

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358

Web: www.mrt-cert.com

Report No.: 2306RSU039-U7 Report Version: V02 Issue Date: 2023-11-29

DFS MEASUREMENT REPORT

FCC ID: Q9DAPINH605

Applicant: Hewlett Packard Enterprise

Product: ACCESS POINT

Model No.: APINH605

Trademark:

FCC Classification: Unlicensed National Information Infrastructure (NII)

FCC Rule Part(s): Part 15 Subpart E (Section 15.407)

Result: Complies

Received Date: 2023-06-25

Test Date: 2023-09-19 ~ 2023-10-20

_____Jame Yuan

Approved By:

Reviewed By:

Robin Wu

The test results relate only to the samples tested.

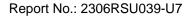
This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 905462. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Template Version:0.0 1 of 138

Revision History

Report No.	Version	Description	Issue Date	Note
2306RSU039-U7	V01	Initial Report	2023-10-20	Invalid
2306RSU039-U7	V02	Add Measurement Uncertainty	2023-11-29	Valid



CONTENTS

Des	scription		Page
1.	Gene	ral Information	5
	1.1.	Applicant	5
	1.2.	Manufacturer	5
	1.3.	Testing Facility	5
	1.4.	Product Information	6
	1.5.	Radio Specification under Test	6
	1.6.	Working Frequencies	7
	1.7.	Antenna Details	7
2.	Test C	Configuration	8
	2.1.	Test Mode	8
	2.2.	Test Channel	8
	2.3.	Applied Standards	8
	2.4.	Test Environment Condition	8
3.	DFS [Detection Thresholds and Radar Test Waveforms	9
	3.1.	Applicability	9
	3.2.	DFS Devices Requirements	10
	3.3.	DFS Detection Threshold Values	12
	3.4.	Parameters of DFS Test Signals	13
	3.5.	Conducted Test Setup	16
4.	Meas	uring Instrument	17
5.	Decis	ion Rules and Measurement Uncertainty	18
	5.1.	Decision Rules	18
	5.2.	Measurement Uncertainty	18
6.	Test F	Result	19
	6.1.	Summary	19
	6.2.	Radar Waveform Calibration Measurement	20
	6.2.1.	Calibration Setup	20
	6.2.2.	Calibration Procedure	20
	6.2.3.	Calibration & Channel Loading Result	20
	6.3.	NII Detection Bandwidth Measurement	21
	6.3.1.	Test Limit	21
	6.3.2.	Test Procedure	21
	6.3.3.	Test Result	22
	6.4.	Initial Channel Availability Check Time Measurement	23
	6.4.1.	Test Limit	23

6.4.2.	Test Procedure	23
6.4.3.	Test Result	23
6.5.	Radar Burst at the Beginning of the Channel Availability Check Time Measurement	24
6.5.1.	Test Limit	24
6.5.2.	Test Procedure	24
6.5.3.	Test Result	24
6.6.	Radar Burst at the End of the Channel Availability Check Time Measurement	25
6.6.1.	Test Limit	25
6.6.2.	Test Procedure	25
6.6.3.	Test Result	25
6.7.	In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and	
Non-Occ	cupancy Period Measurement	26
6.7.1.	Test Limit	26
6.7.2.	Test Procedure	26
6.7.3.	Test Result	26
6.8.	Statistical Performance Check Measurement	27
6.8.1.	Test Limit	27
6.8.2.	Test Procedure	27
6.8.3.	Test Result	27
Appendix A	A – Test Result	28
A.1	Calibration Test Result	28
A.2	Channel Loading Test Result	30
A.3	NII Detection Bandwidth Test Result	32
A.4	Initial Channel Availability Check Time Test Result	35
A.5	Radar Burst at the Beginning of the Channel Availability Check Time Test Result	36
A.6	Radar Burst at the End of the Channel Availability Check Time Test Result	37
A.7	In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and	
Non-C	Occupancy Period Test Result	38
A.8	Statistical Performance Check	41
Appendix	B – Test Setup Photograph	137
Appendix (C – EUT Photograph	138

1. General Information

1.1. Applicant

Hewlett Packard Enterprise

6280 America Center Drive, San Jose CA 95002, United States

1.2. Manufacturer

Hewlett Packard Enterprise

6280 America Center Drive, San Jose CA 95002, United States

1.3. Testing Facility

\boxtimes	Test Site – MRT Suzhou Laboratory						
	Laboratory Location (Suzhou - Wuzhong)						
	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China						
	Laboratory Location (Suzhou - SIP)						
	4b Building, Liand	lo U Valley, No.200	Xingpu Rd., Shengp	u Town, Suzhou Indu	ustrial Park, China		
	Laboratory Accre	editations					
	A2LA: 3628.01		CNAS	S: L10551			
	FCC: CN1166		ISED:	CN0001			
	VCCI	□R-20025	□G-20034	□C-20020	□T-20020		
	VCCI:	□R-20141	□G-20134	□C-20103	□T-20104		
	Test Site - MRT S	Shenzhen Laborat	tory				
	Laboratory Loca	tion (Shenzhen)					
	1G, Building A, Ju	nxiangda Building,	Zhongshanyuan Roa	nd West, Nanshan Di	istrict, Shenzhen, China		
	Laboratory Accre	editations					
	A2LA: 3628.02		CNAS	S: L10551			
	FCC: CN1284		ISED:	CN0105			
	Test Site – MRT Taiwan Laboratory						
	Laboratory Location (Taiwan)						
	No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)						
	Laboratory Accreditations						
	TAF: 3261						
	FCC: 291082, TW	/3261	ISED:	TW3261			

1.4. Product Information

Product Name	Access Point	
Model No.	APINH605	
Serial No.	CNQHLHJ05K	
Software Version	ArubaOS_8.12.0.0_88031	
Wi-Fi Specification	802.11a/b/g/n/ac/ax	
Bluetooth Specification	BLE only	
ZigBee Specification	802.15.4	
GNSS Specification	GPS, Galileo, GLONASS	
Antenna Information	Refer to Section 1.7	
Power Type	AC Adapter Input or PoE Input	
Operating Environment	Indoor Use	

Remark:

The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.

1.5. Radio Specification under Test

Frequency Range	For 802.11a/n-HT20/ac-VHT20/ax-HE20:			
	5260~5320MHz, 5500~5720MHz			
	For 802.11n-HT40/ac-VHT40/ax-HE40:			
	5270~5310MHz, 5510~5710MHz			
	For 802.11ac-VHT80/ax-HE80:			
	5290MHz, 5530MHz, 5610 MHz, 5690MHz			
Type of Modulation	802.11a/n/ac: OFDM			
	802.11ax: OFDMA			
Data Rate	802.11a: 6/9/12/18/24/36/48/54Mbps			
	802.11n: up to 300Mbps			
	802.11ac: up to 866.6Mbps			
	802.11ax: up to 1201Mbps			
Power-on cycle	Requires 43.25 seconds to complete its power-on cycle			
Uniform Spreading (For	For the 5250-5350MHz, 5470-5725 MHz bands, the Master device provide			
DFS Frequency Band)	on aggregate, uniform loading of the spectrum across all devices by selecting			
	an operating channel among the available channels using a random algorithm.			

1.6. Working Frequencies

802.11a/n-HT20/ac-VHT20/ax-HE20

Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260 MHz	56	5280 MHz	60	5300 MHz
64	5320 MHz	100	5500 MHz	104	5520 MHz
108	5540 MHz	112	5560 MHz	116	5580 MHz
120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz
144	5720 MHz				

802.11n-HT40/ac-VHT40/ax-HE40

Channel	Frequency	Channel	Frequency	Channel	Frequency
54	5270 MHz	62	5310 MHz	102	5510 MHz
110	5550 MHz	118	5590 MHz	126	5630 MHz
134	5670 MHz	142	5710 MHz		

802.11ac-VHT80/ax-HE80

Channel	Frequency	Channel	Frequency	Channel	Frequency
58	5290 MHz	106	5530 MHz	122	5610 MHz
138	5690 MHz				

1.7. Antenna Details

Antenna Type	Frequency Band (MHz)	Tx	Directional Gain (dBi)	
		Paths	Uncorrelated	Correlated
Wi-Fi Antennas				
	2.4 ~ 2.5	2	4.4	7.4
PIFA	5.15 ~ 5.9	2	4.4	7.4
	5.9 ~ 7.2	2	4.0	7.0

Note:

- 1, The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.
- 2, The EUT also supports Beam Forming mode, and the Beam Forming support 802.11n/ac/ax, not include 802.11a/b/g.
- 3, For beamforming operation, Aruba OS automatically backs power down based on CDD power.
- 4, The detail calculation method of directional gain refers to antenna specification provided by the applicant.

2. Test Configuration

2.1. Test Mode

Mode 1: Working on AP mode

Mode 2: Working on Mesh mode

2.2. Test Channel

Test Mode	Test Channel	Test Frequency
802.11ax-HE20	100	5500 MHz
802.11ax-HE40	102	5510 MHz
802.11ax-HE80	106	5530 MHz

2.3. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.407 Section (h)(2)
- KDB 905462 D02v02
- KDB 905462 D04v01

2.4. Test Environment Condition

Ambient Temperature	15 ~ 35°C
Relative Humidity	20 ~ 75%RH

3. DFS Detection Thresholds and Radar Test Waveforms

3.1. Applicability

The following table from FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 lists the applicable requirements for the DFS testing.

Requirement	Operational Mode				
	Master Client Without Client With Rad				
		Radar Detection	Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 3-1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode			
	Master Device or Client With	Client Without Radar		
	Radar Detection	Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with	Master Device or Client with	Client Without Radar	
multiple bandwidth modes	Radar Detection	Detection	
U-NII Detection Bandwidth and Statistical	All DVV med decomposit le cotto d	Not no mino d	
Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing	Test using widest BW mode	Test using the widest BW	
Transmission Time	available	mode available for the link	
All other tests	Any single BW mode	Not required	

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 3-2: Applicability of DFS Requirements during normal operation

3.2. DFS Devices Requirements

Per FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 the following are the requirements for Master Devices:

- (a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 ~ 5350 MHz and 5470 ~ 5725 MHz bands. DFS is not required in the 5150 ~ 5250 MHz or 5725 ~ 5825 MHz bands.
- (b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above.
- (c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device.
- (d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a).
- (e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time.
- (f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period.
- (g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above.

Channel Move Time and Channel Closing Transmission Time requirements are listed in the following table.

Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Mayer Time	10 seconds		
Channel Move Time	See Note 1.		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds		
Charliel Closing Transmission Time	over remaining 10 second period. See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power		
O-IVII Detection Bandwidth	bandwidth. See Note 3.		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 3-3: DFS Response Requirements

3.3. DFS Detection Threshold Values

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring.

These detection thresholds are listed in the following table.

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power	-64 dBm
spectral density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 3-4: Detection Thresholds for Master Devices and Client Devices with Radar Detection

3.4. Parameters of DFS Test Signals

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 3-6 Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A		60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Type:	s 1-4)		80%	120

Note: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 3-5: Parameters for Short Pulse Radar Waveforms

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms.

Pulse Repetition Frequency	Pulse Repetition Frequency	Pulse Repetition Interval
Number	(Pulses Per Second)	(Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 3-6: Pulse Repetition Intervals Values for Test A

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50 - 100	5 - 20	1000 - 2000	1 - 3	8 - 20	80%	30

Table 3-7: Parameters for Long Pulse Radar Waveforms

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Table 3-8: Parameters for Frequency Hopping Radar Waveforms

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

3.5. Conducted Test Setup

The FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 3-1 shows the typical test setup.

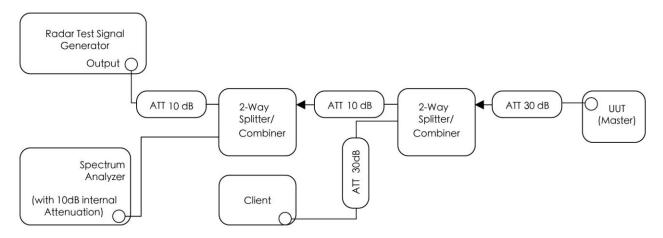


Figure 3-1: Conducted Test Setup where UUT is a Master and Radar Test Waveforms are injected into the Masters

4. Measuring Instrument

Instrument Name	Manufacturer	Model No.	Asset No.	Cali. Interval	Cal. Due Date	Test Site
Signal Analyzer	R&S	FSV40	MRTSUE06218	1 year	2024-09-04	WZ-SR4
Thermohygrometer	testo	608-H1	MRTSUE06222	1 year	2023-10-11	WZ-SR4
Thermohygrometer	testo	608-H1	MRTSUE06222	1 year	2024-10-10	WZ-SR4
Shielding Room	HUAMING	WZ-SR4	MRTSUE06441	N/A	N/A	WZ-SR4
Signal Generator	Keysight	N5182B	MRTSUE06451	1 year	2024-06-29	WZ-SR4
Frequency extender for EXG or MXG	Keysight	N5182BX07	MRTSUE06984	1 year	2024-02-29	WZ-SR4
Signal Analyzer	Keysight	N9010B	MRTSUE07027	1 year	2023-11-25	WZ-SR4

Client Information

Instrument	Manufacturer	Type No.	Certification Number
Wi-Fi Module	Intel	AX200NGW	FCC ID: PD9AX200NG

Software	Version	Manufacturer	Function
DFS Tool	V 6.9.2	Agilent	DFS Test Software
Pluse Sequencer	V 2.0	R&S	DFS Test Software
Signal Studio	V 2.2.0.0	Keysight	DFS Test Software

5. Decision Rules and Measurement Uncertainty

5.1. Decision Rules

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.2. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Time

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

4.34%

6. Test Result

6.1. Summary

Parameter	Verdict	Reference	
NII Detection Bandwidth Measurement	Pass	Section 5.3	
Initial Channel Availability Check Time	Pass	Section 5.4	
Radar Burst at the Beginning of the Channel	Dogo	Coation F F	
Availability Check Time	Pass	Section 5.5	
Radar Burst at the End of the Channel Availability	Pass	Section 5.6	
Check Time	Fass	Section 5.6	
In-Service Monitoring for Channel Move Time, Channel	Pass	Section 5.7	
Closing Transmission Time	rass		
Non-Occupancy Period	Pass	Section 5.7	
Statistical Performance Check	Pass	Section 5.8	

Note 1: We used the worst-case level -64dBm as DFS detection thresholds for all DFS testing.

Note 2: Statistical Performance Check was tested using the radiated method, other items were tested using the conducted method.

6.2. Radar Waveform Calibration Measurement

6.2.1. Calibration Setup

The conducted test setup was used for this calibration testing. Figure 3-2 shows the typical test setup.

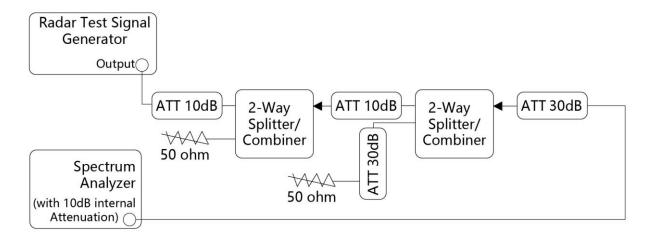


Figure 3-2: Conducted Test Setup

6.2.2. Calibration Procedure

The Interference Radar Detection Threshold Level is (-64dBm) + (0) [dBi] + 1 dB= -63 dBm that had been taken into account the output power range and antenna gain. The above equipment setup was used to calibrate the conducted Radar Waveform. A vector signal generator was utilized to establish the test signal level for each radar type. During this process there were replace 50ohm terminal form Master and Client device and no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) at the frequency of the Radar Waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to at least 3MHz. The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was (-64dBm) + (0) [dBi] + 1 dB= -63dBm. Capture the spectrum analyzer plots on short pulse radar types, long pulse radar type and hopping radar waveform.

6.2.3. Calibration & Channel Loading Result

Refer to Appendix A.1 & A.2.

6.3. NII Detection Bandwidth Measurement

6.3.1. Test Limit

Minimum 100% of the NII 99% transmission power bandwidth. During the U-NII Detection Bandwidth detection test, each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

6.3.2. Test Procedure

- Adjust the equipment to produce a single Burst of any one of the Short Pulse Radar Types 0-4 in Table
 3-5 at the center frequency of the EUT Operating Channel at the specified DFS Detection Threshold level.
- 2. The generating equipment is configured as shown in the Conducted Test Setup above section 3.5.
- 3. The EUT is set up as a stand-alone device (no associated Client or Master, as appropriate) and no traffic.
 Frame based systems will be set to a talk/listen ratio reflecting the worst case (maximum) that is user configurable during this test.
- 4. Generate a single radar Burst, and note the response of the EUT. Repeat for a minimum of 10 trials. The EUT must detect the Radar Waveform using the specified U-NII Detection Bandwidth criterion shown in Table 3-5. In cases where the channel bandwidth may exceed past the DFS band edge on specific channels (i.e., 802.11ac or wideband frame based systems) select a channel that has the entire emission bandwidth within the DFS band. If this is not possible, test the detection BW to the DFS band edge.
- 5. Starting at the center frequency of the UUT operating Channel, increase the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion specified in Table 3-3. Repeat this measurement in 1MHz steps at frequencies 5 MHz below where the detection rate begins to fall. Record the highest frequency (denote as FH) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies above FH is not required to demonstrate compliance.
- 6. Starting at the center frequency of the EUT operating Channel, decrease the radar frequency in 1 MHz steps, repeating the above item 4 test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion. Record the lowest frequency (denote as FL) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies below FL is not required to demonstrate compliance.
- 7. The U-NII Detection Bandwidth is calculated as follows: U-NII Detection Bandwidth = FH FL
- 8. The U-NII Detection Bandwidth must be at least 100% of the EUT transmitter 99% power, otherwise, the

 EUT does not comply with DFS requirements.

6.3.3. Test Result

Refer to Appendix A.3.

6.4. Initial Channel Availability Check Time Measurement

6.4.1. Test Limit

The EUT shall perform a Channel Availability Check to ensure that there is no radar operating on the channel.

After power-up sequence, receive at least 1 minute on the intended operating frequency.

6.4.2. Test Procedure

- 1. The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the EUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar (Chr) with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.
- 2. The EUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.
- 3. Confirm that the EUT initiates transmission on the channel. Measurement system showing its nominal noise floor is marker1.

6.4.3. Test Result

Refer to Appendix A.4.

6.5. Radar Burst at the Beginning of the Channel Availability Check Time Measurement

6.5.1. Test Limit

In beginning of the Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC on that channel.

6.5.2. Test Procedure

- The steps below define the procedure to verify successful radar detection on the selected Channel during
 a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when
 a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the
 Channel Availability Check Time.
- 2. The EUT is in completion power-up cycle (from T0 to T1). T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner than T1 + 60 seconds. A single Burst of one of Short Pulse Radar Types 0-4 at DFS Detection Threshold + 1 dB will commence within a 6 second window starting at T1.
- Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported.
 Observation of emissions will continue for 2.5 minutes after the radar Burst has been generated. Verify that during the 2.5 minutes measurement window no EUT transmissions occurred.

6.5.3. Test Result

Refer to Appendix A.5.

6.6. Radar Burst at the End of the Channel Availability Check Time Measurement

6.6.1. Test Limit

In the end of Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC on that channel.

6.6.2. Test Procedure

- The steps below define the procedure to verify successful radar detection on the selected Channel during
 a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when
 a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the
 Channel Availability Check Time.
- 2. The EUT is powered on at T0. T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner thanT1 + 60 seconds. A single Burst of one of Short Pulse Radar Types 0-4 at DFS Detection Threshold + 1 dB will commence within a 6 second window starting at T1+ 54 seconds.
- 3. Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported.
 Observation of emissions will continue for 2.5 minutes after the radar Burst has been generated. Verify that during the 2.5 minutes measurement window no EUT transmissions occurred.

6.6.3. Test Result

Refer to Appendix A.6.

6.7. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period Measurement

6.7.1. Test Limit

The EUT has In-Service Monitoring function to continuously monitor the radar signals. If the radar is detected, must leave the channel (Shutdown). The Channel Move Time to cease all transmissions on the current channel upon detection of a Radar Waveform above the DFS Detection Threshold within 10 sec. The total duration of Channel Closing Transmission Time is 260ms, consisting of data signals and the aggregate of control signals, by a U-NII device during the Channel Move Time. The Non-Occupancy Period time is 30 minutes during which a Channel will not be utilized after a Radar Waveform is detected on that Channel.

6.7.2. Test Procedure

- The test should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0.
- 2. When the radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device. A U-NII device operating as a Master Device will associate with the Client Device at Channel. Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test. At time T0 the Radar Waveform generator sends a Burst of pulses for each of the radar types at Detection Threshold + 1dB.
- 3. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the EUT during the observation time (Channel Move Time).
- 4. Measurement of the aggregate duration of the Channel Closing Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (1.5ms) = S (12 sec) / B (8000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C = N X Dwell; where C is the Closing Time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and Dwell is the dwell time per bin.
- Measure the EUT for more than 30 minutes following the channel close/move time to verify that the EUT does not resume any transmissions on this Channel.

6.7.3. Test Result

Refer to Appendix A.7.

6.8. Statistical Performance Check Measurement

6.8.1. Test Limit

The minimum percentage of successful detection requirements found in below table when a radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).

Radar Type	Minimum Number of Trails	Detection Probability
0	30	Pd ≥ 60%
1	30(15 of test A and 15 of test B)	Pd ≥ 60%
2	30	Pd ≥ 60%
3	30	Pd ≥ 60%
4	30	Pd ≥ 60%
Aggregate (Radar Types 1-4)	120	Pd ≥ 80%
5	30	Pd ≥ 80%
6	30	Pd ≥ 70%

Note: The percentage of successful detection is calculated by:

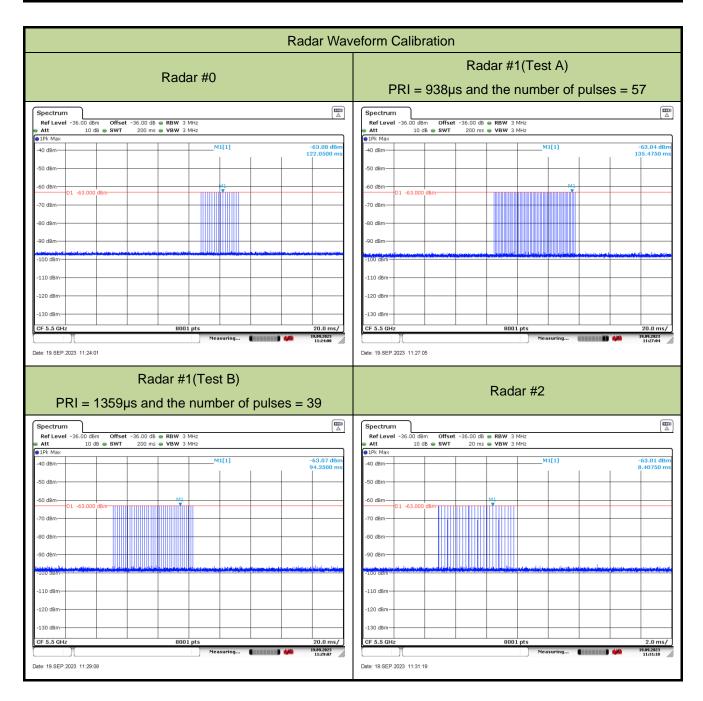
(Total Waveform Detections / Total Waveform Trails) * 100 = Probability of Detection Radar Waveform In addition an aggregate minimum percentage of successful detection across all Short Pulse Radar Types 1-4 is required and is calculated as follows: (Pd1 + Pd2 + Pd3 + Pd4) / 4.

6.8.2. Test Procedure

- Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test.
- 2. At time T0 the Radar Waveform generator sends the individual waveform for each of the Radar Types

 1-6, at levels equal to the DFS Detection Threshold + 1dB, on the Operating Channel.
- 3. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 10 seconds for Short Pulse Radar Types 0 to ensure detection occurs.
- 4. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs.
- The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs.
- 6. The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in below table

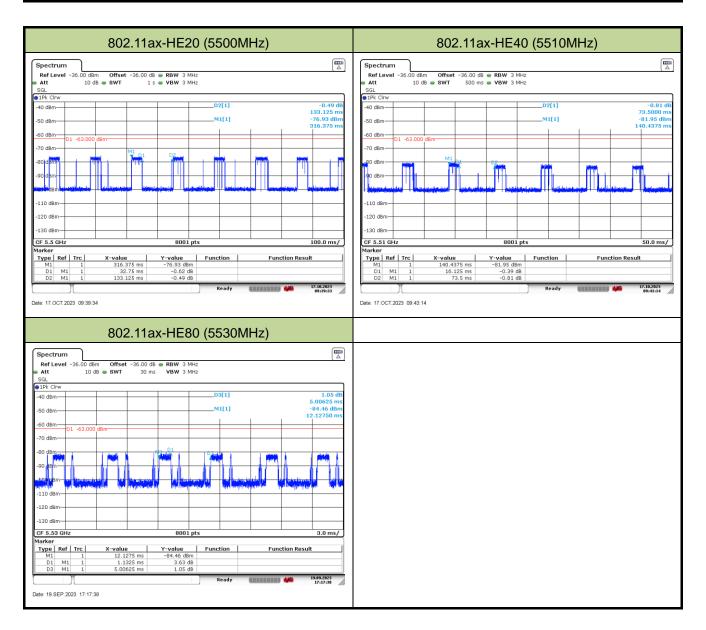
6.8.3. Test Result


Refer to Appendix A.8.

Appendix A - Test Result

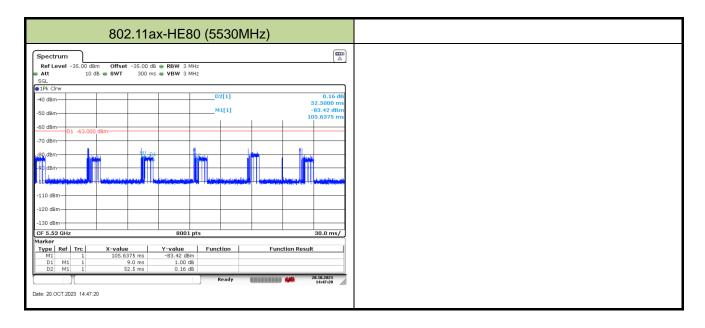
A.1 Calibration Test Result

Test Site	WZ-SR4	Test Engineer	Jake Lan
Test Date	2023-09-19	Test Item	Radar Waveform Calibration



A.2 Channel Loading Test Result

Test Site	WZ-SR4	Test Engineer	Jake Lan
Test Date	2023-09-19 ~ 2023-10-17	Test Item	Channel Loading
Test Mode	AP Mode		



Test Mode	Test Frequency	Packet ratio	Requirement ratio	Test Result
802.11ax-HE20	5500 MHz	24.60%	≥ 17%	Pass
802.11ax-HE40	5510 MHz	21.94%	≥ 17%	Pass
802.11ax-HE80	5530 MHz	22.62%	≥ 17%	Pass

Note: System testing was performed with the designated iperf test file. This file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Packet ratio = Time On / (Time On + Off Time).

Test Site	WZ-SR4	Test Engineer	Jake Lan
Test Date	2023-10-20	Test Item	Channel Loading
Test Mode	Mesh Mode		

Test Mode	Test Frequency	Packet ratio	Requirement ratio	Test Result
802.11ax-HE80	5530 MHz	17.14%	≥ 17%	Pass

Note: System testing was performed with the designated iperf test file. This file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Packet ratio = Time On / (Time On + Off Time).

A.3 NII Detection Bandwidth Test Result

Test Site	WZ-SR4	Jake Lan				
Test Date	2023-10-12					
Test Item	Detection Bandwidth (802.11ax-HE20 mode - 5500MHz)					

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 F∟	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510 Fн	1	1	1	1	1	1	1	1	1	1	100

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5500MHz. The 99% channel bandwidth is 19.038MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5510MHz - 5490MHz = 20MHz

Note 3: NII Detection Bandwidth Min. Limit (MHz): 19.038MHz x 100% = 19.038MHz.

Test Site	WZ-SR4	Test Engineer	Jake Lan			
Test Date	2023-10-12					
Test Item	Detection Bandwidth (802.11ax-HE40 mode - 5510MHz)					

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 F∟	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5525	1	1	1	1	1	1	1	1	1	1	100
5530 Гн	1	1	1	1	1	1	1	1	1	1	100

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5510MHz. The 99% channel bandwidth is 36.314MHz. (See the 99% BW section of the RF report for further measurement details).

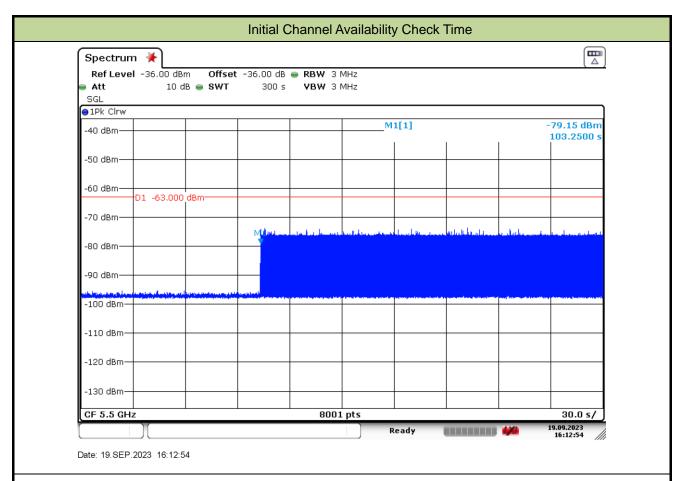
Note 2: Detection Bandwidth = F_H - F_L = 5530MHz - 5490MHz = 40MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 36.314MHz x 100% = 36.314MHz.

Test Site	WZ-SR4	Test Engineer	Jake Lan			
Test Date	2023-10-12					
Test Item	Detection Bandwidth (802.11ax-HE80 mode - 5530MHz)					

Radar Frequency	DFS Detection Trials (1=Detection, 0= No Detection)										
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490	0	0	0	0	0	0	0	0	0	0	0
5491 F∟	1	1	1	1	1	1	1	1	1	1	100
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5525	1	1	1	1	1	1	1	1	1	1	100
5530	1	1	1	1	1	1	1	1	1	1	100
5535	1	1	1	1	1	1	1	1	1	1	100
5540	1	1	1	1	1	1	1	1	1	1	100
5545	1	1	1	1	1	1	1	1	1	1	100
5550	1	1	1	1	1	1	1	1	1	1	100
5555	1	1	1	1	1	1	1	1	1	1	100
5560	1	1	1	1	1	1	1	1	1	1	100
5565	1	1	1	1	1	1	1	1	1	1	100
5566	1	1	1	1	1	1	1	1	1	1	100
5567	1	1	1	1	1	1	1	1	1	1	100
5568	1	1	1	1	1	1	1	1	1	1	100
5569 F _н	1	1	1	1	1	1	1	1	1	1	100
5570	0	0	0	0	0	0	0	0	0	0	0

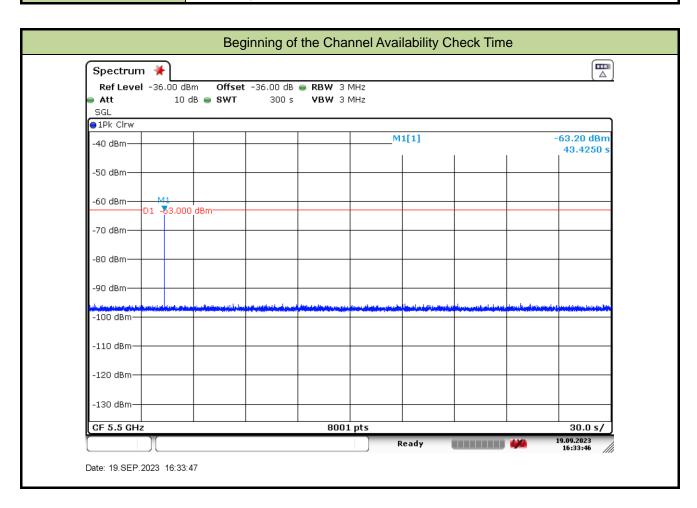
Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5530MHz. The 99% channel bandwidth is 76.846MHz. (See the 99% BW section of the RF report for further measurement details).


Note 2: Detection Bandwidth = F_H - F_L = 5569MHz - 5491MHz = 78MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 76.846MHz x 100% = 76.846MHz.

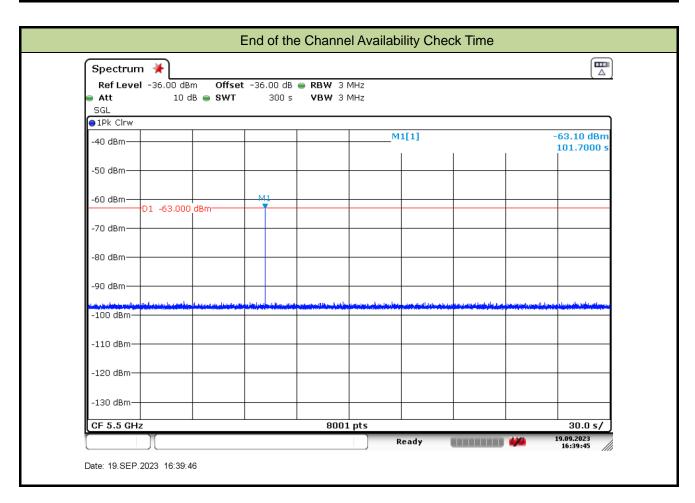
A.4 Initial Channel Availability Check Time Test Result

Test Site	WZ-SR4	Test Engineer	Jake Lan			
Test Date	2023-09-19					
Test Item	Initial Channel Availability Check Time (802.11ax-HE20 mode - 5500MHz)					

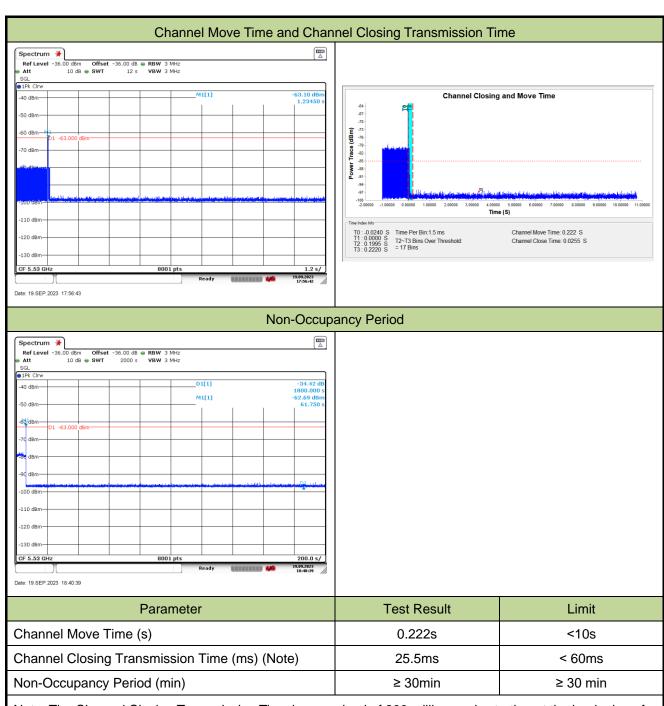


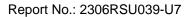
Note: The EUT does not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle (43.25 sec). Initial beacons/data transmissions are indicated by marker 1 (103.25 sec).

A.5 Radar Burst at the Beginning of the Channel Availability Check Time Test Result


Test Site	WZ-SR4	Test Engineer	Jake Lan			
Test Date	2023-09-19					
Test Item	Beginning of the Channel Availability Check Time (802.11ax-HE20 mode -					
	5500MHz)					

A.6 Radar Burst at the End of the Channel Availability Check Time Test Result

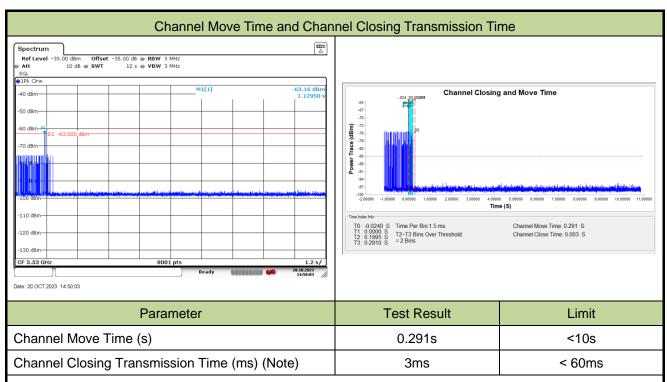

Test Site	WZ-SR4	Test Engineer	Jake Lan
Test Date	2023-09-19		
Test Item	End of the Channel Availab	oility Check Time (802.11ax-	HE20 mode - 5500MHz)



A.7 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period Test Result

Test Site	WZ-SR4	Test Engineer	Jake Lan
Test Date	2023-09-19		
Test Item	Channel Move Time and C mode - 5530MHz)	hannel Closing Transmissio	n Time (802.11ax-HE80
Test Mode	AP Mode		

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move



(an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Test Site	WZ-SR4	Test Engineer	Jake Lan
Test Date	2023-10-20		
Test Item	Channel Move Time and C mode - 5530MHz)	hannel Closing Transmissio	n Time (802.11ax-HE80
Test Mode	Mesh Mode		

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

A.8 Statistical Performance Check

Test Site	WZ-SR4	Test Engineer	Jake Lan		
Test Date	2023-10-11	2023-10-11			
Test Item	Radar Statistical Performance Ch	neck (802.11ax-HE20 – 5500MHz)			

		F	Radar Type 1-4	- Radar Statisti	cal Performance	9		
Trial	Radar	Type 1	Radar	Type 2	Radar	Type 3	Radar	Type 4
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect
0	5490	1	5498	1	5493	1	5495	0
1	5504	1	5506	1	5492	1	5500	1
2	5493	1	5492	1	5503	1	5491	1
3	5494	1	5500	1	5499	1	5510	1
4	5505	1	5509	0	5500	1	5496	1
5	5500	1	5498	1	5502	1	5502	1
6	5494	1	5494	1	5496	0	5501	1
7	5497	1	5491	1	5497	1	5495	1
8	5510	1	5490	1	5507	1	5498	1
9	5496	0	5504	1	5492	0	5494	1
10	5506	1	5502	1	5490	1	5503	1
11	5494	1	5506	1	5502	1	5497	1
12	5502	1	5492	1	5495	1	5495	1
13	5498	1	5507	1	5491	1	5506	1
14	5497	1	5491	1	5497	1	5505	0
15	5508	1	5505	1	5500	1	5491	1
16	5496	1	5499	1	5510	1	5506	1
17	5503	1	5510	1	5506	1	5501	1
18	5508	1	5509	1	5506	0	5490	1
19	5499	1	5493	0	5500	1	5505	1
20	5495	1	5508	1	5493	1	5499	1
21	5491	1	5505	1	5494	1	5493	1
22	5493	1	5496	1	5495	1	5510	1
23	5505	1	5508	0	5497	1	5508	1
24	5502	1	5490	1	5506	1	5502	1
25	5497	1	5495	1	5509	1	5504	1
26	5496	1	5502	1	5504	1	5507	1
27	5507	1	5496	1	5493	1	5494	1

Trial	Radar	Radar Type 1		Type 2	Radar	Type 3	ype 3 Radar Typ	
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect
28	5509	1	5491	1	5505	1	5504	1
29	5494	1	5493	1	5508	1	5490	0
Probability:	96	96.7% 90.0% 90.0% 90.0%						.0%
Aggregate:		91.7% (>80%)						

Radar Type 1 - Radar Waveform							Na	uai Type 2	- Radar Wa	/eioiiii	
Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Humber of Pulses	Taveform Length (us)	Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Humber of Pulses	Tavefore Length (us)
)	Type 1	1.0	718.0	74	53132.0	0	Type 2	2.0	221.0	24	5304.0
	Type 1	1.0	638.0	83	52954.0	1	Type 2	4.1	214.0	28	5992.0
	Type 1	1.0	658.0	81	53298.0	2	Type 2	4.1	197.0	28	5516.0
	Type 1	1.0	558.0	95	53010.0	3	Type 2	1.1	198.0	23	4554.0
	Type 1	1.0	938.0	57	53466.0	4	Type 2	1.4	225.0	23	5175.0
	Type 1	1.0	538.0	99	53262.0	5	Type 2	2.3	188.0	25	4700.0
	Type 1	1.0	598.0	89	53222.0	6	Type 2	1.4	199.0	23	4577.0
	Type 1	1.0	3066.0	18	55188.0	7	Type 2	3.9	205.0	28	5740.0
	Type 1	1.0	778.0	68	52904.0	8	Type 2	4.6	201.0	29	5829.0
ı	Type 1	1.0	878.0	61	53558.0	9	Type 2	2.8	206.0	26	5356.0
0	Type 1	1.0	698.0	76	53048.0	10	Type 2	2.3	170.0	25	4250.0
1	Type 1	1.0	618.0	86	53148.0	11	Type 2	2.8	160.0	26	4160.0
2	Type 1	1.0	798.0	67	53466.0	12	Type 2	2.4	222.0	25	5550.0
.3	Type 1	1.0	898.0	59	52982.0	13	Type 2	3.8	186.0	27	5022.0
4	Type 1	1.0	678.0	78	52884.0	14	Type 2	2.0	151.0	24	3624.0
5	Type 1	1.0	1996.0	27	53892.0	15	Type 2	4.6	227.0	29	6583.0
6	Type 1	1.0	2797.0	19	53143.0	16	Type 2	3.5	173.0	27	4671.0
7	Type 1	1.0	996.0	53	52788.0	17	Type 2	4.5	191.0	29	5539.0
8	Type 1	1.0	1142.0	47	53674.0	18	Type 2	2.9	171.0	26	4446.0
9	Type 1	1.0	2657.0	20	53140.0	19	Type 2	2.0	223.0	24	5352.0
:0	Type 1	1.0	899.0	59	53041.0	20	Type 2	4.0	179.0	28	5012.0
1	Type 1	1.0	1212.0	44	53328.0	21	Type 2	4.0	174.0	28	4872.0
2	Type 1	1.0	1456.0	37	53872.0	22	Type 2	1.3	211.0	23	4853.0
3	Type 1	1.0	763.0	70	53410.0	23	Type 2	4.2	213.0	28	5964.0
4	Type 1	1.0	680.0	78	53040.0	24	Type 2	1.2	150.0	23	3450.0
5	Type 1	1.0	2337. 0	23	53751.0	25	Type 2	1.0	216.0	23	4968.0
6	Type 1	1.0	861.0	62	53382.0	26	Type 2	1.8	230.0	24	5520.0
7	Type 1	1.0	2816.0	19	53504.0	27	Type 2	2.1	192.0	25	4800.0
8	Type 1	1.0	2485.0	22	54670.0	28	Type 2	4.8	203.0	29	5887.0
9	Type 1	1.0	1914.0	28	53592.0	29	Type 2	4.4	183.0	28	5124.0

Radar Type 3 - Radar Waveform

Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Number of Pulses	Taveform Length (us)
0	Туре З	7.0	228.0	16	3648.0
1	Туре З	9.1	446.0	18	8028.0
2	Туре З	9.1	245.0	18	4410.0
3	Туре З	6.1	288.0	16	4608.0
4	Туре З	6.4	225.0	16	3600.0
5	Туре З	7.3	463.0	17	7871.0
6	Туре З	6.4	387.0	16	6192.0
7	Туре З	8.9	328.0	18	5904.0
8	Туре З	9.6	437.0	18	7866. 0
9	Туре З	7.8	256.0	17	4352.0
10	Туре З	7.3	481.0	16	7696.0
11	Туре З	7.8	424.0	17	7208.0
12	Туре З	7.4	416.0	17	7072.0
13	Туре З	8.8	500.0	18	9000.0
14	Туре З	7.0	297.0	16	4752.0
15	Туре З	9.6	257.0	18	4626.0
16	Туре З	8.5	277.0	17	4709.0
17	Туре З	9.5	210.0	18	3780.0
18	Type 3	7.9	371.0	17	6307.0
19	Туре З	7. 0	417.0	16	6672.0
20	Туре З	9.0	425.0	18	7650.0
21	Туре З	9.0	363.0	18	6534.0
22	Туре З	6.3	251.0	16	4016.0
23	Туре З	9.2	454.0	18	8172.0
24	Туре З	6.2	263.0	16	4208.0
25	Туре З	6.0	305.0	16	4880.0
26	Туре З	6.8	398.0	16	6368.0
27	Type 3	7. 1	323.0	16	5168.0
28	Туре З	9.8	399.0	18	7182.0
29	Туре З	9.4	289.0	18	5202.0

Radar Type 4 - Radar Waveform

Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Number of Pulses	Taveform Length (us)
0	Type 4	13.3	228.0	13	2964.0
1	Type 4	18.0	446.0	15	6690.0
2	Type 4	18.0	245.0	15	3675.0
3	Type 4	11.4	288.0	12	3456.0
4	Type 4	11.9	225.0	12	2700.0
5	Type 4	14.0	463.0	13	6019.0
6	Type 4	12.0	387.0	12	4644.0
7	Type 4	17.6	328.0	15	4920.0
8	Type 4	19.1	437.0	16	6992.0
9	Type 4	15. 1	256.0	14	3584.0
10	Type 4	13.9	481.0	13	6253.0
11	Type 4	15. 1	424.0	14	5936.0
12	Type 4	14.1	416.0	13	5408.0
13	Type 4	17.2	500.0	15	7500.0
14	Type 4	13.3	297.0	13	3861.0
15	Type 4	19.0	257.0	16	4112.0
16	Type 4	16.5	277.0	15	4155.0
17	Type 4	18.8	210.0	16	3360.0
18	Type 4	15.3	371.0	14	5194.0
19	Type 4	13.3	417.0	13	5421.0
20	Type 4	17.8	425.0	15	6375.0
21	Type 4	17.6	363.0	15	5445.0
22	Type 4	11.8	251.0	12	3012.0
23	Type 4	18. 1	454.0	15	6810.0
24	Type 4	11.5	263.0	12	3156.0
25	Type 4	11.0	305.0	12	3660.0
26	Type 4	12.8	398.0	13	5174.0
27	Type 4	13.6	323.0	13	4199.0
28	Type 4	19.4	399.0	16	6384.0
29	Type 4	18.5	289.0	16	4624.0

		Radar Type 5 - Radar	Statistical Performance		
Trail #	Test Freq. (MHz)	1=Detection	Trail #	Test Freq. (MHz)	1=Detection
		0=No Detection			0=No Detection
0	5500	0	15	5497.6	1
1	5500	1	16	5495.6	1
2	5500	1	17	5497.2	1
3	5500	1	18	5494.8	1
4	5500	1	19	5493.6	1
5	5500	1	20	5503.2	1
6	5500	1	21	5503.6	1
7	5500	1	22	5507.6	1
8	5500	1	23	5503.2	1
9	5500	1	24	5508	1
10	5494	1	25	5508	1
11	5494.8	1	26	5506.8	1
12	5494	1	27	5506.4	1
13	5496.4	1	28	5502.4	1
14	5493.6	0	29	5502.8	1
D	etection Percentage (%	%)		93.3%	

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
541060.0	62. 7	9	1	1296.0	_	_
802804.0	88.8	9	3	1946.0	1683.0	1078.0
1066551.0	88.6	9	3	1657.0	1353.0	1383.0
244174.0	52.3	9	1	1604.0	_	_
508632.0	55. 1	9	1	1031.0	-	-
771445.0	66.8	9	2	1860.0	1309.0	-
1037182.0	55.5	9	1	1146.0	-	-
211016.0	86.4	9	3	1740.0	1766.0	1267.0
475019.0	94.6	9	3	1117.0	1319.0	1006.0
739436.0	72.8	9	2	1347.0	1107.0	-
1004568.0	66.2	9	1	1209.0	-	-

Type 5 Radar Waveform_1

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
109081.0	72.9	17	2	1269.0	1917.0	_
270046.0	67.4	17	2	1312.0	1751.0	_
429937.0	84.6	17	3	1925.0	1482.0	1279.0
593240.0	63.0	17	1	1601.0	_	_
89049.0	94.1	17	3	1399.0	1714.0	1639.0
250345.0	80.6	17	2	1303.0	1432.0	_
410669.0	93.2	17	3	1443.0	1180.0	1242.0
571942.0	74. 1	17	2	1818.0	1441.0	_
69653.0	62.9	17	1	1142.0	_	_
229612.0	87. 7	17	3	1845.0	1757.0	1719.0
390051.0	86.6	17	3	2000.0	1775.0	1476.0
553632.0	54.5	17	1	1446.0	_	_
49544.0	89.2	17	3	1987.0	1120.0	1062.0
211081.0	52.9	17	1	1457.0	_	_
372224.0	50.3	17	1	1799.0	_	_
533338.0	60.4	17	1	1971.0	_	_
29882.0	64.3	17	1	1280.0	_	_
190410.0	96.4	17	3	1029.0	1624.0	1582.0

Type 5 Radar Waveform_2

Burst Offset (us)	Pulse Tidth (us)	Chirp Width (MHz)	Mumber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
350684.0	91.5	17	3	1734.0	1873.0	1357.0
514032.0	64. 7	17	1	1256.0	_	_
9956.0	98.6	17	3	1634.0	1561.0	1323.0
170883.0	67.4	17	2	1340.0	1877.0	_
331864.0	82.5	17	2	1503.0	1567.0	_
494192.0	64.3	17	1	1205.0	_	_
652318.0	86.2	17	3	1517.0	1454.0	1552.0
150873.0	89.5	17	3	1253.0	1566.0	1229.0
312076.0	77. 0	17	2	1702.0	1289.0	_
474363.0	58.8	17	1	1133.0	_	_
635314.0	66.6	17	1	1616.0	_	_
130970.0	84.5	17	3	1652.0	1182.0	1759.0
292922.0	50. 7	17	1	1463.0	_	_
454287.0	58.6	17	1	1416.0	_	_
615877.0	59.0	17	1	1151.0	_	_
111212.0	89.4	17	3	1489.0	1709.0	1271.0
271770.0	90.1	17	3	1741.0	1754.0	1085.0
433479.0	80.4	17	2	1771.0	1076.0	_

Burst Offset (us)	Pulse Fidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1340530.0	71.8	5	2	1932.0	1168.0	-
206649.0	85.5	5	3	1123.0	1059.0	1110.0
570284.0	56. 7	5	1	1619.0	-	_
933608.0	66.3	5	1	1750.0	-	-
1297412.0	51.4	5	1	1252.0	-	-
161934.0	70. 7	5	2	1535.0	1770.0	-
524934.0	75.6	5	2	1983.0	1311.0	-
889124.0	63.0	5	1	1285.0	-	_

Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1111827.0	76. 1	6	2	1837.0	1224.0	_
104036.0	84.2	6	3	1642.0	1608.0	1749.0
426380.0	99.4	6	3	1996.0	1339.0	1098.0
749146.0	99.5	6	3	1160.0	1189.0	1257.0
1073597.0	54. 7	6	1	1187.0	-	-
64524.0	56.4	6	1	1467.0	-	-
386585.0	91.3	6	3	1484.0	1490.0	1787.0
709347.0	90.1	6	3	1166.0	1074.0	1506.0
1033431.0	53.0	6	1	1662.0	-	_
		 			•	

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
18550.0	58. 1	10	1	1155.0	_	_
260209.0	67. 6	10	2	1477.0	1948.0	_
502784.0	55. 4	10	1	1688.0	_	_
742749.0	84.9	10	3	1375.0	1815.0	1389.0
985369.0	70.2	10	2	1677.0	1689.0	_
230571.0	76.8	10	2	1112.0	1732.0	_
473156.0	54.5	10	1	1275.0	-	_
715335.0	53.5	10	1	1335.0	_	_
955104.0	84.4	10	3	1593.0	1070.0	1216.0
201132.0	57.5	10	1	1106.0	_	_
442666.0	78.4	10	2	1605.0	1143.0	_
683565.0	86.9	10	3	1318.0	1321.0	1516.0

Type 5 Radar Waveform_6

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1235233.0	78.0	6	2	1800.0	1823.0	-
227744.0	95.5	6	3	1803.0	1500.0	1924.0
550230.0	99.8	6	3	1403.0	1847.0	1064.0
874659.0	62.8	6	1	1115.0	_	_
1195950.0	70.0	6	2	1405.0	1727.0	_
188150.0	88. 7	6	3	1816.0	1697.0	1131.0
511147.0	78.8	6	2	1183.0	1514.0	-
832433.0	89.6	6	3	1590.0	1990.0	1408.0
1155517.0	75.2	6	2	1961.0	1970.0	-

Burst Offset (us)	Pulse Width (us)	Chirp Width (WHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
78651.0	63.3	16	1	1952.0	_	_
249056.0	77.9	16	2	1204.0	1653.0	_
418767.0	91.8	16	3	1310.0	1012.0	1867.0
589232.0	69.5	16	2	1973.0	1880.0	_
57373.0	88.2	16	3	1172.0	1830.0	1994.0
228465.0	51.9	16	1	1588.0	-	_
397735.0	90.2	16	3	1177.0	1767.0	1367.0
568331.0	77.6	16	2	1978.0	1786.0	_
36617.0	54.0	16	1	1478.0	_	_
207402.0	60.1	16	1	1667.0	-	_
376606.0	93.3	16	3	1744.0	1411.0	1474.0
548761.0	60. 7	16	1	1962.0	-	_
15566.0	55.5	16	1	1820.0	_	_
186346.0	50.9	16	1	1733.0	_	_
356294.0	71.7	16	2	1781.0	1591.0	_
525231.0	84.6	16	3	1668.0	1844.0	1785.0
695278.0	95.5	16	3	1974.0	1199.0	1991.0
					1	1

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
147829.0	51.5	19	1	1891.0	_	_
300575.0	58.6	19	1	1835.0	_	_
453584.0	52.2	19	1	1452.0	_	_
606462.0	62. 7	19	1	1397.0	_	_
128722.0	67.1	19	2	1780.0	1555.0	_
282029.0	63.1	19	1	1239.0	_	_
432147.0	97.2	19	3	1705.0	1545.0	1988.0
586208.0	76.1	19	2	1400.0	1528.0	_
109823.0	98. 1	19	3	1137.0	1483.0	1461.0
261611.0	88. 7	19	3	1897.0	1838.0	1305.0
414137.0	99. 7	19	3	1047.0	1981.0	1147.0
565584.0	86.6	19	3	1646.0	1579.0	1746.0
90990.0	84.8	19	3	1647.0	1046.0	1989.0
243975.0	67.8	19	2	1148.0	1101.0	_
397349.0	62.4	19	1	1072.0	_	_
550038.0	50.4	19	1	1334.0	_	_
72473.0	77.8	19	2	1140.0	1708.0	_
224140.0	94.9	19	3	1956.0	1868.0	1316.0
376075.0	89.8	19	3	1784.0	1614.0	1735.0

Type 5 Radar Waveform_9

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
776715.0	63. 7	12	1	1557.0	_	_
78740.0	65.4	12	1	1000.0	_	_
301853.0	82.0	12	2	1053.0	1530.0	_
524821.0	74.8	12	2	1658.0	1418.0	_
749123.0	64.4	12	1	1633.0	_	_
51108.0	76.0	12	2	1162.0	1379.0	_
274455.0	80.3	12	2	1052.0	1193.0	_
496854.0	97.4	12	3	1485.0	1056.0	1427.0
720032.0	85.2	12	3	1065.0	1402.0	1163.0
23593.0	76.2	12	2	1272.0	1827.0	_
246624.0	72.5	12	2	1536.0	1909.0	_
469022.0	94.5	12	3	1351.0	1964.0	1387.0
693338.0	78.0	12	2	1534.0	1069.0	_

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
992811.0	78.3	10	2	1176.0	1797.0	_
237516.0	74. 5	10	2	1385.0	1914.0	_
478794.0	87. 1	10	3	1282.0	1866.0	1095.0
721020.0	70. 1	10	2	1573.0	1669.0	_
961495.0	87.4	10	3	1918.0	1509.0	1130.0
208149.0	62.5	10	1	1342.0	_	_
449029.0	96.2	10	3	1145.0	1362.0	1774.0
692650.0	64. 7	10	1	1212.0	_	_
931544.0	94. 7	10	3	1572.0	1747.0	1466.0
177780.0	93.4	10	3	1696.0	1284.0	1352.0
419505.0	90.1	10	3	1093.0	1077.0	1584.0
662341.0	63.2	10	1	1922.0	_	_
	i	1	1	1		1

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
831241.0	90.5	12	3	1955.0	1913.0	1874.0
136505.0	91.0	12	3	1144.0	1963.0	1856.0
359891.0	69.3	12	2	1651.0	1486.0	_
582622.0	92.4	12	3	1504.0	1207.0	1030.0
806864.0	80.8	12	2	1262.0	1025.0	_
109483.0	60.2	12	1	1546.0	_	_
332516.0	77. 7	12	2	1550.0	1287.0	_
556613.0	56.1	12	1	1331.0	_	_
778949.0	82.0	12	2	1173.0	1595.0	_
81830.0	70.9	12	2	1790.0	1134.0	_
304814.0	80.1	12	2	1523.0	1951.0	_
527907.0	69.5	12	2	1394.0	1975.0	_
749848.0	83.9	12	3	1887.0	1410.0	1440.0
		1		1	1	1

Type 5 Radar Waveform_12

Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
58777.0	87.8	10	3	1499.0	2000.0	1234.0
299959.0	86. 7	10	3	1743.0	1846.0	1813.0
542020.0	86.9	10	3	1035.0	1068.0	1755.0
785487.0	65.8	10	1	1481.0	-	-
29138.0	61.9	10	1	1512.0	-	-
270444.0	100.0	10	3	1622.0	1170.0	1879.0
512668.0	75.6	10	2	1259.0	1808.0	_
753030.0	94.3	10	3	1798.0	1792.0	1360.0
996311.0	71.7	10	2	1376.0	1623.0	_
241533.0	58.3	10	1	1265.0	_	_
483540.0	60.3	10	1	1715.0	_	_
724185.0	80. 7	10	2	1931.0	1807.0	-

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
723163.0	92.4	16	3	1005.0	1462.0	1569.0
158605.0	63. 1	16	1	1739.0	_	_
340298.0	65.3	16	1	1263.0	_	_
519615.0	98. 7	16	3	1194.0	1679.0	1655.0
702452.0	75. 1	16	2	1264.0	1096.0	_
135972.0	69.0	16	2	1628.0	1644.0	_
317104.0	72. 1	16	2	1494.0	1716.0	_
497922.0	91.9	16	3	1111.0	1003.0	1548.0
680831.0	61.6	16	1	1575.0	_	_
113740.0	74.0	16	2	1392.0	1380.0	_
294344.0	85. 1	16	3	1419.0	1201.0	1729.0
477135.0	60.9	16	1	1294.0	_	_
658778.0	54.9	16	1	1228.0	_	_
91590.0	54.4	16	1	1359.0	_	_
273093.0	65.9	16	1	1540.0	_	_
452655.0	94.9	16	3	1243.0	1936.0	1594.0

Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
923134.0	88.4	9	3	1612.0	1685.0	1491.0
100522.0	96.1	9	3	1226.0	1298.0	1281.0
364958.0	57.4	9	1	1479.0	_	_
627969.0	94.4	9	3	1191.0	1124.0	1260.0
892141.0	67.5	9	2	1836.0	1179.0	-
68001.0	86.3	9	3	1782.0	1676.0	1055.0
331489.0	99. 7	9	3	1498.0	1585.0	1422.0
596123.0	75.9	9	2	1251.0	1161.0	_
860623.0	59.3	9	1	1772.0	_	-
35559.0	98.9	9	3	1920.0	1116.0	1084.0
299387.0	82. 7	9	2	1812.0	1407.0	_

Type 5 Radar Waveform_15

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (EHz)	Mumber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
324953.0	93.5	19	3	1524.0	1038.0	1431.0
478716.0	64.5	19	1	1949.0	_	_
1788.0	69.0	19	2	1882.0	1121.0	_
154181.0	68.8	19	2	1863.0	1372.0	_
306728.0	82. 7	19	2	1760.0	1159.0	_
460486.0	59.0	19	1	1156.0	_	_
612729.0	61.7	19	1	1828.0	_	_
135210.0	88.5	19	3	1833.0	1129.0	1198.0
287367.0	97.2	19	3	1208.0	1363.0	1615.0
441532.0	62.3	19	1	1328.0	_	_
593897.0	57.5	19	1	1848.0	_	_
116995.0	56.9	19	1	1314.0	_	_
269988.0	51.8	19	1	1001.0	_	_
422333.0	58.0	19	1	1881.0	_	_
574305.0	77. 7	19	2	1213.0	1488.0	_
97853.0	72.2	19	2	1706.0	1618.0	_
250865.0	63.8	19	1	1717.0	_	_
404001.0	51.5	19	1	1132.0	_	_
555831.0	75.9	19	2	1169.0	1178.0	_

Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
100518.0	60.8	14	1	1468.0	_	_
294348.0	57. 5	14	1	1032.0	_	_
485437.0	84.0	14	3	1834.0	1871.0	1724.0
680128.0	80.8	14	2	1586.0	1520.0	_
76631.0	55.8	14	1	1795.0	_	_
270041.0	75. 7	14	2	1268.0	1058.0	_
464080.0	50.8	14	1	1332.0	_	_
657490.0	65.9	14	1	1687.0	_	_
52837.0	63.1	14	1	1023.0	_	_
246356.0	56.0	14	1	1857.0	_	_
440337.0	63.5	14	1	1122.0	_	_
631187.0	89.5	14	3	1369.0	1570.0	1840.0
28855.0	89.4	14	3	1067.0	1449.0	1621.0
222325.0	76.2	14	2	1081.0	1448.0	_
415245.0	86.4	14	3	1010.0	1337.0	1127.0

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
480551.0	78.6	18	2	1373.0	1090.0	_
4014.0	77. 4	18	2	1493.0	1050.0	_
155963.0	92.6	18	3	1698.0	1892.0	1414.0
309530.0	55. 1	18	1	1742.0	_	_
462122.0	52.4	18	1	1965.0	_	_
615676.0	51.9	18	1	1091.0	_	_
137274.0	93.3	18	3	1722.0	1910.0	1235.0
290768.0	66.0	18	1	1626.0	_	_
442253.0	68. 7	18	2	1691.0	1778.0	_
595622.0	82.5	18	2	1013.0	1366.0	_
118832.0	80.9	18	2	1938.0	1447.0	_
271145.0	89.2	18	3	1277.0	1017.0	1192.0
424765.0	55. 5	18	1	1576.0	_	_
574789.0	86.4	18	3	1451.0	1984.0	1165.0
99903.0	89.9	18	3	1118.0	1532.0	1753.0
253132.0	64.0	18	1	1617.0	_	_
404261.0	85.8	18	3	1087.0	1711.0	1391.0
557810.0	74.3	18	2	1301.0	1324.0	_
81201.0	83.5	18	3	1214.0	1904.0	1019.0

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
317254.0	88.0	12	3	1487.0	1175.0	1526.0
524625.0	75.2	12	2	1985.0	1386.0	_
733474.0	59.4	12	1	1291.0	_	_
84882.0	83. 7	12	3	1875.0	1502.0	1034.0
292654.0	63. 1	12	1	1613.0	_	_
498141.0	93.2	12	3	1464.0	1721.0	1859.0
705935.0	81.8	12	2	1906.0	1768.0	_
59374.0	93.2	12	3	1630.0	1945.0	1315.0
266341.0	98.6	12	3	1202.0	1806.0	1022.0
473689.0	82.4	12	2	1693.0	1541.0	_
679256.0	83. 7	12	3	1801.0	1926.0	1430.0
33981.0	72.9	12	2	1299.0	1883.0	_
241054.0	68.1	12	2	1916.0	1406.0	_
448438.0	80. 7	12	2	1525.0	1215.0	_
		 	_	1	 	

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
836151.0	65.5	9	1	1302.0	_	_
10785.0	79. 4	9	2	1939.0	1578.0	_
274910.0	50.2	9	1	1940.0	_	_
538607.0	79. 7	9	2	1054.0	1720.0	_
803380.0	58.6	9	1	1600.0	_	_
1064860.0	99.2	9	3	1450.0	1395.0	1522.0
242124.0	73.9	9	2	1158.0	1921.0	_
505814.0	67.6	9	2	1979.0	1409.0	_
768255.0	91.5	9	3	1627.0	1686.0	1937.0
1034830.0	65.2	9	1	1810.0	-	_
209205.0	98.4	9	3	1599.0	1762.0	1905.0

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
305899.0	75.0	17	2	1270.0	1773.0	_
474919.0	86.5	17	3	1896.0	1420.0	1853.0
645554.0	95.4	17	3	1902.0	1290.0	1227.0
114511.0	79.5	17	2	1028.0	1587.0	_
284875.0	73. 2	17	2	1606.0	1505.0	_
454200.0	92.0	17	3	1854.0	1763.0	1221.0
625324.0	77. 7	17	2	1821.0	1783.0	_
93693.0	65.1	17	1	1171.0	_	_
264334.0	55.9	17	1	1900.0	_	_
432785.0	88.2	17	3	1870.0	1943.0	1788.0
606205.0	61.1	17	1	1442.0	_	_
72422.0	69.2	17	2	1730.0	1562.0	_
242413.0	93. 7	17	3	1255.0	1684.0	1537.0
413768.0	79.4	17	2	1273.0	1092.0	_
585105.0	62.0	17	1	1508.0	_	_
51454.0	70. 7	17	2	1942.0	1057.0	_
222297.0	58.8	17	1	1822.0	_	_

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
391371.0	94. 7	16	3	1425.0	1673.0	1738.0
561905.0	83.6	16	3	1424.0	1075.0	1703.0
30396.0	85. 1	16	3	1554.0	1308.0	1527.0
201469.0	59.5	16	1	1105.0	_	_
371949.0	62. 7	16	1	1958.0	_	_
543186.0	58.4	16	1	1292.0	_	_
9426.0	90.1	16	3	1966.0	1423.0	1967.0
180298.0	57.0	16	1	1559.0	_	_
349723.0	89. 7	16	3	1261.0	1805.0	1293.0
519659.0	84.4	16	3	1306.0	1809.0	1521.0
691501.0	77. 2	16	2	1649.0	1190.0	_
158749.0	75. 2	16	2	1999.0	1804.0	_
330234.0	59.5	16	1	1225.0	_	_
500031.0	70.4	16	2	1218.0	1560.0	_
669097.0	83. 7	16	3	1589.0	1472.0	1247.0
137626.0	94.2	16	3	1876.0	1663.0	1024.0
308125.0	85.4	16	3	1317.0	1220.0	1099.0
		1	1	1	<u> </u>	1

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
905673.0	88.2	6	3	1338.0	1344.0	1322.0
1230373.0	56.6	6	1	1519.0	_	-
221160.0	86.4	6	3	1728.0	1043.0	1185.0
544568.0	63.6	6	1	1529.0	-	-
866712.0	75.3	6	2	1283.0	1568.0	-
1187044.0	90.4	6	3	1972.0	1903.0	1607.0
181805.0	56.0	6	1	1325.0	_	-
504844.0	57. 7	6	1	1364.0	-	-
827850.0	62.2	6	1	1426.0	-	-

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
572460.0	92.6	17	3	1102.0	1388.0	1672.0
70899.0	54.3	17	1	1664.0	_	_
232151.0	60.1	17	1	1758.0	_	_
393335.0	56.5	17	1	1889.0	_	_
555219.0	50.2	17	1	1104.0	_	_
50822.0	96. 7	17	3	1564.0	1181.0	1674.0
212095.0	78. 4	17	2	1231.0	1128.0	_
373547.0	65.1	17	1	1761.0	_	_
534000.0	73.0	17	2	1581.0	1184.0	_
31188.0	57.8	17	1	1211.0	_	_
192255.0	80.2	17	2	1174.0	1167.0	_
352021.0	88.8	17	3	1326.0	1930.0	1629.0
514880.0	62.3	17	1	1843.0	_	_
11283.0	78. 1	17	2	1248.0	1433.0	_
172741.0	55.2	17	1	1060.0	_	_
333212.0	72.4	17	2	1638.0	1333.0	_
492693.0	83.6	17	3	1960.0	1993.0	1014.0
656760.0	57.6	17	1	1336.0	_	_

Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
344129.0	50.5	5	1	1501.0	-	_
706186.0	90.0	5	3	1126.0	1752.0	1538.0
1068636.0	96.5	5	3	1246.0	1997.0	1558.0
1433548.0	67.8	5	2	1094.0	1327.0	_
299095.0	77.5	5	2	1203.0	1637.0	_
662343.0	75.0	5	2	1103.0	1421.0	-
1026571.0	58.3	5	1	1002.0	_	_
1386110.0	91.3	5	3	1776.0	1855.0	1701.0

I	1	I	ı	I	1	I
Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
254611.0	55.4	5	1	1412.0	_	_
616612.0	84.3	5	3	1811.0	1455.0	1670.0
979641.0	95.2	5	3	1113.0	1731.0	1438.0
1343942.0	69.3	5	2	1439.0	1125.0	-
209330.0	93.3	5	3	1444.0	1718.0	1898.0
572770.0	79.1	5	2	1089.0	1699.0	-
936971.0	51.7	5	1	1061.0	-	_
1300218.0	50.4	5	1	1398.0	-	-
		i	1	1	1	

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
132063.0	65.9	8	1	1083.0	-	_
421390.0	85. 7	8	3	1923.0	1415.0	1849.0
711859.0	97.0	8	3	1620.0	1276.0	1135.0
1002153.0	83. 1	8	2	1756.0	1995.0	_
95956.0	84. 1	8	3	1254.0	1511.0	1933.0
386356.0	80.6	8	2	1465.0	1678.0	-
676108.0	96.8	8	3	1286.0	1390.0	1393.0
966064.0	94.4	8	3	1374.0	1021.0	1791.0
60254.0	97.4	8	3	1908.0	1547.0	1100.0
350824.0	75.8	8	2	1195.0	1186.0	-
		1			 	1

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Mumber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
583104.0	64.0	9	1	1944.0	_	_
845118.0	96.6	9	3	1885.0	1219.0	1533.0
22344.0	75.8	9	2	1377.0	1119.0	_
286085.0	78.5	9	2	1531.0	1851.0	_
550010.0	81.2	9	2	1819.0	1237.0	_
812450.0	91.3	9	3	1919.0	1295.0	1712.0
1076076.0	91.7	9	3	1434.0	1348.0	1901.0
253672.0	82.8	9	2	1748.0	1307.0	_
518244.0	55.5	9	1	1515.0	-	-
781509.0	67.8	9	2	1826.0	1008.0	-
1046217.0	65.8	9	1	1986.0	-	_
		1	1	1	·	1

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
121481.0	74. 7	19	2	1350.0	1138.0	_
266184.0	76.9	19	2	1894.0	1071.0	_
410328.0	85. 1	19	3	1371.0	1496.0	1051.0
554376.0	98.3	19	3	1456.0	1980.0	1041.0
103725.0	59.0	19	1	1947.0	_	_
247722.0	91.3	19	3	1049.0	1726.0	1694.0
392371.0	94.2	19	3	1358.0	1073.0	1713.0
537106.0	69.9	19	2	1907.0	1992.0	_
85889.0	53. 7	19	1	1737.0	_	_
231124.0	64.6	19	1	1381.0	_	_
376154.0	51.1	19	1	1625.0	_	_
519310.0	87.0	19	3	1497.0	1020.0	1368.0
68073.0	61.8	19	1	1236.0	_	_
213028.0	62.2	19	1	1977.0	_	_
357166.0	69.5	19	2	1632.0	1850.0	_
501832.0	75.5	19	2	1650.0	1842.0	_
50185.0	50.5	19	1	1238.0	_	_
194875.0	73.6	19	2	1382.0	1475.0	_
339615.0	70.0	19	2	1580.0	1429.0	_
483244.0	93.3	19	3	1802.0	1437.0	1200.0

Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
35856.0	52.0	18	1	1928.0	_	_
196903.0	70.5	18	2	1040.0	1473.0	_
358425.0	51.6	18	1	1690.0	_	_
519710.0	61.0	18	1	1680.0	_	_
16009.0	61.7	18	1	1469.0	_	_
177407.0	65.4	18	1	1217.0	_	_
337617.0	76.9	18	2	1654.0	1886.0	_
500058.0	53. 1	18	1	1396.0	_	_
661774.0	53.9	18	1	1027.0	_	_
157081.0	77.6	18	2	1458.0	1645.0	_
318788.0	60.4	18	1	1492.0	_	_
479616.0	73.6	18	2	1149.0	1033.0	_
638318.0	84.0	18	3	1445.0	1574.0	1710.0
137046.0	84. 7	18	3	1082.0	1725.0	1320.0
297753.0	91.2	18	3	1341.0	1079.0	1661.0
460017.0	58.8	18	1	1817.0	_	_
621291.0	61.8	18	1	1789.0	_	_
117199.0	84.8	18	3	1330.0	1681.0	1417.0

	Radar Type 6 - Radar Statistical Performance							
Trail #	1=Detection	Trail #	1=Detection					
	0=No Detection		0=No Detection					
0	1	15	1					
1	1	16	1					
2	1	17	1					
3	1	18	0					
4	1	19	1					
5	1	20	1					
6	1	21	1					
7	1	22	1					
8	0	23	1					
9	1	24	1					
10	1	25	1					
11	1	26	1					
12	1	27	1					
13	1	28	1					
14	1	29	1					
Detection Pe	ercentage (%)	93.	3%					

Frequency	0	1	2	3	4
List (MHz)	U	1	2	3	4
0	5639	5511	5411	5523	5394
5	5404	5271	5705	5362	5267
10	5489	5601	5463	5287	5426
15	5626	5298	5512	5416	5496
20	5286	5375	5306	5585	5409
25	5581	5703	5301	5314	5521
30	5400	5262	5619	5588	5644
35	5462	5522	5380	5604	5578
40	5450	5295	5640	5297	5311
45	5546	5431	5337	5503	5423
50	5700	5386	5452	5285	5710
55	5548	5390	5276	5471	5436
60	5589	5666	5650	5288	5318
65	5593	5365	5289	5699	5631
70	5550	5482	5461	5278	5715
75	5493	5340	5313	5446	5484
80	5483	5292	5659	5478	5419
85	5332	5383	5392	5586	5451
90	5273	5660	5697	5561	5615
95	5724	5528	5596	5607	5627
T			I		

Frequency List (MHz)	0	1	2	3	4
0	5419	5275	5347	5684	5711
5	5446	5293	5305	5428	5474
10	5420	5390	5504	5482	5447
15	5617	5425	5518	5461	5596
20	5407	5355	5413	5298	5558
25	5297	5530	5431	5405	5348
30	5660	5289	5694	5359	5611
35	5460	5630	5321	5537	5454
40	5376	5458	5560	5542	5721
45	5602	5620	5380	5369	5599
50	5318	5688	5679	5314	5299
55	5664	5263	5587	5625	5427
60	5636	5381	5492	5712	5354
65	5328	5257	5567	5296	5302
70	5635	5398	5286	5592	5423
75	5362	5610	5547	5598	5678
80	5670	5538	5514	5383	5631
85	5687	5276	5457	5274	5393
90	5382	5495	5715	5303	5459
95	5525	5422	5338	5722	5265

Type 6 Radar Waveform	2
-----------------------	---

Frequency List (MHz)	0	1	2	3	4
0	5674	5514	5283	5370	5456
5	5585	5693	5380	5591	5303
10	5254	5654	5545	5580	5468
15	5705	5455	5621	5409	5313
20	5415	5521	5354	5387	5531
25	5660	5382	5634	5509	5702
30	5653	5651	5477	5288	5280
35	5294	5412	5333	5704	5290
40	5297	5643	5480	5486	5444
45	5600	5463	5427	5652	5583
50	5564	5525	5403	5410	5718
55	5618	5453	5406	5596	5556
60	5326	5423	5350	5639	5535
65	5661	5390	5635	5527	5465
70	5603	5599	5626	5434	5379
75	5604	5421	5429	5369	5436
80	5299	5610	5595	5398	5670
85	5440	5501	5706	5426	5337
90	5404	5441	5308	5275	5491
95	5609	5295	5287	5357	5407

Frequency List (MHz)	0	1	2	3	4
0	5454	5278	5694	5531	5298
5	5627	5715	5455	5279	5510
10	5660	5540	5683	5300	5489
15	5318	5582	5724	5602	5423
20	5590	5295	5379	5601	5451
25	5709	5362	5613	5416	5269
30	5639	5608	5692	5537	5478
35	5433	5600	5604	5382	5301
40	5611	5251	5418	5441	5460
45	5580	5546	5388	5705	5470
50	5343	5556	5576	5589	5708
55	5565	5277	5572	5643	5700
60	5567	5685	5491	5368	5657
65	5716	5585	5261	5707	5329
70	5370	5419	5551	5686	5699
75	5475	5410	5338	5476	5541
80	5436	5621	5399	5366	5592
85	5593	5573	5561	5326	5391
90	5652	5606	5469	5720	5535
95	5503	5626	5350	5271	5255

Type	6	Radar	Waveform	4

Frequency List (MHz)	0	1	2	3	4
0	5612	5517	5630	5692	5518
5	5669	5640	5530	5442	5717
10	5591	5329	5724	5495	5510
15	5406	5709	5352	5499	5319
20	5334	5281	5333	5468	5574
25	5339	5658	5353	5311	5528
30	5565	5432	5689	5298	5572
35	5691	5400	5535	5690	5450
40	5356	5491	5438	5292	5463
45	5629	5446	5283	5260	5694
50	5257	5627	5678	5531	5509
55	5465	5526	5358	5519	5538
60	5656	5313	5489	5542	5559
65	5365	5677	5354	5706	5672
70	5702	5324	5386	5297	5445
75	5661	5618	5417	5301	5655
80	5589	5410	5476	5696	5524
85	5259	5342	5425	5428	5296
90	5475	5279	5643	5405	5628
95	5268	5256	5554	5435	5426

Frequency List (MHz)	0	1	2	3	4
0	5392	5281	5566	5378	5360
5	5711	5662	5605	5508	5546
10	5425	5593	5290	5690	5531
15	5397	5361	5455	5544	5511
20	5342	5447	5274	5460	5547
25	5510	5671	5443	5387	5450
30	5417	5522	5647	5463	5614
35	5307	5293	5310	5604	5386
40	5514	5294	5634	5532	5696
45	5712	5504	5714	5622	5570
50	5433	5678	5292	5354	5356
55	5653	5480	5548	5716	5412
60	5468	5346	5258	5321	5465
65	5574	5285	5304	5484	5632
70	5303	5658	5327	5551	5265
75	5256	5414	5306	5286	5495
80	5553	5669	5436	5694	5421
85	5586	5476	5538	5584	5710
90	5699	5393	5673	5626	5461
95	5578	5691	5677	5721	5660

Тур	e 6	Ra	dar	Wa	vet	orm	6
-----	-----	----	-----	----	-----	-----	---

Frequency List (MHz)	0	1	2	3	4
0	5647	5520	5502	5539	5580
5	5375	5684	5680	5671	5278
10	5356	5382	5331	5410	5552
15	5485	5488	5461	5492	5703
20	5350	5516	5690	5549	5493
25	5459	5399	5547	5421	5403
30	5479	5290	5615	5316	5398
35	5564	5463	5700	5597	5707
40	5529	5528	5423	5320	5465
45	5292	5412	5349	5609	5254
50	5381	5555	5300	5366	5434
55	5263	5535	5383	5500	5511
60	5250	5291	5583	5554	5340
65	5719	5376	5435	5266	5330
70	5400	5716	5286	5426	5332
75	5476	5304	5692	5484	5486
80	5325	5379	5477	5567	5347
85	5446	5626	5584	5559	5258
90	5299	5515	5521	5604	5462
95	5572	5625	5469	5702	5456

Frequency List (MHz)	0	1	2	3	4
0	5427	5284	5438	5700	5422
5	5417	5609	5280	5359	5485
10	5287	5646	5372	5508	5573
15	5518	5564	5537	5420	5261
20					
	5682	5253	5541	5493	5311
25	5602	5651	5455	5534	5292
30	5436	5505	5389	5611	5489
35	5360	5616	5529	5539	5680
40	5548	5639	5526	5457	5403
45	5523	5345	5299	5310	5305
50	5567	5378	5622	5388	5356
55	5354	5629	5676	5720	5557
60	5592	5466	5309	5503	5376
65	5454	5713	5544	5252	5430
70	5724	5692	5649	5255	5449
75	5475	5582	5317	5473	5450
80	5644	5483	5520	5282	5319
85	5607	5522	5532	5398	5694
90	5316	5590	5662	5344	5367
95	5570	5401	5419	5583	5565

Type	61	Radar	Waveform	8

Frequency List (MHz)	0	1	2	3	4
0	5585	5523	5374	5289	5642
5	5459	5631	5355	5522	5314
10	5596	5532	5413	5703	5594
15	5661	5645	5667	5582	5612
20	5269	5276	5669	5630	5466
25	5647	5260	5330	5280	5489
30	5673	5656	5393	5720	5541
35	5334	5580	5253	5391	5443
40	5378	5385	5486	5404	5386
45	5383	5581	5398	5564	5576
50	5356	5676	5566	5342	5546
55	5551	5325	5283	5366	5665
60	5389	5515	5412	5510	5452
65	5315	5286	5538	5419	5616
70	5713	5433	5573	5668	5608
75	5602	5569	5521	5438	5359
80	5427	5254	5614	5707	5480
85	5715	5282	5636	5570	5617
90	5400	5352	5370	5464	5481
95	5696	5701	5476	5333	5625

Frequency List (MHz)	0	1	2	3	4
0	5365	5287	5310	5450	5484
5	5598	5556	5430	5588	5521
10	5527	5321	5454	5423	5615
15	5652	5297	5295	5627	5329
20	5277	5442	5610	5622	5439
25	5535	5587	5436	5481	5523
30	5715	5642	5350	5460	5315
35	5629	5293	5524	5544	5692
40	5468	5424	5547	5520	5693
45	5363	5569	5542	5451	5452
50	5662	5407	5270	5499	5413
55	5358	5296	5261	5370	5674
60	5412	5531	5707	5696	5341
65	5455	5333	5401	5351	5496
70	5697	5699	5533	5422	5644
75	5567	5571	5689	5664	5419
80	5611	5537	5510	5303	5477
85	5532	5660	5575	5334	5403
90	5618	5646	5633	5583	5488
95	5680	5369	5690	5444	5313

Frequency List (IHz)	0	1	2	3	4
0	5620	5526	5721	5611	5704
5	5640	5578	5505	5276	5253
10	5458	5585	5495	5618	5636
15	5265	5424	5398	5575	5663
20	5511	5648	5711	5412	5326
25	5439	5639	5557	5282	5531
30	5307	5467	5352	5262	5384
35	5320	5697	5368	5628	5551
40	5362	5312	5614	5622	5652
45	5600	5504	5716	5706	5363
50	5359	5700	5357	5546	5250
55	5451	5664	5645	5541	5696
60	5625	5264	5401	5534	5350
65	5387	5328	5603	5500	5382
70	5536	5649	5443	5334	5710

Type 6 Radar Waveform_10

Type 6 Radar Waveform_11

Frequency List (MHz)	0	1	2	3	4
0	5400	5290	5657	5297	5546
5	5682	5503	5580	5439	5460
10	5292	5374	5633	5338	5353
15	5551	5404	5620	5335	5671
20	5677	5589	5703	5385	5689
25	5388	5367	5591	5421	5517
30	5264	5318	5716	5647	5401
35	5475	5472	5282	5467	5634
40	5300	5552	5611	5454	5701
45	5260	5658	5603	5582	5539
50	5509	5448	5523	5679	5259
55	5641	5483	5616	5573	5386
60	5597	5457	5565	5347	5357
65	5299	5326	5538	5495	5303
70	5293	5498	5499	5485	5412
75	5378	5381	5543	5660	5547
80	5534	5518	5447	5563	5556
85	5621	5673	5311	5639	5680
90	5501	5711	5250	5609	5481
95	5315	5434	5486	5305	5502

		Type 6 Ra	adar Waveform	_12		
Frequency List (MHz)	0	1	2	3	4	
0	5655	5626	5593	5458	5291	
5	5724	5525	5602	5289	5698	
10	5638	5674	5436	5678	5441	
15	5581	5507	5665	5527	5679	
20	5271	5530	5317	5358	5480	
25	5715	5570	5318	5625	5463	
30	5406	5696	5533	5393	5467	
35	5443	5566	5484	5293	5306	
40	5339	5713	5695	5608	5383	
45	5681	5343	5716	5513	5560	
50	5634	5346	5623	5447	5536	
55	5356	5680	5587	5702	5551	
60	5542	5391	5390	5558	5723	
65	5362	5370	5290	5279	5639	
70	5347	5475	5444	5284	5477	
75	5424	5320	5295	5328	5371	

2.4					
Frequency List (MHz)	0	1	2	3	4
0	5338	5390	5529	5619	5608
5	5388	5450	5255	5290	5496
10	5532	5524	5715	5631	5699
15	5432	5708	5610	5613	5719
20	5590	5437	5471	5309	5331
25	5368	5664	5298	5519	5659
30	5505	5295	5653	5273	5642
35	5665	5582	5657	5280	5303
40	5682	5620	5422	5651	5460
45	5605	5312	5661	5426	5677
50	5566	5334	5416	5611	5723
55	5644	5470	5635	5490	5546
60	5499	5461	5356	5716	5584
65	5596	5314	5336	5381	5672
70	5301	5580	5287	5317	5265
75	5671	5451	5403	5253	5597
80	5567	5343	5572	5308	5387
85	5362	5369	5515	5579	5530
90	5409	5316	5660	5698	5392
95	5352	5425	5402	5379	5641

Type	6	Radar	Waveform	14

Frequency List (MHz)	0	1	2	3	4
0	5593	5629	5465	5305	5353
5	5430	5472	5330	5356	5703
10	5463	5313	5281	5351	5720
15	5520	5360	5713	5658	5436
20	5598	5506	5509	5398	5304
25	5634	5516	5404	5623	5693
30	5644	5610	5391	5319	5485
35	5721	5370	5551	5553	5596
40	5556	5505	5492	5700	5602
45	5619	5641	5260	5545	5588
50	5495	5662	5337	5414	5251
55	5444	5639	5318	5432	5406
60	5529	5428	5615	5282	5582
65	5621	5412	5452	5565	5389
70	5348	5267	5423	5427	5362
75	5697	5717	5710	5421	5349
80	5418	5365	5329	5654	5369
85	5454	5625	5374	5367	5433
90	5518	5521	5609	5274	5364
95	5532	5480	5483	5277	5620

Frequency List (MHz)	0	1	2	3	4
0	5373	5393	5401	5369	5670
5	5472	5397	5405	5519	5532
10	5394	5577	5322	5546	5266
15	5608	5487	5341	5703	5628
20	5606	5672	5450	5390	5277
25	5522	5368	5607	5252	5686
30	5645	5567	5568	5683	5288
35	5461	5444	5706	5395	5685
40	5430	5465	5696	5548	5621
45	5592	5318	5432	5464	5671
50	5713	5426	5668	5261	5439
55	5398	5354	5515	5403	5614
60	5571	5474	5357	5441	5308
65	5570	5719	5722	5558	5334
70	5270	5272	5321	5569	5362
75	5281	5402	5504	5431	5618
80	5392	5374	5296	5602	5342
85	5717	5584	5716	5643	5534
90	5473	5646	5535	5467	5650
95	5502	5648	5714	5383	5424

Type 6 Radar Waveform_16	6	1	orm	ef	/av	W	ar	ad	R	6	ре	T١
--------------------------	---	---	-----	----	-----	---	----	----	---	---	----	----

Frequency List (MHz)	0	1	2	3	4
0	5628	5632	5337	5530	5415
5	5514	5419	5480	5682	5264
10	5703	5366	5363	5266	5287
15	5696	5614	5347	5273	5345
20	5517	5391	5479	5250	5410
25	5317	5335	5356	5286	5253
30	5534	5524	5346	5720	5503
35	5427	5552	5715	5384	5521
40	5709	5293	5368	5608	5693
45	5380	5601	5675	5279	5697
50	5340	5372	5289	5612	5491
55	5680	5627	5352	5544	5334
60	5374	5268	5261	5664	5364
65	5271	5606	5519	5312	5454
70	5646	5630	5320	5370	5596
75	5282	5280	5538	5385	5424
80	5383	5281	5541	5402	5307
85	5455	5262	5569	5650	5613
90	5662	5437	5357	5439	5580
95	5416	5582	5663	5590	5451

Frequency List (MHz)	0	1	2	3	4
0	5311	5396	5273	5691	5257
5	5653	5344	5458	5370	5471
10	5634	5630	5404	5364	5308
15	5687	5644	5450	5696	5537
20	5525	5432	5429	5698	5676
25	5538	5557	5320	5295	5520
30	5481	5561	5494	5701	5566
35	5643	5511	5435	5548	5376
40	5306	5373	5690	5309	5484
45	5283	5337	5681	5584	5340
50	5314	5527	5259	5628	5723
55	5300	5426	5461	5496	5665
60	5692	5332	5468	5348	5286
65	5409	5449	5702	5445	5258
70	5714	5410	5505	5470	5533
75	5651	5658	5518	5289	5650
80	5552	5625	5629	5550	5326
85	5605	5444	5369	5614	5594
90	5680	5645	5532	5446	5363
95	5666	5414	5574	5600	5715

Tν	ne	6	Radar	Waveform	18

Frequency List (MHz)	0	1	2	3	4
0	5566	5635	5684	5377	5477
5	5695	5366	5533	5436	5300
10	5565	5516	5445	5559	5329
15	5296	5553	5266	5351	5598
20	5370	5560	5671	5564	5593
25	5661	5354	5434	5409	5438
30	5679	5646	5521	5705	5259
35	5307	5312	5446	5387	5459
40	5719	5613	5687	5713	5464
45	5395	5374	5470	5724	5391
50	5315	5515	5471	5528	5260
55	5449	5447	5694	5429	5591
60	5406	5328	5588	5638	5630
65	5417	5287	5496	5301	5396
70	5389	5473	5294	5709	5673
75	5379	5625	5345	5310	5664
80	5439	5678	5256	5581	5394
85	5685	5346	5378	5457	5609
90	5472	5551	5558	5703	5697
95	5700	5344	5342	5273	5524

Type 6 Radar Waveform_19

Frequency List (MHz)	0	1	2	3	4	
0	5346	5399	5620	5538	5319	
5	5262	5291	5608	5599	5507	Ī
10	5305	5583	5279	5350	5388	
15	5423	5656	5311	5543	5541	
20	5667	5552	5644	5355	5445	Ī
25	5372	5290	5476	5298	5395	
30	5419	5420	5341	5272	5675	Ī
35	5465	5360	5323	5639	5657	Ī
40	5378	5684	5545	5444	5449	Ī
45	5356	5312	5261	5425	5442	Ī
50	5404	5338	5318	5716	5689	Ī
55	5665	5558	5281	5351	5635	
60	5414	5681	5366	5328	5571	Ī
65	5433	5468	5375	5521	5685	Ī
70	5632	5251	5270	5659	5326	Ī
75	5562	5299	5695	5702	5266	
80	5253	5301	5456	5711	5648	Ī
85	5441	5383	5331	5626	5277	
90	5478	5585	5440	5337	5336	
95	5280	5500	5339	5699	5376	Ī
						-

Type 6 Radar Waveforr	n 20	
-----------------------	------	--

Frequency List (MHz)	0	1	2	3	4
0	5601	5638	5556	5699	5539
5	5304	5313	5683	5287	5714
10	5330	5569	5624	5474	5371
15	5476	5550	5284	5356	5260
20	5452	5358	5349	5641	5617
25	5718	5297	5575	5394	5422
30	5518	5352	5634	5572	5411
35	5538	5471	5715	5274	5637
40	5722	5595	5521	5303	5424
45	5532	5414	5365	5526	5697
50	5493	5590	5636	5262	5332
55	5643	5354	5463	5687	5446
60	5296	5564	5627	5654	5315
65	5359	5366	5711	5361	5479
70	5370	5661	5591	5695	5390
75	5327	5307	5339	5409	5391
80	5329	5250	5496	5456	5650
85	5708	5633	5348	5382	5399
90	5475	5464	5484	5619	5700
95	5353	5335	5581	5712	5678

			1		
Frequency List (MHz)	0	1	2	3	4
0	5381	5402	5492	5385	5443
5	5713	5283	5450	5543	5639
10	5358	5665	5669	5392	5467
15	5677	5290	5304	5452	5460
20	5427	5633	5590	5509	5721
25	5303	5595	5456	5657	5648
30	5309	5374	5346	5359	5550
35	5629	5267	5393	5285	5476
40	5330	5533	5286	5300	5306
45	5404	5615	5472	5418	5413
50	5302	5544	5679	5459	5584
55	5520	5597	5447	5282	5510
60	5341	5611	5338	5396	5638
65	5573	5380	5264	5298	5370
70	5258	5514	5709	5444	5579
75	5694	5637	5453	5567	5373
80	5288	5494	5422	5257	5555
85	5489	5625	5691	5671	5253
90	5336	5647	5295	5490	5556
95	5582	5458	5390	5565	5610

Typ	e 6	Radar	Wave	form	22

Frequency List (E Hz)	0	1	2	3	4
0	5539	5641	5428	5449	5601
5	5485	5260	5358	5516	5275
10	5570	5622	5706	5292	5413
15	5555	5707	5393	5349	5644
20	5468	5593	5722	5563	5397
25	5573	5506	5699	5634	5266
30	5492	5498	5557	5592	5720
35	5635	5546	5674	5315	5374
40	5526	5297	5710	5384	5698
45	5433	5471	5678	5352	5478
50	5595	5293	5660	5528	5708
55	5551	5637	5479	5481	5373
60	5301	5283	5703	5464	5519
65	5688	5334	5580	5317	5403
70	5430	5582	5543	5412	5536
75	5533	5269	5271	5532	5513
80	5719	5552	5411	5262	5431
85	5445	5656	5387	5323	5493
90	5319	5496	5590	5367	5567
95	5549	5508	5685	5425	5442

Frequency List (MHz)	0	1	2	3	4
0	5319	5405	5364	5610	5443
5	5527	5660	5433	5679	5482
10	5501	5411	5272	5487	5434
15	5643	5359	5496	5394	5361
20	5379	5662	5269	5714	5536
25	5285	5522	5709	5328	5427
30	5266	5523	5698	5707	5377
35	5256	5336	5431	5321	5588
40	5251	5593	5312	5669	5294
45	5639	5267	5306	5491	5565
50	5703	5654	5646	5382	5483
55	5375	5421	5408	5352	5298
60	5452	5502	5466	5535	5290
65	5562	5404	5637	5273	5412
70	5420	5498	5475	5416	5682
75	5295	5492	5371	5505	5653
80	5659	5250	5642	5311	5615
85	5619	5262	5694	5524	5341
90	5571	5313	5484	5599	5724
95	5579	5500	5630	5406	5518

Type	6	Radar	Wave	form	24

Frequency List (MHz)	0	1	2	3	4
0	5574	5644	5300	5296	5663
5	5569	5682	5508	5367	5311
10	5335	5297	5313	5455	5256
15	5486	5599	5439	5553	5387
20	5353	5685	5328	5509	5551
25	5374	5437	5432	5461	5405
30	5412	5655	5447	5424	5575
35	5395	5427	5702	5474	5565
40	5676	5250	5434	5291	5471
45	5722	5389	5549	5480	5355
50	5579	5697	5306	5319	5609
55	5362	5542	5592	5423	5631
60	5270	5464	5688	5605	5586
65	5309	5622	5690	5301	5402
70	5619	5468	5330	5377	5298
75	5705	5550	5475	5678	5616
80	5640	5590	5657	5257	5489
85	5295	5344	5511	5649	5561
90	5518	5555	5614	5304	5400
95	5416	5346	5425	5391	5379
		 	 	 	

Frequency List (MHz)	0	1	2	3	4
0	5354	5408	5711	5457	5505
5	5708	5607	5583	5530	5518
10	5266	5561	5402	5476	5722
15	5613	5702	5387	5270	5395
20	5422	5626	5320	5482	5439
25	5701	5543	5633	5495	5447
30	5398	5612	5662	5673	5534
35	5615	5595	5627	5513	5404
40	5284	5663	5674	5385	5400
45	5472	5510	5533	5717	5358
50	5531	5273	5657	5604	5641
55	5322	5316	5257	5411	5297
60	5285	5321	5690	5296	5514
65	5454	5428	5535	5345	5582
70	5579	5716	5485	5310	5468
75	5444	5289	5346	5373	5309
80	5552	5290	5331	5639	5363
85	5618	5529	5449	5357	5592
90	5339	5611	5498	5391	5700
95	5610	5598	5299	5379	5519
	1	1	1		1

Tν	ne	6	Radar	Wave	form	26

Frequency List (MHz)	0	1	2	3	4
0	5512	5647	5618	5250	5275
5	5629	5658	5596	5672	5350
10	5395	5597	5497	5335	5265
15	5708	5432	5559	5306	5588
20	5567	5409	5455	5705	5650
25	5271	5262	5529	5489	5287
30	5569	5305	5690	5576	5706
35	5391	5402	5427	5718	5464
40	5601	5439	5382	5707	5682
45	5555	5568	5586	5507	5709
50	5324	5330	5585	5413	5270
55	5447	5608	5268	5414	5486
60	5635	5603	5437	5484	5284
65	5664	5377	5313	5471	5317
70	5420	5723	5693	5441	5419
75	5290	5303	5587	5328	5426
80	5610	5338	5543	5371	5680
85	5544	5322	5300	5365	5504
90	5617	5532	5273	5334	5552
95	5665	5679	5261	5622	5364

Type 6 Radar Waveform_27

Frequency List (MHz)	0	1	2	3	4
0	5292	5508	5583	5304	5470
5	5317	5554	5258	5284	5457
10	5506	5614	5533	5695	5518
15	5423	5295	5336	5477	5276
20	5314	5279	5605	5401	5428
25	5593	5502	5474	5366	5563
30	5628	5651	5526	5520	5599
35	5413	5715	5322	5662	5555
40	5438	5557	5547	5539	5582
45	5379	5636	5638	5626	5639
50	5394	5585	5408	5375	5360
55	5432	5601	5699	5637	5427
60	5714	5446	5580	5435	5263
65	5443	5452	5433	5320	5496
70	5647	5660	5482	5641	5396
75	5682	5561	5562	5271	5484
80	5368	5395	5489	5510	5688
85	5265	5261	5665	5351	5613
90	5349	5669	5720	5469	5569
95	5663	5570	5552	5267	5700
	1	†	l	1	

Type	6	Radar	Waveform	28
1 9 0 0	v	Nauai	VVAVCIOIIII	20

Frequency List (MHz)	0	1	2	3	4
0	5547	5272	5519	5465	5312
5	5359	5576	5333	5447	5286
10	5437	5403	5574	5415	5539
15	5511	5422	5439	5425	5468
20	5322	5348	5546	5490	5401
25	5384	5451	5677	5470	5597
30	5670	5637	5483	5260	5276
35	5708	5379	5413	5458	5352
40	5493	5630	5477	5347	5376
45	5565	5642	5721	5587	5692
50	5659	5461	5584	5426	5449
55	5314	5653	5255	5685	5575
60	5341	5622	5267	5564	5389
65	5382	5356	5706	5366	5554
70	5443	5416	5393	5275	5641
75	5534	5681	5608	5252	5261
80	5523	5624	5559	5649	5507
85	5350	5349	5627	5703	5453
90	5305	5386	5251	5503	5455
95	5683	5300	5647	5256	5289

Frequency List (MHz)	0	1	2	3	4
0	5327	5511	5455	5626	5532
5	5498	5501	5408	5610	5493
10	5368	5289	5615	5560	5599
15	5549	5542	5470	5660	5708
20	5514	5487	5482	5374	5272
25	5303	5405	5574	5631	5712
30	5526	5440	5475	5525	5431
35	5421	5504	5351	5483	5266
40	5332	5713	5415	5587	5373
45	5397	5622	5329	5645	5648
50	5546	5715	5285	5477	5635
55	5274	5698	5502	5607	5445
60	5443	5559	5704	5506	5567
65	5671	5335	5476	5428	5295
70	5538	5334	5644	5723	5419
75	5717	5251	5600	5503	5326
80	5276	5513	5536	5545	5349
85	5469	5288	5548	5356	5634
90	5270	5524	5257	5537	5675
95	5564	5700	5355	5253	5366

Test Site	WZ-SR4	Jake Lan						
Test Date	2023-10-11	2023-10-11						
Test Item	Radar Statistical Performance Check (802.11ax-HE40 – 5510MHz)							

		F	Radar Type 1-4	- Radar Statistic	cal Performance	e		
Trial	Radar	Type 1	Radar	Type 2	Radar	Type 3	Radar	Type 4
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect
0	5497	1	5519	1	5525	1	5493	0
1	5528	1	5499	0	5527	1	5503	1
2	5490	0	5520	1	5520	1	5509	1
3	5492	1	5516	1	5528	1	5525	1
4	5493	1	5503	1	5522	1	5524	1
5	5512	1	5491	1	5526	1	5507	1
6	5522	1	5503	1	5493	1	5517	1
7	5521	1	5507	1	5521	1	5523	1
8	5526	1	5500	1	5507	1	5516	1
9	5510	1	5505	1	5497	0	5518	1
10	5500	1	5492	1	5514	1	5524	1
11	5523	1	5493	1	5513	1	5505	1
12	5494	0	5525	1	5528	1	5524	0
13	5495	1	5503	1	5526	1	5519	1
14	5499	1	5530	0	5525	1	5498	0
15	5519	1	5527	1	5527	1	5523	1
16	5514	1	5499	1	5514	1	5516	1
17	5493	1	5502	1	5502	0	5490	0
18	5524	0	5505	1	5507	1	5530	0
19	5523	1	5515	1	5519	1	5526	1
20	5513	1	5494	1	5498	1	5510	1
21	5515	1	5514	1	5528	1	5512	1
22	5500	1	5502	1	5520	1	5529	1
23	5520	1	5492	1	5521	1	5514	1
24	5507	1	5524	1	5522	0	5500	1
25	5496	1	5528	1	5527	1	5516	1
26	5514	1	5492	1	5506	1	5527	1
27	5530	0	5494	1	5493	1	5496	1

Trial	Radar	Type 1	Radar Type 2		Radar	Type 3	Radar Type 4		
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	
28	28	5502	5510	0	5506	1	5491	1	
29	29	5526	5500	0	5499	1	5520	1	
Probability:	86.	86.7% 86.7%			90.0% 83.3			3%	
Aggregate:		86.7% (>80%)							

	Na	uai iype i	- Radar Wav	velolili			Na	uai Type Z	- Radar Wa	/eioiiii	
Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Number of Pulses	Taveform Length (us)	Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Number of Pulses	Taveford Length (us)
)	Type 1	1.0	698.0	76	53048.0	0	Type 2	3.4	154.0	27	4158.0
	Type 1	1.0	598.0	89	53222.0	1	Type 2	3.9	212.0	27	5724.0
2	Type 1	1.0	3066.0	18	55188.0	2	Type 2	3.9	153.0	28	4284.0
3	Type 1	1.0	818.0	65	53170.0	3	Type 2	4.2	150.0	28	4200.0
4	Type 1	1.0	538.0	99	53262.0	4	Type 2	2.2	156.0	25	3900.0
5	Type 1	1.0	898.0	59	52982.0	5	Type 2	4.4	169.0	28	4732.0
3	Type 1	1.0	778.0	68	52904.0	6	Type 2	3.9	165.0	28	4620.0
7	Type 1	1.0	618.0	86	53148.0	7	Type 2	1.6	225.0	24	5400.0
3	Type 1	1.0	678.0	78	52884.0	8	Type 2	2.6	159.0	25	3975.0
3	Type 1	1.0	738.0	72	53136.0	9	Type 2	1.2	171.0	23	3933.0
.0	Type 1	1.0	638.0	83	52954.0	10	Type 2	4.2	223.0	28	6244.0
11	Type 1	1.0	798.0	67	53466.0	11	Type 2	1.9	191.0	24	4584.0
12	Type 1	1.0	938.0	57	53466.0	12	Type 2	4.0	177.0	28	4956.0
13	Type 1	1.0	718.0	74	53132.0	13	Type 2	1.5	219.0	23	5037.0
14	Type 1	1.0	918.0	58	53244.0	14	Type 2	1.3	197.0	23	4531.0
15	Type 1	1.0	1046.0	51	53346.0	15	Type 2	3.1	152.0	26	3952.0
16	Type 1	1.0	3012.0	18	54216.0	16	Type 2	3. 1	174.0	26	4524.0
17	Type 1	1.0	1114.0	48	53472.0	17	Type 2	2.9	207.0	26	5382.0
.8	Type 1	1.0	2055.0	26	53430.0	18	Type 2	4.3	209.0	28	5852.0
19	Type 1	1.0	1445.0	37	53465.0	19	Type 2	2.5	194.0	25	4850.0
20	Type 1	1.0	1698.0	32	54336.0	20	Type 2	4.4	213.0	28	5964.0
21	Type 1	1.0	2898.0	19	55062.0	21	Type 2	3.3	216.0	26	5616.0
22	Type 1	1.0	760.0	70	53200.0	22	Type 2	2. 7	210.0	26	5460.0
23	Туре 1	1.0	1343.0	40	53720.0	23	Type 2	4.6	166.0	29	4814.0
24	Type 1	1.0	1159.0	46	53314.0	24	Type 2	3. 1	180.0	26	4680.0
25	Type 1	1.0	730.0	73	53290.0	25	Type 2	2.1	164.0	24	3936.0
26	Type 1	1.0	523.0	101	52823.0	26	Type 2	1.2	208.0	23	4784.0
27	Type 1	1.0	861.0	62	53382.0	27	Type 2	3.2	211.0	26	5486.0
28	Type 1	1.0	872.0	61	53192.0	28	Type 2	1.4	172.0	23	3956.0
29	Type 1	1.0	1715.0	31	53165.0	29	Type 2	1.5	202.0	23	4646.0

Radar Type 3 - Radar Waveform

Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Number of Pulses	Vavefore Length (us)
0	Type 3	8.4	255.0	17	4335.0
1	Туре З	8.9	249.0	18	4482.0
2	Туре З	8.9	493.0	18	8874.0
3	Туре З	9.2	464.0	18	8352.0
4	Туре З	7. 2	306.0	16	4896.0
5	Туре З	9.4	302.0	18	5436.0
6	Туре З	8.9	448.0	18	8064.0
7	Туре З	6.6	383.0	16	6128.0
3	Туре З	7. 6	233.0	17	3961.0
9	Туре З	6.2	454.0	16	7264.0
10	Туре З	9.2	384.0	18	6912.0
11	Type 3	6.9	342.0	16	5472.0
12	Туре З	9.0	310.0	18	5580.0
13	Туре З	6.5	365.0	16	5840.0
14	Туре З	6.3	291.0	16	4656.0
15	Туре З	8.1	361.0	17	6137.0
16	Туре З	8. 1	213.0	17	3621.0
17	Туре З	7.9	345.0	17	5865.0
18	Туре З	9.3	275.0	18	4950.0
19	Туре З	7.5	414.0	17	7038.0
20	Туре З	9.4	431.0	18	7758.0
21	Туре З	8.3	451.0	17	7667.0
22	Туре З	7. 7	297.0	17	5049.0
23	Туре З	9.6	496.0	18	8928.0
24	Туре З	8. 1	458.0	17	7786.0
25	Туре З	7. 1	425.0	16	6800.0
26	Type 3	6.2	274.0	16	4384.0
27	Type 3	8.2	474.0	17	8058.0
28	Туре З	6.4	216.0	16	3456.0
29	Туре З	6.5	461.0	16	7376.0

Radar Type 4 - Radar Waveform

Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Number of Pulses	Taveform Length (us)
0	Type 4	16.3	255.0	14	3570.0
1	Type 4	17.4	249.0	15	3735.0
2	Type 4	17.5	493.0	15	7395.0
3	Type 4	18.2	464.0	16	7424.0
4	Type 4	13.8	306.0	13	3978.0
5	Type 4	18.6	302.0	16	4832.0
6	Type 4	17.5	448.0	15	6720.0
7	Type 4	12.4	383.0	12	4596.0
8	Type 4	14.6	233.0	14	3262.0
9	Type 4	11.6	454.0	12	5448.0
10	Type 4	18.2	384.0	15	5760.0
11	Type 4	13.1	342.0	13	4446.0
12	Type 4	17. 7	310.0	15	4650.0
13	Type 4	12.2	365.0	12	4380.0
14	Type 4	11.7	291.0	12	3492.0
15	Type 4	15. 7	361.0	14	5054.0
16	Type 4	15. 7	213.0	14	2982.0
17	Type 4	15.4	345.0	14	4830.0
18	Type 4	18.4	275.0	16	4400.0
19	Type 4	14.5	414.0	13	5382.0
20	Type 4	18.5	431.0	16	6896.0
21	Type 4	16.1	451.0	14	6314.0
22	Type 4	14.9	297.0	14	4158.0
23	Type 4	19.0	496.0	16	7936.0
24	Type 4	15.8	458.0	14	6412.0
25	Type 4	13.5	425.0	13	5525.0
26	Type 4	11.5	274.0	12	3288.0
27	Type 4	16.0	474.0	14	6636.0
28	Type 4	11.9	216.0	12	2592.0
29	Type 4	12.1	461.0	12	5532.0

		Radar Type 5 - Radar	Statistical Performance		
Trail #	Test Freq. (MHz)	1=Detection	Trail #	Test Freq. (MHz)	1=Detection
		0=No Detection			0=No Detection
0	5510	1	15	5495.2	1
1	5510	1	16	5495.2	1
2	5510	1	17	5494.8	1
3	5510	1	18	5497.2	1
4	5510	1	19	5494.4	1
5	5510	1	20	5522.8	1
6	5510	1	21	5524.4	1
7	5510	1	22	5525.2	1
8	5510	1	23	5522.4	1
9	5510	1	24	5524.8	1
10	5496.8	1	25	5526.4	1
11	5493.2	1	26	5528	1
12	5496.4	1	27	5524.8	1
13	5492.8	0	28	5527.6	1
14	5492.4	1	29	5527.2	1
D	etection Percentage (%	/ ₆)		96.7%	

Burst Offset (us)	Pulse Tidth (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
663689.0	79.5	14	2	1151.0	1785.0	_
59734.0	85.5	14	3	1879.0	1810.0	1960.0
252607.0	86.0	14	3	1766.0	1882.0	1315.0
445636.0	90.0	14	3	1225.0	1912.0	1456.0
641005.0	65. 7	14	1	1532.0	_	_
36055.0	92.0	14	3	1566.0	1453.0	1477.0
229011.0	86.1	14	3	1569.0	1773.0	1081.0
423672.0	57. 7	14	1	1201.0	_	_
615889.0	70.2	14	2	1602.0	1563.0	_
12336.0	53.5	14	1	1539.0	_	_
205299.0	89. 7	14	3	1132.0	1792.0	1285.0
399646.0	61.8	14	1	1526.0	_	_
590536.0	87. 1	14	3	1594.0	1824.0	1829.0
787215.0	56.9	14	1	1263.0	_	_
182165.0	53.8	14	1	1406.0	_	_

Type 5 Radar Waveform_1

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
330868.0	75.9	16	2	1580.0	1283.0	_
501357.0	76.2	16	2	1267.0	1617.0	_
672145.0	74.3	16	2	1163.0	1420.0	_
138874.0	90. 7	16	3	1472.0	1945.0	1902.0
309898.0	69.2	16	2	1049.0	1741.0	_
479164.0	91.6	16	3	1591.0	1965.0	1072.0
650830.0	78. 2	16	2	1080.0	1831.0	_
118344.0	71.9	16	2	1152.0	1802.0	_
288290.0	94.0	16	3	1013.0	1688.0	1557.0
459071.0	76.6	16	2	1614.0	1704.0	_
630646.0	64.1	16	1	2000.0	_	_
97612.0	52. 7	16	1	1018.0	_	_
267841.0	77. 6	16	2	1675.0	1240.0	_
439348.0	55.4	16	1	1288.0	_	_
610057.0	56.2	16	1	1493.0	_	_
76514.0	55.8	16	1	1398.0	_	_
246567.0	96.4	16	3	1303.0	1205.0	1186.0

Type 5 Radar Waveform_2

Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
415803.0	91.5	16	3	1966.0	1863.0	1663.0
587427.0	68.9	16	2	1731.0	1659.0	_
55441.0	54.2	16	1	1743.0	_	_
225379.0	87.4	16	3	1342.0	1796.0	1213.0
396388.0	77.6	16	2	1302.0	1514.0	_
565230.0	96.4	16	3	1246.0	1930.0	1716.0
34422.0	54.4	16	1	1393.0	_	_
205137.0	56.3	16	1	1894.0	_	_
375830.0	56. 7	16	1	1981.0	_	_
545977.0	71. 7	16	2	1655.0	1062.0	_
13312.0	86.4	16	3	1872.0	1145.0	1747.0
184213.0	50.2	16	1	1485.0	_	_
353294.0	96.3	16	3	1910.0	1409.0	1653.0
524091.0	99. 7	16	3	1092.0	1760.0	1042.0
696920.0	50.9	16	1	1291.0	_	_
162897.0	82. 7	16	2	1116.0	1544.0	_
333563.0	74. 7	16	2	1139.0	1284.0	_

Burst Offset (us)	Pulse Width (us)	Chirp Width (WHz)	Mumber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
476886.0	57.8	17	1	1282.0	_	_
636595.0	74. 4	17	2	1896.0	1124.0	_
133893.0	76.9	17	2	1615.0	1457.0	_
294048.0	88.0	17	3	1191.0	1715.0	1940.0
456668.0	53.1	17	1	1776.0	_	_
616581.0	74.8	17	2	1500.0	1723.0	_
114290.0	51.3	17	1	1786.0	_	_
275806.0	63.5	17	1	1155.0	_	_
434540.0	92.1	17	3	1335.0	1971.0	1918.0
598758.0	63.4	17	1	1002.0	_	_
94502.0	51.5	17	1	1254.0	_	_
254888.0	89.3	17	3	1090.0	1250.0	1508.0
417068.0	58.4	17	1	1575.0	_	_
578505.0	52.3	17	1	1424.0	_	_
74622.0	64.0	17	1	1264.0	_	_
234799.0	97. 7	17	3	1651.0	1369.0	1639.0
395422.0	93.4	17	3	1577.0	1109.0	1865.0
557418.0	70.4	17	2	1085.0	1784.0	_

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
81994.0	68. 1	10	2	1702.0	1668.0	_
324411.0	52.6	10	1	1207.0	_	_
566313.0	66.5	10	1	1800.0	_	_
806442.0	98.4	10	3	1134.0	1911.0	1183.0
52251.0	79.9	10	2	1159.0	1631.0	_
294063.0	69.8	10	2	1447.0	1487.0	_
534859.0	84. 4	10	3	1214.0	1797.0	1828.0
778840.0	62.5	10	1	1476.0	_	_
22457.0	69.9	10	2	1280.0	1642.0	_
264033.0	91.8	10	3	1287.0	1365.0	1202.0
505657.0	71.6	10	2	1871.0	1929.0	_
747043.0	97.8	10	3	1378.0	1384.0	1337.0
		+	+	+	 	+

Burst Offset (us)	Pulse Tidth (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
658126.0	76.9	18	2	1864.0	1803.0	_
156327.0	63.1	18	1	1956.0	_	_
316956.0	70.0	18	2	1725.0	1455.0	_
478778.0	52.9	18	1	1922.0	_	_
636942.0	97. 7	18	3	1764.0	1633.0	1701.0
136313.0	81.9	18	2	1121.0	1598.0	_
297437.0	79.0	18	2	1160.0	1344.0	_
459467.0	58.3	18	1	1128.0	_	_
617379.0	88.4	18	3	1939.0	1506.0	1437.0
116210.0	94.2	18	3	1827.0	1064.0	1354.0
278195.0	52.9	18	1	1071.0	_	_
438329.0	73.8	18	2	1585.0	1445.0	_
597905.0	85.6	18	3	1497.0	1719.0	1338.0
96475.0	82.9	18	2	1996.0	1873.0	_
258044.0	52.8	18	1	1758.0	_	_
418598.0	67.1	18	2	1780.0	1099.0	_
578324.0	98.3	18	3	1550.0	1015.0	1761.0
76692.0	69.3	18	2	1877.0	1845.0	_

Type 5 Radar Waveform_6

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Mumber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
251823.0	72. 4	16	2	1592.0	1297.0	_
423379.0	52.6	16	1	1127.0	_	_
594181.0	52.8	16	1	1274.0	_	_
60319.0	79.3	16	2	1325.0	1607.0	_
230910.0	82.8	16	2	1423.0	1194.0	_
401207.0	80. 1	16	2	1812.0	1273.0	_
572939.0	58. 1	16	1	1510.0	_	_
39386.0	59.4	16	1	1732.0	_	_
209489.0	94.6	16	3	1371.0	1507.0	1118.0
380972.0	57.0	16	1	1679.0	_	_
551597.0	53.6	16	1	1892.0	_	_
18271.0	90.6	16	3	1830.0	1618.0	1314.0
189313.0	54.9	16	1	1047.0	_	_
359827.0	59.6	16	1	1890.0	_	_
529087.0	91.9	16	3	1175.0	1001.0	1678.0
698522.0	94.3	16	3	1952.0	1253.0	1481.0
167505.0	86.5	16	3	1426.0	1148.0	1623.0

Type 5 Radar Waveform_7

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
575304.0	88.4	7	3	1316.0	1394.0	1850.0
866172.0	69.2	7	2	1703.0	1564.0	_
1157670.0	55.5	7	1	1970.0	-	-
250394.0	54. 7	7	1	1040.0	-	-
540418.0	82.2	7	2	1351.0	1375.0	-
830613.0	68. 7	7	2	1737.0	1251.0	_
1119319.0	85.0	7	3	1643.0	1674.0	1387.0
214281.0	82.1	7	2	1206.0	1479.0	-
504727.0	74.0	7	2	1066.0	1480.0	_
793471.0	99.8	7	3	1529.0	1855.0	1685.0
			- I	1		

Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
831950.0	92.8	11	3	1518.0	1862.0	2000.0
137447.0	62.8	11	1	1198.0	_	_
360100.0	97.0	11	3	1385.0	1137.0	1055.0
583832.0	66.9	11	2	1380.0	1054.0	_
807401.0	67.2	11	2	1103.0	1007.0	_
109846.0	64.2	11	1	1700.0	_	_
333285.0	50.5	11	1	1768.0	_	_
555870.0	69.4	11	2	1440.0	1752.0	_
779502.0	69.0	11	2	1035.0	1531.0	_
81990.0	94.9	11	3	1868.0	1558.0	1972.0
304806.0	97. 7	11	3	1632.0	1924.0	1089.0
528381.0	80.4	11	2	1997.0	1210.0	_
751292.0	90.0	11	3	1028.0	1299.0	1108.0

Type 5 Radar Waveform_9

Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
88987.0	94.8	6	3	1555.0	1041.0	1100.0
451827.0	88.2	6	3	1177.0	1605.0	1114.0
813935.0	87.3	6	3	1841.0	1612.0	1811.0
1177486.0	71.9	6	2	1958.0	1995.0	-
44354.0	54. 7	6	1	1376.0	-	-
407088.0	97.8	6	3	1473.0	1340.0	1245.0
769290.0	89.2	6	3	1925.0	1736.0	1584.0
1132276.0	93.4	6	3	1660.0	1443.0	1534.0
				1	1	

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
663080.0	81.9	17	2	1568.0	1835.0	_
160473.0	91.3	17	3	1219.0	1197.0	1836.0
321121.0	96.5	17	3	1293.0	1008.0	1968.0
483530.0	64.5	17	1	1853.0	_	_
642517.0	98.0	17	3	1088.0	1638.0	1449.0
140776.0	92.8	17	3	1172.0	1057.0	1588.0
302570.0	64.6	17	1	1548.0	_	_
462049.0	90.3	17	3	1230.0	1289.0	1657.0
622053.0	83.9	17	3	1967.0	1358.0	1565.0
120999.0	67.9	17	2	1779.0	1897.0	_
281302.0	97.3	17	3	1821.0	1142.0	1875.0
444101.0	58. 7	17	1	1415.0	_	_
603995.0	80.3	17	2	1977.0	1032.0	_
101565.0	65.4	17	1	1238.0	_	_
261852.0	96. 7	17	3	1381.0	1231.0	1410.0
422225.0	97.6	17	3	1540.0	1412.0	1603.0
582452.0	90.2	17	3	1843.0	1948.0	1168.0
81350.0	86.4	17	3	1179.0	1328.0	1471.0

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
397365.0	76.3	8	2	1368.0	1729.0	_
662347.0	54.4	8	1	1199.0	_	-
923666.0	90.2	8	3	1357.0	1576.0	1759.0
100981.0	72.9	8	2	1809.0	1907.0	-
364525.0	99.4	8	3	1167.0	1838.0	1111.0
627887.0	88.9	8	3	1311.0	1908.0	1278.0
893944.0	58.0	8	1	1367.0	_	_
68575.0	79.2	8	2	1547.0	1010.0	-
332876.0	60.8	8	1	1439.0	_	_
596813.0	66.5	8	1	1976.0	_	_
858914.0	94.9	8	3	1182.0	1525.0	1798.0
		1		1	1	1

Type 5 Radar Waveform_12

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
23240.0	96.9	16	3	1787.0	1046.0	1645.0
193832.0	80.2	16	2	1275.0	1464.0	_
363289.0	84.3	16	3	1521.0	1906.0	1392.0
533725.0	84.9	16	3	1024.0	1769.0	1492.0
2295.0	56.4	16	1	1852.0	_	_
173148.0	60.8	16	1	1429.0	_	_
343183.0	71.5	16	2	1104.0	1999.0	_
514769.0	50.5	16	1	1543.0	_	_
685706.0	52.4	16	1	1428.0	_	_
151860.0	69.3	16	2	1304.0	1252.0	_
322139.0	71.5	16	2	1349.0	1861.0	_
491506.0	85.9	16	3	1257.0	1735.0	1721.0
663450.0	79. 1	16	2	1112.0	1599.0	_
130561.0	85. 1	16	3	1714.0	1026.0	1359.0
301362.0	77. 0	16	2	1483.0	1226.0	_
473028.0	50.4	16	1	1033.0	_	_
641993.0	71.6	16	2	1323.0	1881.0	_

Type 5 Radar Waveform_13

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
208058.0	59. 7	7	1	1059.0	_	_
530313.0	79.3	7	2	1987.0	1239.0	-
851412.0	91.5	7	3	1915.0	1656.0	1984.0
1174566.0	89. 7	7	3	1370.0	1165.0	1746.0
167900.0	81.8	7	2	1993.0	1895.0	-
490578.0	68.4	7	2	1427.0	1794.0	-
813259.0	71.4	7	2	1106.0	1973.0	_
1134203.0	84.8	7	3	1931.0	1524.0	1597.0
128435.0	53. 1	7	1	1279.0	_	_
						+

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
451284.0	59.0	6	1	1919.0	_	_
772801.0	91.9	6	3	1233.0	1451.0	1629.0
1097503.0	57.5	6	1	1434.0	-	-
88616.0	56.4	6	1	1648.0	-	-
411331.0	68. 7	6	2	1360.0	1133.0	-
733981.0	81.9	6	2	1654.0	1058.0	-
1055342.0	98.1	6	3	1804.0	1113.0	1503.0
48733.0	95.4	6	3	1482.0	1009.0	1898.0
371056.0	87.1	6	3	1416.0	1388.0	1541.0

Type 5 Radar Waveform_15

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
445079.0	87. 7	13	3	1110.0	1644.0	1312.0
653772.0	62.9	13	1	1717.0	_	_
5799.0	73.9	13	2	1934.0	1921.0	_
213132.0	73.8	13	2	1247.0	1067.0	_
420652.0	54.5	13	1	1914.0	_	_
627059.0	75.2	13	2	1454.0	1840.0	_
832332.0	97.1	13	3	1450.0	1818.0	1880.0
186967.0	87. 7	13	3	1772.0	1887.0	1515.0
394572.0	67.0	13	2	1680.0	1383.0	_
602918.0	54.8	13	1	1353.0	_	_
809197.0	68.5	13	2	1460.0	1241.0	_
162279.0	61.0	13	1	1146.0	_	_
368631.0	87.8	13	3	1791.0	1120.0	1138.0
576137.0	72.4	13	2	1582.0	1571.0	_
		 		+	+	+

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
782766.0	88.5	13	3	1187.0	1419.0	1082.0
136212.0	86.5	13	3	1574.0	1578.0	1091.0
343757.0	69.4	13	2	1295.0	1232.0	_
550982.0	81.5	13	2	1470.0	1129.0	_
757849.0	75. 1	13	2	1634.0	1401.0	_
111059.0	55. 1	13	1	1727.0	_	_
318604.0	65.0	13	1	1513.0	_	_
526007.0	61.8	13	1	1699.0	_	_
733472.0	62.9	13	1	1707.0	_	_
85506.0	50.1	13	1	1711.0	_	_
293150.0	53.3	13	1	1200.0	_	_
500452.0	51.8	13	1	1697.0	_	_
707031.0	79.6	13	2	1347.0	1430.0	_
59798.0	93.0	13	3	1156.0	1309.0	1417.0
		•	_		•	•

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Mumber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
266407.0	96.1	12	3	1682.0	1554.0	1712.0
474849.0	50.5	12	1	1782.0	_	_
679859.0	89.6	12	3	1308.0	1652.0	1883.0
34275.0	87.8	12	3	1755.0	1125.0	1815.0
240902.0	83.8	12	3	1846.0	1722.0	1546.0
447735.0	98. 1	12	3	1884.0	1130.0	1739.0
654128.0	89.4	12	3	1916.0	1954.0	1324.0
8800.0	87.6	12	3	1849.0	1788.0	1901.0
215373.0	97. 7	12	3	1748.0	1816.0	1847.0
422337.0	85.9	12	3	1305.0	1596.0	1718.0
630813.0	74.8	12	2	1162.0	1136.0	_
838754.0	66.3	12	1	1672.0	_	_
190119.0	92. 7	12	3	1317.0	1262.0	1975.0
396932.0	94. 1	12	3	1889.0	1431.0	1161.0

Type 5 Radar Waveform_18

Burst Offset (us)	Pulse Tidth (us)	Chirp Width (MHz)	Mumber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
471145.0	51.3	18	1	1258.0	-	_
632653.0	66.6	18	1	1126.0	-	_
128422.0	66.2	18	1	1667.0	-	_
288830.0	92.1	18	3	1078.0	1011.0	1587.0
450229.0	71.3	18	2	1265.0	1522.0	_
610947.0	69.5	18	2	1611.0	1495.0	_
108269.0	69.1	18	2	1590.0	1832.0	_
269265.0	70.0	18	2	1413.0	1669.0	_
429078.0	99.4	18	3	1551.0	1307.0	1963.0
592968.0	50.4	18	1	1036.0	_	_
88520.0	73.0	18	2	1490.0	1444.0	_
249052.0	90.2	18	3	1189.0	1101.0	1826.0
410601.0	72.0	18	2	1681.0	1045.0	_
571430.0	75.8	18	2	1190.0	1765.0	_
68516.0	100.0	18	3	1350.0	1955.0	1331.0
229628.0	73.8	18	2	1689.0	1361.0	_
390675.0	70.5	18	2	1693.0	1188.0	_
552680.0	52. 7	18	1	1658.0	_	_
		+		+	+	+

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
67578.0	95.6	11	3	1886.0	1467.0	1777.0
291368.0	54.0	11	1	1462.0	_	_
513308.0	91.7	11	3	1244.0	1511.0	1536.0
738212.0	66.5	11	1	1709.0	_	_
40309.0	65.2	11	1	1608.0	_	_
263335.0	80. 7	11	2	1874.0	1336.0	_
486652.0	77.3	11	2	1178.0	1616.0	_
708750.0	89.8	11	3	1567.0	1405.0	1248.0
12759.0	83.0	11	2	1474.0	1698.0	_
236261.0	50.9	11	1	1625.0	_	_
458129.0	88.8	11	3	1640.0	1573.0	1646.0
680858.0	83.6	11	3	1762.0	1391.0	1662.0
907187.0	56.6	11	1	1135.0	_	_
		1			1	1

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
150783.0	58.8	18	1	1039.0	_	_
311911.0	62.5	18	1	1694.0	_	_
472126.0	71.0	18	2	1949.0	1237.0	_
634823.0	60.4	18	1	1319.0	_	_
130276.0	96.4	18	3	1107.0	1870.0	1222.0
291053.0	83.9	18	3	1023.0	1517.0	1414.0
453654.0	61.2	18	1	1208.0	_	_
613382.0	80.6	18	2	1502.0	1509.0	_
110924.0	60.0	18	1	1570.0	_	_
271384.0	73.9	18	2	1857.0	1781.0	_
432748.0	76. 1	18	2	1402.0	1379.0	_
594878.0	51.2	18	1	1533.0	_	_
90748.0	89.2	18	3	1193.0	1029.0	1589.0
252555.0	64.8	18	1	1060.0	_	_
411858.0	93.6	18	3	1259.0	1998.0	1223.0
573123.0	76.0	18	2	1983.0	1730.0	_
71163.0	63.5	18	1	1778.0	_	_
231539.0	87.6	18	3	1043.0	1363.0	1891.0

Type 5 Radar Waveform_21

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
472049.0	73.9	14	2	1327.0	1418.0	_
666380.0	65.3	14	1	1581.0	_	_
61484.0	72.0	14	2	1866.0	1242.0	_
254663.0	70. 7	14	2	1728.0	1670.0	_
447223.0	88.6	14	3	1636.0	1833.0	1069.0
642507.0	52.3	14	1	1606.0	_	_
37609.0	84.9	14	3	1433.0	1374.0	1753.0
231386.0	51.3	14	1	1601.0	_	_
423587.0	85. 5	14	3	1065.0	1913.0	1320.0
618920.0	64.7	14	1	1266.0	_	_
13875.0	81.5	14	2	1079.0	1813.0	_
206891.0	86.6	14	3	1486.0	1255.0	1334.0
400240.0	68.2	14	2	1745.0	1710.0	_
593533.0	81.2	14	2	1386.0	1927.0	_
788266.0	65. 7	14	1	1783.0	_	_
				1	-	

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
211440.0	93.8	12	3	1545.0	1362.0	1122.0
435667.0	64.2	12	1	1215.0	_	_
657730.0	77. 7	12	2	1395.0	1942.0	_
882848.0	51.0	12	1	1195.0	_	_
184439.0	65.3	12	1	1754.0	_	_
408220.0	53.6	12	1	1005.0	_	_
629512.0	89.9	12	3	1441.0	1579.0	1399.0
855292.0	59.2	12	1	1211.0	_	_
156867.0	72.2	12	2	1019.0	1016.0	_
378698.0	85.6	12	3	1938.0	1994.0	1860.0
603028.0	80.2	12	2	1096.0	1859.0	_
827803.0	65.6	12	1	1154.0	_	_
129359.0	65.2	12	1	1986.0	_	_
		1	<u> </u>	1	1	1

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
240534.0	76.1	19	2	1666.0	1842.0	_
394164.0	65.9	19	1	1425.0	_	_
545027.0	83.8	19	3	1436.0	1173.0	1084.0
69696.0	63.8	19	1	1228.0	_	_
222049.0	69.4	19	2	1097.0	1624.0	_
375035.0	63.3	19	1	1935.0	_	_
528126.0	64.9	19	1	1478.0	_	_
50737.0	68.2	19	2	1396.0	1408.0	_
202700.0	84. 7	19	3	1537.0	1075.0	1848.0
354347.0	88.1	19	3	1552.0	1978.0	1724.0
507709.0	73. 9	19	2	1926.0	1523.0	_
31932.0	68.6	19	2	1946.0	1270.0	_
184561.0	75.6	19	2	1061.0	1366.0	_
336230.0	95.0	19	3	1281.0	1705.0	1158.0
487455.0	98.5	19	3	1947.0	1950.0	1465.0
13146.0	96.6	19	3	1438.0	1432.0	1017.0
165260.0	99.1	19	3	1446.0	1216.0	1684.0
317979.0	73.5	19	2	1749.0	1422.0	_
471669.0	55. 7	19	1	1458.0	_	_

Type 5 Radar Waveform_24

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
845058.0	94.9	13	3	1030.0	1941.0	1499.0
199119.0	85.5	13	3	1878.0	1021.0	1854.0
405477.0	95.4	13	3	1856.0	1744.0	1937. 0
614579.0	50.6	13	1	1974.0	_	_
822756.0	65.9	13	1	1171.0	_	_
173910.0	74.9	13	2	1957. 0	1542.0	_
380560.0	98.2	13	3	1346.0	1726.0	1290.0
586699.0	83.9	13	3	1851.0	1665.0	1844.0
794252.0	84.0	13	3	1070.0	1271.0	1979.0
148702.0	56.0	13	1	1808.0	_	_
355172.0	99.9	13	3	1301.0	1166.0	1683.0
561513.0	85.2	13	3	1763.0	1583.0	1619.0
771710.0	58.4	13	1	1063.0	_	_
122801.0	86.8	13	3	1180.0	1774.0	1272.0
				1		1

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
420137.0	69. 7	9	2	1982.0	1923.0	_
684379.0	75.3	9	2	1936.0	1000.0	-
947735.0	69.6	9	2	1620.0	1904.0	-
124173.0	81.0	9	2	1549.0	1105.0	-
388030.0	67. 7	9	2	1382.0	1496.0	-
651638.0	67.1	9	2	1622.0	1713.0	-
916574.0	54.8	9	1	1951.0	-	-
91721.0	66.2	9	1	1964.0	-	-
355236.0	97.5	9	3	1012.0	1310.0	1442.0
620445.0	59.1	9	1	1056.0	-	_
882858.0	76.1	9	2	1676.0	1733.0	_
	_			-		1

Type 5 Radar Waveform_26

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
81441.0	53. 7	5	1	1664.0	-	_
444406.0	82.4	5	2	1498.0	1610.0	_
806524.0	89.8	5	3	1403.0	1969.0	1452.0
1171967.0	58. 7	5	1	1224.0	-	_
36619.0	91.5	5	3	1249.0	1560.0	1313.0
400039.0	62. 7	5	1	1793.0	-	_
762561.0	73. 1	5	2	1448.0	1992.0	_
1127158.0	62.0	5	1	1269.0	-	-

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
792731.0	74.5	13	2	1801.0	1169.0	_
189009.0	70. 7	13	2	1048.0	1909.0	_
382269.0	79. 7	13	2	1519.0	1538.0	_
575799.0	80.8	13	2	1641.0	1074.0	_
769985.0	65.2	13	1	1867. 0	_	_
165235.0	67.8	13	2	1006.0	1771.0	_
358213.0	88.9	13	3	1185.0	1372.0	1052.0
551903.0	71.3	13	2	1141.0	1687.0	_
744877.0	79.4	13	2	1286.0	1933.0	_
141414.0	81.0	13	2	1268.0	1535.0	_
335431.0	62.1	13	1	1203.0	_	_
527065.0	84.8	13	3	1770.0	1421.0	1181.0
722353.0	52.9	13	1	1806.0	_	_
117743.0	65.4	13	1	1819.0	_	_
310774.0	81.9	13	2	1686.0	1553.0	_
,						

Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
842378.0	55.8	6	1	1673.0	_	_
1164085.0	69.6	6	2	1516.0	1600.0	_
156516.0	78.8	6	2	1491.0	1377.0	_
479805.0	65.5	6	1	1176.0	-	-
801535.0	81.3	6	2	1742.0	1691.0	-
1125990.0	56.4	6	1	1170.0	-	-
116874.0	50.8	6	1	1677.0	-	_
439310.0	78. 7	6	2	1988.0	1300.0	-
761118.0	88. 1	6	3	1980.0	1488.0	1164.0
			1	 	T	1

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1083620.0	86.2	7	3	1339.0	1356.0	1630.0
77030.0	74.5	7	2	1296.0	1435.0	-
400104.0	62.1	7	1	1530.0	-	-
721892.0	92.6	7	3	1345.0	1073.0	1352.0
1046168.0	58.3	7	1	1459.0	-	-
37255.0	75.2	7	2	1822.0	1775.0	-
359518.0	92.5	7	3	1341.0	1661.0	1484.0
681800.0	93.4	7	3	1989.0	1037.0	1469.0
1005588.0	76.8	7	2	1229.0	1277.0	-

	Radar Type 6 - Radar	Statistical Performance	
Trail #	1=Detection	Trail #	1=Detection
	0=No Detection		0=No Detection
0	1	15	1
1	1	16	1
2	1	17	1
3	1	18	1
4	1	19	1
5	1	20	1
6	1	21	1
7	1	22	1
8	0	23	1
9	1	24	1
10	1	25	1
11	1	26	1
12	1	27	1
13	1	28	1
14	1	29	1
Detection Pe	ercentage (%)	96.	7%

Frequency List (MHz)	0	1	2	3	4
0	5676	5448	5410	5360	5424
5	5543	5406	5338	5621	5475
10	5293	5309	5418	5319	5322
15	5332	5569	5511	5654	5605
20	5617	5541	5618	5516	5453
25	5283	5491	5597	5334	5275
30	5562	5658	5273	5398	5343
35	5311	5486	5300	5657	5519
40	5550	5395	5351	5493	5263
45	5620	5585	5509	5572	5607
50	5589	5452	5632	5614	5696
55	5592	5373	5274	5488	5365
60	5376	5268	5326	5368	5333
65	5461	5722	5336	5414	5396
70	5370	5440	5403	5423	5329
75	5372	5549	5411	5537	5553
B0	5689	5551	5467	5515	5530
85	5631	5672	5526	5254	5711
90	5337	5709	5567	5524	5378
95	5375	5366	5717	5583	5347

Frequency List (MHz)	0	1	2	3	4
0	5456	5687	5346	5521	5266
5	5585	5331	5413	5309	5304
10	5602	5410	5350	5613	5340
15	5459	5672	5371	5516	5686
20	5482	5610	5489	5341	5625
25	5486	5692	5631	5473	5639
30	5519	5398	5522	5596	5402
35	5379	5550	5668	5358	5633
40	5333	5494	5490	5667	5600
45	5567	5397	5368	5451	5503
50	5495	5455	5461	5282	5650
55	5307	5543	5403	5653	5310
60	5713	5299	5438	5566	5275
65	5404	5640	5256	5525	5505
70	5400	5496	5366	5399	5372
75	5375	5353	5326	5318	5620
80	5374	5488	5271	5370	5454
85	5590	5251	5637	5577	5502
90	5531	5715	5412	5449	5568
95	5579	5273	5345	5306	5283

Type 6	Rad	ar Wave	form	2
--------	-----	---------	------	---

2.2					
Frequency List (MHz)	0	1	2	3	4
0	5614	5451	5282	5585	5486
5	5627	5353	5488	5472	5511
10	5533	5296	5391	5333	5361
15	5401	5586	5300	5504	5563
20	5524	5377	5520	5699	5462
25	5607	5477	5689	5321	5665
30	5515	5528	5476	5613	5674
35	5416	5493	5650	5703	5582
40	5294	5716	5271	5259	5487
45	5596	5580	5276	5625	5678
50	5284	5719	5554	5584	5278
55	5405	5470	5604	5400	5514
60	5532	5343	5255	5642	5600
65	5384	5292	5375	5623	5328
70	5577	5386	5499	5690	5322
75	5358	5663	5518	5334	5578
80	5631	5574	5309	5437	5485
85	5466	5370	5553	5443	5505
90	5531	5275	5254	5667	5721
95	5446	5331	5273	5634	5646
	1				

Type 6 Radar Waveform_3

Frequency List (MHz)	0	1	2	3	4
0	5394	5690	5693	5271	5328
5	5669	5278	5563	5538	5718
10	5464	5560	5432	5528	5382
15	5489	5616	5306	5549	5280
20	5532	5543	5461	5691	5435
25	5495	5426	5320	5425	5699
30	5557	5514	5433	5256	5448
35	5614	5663	5584	5446	5381
40	5496	5608	5421	5684	5499
45	5484	5428	5463	5359	5586
50	5595	5605	5673	5479	5252
55	5658	5558	5590	5683	5485
60	5661	5508	5675	5474	5330
65	5493	5648	5379	5682	5418
70	5606	5649	5372	5502	5539
75	5676	5317	5688	5308	5564
80	5315	5258	5644	5355	5473
85	5500	5385	5273	5710	5613
90	5470	5523	5357	5349	5480
95	5591	5285	5602	5689	5427

Type 6 Radar Waveforn	n 4
-----------------------	-----

 						
Frequency List (MHz)	0	1	2	3	4	
0	5649	5454	5629	5432	5548	
5	5333	5300	5638	5701	5547	
10	5298	5349	5473	5723	5403	
15	5577	5268	5409	5594	5569	
20	5443	5612	5402	5305	5408	
25	5286	5278	5523	5529	5258	
30	5696	5390	5471	5600	5434	
35	5327	5675	5339	5631	5507	
40	5447	5504	5622	5642	5481	
45	5357	5442	5644	5687	5436	
50	5656	5287	5302	5671	5371	
55	5512	5502	5359	5693	5673	
60	5717	5306	5373	5316	5597	
65	5318	5417	5688	5312	5343	
70	5455	5602	5388	5652	5276	
75	5560	5428	5707	5296	5510	
80	5279	5611	5637	5660	5382	
85	5478	5651	5552	5576	5255	
90	5338	5536	5272	5522	5355	
95	5394	5716	5269	5508	5654	
95	5394	5716	5269	5508	5654	

Frequency List (MHz)	0	1	2	3	4
0	5429	5693	5565	5593	5390
5	5375	5700	5713	5389	5279
10	5704	5613	5514	5346	5424
15	5665	5395	5512	5542	5286
20	5451	5303	5440	5297	5381
25	5649	5605	5251	5255	5292
30	5263	5347	5686	5374	5254
35	5466	5291	5610	5309	5421
40	5587	5560	5407	5478	5664
45	5423	5525	5702	5265	5701
50	5250	5680	5707	5473	5600
55	5518	5462	5495	5321	5330
60	5363	5662	5650	5319	5517
65	5546	5354	5724	5580	5590
70	5415	5441	5615	5628	5710
75	5529	5278	5277	5287	5392
80	5723	5379	5673	5651	5394
85	5539	5447	5681	5490	5544
90	5567	5687	5361	5258	5503
95	5324	5492	5340	5282	5720

1	2	3	4

Frequency List (MHz)	0	1	2	3	4
0	5684	5457	5501	5279	5610
5	5417	5722	5313	5552	5486
10	5635	5402	5652	5541	5445
15	5278	5522	5615	5587	5478
20	5459	5372	5381	5386	5354
25	5537	5554	5454	5359	5326
30	5305	5304	5426	5526	5452
35	5508	5479	5406	5462	5335
40	5600	5670	5498	5647	5572
45	5593	5403	5608	5663	5318
50	5588	5601	5283	5562	5423
55	5650	5420	5685	5301	5476
60	5528	5607	5265	5340	5495
65	5390	5375	5393	5584	5427
70	5705	5464	5604	5669	5401
75	5571	5421	5355	5539	5648
80	5311	5376	5333	5599	5542
85	5646	5317	5290	5377	5367
90	5388	5515	5275	5379	5521
95	5385	5540	5723	5534	5294

			1		1 1
Frequency List (MHz)	0	1	2	3	4
0	5367	5696	5437	5440	5452
5	5459	5647	5388	5618	5315
10	5469	5288	5693	5261	5466
15	5269	5649	5718	5632	5670
20	5370	5538	5322	5378	5327
25	5328	5406	5657	5463	5360
30	5444	5642	5544	5300	5272
35	5570	5677	5712	5346	5536
40	5375	5436	5412	5569	5522
45	5383	5691	5721	5371	5477
50	5557	5334	5651	5309	5363
55	5374	5400	5337	5605	5399
60	5686	5541	5329	5291	5267
65	5671	5656	5510	5708	5313
70	5580	5628	5467	5336	5316
75	5512	5429	5373	5588	5457
80	5650	5562	5259	5514	5495
85	5468	5585	5542	5422	5624
90	5292	5434	5403	5488	5263
95	5343	5471	5280	5530	5616
	1		1		1

		Type 6 Rada	r Waveform_8		
L	1		H		
Frequency List (MHz)	0	1	2	3	4
0	5622	5460	5373	5601	5672
5	5598	5669	5463	5306	5522
10	5400	5552	5259	5456	5487
15	5357	5679	5724	5677	5387
20	5378	5607	5360	5467	5300
25	5691	5355	5288	5567	5394
30	5486	5628	5693	5284	5452
35	5470	5311	5661	5570	5390
40	5260	5375	5458	5277	5555
45	5566	5354	5363	5299	5304
50	5424	5265	5353	5258	5385
55	5447	5253	5551	5328	5590
60	5631	5621	5383	5594	5681
65	5700	5254	5364	5393	5365
70	5501	5537	5474	5350	5496
75	5333	5637	5556	5587	5339
80	5336	5610	5317	5471	5525

Type 6 Radar Waveform_9

P		<u> </u>			
Frequency List (MHz)	0	1	2	3	4
0	5402	5699	5309	5665	5514
5	5640	5594	5538	5469	5254
10	5709	5341	5300	5651	5508
15	5445	5331	5352	5625	5579
20	5386	5298	5301	5459	5273
25	5482	5682	5491	5293	5428
30	5528	5517	5553	5499	5701
35	5290	5353	5277	5366	5543
40	5649	5689	5541	5690	5320
45	5563	5283	5721	5382	5265
50	5477	5530	5607	5434	5436
55	5451	5270	5575	5264	5282
60	5683	5450	5592	5388	5548
65	5539	5513	5623	5675	5565
70	5342	5304	5333	5332	5655
75	5422	5336	5486	5435	5546
80	5686	5359	5278	5723	5635
85	5466	5313	5597	5600	5360
90	5431	5585	5347	5500	5489
95	5603	5397	5393	5639	5423

Frequency	_				
Frequency List (MHz)	0	1	2	3	4
	5657	5463	5720	5351	5259
5	5682	5616	5613	5632	5558
10	5640	5605	5341	5274	5529
15	5533	5458	5455	5670	5296
20	5297	5367	5717	5548	5721
25	5370	5534	5694	5397	5462
30	5570	5406	5510	5714	5378
35	5488	5492	5368	5637	5318
40	5660	5528	5628	5560	5590
45	5701	5465	5323	5433	5417
50	5483	5610	5487	5540	5568
55	5519	5452	5711	5398	5647
60	5563	5420	5713	5484	5345
65	5449	5621	5388	5291	5340
70	5543	5699	5591	5468	5339
75	5411	5505	5655	5479	5324
80	5279	5500	5270	5722	5477
85	5267	5320	5263	5273	5645
90	5312	5551	5262	5326	5562
95	5330	5424	5379	5440	5599

Type	6 F	Radar	Wavet	form_11
------	-----	-------	-------	---------

Frequency List (MHz)	0	1	2	3	4
0	5340	5324	5656	5512	5576
5	5346	5541	5688	5698	5290
10	5571	5394	5382	5469	5550
15	5524	5585	5558	5715	5305
20	5533	5658	5540	5694	5636
25	5483	5422	5501	5496	5709
30	5392	5467	5357	5627	5308
35	5631	5556	5530	5471	5574
40	5464	5329	5566	5325	5654
45	5519	5681	5548	5381	5486
50	5682	5359	5311	5538	5629
55	5391	5366	5640	5665	5588
60	5466	5534	5549	5403	5526
65	5652	5275	5664	5589	5376
70	5375	5494	5261	5663	5551
75	5439	5562	5387	5527	5599
80	5260	5277	5283	5503	5641
85	5345	5264	5515	5263	5687
90	5608	5358	5655	5505	5510
95	5621	5252	5364	5306	5457

Frequency List (MHz)	0	1	2	3	4
0	5595	5563	5592	5673	5321
5	5388	5288	5386	5497	5405
10	5280	5423	5664	5571	5612
15	5712	5661	5663	5302	5313
20	5602	5696	5629	5667	5524
25	5335	5625	5605	5530	5276
30	5281	5424	5572	5401	5603
35	5295	5647	5326	5624	5488
40	5303	5412	5504	5468	5651
45	5448	5631	5342	5539	5569
50	5710	5487	5589	5718	5310
55	5256	5522	5285	5408	5678
60	5568	5471	5581	5610	5315
65	5585	5260	5537	5442	5411
70	5363	5496	5719	5513	5716
75	5529	5393	5284	5330	5261
80	5641	5668	5550	5620	5556
85	5283	5344	5417	5597	5398
90	5566	5500	5474	5709	5574
95	5579	5528	5400	5715	5446

1	1	1			
Frequency List (MHz)	0	1	2	3	4
0	5375	5327	5528	5359	5541
5	5430	5585	5363	5549	5704
10	5336	5544	5464	5384	5592
15	5700	5267	5667	5708	5494
20	5699	5293	5637	5621	5640
25	5412	5284	5256	5709	5564
30	5318	5645	5381	5312	5553
35	5326	5337	5263	5597	5399
40	5499	5617	5495	5442	5648
45	5280	5641	5714	5400	5489
50	5663	5332	5415	5632	5444
55	5476	5493	5579	5379	5258
60	5416	5413	5556	5613	5351
65	5417	5656	5342	5429	5523
70	5542	5260	5339	5382	5368
75	5364	5697	5306	5503	5540
80	5397	5471	5527	5371	5631
85	5488	5510	5531	5582	5603
90	5335	5448	5609	5588	5289
95	5655	5668	5558	5695	5719
	1				

		Type 6 Radar	Waveform_14		
Frequency List (E Hz)	0	1	2	3	4
0	5630	5566	5464	5520	5383
5	5472	5510	5438	5712	5533
10	5267	5333	5602	5579	5613
15	5313	5394	5295	5278	5686
20	5707	5459	5578	5710	5678
25	5611	5435	5598	5457	5631
30	5338	5527	5327	5621	5476
35	5354	5393	5552	5413	5456
40	5675	5380	5473	5645	5684
45	5322	5458	5721	5365	5364
50	5691	5518	5713	5576	5632
55	5430	5683	5301	5350	5461
60	5423	5361	5720	5325	5502
65	5339	5562	5290	5627	5548
70	5620	5501	5509	5545	5487
75	5315	5341	5337	5387	5702
80	5516	5321	5561	5534	5633
85	5722	5544	5310	5362	5453
90	5304	5272	5609	5369	5330
95	5605	5344	5639	5440	5259
T					

Type	6 R	adar	Wave	form_15
------	-----	------	------	---------

Frequency List (MHz)	0	1	2	3	4
0	5410	5330	5400	5681	5603
5	5611	5532	5513	5265	5576
10	5597	5643	5677	5634	5304
15	5521	5398	5323	5403	5715
20	5528	5616	5702	5586	5566
25	5463	5662	5539	5632	5499
30	5520	5295	5645	5479	5344
35	5615	5445	5286	5705	5327
40	5283	5318	5642	5516	5504
45	5405	5698	5511	5716	5540
50	5267	5607	5536	5423	5345
55	5384	5595	5321	5493	5588
60	5552	5723	5545	5637	5326
65	5459	5343	5670	5592	5336
70	5669	5300	5684	5507	5370
75	5659	5713	5626	5577	5250
80	5694	5630	5442	5447	5627
85	5654	5554	5515	5455	5560
90	5437	5306	5590	5255	5622
95	5399	5623	5464	5419	5362
1	1				

Frequency	0	1	2	3	4
List (MHz)	-			_	-
0	5568	5569	5336	5367	5445
5	5653	5457	5588	5466	5472
10	5507	5386	5684	5397	5655
15	5392	5648	5501	5271	5595
20	5626	5694	5557	5316	5559
25	5357	5412	5390	5643	5666
30	5541	5409	5252	5385	5253
35	5639	5657	5633	5480	5338
40	5706	5366	5634	5381	5261
4 5	5484	5488	5477	5654	5398
50	5495	5716	5318	5696	5262
55	5533	5491	5414	5670	5622
60	5278	5348	5481	5549	5363
65	5460	5362	5669	5613	5604
70	5267	5578	5660	5645	5259
75	5627	5513	5490	5358	5282
80	5637	5350	5469	5714	5649
85	5286	5703	5380	5602	5621
90	5340	5364	5454	5704	5301
95	5465	5436	5432	5426	5512
	1	1	1		1

Frequency List (MHz)	0	1	2	3	4
0	5348	5333	5272	5431	5665
5	5695	5479	5663	5629	5301
10	5341	5250	5592	5676	5480
15	5300	5604	5316	5312	5634
20	5288	5498	5308	5532	5720
25	5264	5593	5603	5680	5395
30	5684	5600	5405	5362	5321
35	5724	5353	5633	5252	5545
40	5546	5572	5621	5258	5374
45	5464	5571	5535	5707	5371
50	5417	5369	5310	5560	5689
55	5721	5292	5681	5611	5641
60	5276	5443	5293	5313	5472
65	5437	5661	5409	5501	5505
70	5407	5436	5564	5273	5509
75	5693	5622	5559	5718	5267
80	5274	5614	5481	5345	5624
85	5357	5350	5408	5677	5366
90	5520	5476	5578	5277	5257
95	5376	5656	5688	5260	5280

Type	6	Radar	Wave	form	18
------	---	-------	------	------	----

Frequency List (MHz)	0	1	2	3	4
0	5603	5572	5683	5592	5507
5	5262	5404	5263	5317	5508
10	5272	5536	5291	5312	5697
15	5568	5330	5610	5361	5504
20	5642	5454	5397	5505	5511
25	5688	5699	5473	5637	5722
30	5284	5641	5340	5654	5657
35	5460	5721	5311	5384	5629
40	5510	5386	5255	5681	5444
45	5593	5285	5550	5420	5496
50	5383	5633	5337	5396	5430
55	5612	5405	5608	5713	5620
60	5298	5480	5387	5358	5711
65	5300	5685	5276	5597	5652
70	5494	5295	5702	5519	5395
75	5645	5408	5621	5649	5253
80	5250	5640	5461	5594	5474
85	5724	5398	5457	5614	5485
90	5564	5672	5671	5357	5622
95	5562	5416	5385	5257	5528

Frequency List (MHz)	0	1	2	3	4
0	5383	5336	5619	5278	5252
5	5401	5426	5338	5480	5715
10	5678	5325	5332	5507	5718
15	5559	5457	5713	5406	5318
20	5553	5523	5477	5389	5478
25	5399	5540	5427	5577	5671
30	5289	5270	5598	5458	5331
35	5599	5431	5517	5464	5652
40	5698	5712	5448	5529	5610
45	5424	5262	5554	5340	5294
50	5471	5585	5681	5525	5675
55	5586	5724	5583	5534	5298
60	5280	5452	5588	5307	5373
65	5543	5667	5488	5677	5633
70	5279	5573	5611	5463	5415
75	5273	5680	5674	5397	5651
80	5334	5568	5521	5369	5631
85	5567	5700	5653	5462	5497
90	5596	5622	5261	5723	5496
95	5312	5628	5616	5299	5620

Frequency List (MHz)	0	1	2	3	4
0	5541	5575	5555	5439	5569
5	5443	5351	5413	5546	5544
10	5512	5589	5373	5605	5264
15	5647	5584	5341	5354	5510
20	5561	5689	5418	5478	5451
25	5287	5392	5630	5681	5705
30	5428	5634	5673	5580	5675
35	5641	5522	5313	5714	5566
40	5320	5386	5294	5724	5442
45	5404	5345	5612	5391	5702
50	5377	5470	5674	5407	5424
55	5713	5629	5301	5543	5457

Type 6 Radar Waveform_20

Frequency List (MHz)	0	1	2	3	4
0	5321	5339	5491	5600	5314
5	5485	5373	5488	5709	5276
10	5443	5378	5414	5325	5285
15	5260	5711	5444	5399	5702
20	5569	5283	5456	5470	5424
25	5553	5341	5358	5310	5264
30	5523	5512	5413	5257	5495
35	5305	5613	5584	5392	5480
40	5473	5500	5324	5534	5343
45	5371	5384	5428	5670	5492
50	5253	5646	5573	5288	5705
55	5271	5426	5583	5265	5695
60	5628	5645	5688	5348	5415
65	5612	5680	5585	5472	5605
70	5382	5529	5304	5655	5462
75	5642	5703	5617	5565	5694
80	5515	5284	5723	5465	5295
85	5530	5518	5614	5380	5273
90	5316	5638	5715	5346	5254
95	5721	5477	5408	5335	5401

Typ	e 6	Radar	Wave	form	22

Frequency List (MHz)	0	1	2	3	4
0	5576	5578	5427	5286	5631
5	5527	5298	5563	5397	5483
10	5374	5264	5552	5520	5306
15	5348	5266	5547	5444	5419
20	5480	5449	5559	5441	5668
25	5561	5511	5512	5509	5469
30	5628	5506	5693	5326	5477
35	5545	5394	5312	5583	5262
40	5299	5340	5300	5267	5608
45	5400	5379	5604	5347	5624
50	5474	5528	5690	5614	5537
55	5681	5399	5349	5318	5687
60	5649	5361	5435	5629	5287
65	5320	5275	5515	5688	5482
70	5607	5404	5488	5651	5605
75	5623	5630	5254	5479	5437
80	5686	5657	5260	5484	5669
85	5434	5376	5253	5423	5252
90	5460	5309	5327	5322	5359
95	5393	5430	5396	5280	5606

		1	1	1	
Frequency List (MHz)	0	1	2	3	4
0	5356	5342	5363	5447	5376
5	5666	5320	5638	5560	5312
10	5683	5528	5593	5715	5327
15	5339	5393	5553	5392	5611
20	5488	5615	5338	5551	5370
25	5707	5617	5667	5332	5554
30	5398	5426	5271	5658	5513
35	5486	5417	5273	5405	5626
40	5578	5442	5337	5607	5722
45	5691	5689	5453	5644	5480
50	5523	5675	5563	5351	5537
55	5491	5299	5378	5478	5483
60	5632	5352	5572	5307	5636
65	5323	5627	5419	5587	5674
70	5485	5359	5380	5620	5651
75	5604	5257	5265	5250	5418
80	5509	5296	5437	5374	5603
85	5535	5710	5382	5287	5305
90	5361	5477	5364	5311	5695
95	5614	5591	5428	5672	5391

		Type 6 Radar	Waveform_24		
Frequency List (MHz)	0	1	2	3	4
0	5611	5581	5299	5511	5693
5	5708	5720	5713	5626	5519
10	5614	5317	5634	5338	5348
15	5427	5520	5656	5437	5328
20	5496	5684	5279	5640	5343
25	5595	5469	5395	5719	5366
30	5287	5383	5486	5432	5711
35	5625	5508	5544	5473	5319
40	5465	5274	5516	5682	5334
45	5536	5702	5272	5506	5531
50	5259	5699	5251	5652	5552
55	5481	5515	5489	5672	5607
60	5648	5577	5659	5398	5253
65	5459	5527	5359	5362	5311
70	5356	5281	5660	5585	5683
75	5406	5589	5443	5412	5375
80	5582	5505	5409	5491	5340
85	5446	5709	5568	5690	5452
90	5400	5388	5565	5470	5494

Type 6 Radar Waveform_25

Frequency List (MHz)	0	1	2	3	4
0	5294	5345	5710	5672	5438
5	5275	5267	5313	5314	5251
10	5545	5581	5675	5533	5369
15	5515	5647	5284	5482	5520
20	5407	5375	5317	5632	5316
25	5386	5418	5598	5348	5400
30	5260	5273	5340	5701	5584
35	5531	5289	5599	5437	5626
40	5708	5401	5454	5447	5331
45	5368	5682	5382	5559	5321
50	5610	5302	5266	5328	5606
55	5679	5394	5690	5261	5338
60	5522	5491	5296	5660	5476
65	5298	5669	5537	5353	5646
70	5588	5532	5332	5268	5461
75	5563	5462	5663	5664	5388
80	5287	5649	5568	5406	5686
85	5718	5385	5661	5436	5540
90	5463	5650	5565	5258	5511
95	5474	5376	5674	5609	5618

١	ype	6	Radar	Wave	form_26	

Frequency List (MHz)	0	1	2	3	4
0	5549	5681	5646	5358	5280
5	5317	5667	5388	5477	5555
10	5379	5370	5716	5253	5390
15	5603	5299	5387	5527	5712
20	5415	5444	5258	5721	5289
25	5274	5270	5326	5434	5302
30	5637	5297	5441	5254	5428
35	5690	5708	5401	5719	5715
40	5537	5392	5590	5425	5662
45	5465	5291	5612	5683	5486
50	5479	5353	5355	5673	5272
55	5319	5256	5394	5688	5661
60	5293	5503	5564	5420	5622
65	5717	5386	5522	5334	5404
70	5376	5340	5381	5686	5702
75	5430	5508	5644	5498	5543
80	5338	5403	5406	5718	5257
85	5281	5494	5711	5373	5255
90	5497	5670	5329	5591	5625
95	5529	5360	5653	5448	5332

Frequency List (MHz)	0	1	2	3	4
0	5329	5445	5582	5519	5500
5	5456	5689	5463	5640	5287
10	5310	5634	5282	5448	5411
15	5594	5490	5475	5526	5423
20	5610	5674	5713	5359	5637
25	5597	5529	5653	5468	5441
30	5254	5559	5510	5549	5470
35	5403	5504	5554	5633	5620
40	5330	5355	5422	5701	5642
45	5548	5349	5665	5473	5362
50	5655	5404	5541	5496	5507
55	5685	5584	5632	5668	5509
60	5252	5663	5684	5471	5273
65	5711	5268	5618	5715	5691
70	5705	5662	5661	5302	5328
75	5651	5625	5693	5511	5324
80	5502	5316	5400	5698	5621
85	5544	5317	5269	5545	5484
90	5420	5503	5704	5589	5700
95	5344	5384	5535	5551	5530

Type	6	Radar	Waveform	28

Frequency List (MHz)	0	1	2	3	4
0	5584	5684	5518	5680	5342
5	5498	5614	5538	5706	5494
10	5619	5520	5323	5643	5432
15	5682	5456	5496	5718	5334
20	5679	5712	5327	5332	5428
25	5546	5635	5282	5502	5483
30	5512	5686	5299	5284	5369
35	5609	5300	5707	5547	5393
40	5325	5268	5595	5419	5533
45	5525	5631	5310	5621	5360
50	5616	5356	5455	5630	5697
55	5695	5639	5704	5506	5551
60	5358	5454	5559	5371	5410
65	5420	5309	5446	5421	5288
70	5701	5694	5457	5638	5620
75	5271	5351	5606	5470	5580
80	5666	5379	5397	5418	5524
85	5280	5665	5612	5499	5257
90	5391	5585	5509	5641	5471
95	5659	5425	5514	5654	5253

Frequency List (MHz)	0	1	2	3	4
0	5267	5448	5454	5366	5562
5	5540	5636	5613	5394	5701
10	5550	5309	5364	5266	5453
15	5295	5583	5599	5565	5435
20	5342	5370	5653	5319	5305
25	5316	5398	5363	5386	5536
30	5525	5401	5643	5514	5436
35	5567	5273	5585	5668	5482
40	5558	5707	5408	5681	5360
45	5416	5462	5505	5714	5368
50	5674	5625	5492	5532	5506
55	5719	5520	5385	5593	5489
60	5523	5477	5680	5399	5391
65	5672	5652	5708	5369	5345
70	5278	5430	5699	5687	5306
75	5614	5579	5618	5471	5365
80	5587	5722	5256	5361	5258
85	5539	5524	5325	5340	5285
90	5577	5686	5275	5515	5675
95	5346	5676	5694	5409	5655

Test Site	WZ-SR4	Test Engineer	Jake Lan					
Test Date	2023-10-12	2023-10-12						
Test Item	Radar Statistical Performance Check (802.11ax-HE80 – 5530MHz)							

		ı	Radar Type 1-4	- Radar Statisti	cal Performanc	е		
Trial	Radar	Type 1	Radar	Type 2	Radar	Type 3	Radar	Type 4
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect
	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect	(MHz)	0=no detect
0	5504	1	5566	0	5516	1	5533	1
1	5524	1	5550	1	5506	1	5501	1
2	5542	1	5522	1	5533	1	5523	1
3	5530	1	5491	1	5567	0	5529	1
4	5528	1	5511	0	5560	1	5562	1
5	5564	1	5546	0	5544	1	5520	1
6	5559	1	5517	1	5548	1	5519	1
7	5526	1	5530	1	5549	1	5506	1
8	5509	1	5525	1	5541	1	5558	1
9	5494	1	5501	1	5526	1	5531	1
10	5514	1	5492	1	5528	1	5567	1
11	5565	0	5515	1	5514	1	5542	1
12	5500	1	5564	1	5501	1	5491	1
13	5491	0	5546	1	5532	1	5549	1
14	5554	1	5557	1	5491	1	5562	1
15	5549	1	5512	1	5531	1	5515	1
16	5493	1	5540	1	5520	1	5559	1
17	5498	1	5534	1	5519	1	5560	1
18	5525	1	5513	1	5511	1	5504	1
19	5510	1	5561	1	5556	1	5501	1
20	5534	1	5513	1	5569	1	5494	1
21	5525	1	5504	1	5509	1	5552	1
22	5504	1	5549	1	5512	1	5526	1
23	5553	0	5542	1	5515	1	5569	1
24	5528	1	5551	1	5546	1	5548	1
25	5497	1	5543	1	5510	1	5542	1
26	5522	1	5567	1	5558	1	5507	1
27	5515	1	5561	1	5534	1	5505	1

Trial	Radar Type 1		Radar Type 2		Radar Type 3		Radar Type 4		
	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	Frequency	1=detect	
	(MHz)	0=no detect							
28	5569	1	5522	1	5552	1	5539	0	
29	5526	1	5569	1	5506	1	5564	1	
Probability:	90.0% 90.0%			0%	96.	7%	96.	96.7%	
Aggregate:	93.3% (>80%)								

<u> </u>						Radar Type 2 - Radar Waveform					
Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Humber of Pulses	Taveform Length (us)	Trial Id	Radar Type	Pulse Tidth (us)	PRI (us)	Number of Pulses	Tavefore Length (us)
)	Type 1	1.0	678.0	78	52884.0	0	Type 2	1.3	164.0	23	3772.0
Į.	Type 1	1.0	858.0	62	53196.0	1	Type 2	1.8	228.0	24	5472.0
2	Type 1	1.0	638.0	83	52954.0	2	Type 2	1.4	199.0	23	4577.0
3	Type 1	1.0	938.0	57	53466.0	3	Type 2	4.0	217.0	28	6076.0
1	Type 1	1.0	918.0	58	53244.0	4	Type 2	4.4	177.0	28	4956.0
5	Type 1	1.0	798. 0	67	53466.0	5	Type 2	2.2	196.0	25	4900.0
6	Type 1	1.0	838.0	63	52794.0	6	Type 2	1.1	159.0	23	3657.0
7	Type 1	1.0	598.0	89	53222.0	7	Type 2	4.5	209.0	29	6061.0
3	Type 1	1.0	738. 0	72	53136.0	8	Type 2	2.8	197.0	26	5122.0
9	Type 1	1.0	778.0	68	52904.0	9	Type 2	3.9	195.0	28	5460.0
10	Type 1	1.0	578.0	92	53176.0	10	Type 2	3.1	158.0	26	4108.0
11	Type 1	1.0	818.0	65	53170.0	11	Type 2	3. 7	213.0	27	5751.0
12	Type 1	1.0	518.0	102	52836.0	12	Type 2	2.6	167.0	25	4175.0
13	Type 1	1.0	538. 0	99	53262.0	13	Type 2	2.8	201.0	26	5226.0
14	Type 1	1.0	558.0	95	53010.0	14	Type 2	2.5	169.0	25	4225.0
15	Type 1	1.0	923.0	58	53534.0	15	Type 2	1.1	221.0	23	5083.0
16	Type 1	1.0	702.0	76	53352.0	16	Type 2	4.7	190.0	29	5510.0
17	Type 1	1.0	890.0	60	53400.0	17	Type 2	1.8	157.0	24	3768.0
18	Type 1	1.0	1658.0	32	53056.0	18	Type 2	3.8	188.0	27	5076.0
19	Type 1	1.0	576.0	92	52992.0	19	Type 2	1.0	212.0	23	4876.0
20	Type 1	1.0	1573.0	34	53482.0	20	Type 2	1.3	219.0	23	5037.0
21	Type 1	1.0	1682.0	32	53824.0	21	Type 2	1.9	206.0	24	4944.0
22	Type 1	1.0	2388.0	23	54924.0	22	Type 2	1.3	168.0	23	3864.0
23	Type 1	1.0	1201.0	44	52844.0	23	Type 2	3.1	178.0	26	4628.0
24	Type 1	1.0	1546.0	35	54110.0	24	Type 2	2.6	214.0	25	5350.0
25	Type 1	1.0	1646.0	33	54318.0	25	Type 2	1.4	181.0	23	4163.0
26	Type 1	1.0	537.0	99	53163.0	26	Type 2	4.9	182.0	29	5278.0
27	Type 1	1.0	663.0	80	53040.0	27	Type 2	3.0	160.0	26	4160.0
28	Type 1	1.0	2393.0	23	55039.0	28	Type 2	3.8	173.0	27	4671.0
29	Type 1	1.0	1989.0	27	53703.0	29	Type 2	1.3	183.0	23	4209.0

Radar Type 3 - Radar Waveform

Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Number of Pulses	Taveform Length (us)
0	Туре З	6.3	447.0	16	7152.0
1	Туре З	6.8	481.0	16	7696.0
2	Type 3	6.4	256.0	16	4096.0
3	Type 3	9.0	219.0	18	3942.0
4	Type 3	9.4	208.0	18	3744.0
5	Type 3	7. 2	383.0	16	6128.0
6	Type 3	6.1	322.0	16	5152.0
7	Type 3	9.5	317.0	18	5706.0
8	Type 3	7.8	204.0	17	3468.0
9	Type 3	8.9	430.0	18	7740.0
10	Type 3	8.1	432.0	17	7344.0
11	Type 3	8. 7	429.0	18	7722.0
12	Type 3	7.6	347.0	17	5899.0
13	Type 3	7.8	276.0	17	4692.0
14	Type 3	7.5	240.0	17	4080.0
15	Type 3	6.1	483.0	16	7728.0
16	Туре З	9. 7	444.0	18	7992.0
17	Туре З	6.8	404.0	16	6464.0
18	Туре З	8.8	307. 0	18	5526.0
19	Туре З	6.0	282.0	16	4512.0
20	Туре З	6.3	220.0	16	3520.0
21	Type 3	6.9	366.0	16	5856.0
22	Type 3	6.3	210.0	16	3360.0
23	Type 3	8.1	288.0	17	4896.0
24	Type 3	7.6	497.0	17	8449.0
25	Type 3	6.4	470.0	16	7520.0
26	Type 3	9.9	416.0	18	7488.0
27	Type 3	8.0	325.0	17	5525.0
28	Type 3	8.8	375.0	18	6750.0
29	Туре З	6.3	330.0	16	5280.0

Radar Type 4 - Radar Waveform

Trial Id	Radar Type	Pulse Vidth (us)	PRI (us)	Number of Pulses	Taveform Length (us)
0	Type 4	11.7	447.0	12	5364.0
1	Type 4	12.8	481.0	13	6253.0
2	Type 4	11.9	256.0	12	3072.0
3	Type 4	17.6	219.0	15	3285.0
4	Type 4	18.6	208.0	16	3328.0
5	Type 4	13. 7	383.0	13	4979.0
6	Type 4	11.2	322.0	12	3864.0
7	Type 4	18.8	317.0	16	5072.0
8	Type 4	15.0	204.0	14	2856.0
9	Type 4	17.5	430.0	15	6450.0
10	Type 4	15.6	432.0	14	6048.0
11	Type 4	17.1	429.0	15	6435.0
12	Type 4	14.5	347.0	13	4511.0
13	Type 4	15. 1	276.0	14	3864.0
14	Type 4	14.3	240.0	13	3120.0
15	Type 4	11.2	483.0	12	5796.0
16	Type 4	19.3	444.0	16	7104.0
17	Type 4	12.8	404.0	13	5252.0
18	Type 4	17.4	307.0	15	4605.0
19	Type 4	11.1	282.0	12	3384.0
20	Type 4	11.7	220.0	12	2640.0
21	Type 4	13.0	366.0	13	4758.0
22	Type 4	11.7	210.0	12	2520.0
23	Type 4	15.8	288.0	14	4032.0
24	Type 4	14.6	497.0	14	6958.0
25	Type 4	12.0	470.0	12	5640.0
26	Type 4	19.6	416.0	16	6656.0
27	Type 4	15.5	325.0	14	4550.0
28	Type 4	17.3	375.0	15	5625.0
29	Type 4	11.6	330.0	12	3960.0

	Radar Type 5 - Radar Statistical Performance								
Trail #	Test Freq. (MHz)	1=Detection	Trail #	Test Freq. (MHz)	1=Detection				
		0=No Detection			0=No Detection				
0	5530	0	15	5493	1				
1	5530	1	16	5498.6	1				
2	5530	1	17	5494.2	0				
3	5530	1	18	5497.4	1				
4	5530	1	19	5493	1				
5	5530	1	20	5566.6	0				
6	5530	0	21	5565.8	1				
7	5530	1	22	5566.6	1				
8	5530	1	23	5563.8	1				
9	5530	1	24	5564.6	1				
10	5496.2	1	25	5566.6	0				
11	5497	1	26	5561	1				
12	5495.4	1	27	5563.8	1				
13	5495.8	1	28	5562.6	1				
14	5495	1	29	5566.6	1				
D	etection Percentage (º	%)		83.3%					

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
436304.0	54.2	6	1	1023.0	-	-
759429.0	60.1	6	1	1027.0	_	_
1082422.0	55. 1	6	1	1190.0	_	-
73178.0	86.8	6	3	1503.0	1916.0	1171.0
395646.0	92.2	6	3	1508.0	1297.0	1092.0
719112.0	65.2	6	1	1980.0	-	-
1042103.0	51.5	6	1	1858.0	_	_
33455.0	93.0	6	3	1971.0	1771.0	1949.0
356132.0	72.0	6	2	1656.0	1486.0	_
		i	1	 	1	1

Type 5 Radar Waveform_1

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
610149.0	85.9	8	3	1793.0	1302.0	1148.0
901541.0	75. 6	8	2	1151.0	1254.0	-
1189813.0	83.6	8	3	1026.0	1966.0	1606.0
284625.0	69.8	8	2	1429.0	1944.0	-
574937.0	72.8	8	2	1850.0	1331.0	-
865179.0	68.3	8	2	1379.0	1836.0	-
1157397.0	51.2	8	1	1184.0	-	-
248744.0	95.8	8	3	1488.0	1014.0	1507.0
539986.0	60.4	8	1	1398.0	_	_
828539.0	85.3	8	3	1035.0	1607.0	1851.0
			 	<u> </u>		<u> </u>

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1245841.0	50.6	6	1	1704.0	_	_
237233.0	54.3	6	1	1365.0	-	-
560350.0	61.2	6	1	1192.0	-	-
883433.0	54.3	6	1	1198.0	-	-
1204718.0	76.8	6	2	1617.0	1568.0	-
197315.0	70.1	6	2	1199.0	1020.0	-
520369.0	55. 7	6	1	1664.0	-	-
841098.0	97.8	6	3	1885.0	1323.0	1997.0
1165951.0	75. 2	6	2	1029.0	1048.0	-

-					_
Ivpe	5 h	kadar	νvaν	/eform	3

Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
83120.0	84.8	16	3	1321.0	1041.0	1250.0
254363.0	53. 7	16	1	1063.0	_	_
423984.0	71.1	16	2	1839.0	1411.0	_
593014.0	88.8	16	3	1487.0	1482.0	1913.0
62134.0	77. 6	16	2	1968.0	1715.0	-
232642.0	77. 8	16	2	1144.0	1927.0	_
404007.0	63.4	16	1	1483.0	_	_
574057.0	74.6	16	2	1008.0	1442.0	-
41283.0	61.0	16	1	1511.0	-	-
212214.0	64. 7	16	1	1186.0	_	-
381353.0	83. 7	16	3	1706.0	1699.0	1039.0
551825.0	97. 7	16	3	1315.0	1081.0	1602.0
20200.0	74.9	16	2	1038.0	1895.0	-
190151.0	97.8	16	3	1662.0	1280.0	1967.0
360583.0	95.0	16	3	1637.0	1058.0	1389.0
532998.0	60.9	16	1	1167.0	_	_
703855.0	64. 7	16	1	1226.0	_	_

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
160564.0	63.1	18	1	1510.0	-	-
321268.0	68.1	18	2	1335.0	1451.0	_
482364.0	70.0	18	2	1449.0	1222.0	_
642899.0	67.2	18	2	1707.0	1485.0	_
140246.0	80.8	18	2	1726.0	1896.0	_
301920.0	61.0	18	1	1718.0	_	-
462373.0	76.8	18	2	1265.0	1627.0	_
622074.0	91.7	18	3	1874.0	1062.0	1325.0
120618.0	77.3	18	2	1351.0	1282.0	_
280827.0	98.8	18	3	1728.0	1169.0	1716.0
441540.0	93.1	18	3	1801.0	1518.0	1078.0
604836.0	55. 7	18	1	1455.0	_	_
100587.0	78.3	18	2	1948.0	1960.0	-
261634.0	66. 7	18	2	1339.0	1791.0	-
421827.0	86.4	18	3	1316.0	1784.0	1185.0
584107.0	67.5	18	2	1176.0	1253.0	-
80857.0	76.3	18	2	1992.0	1342.0	-
242413.0	58.2	18	1	1477.0	_	_
		 		1	1	1

Type 5 Radar Waveform_5

Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
660488.0	68.2	9	2	1587.0	1129.0	_
925530.0	64. 7	9	1	1397.0	_	_
99964.0	86.9	9	3	1430.0	1593.0	1575.0
364386.0	56.0	9	1	1735.0	_	_
626958.0	92.0	9	3	1138.0	1753.0	1594.0
892798.0	59.4	9	1	1621.0	_	_
67462.0	93. 7	9	3	1652.0	1933.0	1792.0
331102.0	90.2	9	3	1761.0	1268.0	1154.0
595454.0	81.1	9	2	1387.0	1358.0	_
859410.0	76. 7	9	2	1402.0	1290.0	-
35067.0	87. 6	9	3	1236.0	1127.0	1950.0

Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
411393.0	75. 7	5	2	1386.0	1573.0	-
775051.0	56.5	5	1	1840.0	-	_
1138541.0	66.3	5	1	1657.0	-	-
3586.0	93.5	5	3	1341.0	1683.0	1608.0
366947.0	62.1	5	1	1824.0	-	-
730335.0	57.0	5	1	1758.0	-	-
1091854.0	87.6	5	3	1859.0	1004.0	1431.0
1455741.0	77. 7	5	2	1284.0	1846.0	-
		 	+	 	 	+

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Mumber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
135490.0	58.0	18	1	1557.0	_	_
288153.0	53.9	18	1	1856.0	_	_
438801.0	92. 7	18	3	1312.0	1805.0	1710.0
591490.0	94.4	18	3	1079.0	1327.0	1697.0
116204.0	97. 1	18	3	1744.0	1292.0	1028.0
269698.0	50.3	18	1	1021.0	_	_
421542.0	79. 1	18	2	1142.0	1499.0	_
574180.0	70.4	18	2	1164.0	1367.0	_
97734.0	68.9	18	2	1034.0	1248.0	_
250192.0	82.8	18	2	1592.0	1109.0	_
401446.0	98.1	18	3	1625.0	1406.0	1651.0
553685.0	97.3	18	3	1783.0	1224.0	1452.0
78949.0	80.2	18	2	1147.0	1018.0	_
230883.0	98. 7	18	3	1013.0	1686.0	1419.0
383080.0	89.6	18	3	1122.0	1349.0	1618.0
535909.0	76. 7	18	2	1566.0	1769.0	_
59860.0	96.2	18	3	1629.0	1719.0	1803.0
212448.0	77.9	18	2	1360.0	1842.0	_
365841.0	57. 1	18	1	1494.0	_	-

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
756751.0	76.2	12	2	1919.0	1825.0	_
60514.0	60.6	12	1	1776.0	_	_
283453.0	73.5	12	2	1722.0	1696.0	_
505685.0	90. 7	12	3	1338.0	1675.0	1883.0
730464.0	80.0	12	2	1046.0	1214.0	_
32994.0	50.0	12	1	1687.0	-	_
256427.0	54.1	12	1	1806.0	_	_
479911.0	51.5	12	1	1717.0	-	_
701573.0	92.2	12	3	1324.0	1256.0	1490.0
5462.0	76. 7	12	2	1066.0	1747.0	_
229029.0	62.3	12	1	1308.0	_	_
452667.0	66.2	12	1	1145.0	-	-
675681.0	59.6	12	1	1940.0	_	_

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
684313.0	98.8	16	3	1595.0	1249.0	1942.0
153269.0	89.9	16	3	1898.0	1396.0	1423.0
323886.0	68.3	16	2	1767.0	1732.0	_
495618.0	54.2	16	1	1535.0	_	_
665262.0	75.6	16	2	1373.0	1412.0	_
132669.0	70.4	16	2	1546.0	1334.0	_
302695.0	89.8	16	3	1083.0	1135.0	1762.0
474902.0	55.6	16	1	1052.0	_	_
645613.0	62.8	16	1	1305.0	_	_
111319.0	89. 1	16	3	1724.0	1800.0	1547.0
282210.0	74.8	16	2	1348.0	1426.0	_
453322.0	57.3	16	1	1864.0	_	_
623267.0	83.0	16	2	1680.0	1089.0	_
90607.0	79.5	16	2	1978.0	1354.0	_
261497.0	57.4	16	1	1988.0	_	_
431045.0	77. 1	16	2	1987.0	1905.0	_
602735.0	67.0	16	2	1044.0	1173.0	_

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
84492.0	89. 7	13	3	1435.0	1450.0	1624.0
291477.0	97.3	13	3	1197.0	1076.0	1666.0
497728.0	84.2	13	3	1879.0	1954.0	1266.0
704490.0	100.0	13	3	1796.0	1946.0	1218.0
59256.0	61.3	13	1	1098.0	_	_
266201.0	67.0	13	2	1378.0	1878.0	_
472316.0	84.5	13	3	1559.0	1926.0	1537. 0
681840.0	63.3	13	1	1436.0	_	_
33652.0	62. 7	13	1	1852.0	_	_
240313.0	94.3	13	3	1891.0	1245.0	1463.0
447412.0	93.0	13	3	1446.0	1180.0	1344.0
653297.0	98.8	13	3	1760.0	1688.0	1872.0
8079.0	87.0	13	3	1108.0	1100.0	1956.0
214685.0	93. 7	13	3	1823.0	1471.0	1937. 0
		1		1	1	1

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
370133.0	56.6	15	1	1554.0	_	_
551852.0	66.6	15	1	1286.0	_	_
730802.0	88.4	15	3	1277.0	1560.0	1140.0
165552.0	98.5	15	3	1527.0	1421.0	1756.0
346585.0	90.3	15	3	1770.0	1001.0	1340.0
528086.0	80.3	15	2	1663.0	1600.0	_
708246.0	85.3	15	3	1440.0	1433.0	1388.0
143861.0	51.1	15	1	1714.0	_	_
324773.0	75.8	15	2	1194.0	1833.0	_
504862.0	88. 1	15	3	1838.0	1371.0	1407.0
688289.0	51.4	15	1	1737.0	_	_
121622.0	63.4	15	1	1005.0	_	_
302636.0	71.5	15	2	1337.0	1251.0	_
482493.0	98.8	15	3	1422.0	1695.0	1655.0
664059.0	83.3	15	2	1925.0	1920.0	_
98857.0	97.0	15	3	1361.0	1107.0	1476.0

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
345191.0	70.6	11	2	1516.0	1143.0	_
567032.0	96.8	11	3	1979.0	1827.0	1103.0
791188.0	74. 4	11	2	1636.0	1562.0	_
94355.0	75. 2	11	2	1745.0	1972.0	_
317021.0	87. 1	11	3	1272.0	1765.0	1572.0
541603.0	65.0	11	1	1504.0	_	_
763498.0	82.0	11	2	1574.0	1876.0	_
67056.0	59. 7	11	1	1443.0	_	_
289313.0	87.4	11	3	1915.0	1818.0	1731.0
513669.0	72.8	11	2	1104.0	1123.0	_
735401.0	83.9	11	3	1474.0	1115.0	1640.0
39405.0	90.9	11	3	1329.0	1319.0	1540.0
263090.0	62.8	11	1	1296.0	_	_

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
485486.0	76. 1	12	2	1816.0	1685.0	_
707941.0	96.9	12	3	1162.0	1408.0	1673.0
11994.0	56.8	12	1	1042.0	_	_
235187.0	75.9	12	2	1298.0	1428.0	_
457912.0	95.5	12	3	1174.0	1244.0	1289.0
681438.0	68.2	12	2	1071.0	1894.0	_
902140.0	90.8	12	3	1893.0	1903.0	1665.0
207472.0	94. 7	12	3	1175.0	1112.0	1414.0
430665.0	81.0	12	2	1928.0	1313.0	_
653614.0	67.1	12	2	1556.0	1882.0	_
875938.0	96.9	12	3	1458.0	1541.0	1191.0
180228.0	81.7	12	2	1036.0	1532.0	_
402733.0	88.5	12	3	1943.0	1213.0	1116.0
		1	1	 	1	1

Type 5 Radar Waveform 14	Type 5 R	adar Wa	eveform	14
--------------------------	----------	---------	---------	----

Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
678758.0	71.5	10	2	1390.0	1689.0	_
919475.0	96.2	10	3	1709.0	1255.0	1271.0
165180.0	98.5	10	3	1886.0	1120.0	1439.0
406394.0	98.0	10	3	1910.0	1501.0	1620.0
647831.0	95.6	10	3	1437.0	1545.0	1855.0
889314.0	85. 7	10	3	1196.0	1974.0	1528.0
135529.0	80.1	10	2	1985.0	1790.0	_
377976.0	65. 7	10	1	1580.0	_	_
619370.0	73. 7	10	2	1611.0	1183.0	_
859221.0	96.2	10	3	1195.0	1936.0	1983.0
105893.0	74.4	10	2	1505.0	1086.0	_
348206.0	61.7	10	1	1417.0	_	_
			 	 		†

Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
886016.0	56.5	5	1	1405.0	-	-
1247438.0	91.6	5	3	1345.0	1328.0	1172.0
114061.0	84.6	5	3	1887.0	1634.0	1456.0
477262.0	78.6	5	2	1479.0	1583.0	-
841008.0	61.0	5	1	1830.0	-	-
1204039.0	67.5	5	2	1181.0	1051.0	-
69429.0	96.4	5	3	1141.0	1922.0	1262.0
431894.0	94.4	5	3	1899.0	1773.0	1632.0

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Mumber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
333197.0	88.3	19	3	1539.0	1957.0	1163.0
485402.0	99. 7	19	3	1821.0	1536.0	1099.0
10366.0	91.3	19	3	1961.0	1538.0	1563.0
162455.0	94.6	19	3	1294.0	1867. 0	1366.0
314805.0	87.5	19	3	1247.0	1465.0	1276.0
467794.0	76. 1	19	2	1738.0	1204.0	_
620585.0	80.5	19	2	1441.0	1170.0	_
143657.0	92.5	19	3	1777.0	1420.0	1615.0
297315.0	52.3	19	1	1320.0	_	_
447443.0	89. 7	19	3	1472.0	1862.0	1807.0
601014.0	79.6	19	2	1908.0	1519.0	_
125409.0	77.6	19	2	1274.0	1150.0	_
276948.0	93.5	19	3	1525.0	1492.0	1785.0
429203.0	98.6	19	3	1844.0	1134.0	1470.0
580769.0	93.5	19	3	1826.0	1283.0	1914.0
106129.0	85.9	19	3	1935.0	1932.0	1415.0
259782.0	61.3	19	1	1019.0	_	_
409861.0	89.5	19	3	1514.0	1870.0	1991.0
564017.0	77.3	19	2	1077.0	1754.0	_

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
166872.0	98.2	8	3	1647.0	1285.0	1533.0
457854.0	60.8	8	1	1779.0	_	-
746899.0	97.1	8	3	1481.0	1300.0	1496.0
1039053.0	52.4	8	1	1794.0	-	-
131530.0	50.6	8	1	1055.0	-	-
421308.0	82.5	8	2	1921.0	1984.0	-
712746.0	64.1	8	1	1642.0	-	-
1001110.0	88.9	8	3	1202.0	1384.0	1772.0
95616.0	76. 7	8	2	1056.0	1209.0	-
386329.0	56.2	8	1	1570.0	_	-

1043.0

1311.0

505632.0

674372.0

142891.0

312169.0

63.4

84.0

66.5

96.8

	Type 5 Radai Wavelollii_To									
Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)				
397951.0	66.0	16	1	1413.0	_	_				
567178.0	69.9	16	2	1834.0	1596.0	_				
35054.0	99. 7	16	3	1368.0	1751.0	1072.0				
206109.0	50.4	16	1	1208.0	_	_				
375647.0	87.4	16	3	1267.0	1128.0	1370.0				
547506.0	50.2	16	1	1742.0	_	_				
14117.0	71.9	16	2	1260.0	1678.0	_				
185088.0	54.8	16	1	1091.0	_	_				
355928.0	53.9	16	1	1278.0	_	_				
526423.0	60.4	16	1	1804.0	_	_				
695872.0	69.4	16	2	1641.0	1489.0	_				
163882.0	55.2	16	1	1739.0	_	_				
333085.0	87. 7	16	3	1969.0	1513.0	1569.0				

1466.0

1303.0

1521.0

1964.0

1310.0

1730.0

Type 5 Radar Waveform_19

16

16

16

16

Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1030275.0	68.2	5	2	1205.0	1146.0	-
1394135.0	57.9	5	1	1671.0	_	_
258885.0	98.1	5	3	1025.0	1157.0	1293.0
621632.0	98.8	5	3	1369.0	1221.0	1382.0
985086.0	67.3	5	2	1243.0	1787.0	-
1347632.0	71.6	5	2	1809.0	1795.0	_
213994.0	90.2	5	3	1012.0	1812.0	1931.0
576898.0	98.3	5	3	1212.0	1235.0	1633.0

Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
83.6	6	3	1061.0	1468.0	1900.0
91.2	6	3	1364.0	1996.0	1854.0
97.2	6	3	1016.0	1534.0	1749.0
90. 7	6	3	1952.0	1228.0	1848.0
62.1	6	1	1755.0	-	-
73.3	6	2	1054.0	1189.0	-
87.3	6	3	1736.0	1766.0	1681.0
53.8	6	1	1517.0	-	_
86.2	6	3	1385.0	1835.0	1102.0
	91.2 97.2 90.7 62.1 73.3 87.3 53.8	Fulse Fidth (us) Fidth (IIII 1 1 1 1 1 1 1 1 1	Pulses per Pul	Fulse Width (us) Tidth (Hz) Pulses per Burst PRI-1 (us) 83.6 6 3 1061.0 91.2 6 3 1364.0 97.2 6 3 1016.0 90.7 6 3 1952.0 62.1 6 1 1755.0 73.3 6 2 1054.0 87.3 6 3 1736.0 53.8 6 1 1517.0	Pulses per Burst PRI-1 (us) PRI-2 (us)

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
969826.0	86.3	8	3	1381.0	1635.0	1088.0
64050.0	69. 7	8	2	1601.0	1057.0	-
354123.0	80.0	8	2	1877.0	1861.0	-
644312.0	77.2	8	2	1649.0	1981.0	-
935867.0	56.1	8	1	1841.0	_	_
28237.0	98.4	8	3	1377.0	1810.0	1299.0
318489.0	71.6	8	2	1682.0	1667.0	-
608779.0	81.0	8	2	1653.0	1571.0	-
900642.0	57.4	8	1	1084.0	-	-
1188604.0	79.0	8	2	1998.0	1917.0	-

Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
314691.0	57.9	6	1	1457.0	-	-
636366.0	93.0	6	3	1409.0	1543.0	1318.0
959788.0	73. 1	6	2	1238.0	1531.0	_
1280846.0	83. 7	6	3	1281.0	1220.0	1976.0
274575.0	68.4	6	2	1427.0	1614.0	-
596637.0	84. 1	6	3	1454.0	1156.0	1712.0
918637.0	85. 7	6	3	1814.0	1868.0	1114.0
1241189.0	96.0	6	3	1124.0	1363.0	1945.0
234879.0	80.9	6	2	1702.0	1080.0	-
			1	1		1

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
357987.0	78.6	13	2	1604.0	1275.0	_
565874.0	57. 4	13	1	1819.0	_	_
770807.0	98.8	13	3	1317.0	1599.0	1679.0
124964.0	98.3	13	3	1597.0	1720.0	1721.0
332960.0	59.4	13	1	1610.0	-	-
540792.0	52.1	13	1	1075.0	-	-
747608.0	53. 7	13	1	1999.0	-	-
99878.0	59.0	13	1	1866.0	-	-
307135.0	74. 7	13	2	1050.0	1304.0	_
514714.0	64.2	13	1	1911.0	-	-
720143.0	91.8	13	3	1040.0	1939.0	1291.0
74136.0	87.2	13	3	1149.0	1464.0	1462.0
281369.0	82.1	13	2	1815.0	1234.0	-
489485.0	51.3	13	1	1352.0	-	_
			 	†		

Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
750640.0	51.4	11	1	1480.0	_	_
52468.0	77.2	11	2	1901.0	1178.0	_
276098.0	64.3	11	1	1404.0	_	_
497653.0	86. 6	11	3	1811.0	1424.0	1820.0
722359.0	69.6	11	2	1273.0	1161.0	_
25036.0	62.0	11	1	1152.0	_	_
248609.0	59.6	11	1	1237.0	_	_
471264.0	76. 4	11	2	1070.0	1962.0	_
694997.0	67.8	11	2	1126.0	1121.0	_
919235.0	59.9	11	1	1336.0	_	_
220164.0	92. 7	11	3	2000.0	1498.0	1512.0
443806.0	82.3	11	2	1332.0	1643.0	_
667785.0	55.2	11	1	1837.0	_	_

Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
1288088.0	60.4	6	1	1849.0	_	_
279699.0	57.5	6	1	1045.0	-	-
601773.0	78.8	6	2	1693.0	1668.0	-
925808.0	56.6	6	1	1239.0	-	_
1247220.0	76. 4	6	2	1743.0	1269.0	_
239518.0	77. 4	6	2	1909.0	1242.0	_
562711.0	56.3	6	1	1775.0	-	-
885020.0	75. 2	6	2	1356.0	1375.0	-
1207743.0	78.8	6	2	1493.0	1227.0	-

Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
89440.0	87.6	20	3	1350.0	1582.0	1555.0
234333.0	71.5	20	2	1438.0	1873.0	_
379540.0	70.5	20	2	1015.0	1523.0	-
524238.0	75.0	20	2	1353.0	1418.0	_
72026. 0	52.3	20	1	1357.0	_	_
216056.0	89.4	20	3	1977. 0	1000.0	1576.0
360383.0	97.0	20	3	1860.0	1727.0	1111.0
506366.0	66. 7	20	2	1359.0	1448.0	_
54149.0	65.6	20	1	1288.0	_	_
198253.0	91.9	20	3	1432.0	1561.0	1605.0
343569.0	75.8	20	2	1813.0	1200.0	-
487004.0	91.6	20	3	1757.0	1548.0	1362.0
36160.0	71.6	20	2	1060.0	1918.0	_
181503.0	56.5	20	1	1177.0	_	_
326473.0	54.1	20	1	1658.0	_	_
469297.0	97.5	20	3	1322.0	1694.0	1552.0
18356.0	66.1	20	1	1941.0	_	_
162558.0	83.9	20	3	1082.0	1995.0	1963.0
307515.0	71.3	20	2	1857.0	1902.0	_
453705.0	52.2	20	1	1672.0	_	_

ı	1	ı	I			
Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
698.0	89. 7	13	3	1661.0	1768.0	1131.0
207570.0	88.9	13	3	1017.0	1223.0	1934.0
415879.0	55.6	13	1	1216.0	_	_
622350.0	77.2	13	2	1193.0	1558.0	_
827908.0	97.0	13	3	1740.0	1711.0	1009.0
182053.0	93.4	13	3	1065.0	1530.0	1741.0
390229.0	51.4	13	1	1391.0	_	_
595518.0	95.9	13	3	1473.0	1445.0	1705.0
804815.0	57.6	13	1	1930.0	_	_
157017.0	65.4	13	1	1938.0	_	_
364787.0	59. 7	13	1	1101.0	_	_
571595.0	75. 7	13	2	1258.0	1053.0	_
778566.0	76. 1	13	2	1520.0	1179.0	_
131317.0	72. 7	13	2	1139.0	1780.0	_

Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
277557.0	89. 7	16	3	1788.0	1822.0	1828.0
447931.0	92.8	16	3	1650.0	1847.0	1168.0
620834.0	66.0	16	1	1447.0	_	_
86919.0	94. 7	16	3	1467.0	1033.0	1589.0
258178.0	59. 7	16	1	1217.0	_	_
428072.0	70.2	16	2	1031.0	1845.0	-
598051.0	79.4	16	2	1691.0	1798.0	_
66243.0	51.0	16	1	1011.0	-	_
236036.0	94.4	16	3	1973.0	1257.0	1229.0
407802.0	50.8	16	1	1612.0	-	_
578316.0	56.4	16	1	1970.0	-	_
45175.0	63. 7	16	1	1165.0	_	_
215191.0	88.8	16	3	1622.0	1022.0	1459.0
387023.0	51.0	16	1	1137.0	-	_
556617.0	74.6	16	2	1287.0	1529.0	_
24098.0	59.1	16	1	1888.0	_	_
194973.0	60.3	16	1	1401.0	_	_
-						

Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Mumber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
776836.0	93.6	6	3	1166.0	1613.0	1270.0
1139345.0	85. 1	6	3	1355.0	1314.0	1782.0
6518.0	73. 0	6	2	1703.0	1623.0	-
369333.0	89. 1	6	3	1646.0	1113.0	1279.0
732172.0	98. 7	6	3	1380.0	1024.0	1591.0
1096967.0	65.8	6	1	1309.0	-	-
1457682.0	93.4	6	3	1676.0	1069.0	1400.0
324861.0	78. 1	6	2	1383.0	1648.0	_

	Radar Type 6 - Radar	Statistical Performance	
Trail #	1=Detection	Trail #	1=Detection
	0=No Detection		0=No Detection
0	1	15	1
1	1	16	1
2	1	17	1
3	1	18	1
4	1	19	1
5	1	20	1
6	1	21	1
7	1	22	1
8	1	23	1
9	1	24	1
10	1	25	1
11	1	26	1
12	1	27	1
13	1	28	1
14	1	29	1
Detection Pe	ercentage (%)	100	.0%

_				_
Type	6 Rad	dar W	/avefc	rm_0

Frequency					
List (MHz)	0	1	2	3	4
0	5539	5580	5593	5290	5397
5	5321	5668	5710	5500	5407
10	5386	5605	5468	5608	5576
15	5565	5403	5571	5252	5505
20	5674	5477	5594	5369	5480
25	5686	5657	5654	5724	5547
30	5670	5558	5357	5690	5387
35	5338	5598	5399	5535	5652
40	5648	5495	5590	5641	5372
45	5489	5692	5486	5432	5274
50	5381	5631	5463	5421	5278
55	5604	5568	5478	5484	5308
60	5620	5300	5566	5262	5428
65	5677	5627	5519	5675	5373
70	5707	5633	5601	5623	5358
75	5447	5312	5515	5639	5523
80	5618	5524	5451	5574	5313
85	5719	5511	5334	5517	5628
90	5317	5591	5611	5534	5530
95	5585	5431	5481	5513	5499

Frequency List (MHz)	0	1	2	3	4
0	5319	5344	5529	5451	5617
5	5363	5690	5310	5663	5614
10	5317	5394	5509	5328	5597
15	5693	5595	5296	5448	5385
20	5260	5671	5712	5469	5567
25	5257	5391	5683	5315	5691
30	5696	5613	5504	5410	5332
35	5652	5354	5478	5609	5276
40	5313	5374	5586	5519	5621
45	5455	5547	5270	5686	5450
50	5470	5454	5707	5720	5697
55	5643	5429	5446	5343	5292
60	5367	5412	5422	5322	5708
65	5661	5376	5556	5560	5592
70	5590	5293	5670	5401	5307
75	5587	5294	5724	5682	5306
80	5379	5288	5668	5318	5323
85	5625	5510	5628	5589	5611
90	5475	5467	5534	5425	5576
95	5250	5397	5549	5601	5477
1	1	1	1	1	

Frequency	0	1	2	3	4
List (MHz)	U	1	2	3	4
0	5574	5583	5465	5515	5459
5	5502	5712	5385	5351	5346
10	5626	5658	5550	5523	5618
15	5306	5722	5399	5396	5577
20	5268	5265	5653	5558	5540
25	5620	5718	5411	5419	5250
30	5360	5461	5528	5484	5375
35	5493	5666	5405	5429	5324
40	5688	5343	5524	5500	5302
45	5601	5538	5508	5323	5638
50	5562	5501	5559	5277	5254
55	5322	5661	5509	5551	5691
60	5333	5374	5544	5272	5289
65	5635	5403	5719	5314	5600
70	5305	5269	5476	5585	5519
75	5464	5598	5258	5274	5447
80	5287	5657	5445	5489	5594
85	5566	5267	5498	5344	5339
90	5441	5376	5483	5329	5295
95	5695	5645	5644	5595	5373

Frequency List (MHz)	0	1	2	3	4
0	5354	5347	5401	5676	5679
5	5544	5637	5460	5417	5650
10	5557	5447	5591	5621	5639
15	5394	5374	5502	5441	5294
20	5654	5431	5594	5550	5513
25	5411	5667	5517	5620	5284
30	5402	5488	5418	5268	5258
35	5670	5535	5282	5298	5713
40	5527	5426	5462	5643	5299
45	5280	5581	5566	5376	5428
50	5438	5327	5552	5648	5575
55	5576	5510	5615	5699	5370
60	5662	5480	5498	5416	5710
65	5316	5584	5439	5551	5306
70	5474	5255	5479	5254	5561
75	5478	5433	5718	5304	5300
80	5538	5335	5442	5684	5505
85	5705	5593	5687	5293	5689
90	5574	5432	5596	5652	5329
95	5579	5271	5328	5265	5346

Frequency List (MHz)	0	1	2	3	4
0	5609	5683	5337	5362	5521
5	5586	5659	5535	5580	5382
10	5488	5333	5254	5341	5660
15	5385	5501	5508	5486	5662
20	5500	5632	5639	5299	5519
25	5720	5724	5318	5444	5377
30	5375	5483	5410	5393	5674
35	5373	5569	5357	5627	5366
40	5606	5400	5408	5296	5684
45	5464	5704	5624	5429	5315
50	5314	5503	5603	5359	5301
55	5520	5698	5472	5414	5664
60	5536	5512	5663	5361	5496
65	5656	5517	5533	5378	5286
70	5379	5584	5546	5716	5482
75	5481	5537	5437	5305	5266
80	5447	5711	5476	5694	5702
85	5398	5342	5497	5347	5290
90	5310	5652	5344	5462	5394
95	5338	5438	5630	5279	5644

Frequency List (MHz)	0	1	2	3	4
0	5292	5447	5273	5523	5266
5	5628	5584	5610	5268	5589
10	5322	5597	5295	5536	5681
15	5473	5611	5434	5678	5670
20	5666	5573	5631	5459	5565
25	5468	5448	5353	5352	5583
30	5363	5332	5698	5659	5688
35	5338	5464	5365	5510	5638
40	5302	5689	5648	5293	5516
45	5444	5312	5585	5385	5580
50	5568	5679	5654	5599	5367
55	5314	5426	5507	5483	5641
60	5306	5515	5419	5699	5340
65	5482	5414	5593	5271	5387
70	5715	5324	5582	5330	5416
75	5396	5274	5386	5493	5692
80	5253	5520	5475	5391	5461
85	5339	5696	5400	5664	5502
90	5298	5710	5592	5503	5567
95	5319	5450	5318	5334	5644
	1				

Frequency List (MHz)	0	1	2	3	4
0	5547	5686	5684	5583	5292
5	5606	5685	5431	5418	5253
10	5386	5336	5256	5702	5561
15	5658	5714	5479	5395	5581
20	5357	5514	5720	5432	5453
25	5320	5651	5457	5625	5252
30	5289	5341	5411	5477	5555
35	5258	5663	5552	5616	5297
40	5654	5413	5290	5445	5424
45	5643	5438	5467	5444	5380
50	5705	5537	5422	5311	5502
55	5697	5680	5478	5295	5518
60	5251	5645	5541	5450	5328
65	5665	5312	5310	5585	5392
70	5355	5621	5506	5636	5673
75	5505	5533	5458	5416	5400
80	5603	5313	5597	5485	5349
85	5483	5412	5668	5601	5676
90	5559	5335	5389	5628	5440
95	5574	5562	5360	5372	5423
	1		1	l	

Frequency List (MHz)	0	1	2	3	4
0	5327	5450	5620	5370	5328
5	5334	5531	5285	5497	5625
10	5562	5650	5377	5451	5723
15	5649	5310	5342	5524	5587
20	5589	5426	5552	5405	5719
25	5647	5379	5561	5420	5667
30	5616	5721	5556	5585	5706
35	5519	5268	5529	5438	5466
40	5455	5477	5592	5384	5277
45	5404	5478	5701	5491	5257
50	5320	5281	5626	5720	5633
55	5690	5412	5499	5449	5424
60	5683	5293	5276	5546	5591
65	5364	5380	5389	5635	5433
70	5468	5481	5296	5685	5503
75	5368	5314	5590	5682	5654
80	5660	5643	5512	5622	5684
85	5333	5611	5303	5445	5353
90	5256	5610	5358	5553	5538
95	5461	5571	5352	5444	5709

2.4		L	L	L	L
Frequency List (MHz)	0	1	2	3	4
0	5582	5689	5556	5531	5645
5	5376	5553	5360	5660	5357
10	5493	5439	5418	5549	5269
15	5262	5437	5445	5569	5401
20	5597	5592	5326	5378	5607
25	5596	5485	5287	5454	5331
30	5602	5678	5296	5526	5658
35	5359	5325	5591	5477	5294
40	5560	5530	5321	5381	5681
45	5384	5561	5662	5544	5619
50	5671	5257	5332	5715	5446
55	5577	5403	5288	5318	5323
60	5373	5713	5583	5469	5634
65	5565	5329	5425	5370	5703
70	5649	5282	5688	5255	5344
75	5273	5462	5271	5350	5278
80	5293	5311	5272	5330	5428
85	5336	5409	5354	5407	5430
90	5523	5559	5572	5343	5680
95	5466	5499	5693	5333	5504

i		i	i	i	
Frequency List (MHz)	0	1	2	3	4
0	5265	5453	5492	5692	5390
5	5515	5478	5338	5348	5661
10	5424	5325	5459	5269	5290
15	5253	5564	5451	5517	5593
20	5508	5434	5415	5351	5398
25	5448	5688	5391	5488	5373
30	5491	5635	5511	5724	5322
35	5450	5596	5705	5643	5468
40	5561	5378	5610	5364	5644
45	5720	5597	5409	5433	5383
50	5426	5591	5717	5317	5294
55	5585	5538	5658	5295	5580
60	5388	5278	5677	5498	5452
65	5625	5365	5313	5579	5320
70	5431	5396	5713	5689	5291
75	5549	5475	5432	5623	5681
80	5701	5299	5601	5308	5655
85	5628	5565	5509	5603	5483
90	5554	5706	5408	5303	5667
95	5521	5357	5611	5568	5694
					1

Type	6	Radar	Waveform	10
IVDE	U	Nauai	vvavelollli	10

0	1	2	3	4
5520	5692	5428	5281	5707
5557	5500	5413	5511	5393
5258	5589	5464	5311	5341
5691	5554	5562	5310	5516
5352	5472	5407	5324	5286
5397	5416	5495	5522	5415
5380	5592	5629	5663	5544
5364	5541	5489	5519	5305
5251	5406	5704	5375	5442
5344	5252	5303	5650	5296
5326	5609	5434	5515	5567
5368	5304	5671	5507	5334
5265	5714	5703	5603	5596
5526	5702	5400	5412	5390
5255	5319	5351	5316	5569
5414	5539	5694	5466	5401
5330	5542	5343	5584	5543
5359	5318	5529	5448	5378
5571	5485	5283	5604	5365
5501	5665	5454	5645	5451
	5520 5557 5258 5691 5352 5397 5380 5364 5251 5344 5326 5368 5265 5526 5255 5414 5330 5369 5571	5520 5692 5557 5500 5258 5589 5691 5554 5352 5472 5397 5416 5380 5592 5364 5541 5251 5406 5344 5252 5368 5304 5265 5714 5526 5702 5255 5319 5414 5539 5330 5542 5359 5318 5571 5485	5520 5692 5428 5557 5500 5413 5258 5589 5464 5691 5554 5562 5352 5472 5407 5397 5416 5495 5380 5592 5629 5364 5541 5489 5251 5406 5704 5344 5252 5303 5326 5609 5434 5368 5304 5671 5265 5714 5703 5526 5702 5400 5255 5319 5351 5414 5539 5694 5330 5542 5343 5359 5318 5529 5571 5485 5283	5520 5692 5428 5281 5557 5500 5413 5511 5258 5589 5464 5311 5691 5554 5562 5310 5352 5472 5407 5324 5397 5416 5495 5522 5380 5592 5629 5663 5364 5541 5489 5519 5251 5406 5704 5375 5344 5252 5303 5650 5326 5609 5434 5515 5368 5304 5671 5507 5265 5714 5703 5603 5526 5702 5400 5412 5255 5319 5351 5316 5414 5539 5694 5466 5330 5542 5343 5584 5359 5318 5529 5448 5571 5485 5283 5604

Type 6 Radar Waveform_11

i			i .		
Frequency List (MHz)	0	1	2	3	4
0	5300	5456	5461	5442	5452
5	5599	5425	5488	5577	5600
10	5664	5378	5541	5659	5332
15	5429	5721	5657	5607	5502
20	5524	5421	5413	5496	5297
25	5649	5724	5619	5556	5457
30	5366	5549	5369	5437	5267
35	5503	5632	5285	5672	5316
40	5383	5431	5344	5469	5372
45	5371	5702	5335	5264	5606
50	5561	5677	5310	5485	5604
55	5390	5690	5395	5625	5697
60	5628	5711	5368	5393	5645
65	5651	5519	5472	5315	5436
70	5719	5660	5533	5391	5337
75	5319	5277	5650	5528	5272
80	5534	5682	5675	5718	5511
85	5586	5706	5558	5699	5538
90	5487	5482	5322	5494	5313
95	5676	5646	5543	5480	5367

	1		ı	ı	
Frequency List (E Hz)	0	1	2	3	4
0	5555	5695	5397	5603	5672
5	5641	5447	5563	5265	5429
10	5595	5642	5679	5379	5353
15	5517	5373	5285	5652	5694
20	5435	5587	5354	5488	5270
25	5440	5576	5347	5325	5590
30	5596	5255	5506	5584	5589
35	5562	5723	5556	5350	5705
40	5697	5514	5282	5709	5466
45	5678	5682	5418	5322	5659
50	5448	5456	5486	5439	5693
55	5591	5634	5583	5579	5315
60	5585	5497	5558	5483	5345
65	5515	5613	5600	5375	5454
70	5552	5336	5560	5323	5419
75	5601	5626	5487	5716	5654
80	5253	5656	5398	5524	5367
85	5395	5621	5696	5258	5324
90	5605	5362	5364	5449	5369
95	5708	5680	5627	5631	5719
		I	 	I	

	1	1	1	1	
Frequency List (MHz)	0	1	2	3	4
0	5713	5459	5333	5289	5514
5	5305	5372	5638	5428	5636
10	5429	5431	5720	5477	5374
15	5508	5500	5388	5600	5411
20	5443	5656	5295	5577	5718
25	5328	5525	5453	5624	5619
30	5463	5324	5363	5285	5306
35	5436	5449	5536	5597	5695
40	5474	5607	5662	5501	5380
45	5712	5332	5565	5490	5404
50	5414	5481	5296	5533	5505
55	5644	5556	5626	5723	5535
60	5315	5268	5461	5339	5549
65	5286	5347	5517	5632	5406
70	5422	5353	5602	5446	5588
75	5677	5396	5637	5650	5634
80	5623	5559	5693	5550	5390
85	5641	5345	5700	5327	5318
90	5697	5664	5398	5686	5451
95	5509	5648	5299	5395	5680
	I				

Tvr	ne 6	Radar	Waveform	14
	<i>_</i>	Nauai	VVAVCIOIIII	

	1				
Frequency List (MHz)	0	1	2	3	4
0	5493	5698	5269	5450	5259
5	5347	5394	5713	5591	5368
10	5360	5317	5286	5672	5395
15	5596	5627	5645	5603	5451
20	5333	5569	5691	5594	5377
25	5656	5533	5658	5680	5605
30	5420	5442	5515	5580	5348
35	5527	5720	5278	5630	5472
40	5302	5536	5617	5460	5642
45	5584	5341	5290	5600	5683
50	5266	5541	5712	5425	5484
55	5487	5695	5463	5280	5413
60	5480	5622	5407	5637	5498
65	5350	5496	5320	5326	5392
70	5522	5677	5578	5405	5557
75	5322	5618	5427	5647	5404
80	5626	5369	5593	5270	5293
85	5308	5417	5670	5272	5470
90	5387	5563	5692	5485	5294
95	5665	5354	5316	5562	5351

1	1		1		
Frequency List (MHz)	0	1	2	3	4
0	5273	5462	5680	5611	5576
5	5389	5319	5313	5279	5575
10	5669	5581	5327	5392	5416
15	5684	5497	5690	5320	5362
20	5274	5658	5664	5482	5326
25	5384	5637	5692	5344	5494
30	5377	5657	5289	5400	5487
35	5618	5516	5431	5544	5311
40	5385	5474	5382	5457	5368
45	5622	5399	5343	5390	5559
50	5442	5592	5582	5535	5272
55	5672	5441	5410	5282	5498
60	5312	5578	5522	5551	5395
65	5450	5363	5447	5386	5328
70	5509	5598	5398	5378	5525
75	5526	5554	5364	5429	5585
80	5599	5679	5660	5315	5432
85	5590	5465	5293	5422	5609
90	5635	5323	5718	5682	5253
95	5698	5519	5651	5677	5409
			1		

Frequency List (MHz)	0	1	2	3	4
0	5528	5701	5616	5297	5321
5	5431	5341	5388	5345	5404
10	5600	5370	5368	5587	5437
15	5309	5638	5609	5582	5690
20	5650	5637	5273	5653	5363
25	5251	5386	5480	5334	5397
30	5441	5598	5626	5709	5312
35	5681	5458	5625	5468	5412
40	5622	5454	5602	5372	5457
45	5396	5277	5338	5618	5643
50	5671	5261	5691	5385	5298
55	5479	5268	5467	5383	5318
60	5661	5422	5538	5304	5401
65	5567	5364	5375	5530	5323
70	5398	5562	5631	5580	5456
75	5392	5592	5660	5264	5331
80	5704	5503	5394	5405	5418
85	5326	5436	5311	5464	5381
90	5564	5423	5557	5663	5677
95	5322	5452	5466	5586	5634

1	1		1	1	
Frequency List (MHz)	0	1	2	3	4
0	5308	5465	5552	5361	5638
5	5570	5266	5463	5508	5611
10	5531	5634	5409	5307	5458
15	5288	5436	5703	5683	5326
20	5378	5273	5253	5264	5610
25	5636	5505	5315	5467	5285
30	5428	5369	5291	5612	5690
35	5418	5668	5325	5680	5359
40	5372	5464	5551	5350	5387
45	5548	5604	5485	5455	5449
50	5542	5689	5319	5694	5382
55	5559	5538	5573	5252	5298
60	5343	5433	5412	5619	5342
65	5345	5370	5671	5679	5639
70	5447	5628	5602	5282	5270
75	5682	5299	5561	5405	5697
80	5643	5655	5584	5380	5574
85	5678	5391	5421	5468	5328
90	5642	5700	5583	5332	5490
95	5318	5420	5338	5519	5365
+	•				

Type 6	Radar	Wavet	form_18
--------	-------	-------	---------

Frequency List (MHz)	0	1	2	3	4
0	5466	5704	5488	5522	5383
5	5612	5288	5538	5671	5343
10	5365	5423	5450	5405	5479
15	5376	5563	5331	5253	5518
20	5289	5342	5669	5256	5583
25	5524	5454	5421	5571	5697
30	5567	5258	5723	5255	5367
35	5616	5332	5513	5476	5512
40	5400	5530	5545	5533	5465
45	5429	5565	5495	5270	5471
50	5382	5482	5664	5681	5505
55	5592	5314	5699	5598	5445
60	5385	5588	5294	5397	5580
65	5711	5433	5451	5716	5714
70	5705	5345	5639	5388	5515
75	5478	5710	5718	5581	5672
80	5574	5520	5354	5516	5336
85	5282	5415	5273	5338	5427
90	5675	5432	5355	5349	5360
95	5381	5281	5626	5312	5694

Frequency List (MHz)	0	1	2	3	4
0	5721	5565	5424	5683	5700
5	5654	5688	5613	5359	5647
10	5296	5687	5491	5600	5500
15	5464	5690	5337	5298	5710
20	5297	5508	5610	5345	5556
25	5315	5306	5624	5675	5256
30	5609	5719	5680	5470	5616
35	5436	5471	5604	5272	5287
40	5714	5339	5701	5295	5542
45	5365	5445	5621	5534	5458
50	5694	5441	5671	5321	5560
55	5426	5377	5635	5598	5411
60	5663	5353	5288	5399	5354
65	5368	5331	5718	5336	5412
70	5261	5405	5419	5300	5361
75	5350	5488	5620	5640	5625
80	5259	5578	5392	5477	5459
85	5414	5708	5301	5333	5438
90	5344	5461	5460	5541	5372
95	5629	5430	5258	5263	5391

Type 6	Radar	Wavet	form_20
--------	-------	-------	---------

Frequency List (MHz)	0	1	2	3	4
0	5501	5329	5360	5369	5445
5	5696	5710	5688	5425	5379
10	5702	5573	5629	5320	5521
15	5552	5342	5440	5721	5427
20	5305	5577	5648	5337	5529
25	5678	5255	5352	5401	5290
30	5651	5608	5637	5685	5293
35	5634	5610	5695	5640	5686
40	5553	5422	5639	5535	5539
45	5294	5704	5495	5511	5581
50	5372	5649	5503	5273	5565
55	5589	5313	5385	5453	5344
60	5283	5669	5277	5612	5667
65	5622	5628	5466	5477	5502
70	5259	5624	5555	5470	5631
75	5601	5417	5638	5515	5563
80	5478	5587	5380	5301	5377
85	5644	5287	5436	5441	5603
90	5350	5398	5389	5684	5414
95	5253	5717	5494	5471	5575

	i				
Frequency List (MHz)	0	1	2	3	4
0	5281	5568	5296	5530	5287
5	5360	5635	5288	5588	5586
10	5536	5362	5670	5515	5542
15	5543	5372	5291	5619	5313
20	5268	5589	5426	5599	5469
25	5582	5555	5505	5324	5315
30	5497	5594	5425	5454	5652
35	5311	5436	5593	5697	5392
40	5577	5678	5698	5405	5312
45	5553	5564	5371	5571	5548
50	5423	5263	5704	5692	5278
55	5503	5427	5605	5514	5618
60	5289	5590	5592	5435	5713
65	5408	5269	5646	5488	5359
70	5473	5524	5677	5669	5273
75	5252	5529	5475	5307	5380
80	5437	5520	5609	5338	5684
85	5261	5293	5453	5432	5602
90	5662	5264	5398	5626	5597
95	5675	5326	5659	5653	5279

Tv	ma	۵	Padar	Waveform	22
- 1 y	'pe	О	Rauai	vvaveioiiii	22

Frequency List (MHz)	0	1	2	3	4
0	5439	5332	5707	5691	5507
5	5402	5657	5363	5276	5415
10	5467	5626	5711	5710	5563
15	5631	5499	5646	5336	5699
20	5337	5530	5418	5572	5357
25	5434	5283	5609	5358	5483
30	5454	5543	5694	5652	5316
35	5368	5611	5706	5685	5443
40	5533	5385	5395	5617	5258
45	5447	5724	5474	5449	5527
50	5539	5466	5497	5693	5721
55	5576	5643	5308	5331	5422
60	5266	5636	5662	5347	5664
65	5315	5547	5718	5362	5700
70	5289	5552	5396	5345	5446
75	5286	5319	5592	5472	5599
80	5557	5400	5712	5477	5292
85	5457	5459	5458	5369	5484
90	5296	5520	5479	5524	5578
95	5564	5670	5427	5684	5295

Type 6 Radar Waveform_23

Frequency List (MHz)	0	1	2	3	4
0	5694	5571	5643	5377	5349
5	5444	5582	5438	5439	5622
10	5398	5415	5277	5333	5584
15	5719	5626	5274	5381	5528
20	5707	5503	5568	5507	5545
25	5623	5383	5389	5713	5392
30	5399	5372	5411	5283	5468
35	5472	5455	5493	5521	5525
40	5642	5293	5356	5683	5627
45	5459	5268	5478	5572	5670
50	5523	5323	5425	5538	5350
55	5483	5654	5451	5408	5443
60	5450	5297	5473	5276	5254
65	5687	5611	5496	5585	5253
70	5412	5460	5462	5549	5511
75	5365	5258	5391	5544	5601
80	5396	5469	5319	5661	5429
85	5442	5343	5608	5279	5465
90	5403	5366	5308	5537	5374
95	5463	5422	5328	5613	5659
	1	i	i		

Type	6 F	Radar	Waveform	24
IVPC	O I	\auai	vvavelollii	4

Frequency List (MHz)	0	1	2	3	4
0	5474	5335	5579	5538	5569
5	5486	5604	5513	5505	5354
10	5707	5679	5318	5528	5605
15	5332	5278	5280	5329	5342
20	5715	5572	5509	5499	5518
25	5511	5710	5592	5439	5426
30	5441	5358	5368	5498	5620
35	5292	5497	5681	5396	5674
40	5536	5481	5376	5294	5448
45	5624	5291	5723	5561	5630
50	5626	5410	5577	5601	5576
55	5627	5648	5330	5270	5405
60	5598	5262	5421	5638	5696
65	5658	5642	5633	5660	5560
70	5419	5706	5477	5531	5484
75	5543	5465	5398	5619	5470
80	5712	5378	5534	5525	5506
85	5589	5647	5340	5466	5514
90	5661	5716	5423	5524	5310
95	5297	5381	5313	5471	5437

Type 6 Radar Waveform_25

Frequency List (MHz)	0	1	2	3	4
0	5254	5574	5515	5602	5411
5	5625	5529	5588	5668	5658
10	5638	5565	5359	5723	5626
15	5323	5308	5383	5374	5534
20	5263	5450	5491	5399	5659
25	5320	5543	5460	5580	5722
30	5325	5713	5394	5490	5636
35	5297	5667	5449	5556	5707
40	5591	5621	5695	5703	5644
45	5688	5679	5675	5453	5302
50	5627	5716	5274	5458	5313
55	5392	5555	5328	5641	5468
60	5676	5386	5509	5358	5538
65	5272	5334	5653	5595	5429
70	5681	5498	5506	5630	5519
75	5370	5336	5403	5366	5709
80	5564	5655	5275	5348	5629
85	5478	5508	5526	5484	5528
90	5693	5321	5631	5277	5685
95	5357	5537	5299	5520	5469
					

Type 6	Radar	Wavet	form_26
--------	-------	-------	---------

Frequency List (MHz)	0	1	2	3	4
0	5509	5338	5451	5288	5631
5	5667	5551	5663	5356	5390
10	5472	5354	5400	5443	5647
15	5411	5435	5486	5419	5251
20	5634	5332	5391	5580	5464
25	5665	5511	5523	5494	5622
30	5611	5282	5546	5310	5300
35	5388	5463	5602	5364	5639
40	5645	5618	5624	5683	5252
45	5271	5257	5562	5329	5478
50	5678	5427	5672	5596	5646
55	5313	5406	5375	5363	5587
60	5493	5322	5294	5684	5458
65	5394	5273	5542	5612	5250
70	5515	5568	5571	5553	5723
75	5487	5407	5629	5626	5403
80	5466	5429	5467	5497	5446
85	5336	5302	5402	5495	5643
90	5408	5293	5538	5685	5539
95	5512	5688	5637	5372	5422
1					

i .	1				
Frequency List (MHz)	0	1	2	3	4
0	5667	5577	5387	5449	5473
5	5709	5476	5263	5519	5597
10	5403	5618	5441	5638	5668
15	5499	5562	5589	5367	5443
20	5642	5498	5429	5669	5437
25	5553	5363	5251	5276	5528
30	5664	5714	5571	5320	5508
35	5439	5479	5356	5280	5375
40	5570	5722	5583	5596	5615
45	5456	5663	5335	5707	5310
50	5352	5654	5254	5516	5495
55	5540	5359	5267	5572	5712
60	5716	5658	5628	5629	5692
65	5568	5410	5407	5333	5580
70	5434	5415	5419	5501	5323
75	5547	5347	5522	5641	5391
80	5565	5659	5264	5567	5626
85	5360	5721	5467	5436	5409
90	5256	5650	5693	5586	5345
95	5647	5702	5594	5496	5657

T	^ D		141	00
Type	6 K	adar	Waveform	28

Frequency	10				
List (MHz)	0	1	2	3	4
0	5447	5341	5323	5610	5693
5	5373	5498	5338	5585	5426
10	5334	5407	5579	5261	5689
15	5587	5692	5412	5635	5553
20	5664	5370	5661	5410	5344
25	5312	5454	5380	5562	5328
30	5486	5671	5311	5472	5481
35	5570	5627	5530	5289	5409
40	5330	5521	5361	5709	5385
45	5643	5418	5290	5363	5714
50	5459	5355	5305	5605	5318
55	5387	5547	5599	5391	5683
60	5348	5573	5461	5518	5514
65	5708	5356	5369	5315	5704
70	5491	5584	5647	5306	5286
75	5437	5546	5339	5277	5663
80	5256	5357	5441	5278	5469
85	5720	5451	5307	5423	5513
90	5592	5379	5532	5281	5719
95	5649	5577	5484	5636	5368

Frequency List (MHz)	0	1	2	3	4
0	5702	5580	5259	5296	5535
5	5415	5520	5413	5273	5633
10	5643	5671	5620	5456	5710
15	5578	5341	5698	5457	5352
20	5561	5258	5311	5275	5383
25	5707	5639	5560	5581	5596
30	5370	5375	5628	5526	5721
35	5283	5423	5683	5678	5723
40	5510	5362	5504	5706	5692
45	5623	5501	5348	5416	5335
50	5531	5356	5694	5519	5331
55	5260	5553	5685	5654	5499
60	5513	5518	5390	5441	5557
65	5434	5305	5405	5622	5399
70	5563	5570	5674	5496	5402
75	5265	5363	5406	5527	5591
80	5387	5444	5420	5277	5354
85	5636	5595	5432	5340	5261
90	5711	5663	5598	5316	5317
95	5293	5704	5382	5615	5471

Appendix B – Test Setup Photograph

Refer to "2306RSU039-UT" file.

Appendix C – EUT Photograph

Refer to "2306RSU039-UE" file.

_____ The End _____