak	Vertical
*	9899.5	33.7	14.2	47.9	88.2	-40.3	Peak	Vertical
	11123.5	32.3	17.4	49.7	74.0	-24.3	Peak	Vertical
	12441.0	31.1	16.9	48.0	74.0	-26.0	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=2)	Test Channel	183				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8658.5	30.6	12.7	43.3	88.2	-44.9	Peak	Horizontal
*	10231.0	33.5	15.0	48.5	88.2	-39.7	Peak	Horizontal
	10962.0	31.8	16.9	48.7	74.0	-25.3	Peak	Horizontal
	12211.5	30.7	17.5	48.2	74.0	-25.8	Peak	Horizontal
*	8786.0	31.8	13.3	45.1	88.2	-43.1	Peak	Vertical
*	10341.5	32.0	15.6	47.6	88.2	-40.6	Peak	Vertical
	11106.5	31.7	17.2	48.9	74.0	-25.1	Peak	Vertical
	12288.0	30.7	17.0	47.7	74.0	-26.3	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE80 (Nss=2)	Test Channel	199				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8794.5	32.4	13.4	45.8	88.2	-42.4	Peak	Horizontal
*	10367.0	32.2	15.9	48.1	88.2	-40.1	Peak	Horizontal
	11064.0	32.1	17.3	49.4	74.0	-24.6	Peak	Horizontal
	12245.5	30.1	18.0	48.1	74.0	-25.9	Peak	Horizontal
*	8752.0	32.4	13.1	45.5	88.2	-42.7	Peak	Vertical
*	9976.0	32.8	14.6	47.4	88.2	-40.8	Peak	Vertical
	10826.0	31.5	17.6	49.1	74.0	-24.9	Peak	Vertical
	12211.5	31.3	17.5	48.8	74.0	-25.2	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang			
Test Site	WZ-AC2	Test Date	2023-02-13			
Test Mode	802.11ax-HE80 (Nss=2)	Test Channel	215			
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8777.5	31.8	13.3	45.1	88.2	-43.1	Peak	Horizontal
*	9899.5	33.0	14.2	47.2	88.2	-41.0	Peak	Horizontal
	10783.5	31.6	17.0	48.6	74.0	-25.4	Peak	Horizontal
	12254.0	30.4	18.0	48.4	74.0	-25.6	Peak	Horizontal
*	8616.0	32.2	12.9	45.1	88.2	-43.1	Peak	Vertical
*	10520.0	32.6	16.1	48.7	88.2	-39.5	Peak	Vertical
	11115.0	31.2	17.5	48.7	74.0	-25.3	Peak	Vertical
	11948.0	31.1	17.0	48.1	74.0	-25.9	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=2)	Test Channel	15				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8709.5	32.3	12.9	45.2	88.2	-43.0	Peak	Horizontal
*	10435.0	32.6	16.1	48.7	88.2	-39.5	Peak	Horizontal
	11285.0	31.6	18.0	49.6	74.0	-24.4	Peak	Horizontal
	12322.0	30.7	17.6	48.3	74.0	-25.7	Peak	Horizontal
*	8599.0	32.5	12.5	45.0	88.2	-43.2	Peak	Vertical
*	10520.0	32.7	16.1	48.8	88.2	-39.4	Peak	Vertical
	11106.5	31.9	17.2	49.1	74.0	-24.9	Peak	Vertical
	12254.0	29.8	18.0	47.8	74.0	-26.2	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=2)	Test Channel	47				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8735.0	32.4	13.2	45.6	88.2	-42.6	Peak	Horizontal
*	10350.0	32.9	15.6	48.5	88.2	-39.7	Peak	Horizontal
	11463.5	32.1	17.2	49.3	74.0	-24.7	Peak	Horizontal
	12109.5	31.1	17.4	48.5	74.0	-25.5	Peak	Horizontal
*	8845.5	31.4	13.5	44.9	88.2	-43.3	Peak	Vertical
*	10324.5	32.5	15.6	48.1	88.2	-40.1	Peak	Vertical
	10979.0	32.2	17.4	49.6	74.0	-24.4	Peak	Vertical
	11565.5	30.9	17.8	48.7	74.0	-25.3	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=2)	Test Channel	79				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8709.5	32.4	12.9	45.3	88.2	-42.9	Peak	Horizontal
*	10078.0	33.2	14.3	47.5	88.2	-40.7	Peak	Horizontal
	10979.0	31.5	17.4	48.9	74.0	-25.1	Peak	Horizontal
	12067.0	31.4	17.0	48.4	74.0	-25.6	Peak	Horizontal
*	8709.5	32.4	12.9	45.3	88.2	-42.9	Peak	Vertical
*	9797.5	33.4	14.2	47.6	88.2	-40.6	Peak	Vertical
	10843.0	31.6	17.3	48.9	74.0	-25.1	Peak	Vertical
	11531.5	31.7	17.4	49.1	74.0	-24.9	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=2)	Test Channel	111				
Remark	1. Average measurement was not per	formed if peak level lowe	er than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8930.5	32.4	13.5	45.9	88.2	-42.3	Peak	Horizontal
*	9993.0	32.6	14.5	47.1	88.2	-41.1	Peak	Horizontal
	10613.5	32.3	16.4	48.7	74.0	-25.3	Peak	Horizontal
	11302.0	32.0	17.6	49.6	74.0	-24.4	Peak	Horizontal
*	8947.5	32.9	13.4	46.3	88.2	-41.9	Peak	Vertical
*	10528.5	32.2	16.1	48.3	88.2	-39.9	Peak	Vertical
	11047.0	32.2	16.9	49.1	74.0	-24.9	Peak	Vertical
	11506.0	31.3	17.7	49.0	74.0	-25.0	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=2)	Test Channel	143				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8794.5	32.4	13.4	45.8	88.2	-42.4	Peak	Horizontal
*	10392.5	32.3	16.0	48.3	88.2	-39.9	Peak	Horizontal
	11004.5	32.1	17.1	49.2	74.0	-24.8	Peak	Horizontal
	11727.0	31.4	17.5	48.9	74.0	-25.1	Peak	Horizontal
*	8148.5	32.6	12.1	44.7	74.0	-29.3	Peak	Vertical
*	10486.0	32.2	15.9	48.1	88.2	-40.1	Peak	Vertical
	11072.5	31.9	17.2	49.1	74.0	-24.9	Peak	Vertical
	12262.5	31.1	17.7	48.8	74.0	-25.2	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=2)	Test Channel	175				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8616.0	32.0	12.9	44.9	88.2	-43.3	Peak	Horizontal
*	9891.0	32.8	14.2	47.0	88.2	-41.2	Peak	Horizontal
	10996.0	32.1	17.3	49.4	74.0	-24.6	Peak	Horizontal
	12228.5	31.3	17.7	49.0	74.0	-25.0	Peak	Horizontal
*	8905.0	31.9	13.6	45.5	88.2	-42.7	Peak	Vertical
*	9644.5	33.0	14.0	47.0	88.2	-41.2	Peak	Vertical
	10605.0	33.6	16.4	50.0	74.0	-24.0	Peak	Vertical
	11897.0	32.4	16.9	49.3	74.0	-24.7	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

Product	ACCESS POINT	Test Engineer	Bob Zhang				
Test Site	WZ-AC2	Test Date	2023-02-13				
Test Mode	802.11ax-HE160 (Nss=2)	Test Channel	207				
Remark	1. Average measurement was not perf	ormed if peak level lowe	r than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB/m)	Level	(dBuV/m)	(dB)		
		(dBuV)		(dBuV/m)				
*	8641.5	32.2	12.8	45.0	88.2	-43.2	Peak	Horizontal
*	10001.5	33.0	14.3	47.3	88.2	-40.9	Peak	Horizontal
	10919.5	31.8	17.3	49.1	74.0	-24.9	Peak	Horizontal
	11506.0	31.0	17.7	48.7	74.0	-25.3	Peak	Horizontal
*	8709.5	33.3	12.9	46.2	88.2	-42.0	Peak	Vertical
*	9814.5	33.2	14.2	47.4	88.2	-40.8	Peak	Vertical
	11064.0	31.4	17.3	48.7	74.0	-25.3	Peak	Vertical
	11497.5	31.2	17.5	48.7	74.0	-25.3	Peak	Vertical

Note 2: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB/m)

The Result of Radiated Emission below 1GHz:

Site: WZ-AC1	Time: 2023/05/16 - 16:53
Limit: FCC_6G_RE(3m)	Engineer: Ajin Fan
Probe: FMZB1519_0.009-30MHz	Polarity: Coaxial
EUT: ACCESS POINT	Power: AC 120V/60Hz

Test Mode: Transmit by 802.11ax-HE160 at channel 6345MHz

		()			· · /	(1)	· /	
			(dBµV/m)	(dBµV)				
1		0.019	-22.136	37.750	-64.149	42.013	-59.886	PK
2	*	0.024	-12.475	48.001	-52.460	39.985	-60.476	PK
3		0.053	-36.825	25.560	-69.933	33.108	-62.385	PK

Note 1: " * ", means this data is the worst emission level.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB/m).

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 4: Quasi-Peak measurement was not performed when peak measure level was lower than the quasi-peak limit.

Site: WZ-AC1	Time: 2023/05/16 - 16:53
Limit: FCC_6G_RE(3m)	Engineer: Ajin Fan
Probe: FMZB1519_0.009-30MHz	Polarity: Coaxial
EUT: ACCESS POINT	Power: AC 120V/60Hz

Test Mode: Transmit by 802.11ax-HE160 at channel 6345MHz

No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)	
			(dBµV/m)	(dBµV)				
1	*	1.359	-3.075	19.260	-28.040	24.965	-22.331	PK
2		16.344	-10.734	12.115	-40.234	29.500	-22.844	PK
3		23.030	-11.679	11.108	-41.179	29.500	-22.786	PK

Note 1: " * ", means this data is the worst emission level.

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 4: Quasi-Peak measurement was not performed when peak measure level was lower than the quasi-peak limit.

EUT: ACCESS POINT	Power: AC 120V/60Hz			
Probe: FMZB1519_0.009-30MHz	Polarity: Coplanar			
Limit: FCC_6G_RE(3m)	Engineer: Ajin Fan			
Site: WZ-AC1	Time: 2023/05/16 - 16:53			

Test Mode: Transmit by 802.11ax-HE160 at channel 6345MHz

			(dBµV/m)	(dBµV)				
1		0.019	-17.530	42.356	-59.543	42.013	-59.886	PK
2	*	0.024	-11.153	49.323	-51.138	39.985	-60.476	PK
3		0.062	-36.238	26.237	-67.984	31.746	-62.475	PK

Note 1: " * ", means this data is the worst emission level.

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 4: Quasi-Peak measurement was not performed when peak measure level was lower than the quasi-peak limit.