

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Fax: +886-3-3288918 Web: www.mrt-cert.com Report No.: 1703TW0106-U6 Report Version: V01 Issue Date: 06-02-2017

MEASUREMENT REPORT

FCC PART 15 Subpart E WLAN 802.11a/n/ac

- FCC ID: Q9DAPINH203
- **APPLICANT:** Hewlett Packard Enterprise Company
- Application Type: Class III Permissible Change

Product: ACCESS POINT

Model No.: APINH203

Brand Name:

FCC Classification: Unlicensed National Information Infrastructure (UNII)

December 28, 2016 ~ May 23, 2017

- FCC Rule Part(s): Part 15 Subpart E (Section 15.407)
- **Test Procedure(s):** ANSI C63.10-2013, KDB 789033 D02v01r03, KDB 662911 D01v02r01, KDB 644545 D03v01

Test Date:

Reviewed By

Approved By

Paddy Chen (Paddy Chen)

(Chenz Ker)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02v01r03. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1703TW0106-U6	Rev. 01	Initial report	06-02-2017	Valid

CONTENTS

Des	scription	n Page
§2. 1	033 Ge	eneral Information
1.	INTRO	DDUCTION
	1.1.	Scope
	1.2.	MRT Test Location
2.	PROD	DUCT INFORMATION
	2.1.	Equipment Description
	2.2.	Product Specification Subjective to this Report
	2.3.	Operating Frequency and Channel List
	2.4.	Description of Available Antennas
	2.5.	Description of Antenna RF Port
	2.6.	Test Mode
	2.7.	Description of Test Software
	2.8.	Device Capabilities
	2.9.	Test Configuration
	2.10.	EMI Suppression Device(s)/Modifications
	2.11.	Labeling Requirements
3.	DESC	RIPTION OF TEST
	3.1.	Evaluation Procedure
	3.2.	AC Line Conducted Emissions
	3.3.	Radiated Emissions 17
4.	ANTE	NNA REQUIREMENTS
5.	TEST	EQUIPMENT CALIBRATION DATE
6.	MEAS	UREMENT UNCERTAINTY
7.	TEST	RESULT
	7.1.	Summary
	7.2.	26dB Bandwidth Measurement
	7.2.1.	Test Limit
	7.2.2.	Test Procedure used
	7.2.3.	Test Setting
	7.2.4.	Test Setup
	7.2.5.	
	7.3.	Output Power Measurement
	7.3.1.	
E 00		

CONC	CLUSION	406
7.9.4.	Test Result	404
7.9.3.	Test Setup	
7.9.2.	Test Procedure	
7.9.1.	Test Limit	
7.9.	AC Conducted Emissions Measurement	
7.8.2.	Test Result of Radiated Restricted Band Edge	206
7.8.1.	Test Limit	204
7.8.	Radiated Restricted Band Edge Measurement	204
7.7.5.	Test Result	
7.7.4.	Test Setup	
7.7.3.	Test Setting	
7.7.2.	Test Procedure Used	
7.7.1.	Test Limit	
7.7.	Radiated Spurious Emission Measurement	
7.6.4.	Test Result	
7.6.3.	Test Setup	
7.6.2.	Test Procedure Used	95
7.6.1.	Test Limit	
7.6.	Frequency Stability Measurement	
7.5.5.	Test Result	
7.5.4.	Test Setup	
7.5.3.	Test Setting	
7.5.2.	Test Procedure Used	
7.5.1.	Test Limit	
7.5.	Power Spectral Density Measurement	
7.4.5.	Test Result	
7.4.4.	Test Setup	
7.4.3.	Test Setting	
7.4.2.	Test Procedure Used	
7.4.1.	Test Limit	
7.4.	Transmit Power Control	
7.3.5.	Test Result	
7.3.4.	Test Setup	
7.3.3.	Test Setting	
7.3.2.	Test Procedure Used	

8.

Applicant:	Hewlett Packard Enterprise Company			
Applicant Address:	3000 Hanover St. Palo Alto, CA 94304, USA			
Manufacturer:	Hewlett Packard Enterprise Company			
Manufacturer Address:	3000 Hanover St. Palo Alto, CA 94304, USA			
Test Site:	MRT Technology (Taiwan) Co., Ltd			
Test Site Address:	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan			
	(R.O.C)			
MRT Registration No.:	153292			
FCC Rule Part(s):	Part 15.407			
Model No.:	APINH203			
FCC ID:	Q9DAPINH203			
Test Device Serial No.:	CNCKK2S0W2 Droduction Pre-Production Engineering			
FCC Classification:	Unlicensed National Information Infrastructure (UNII)			

§2.1033 General Information

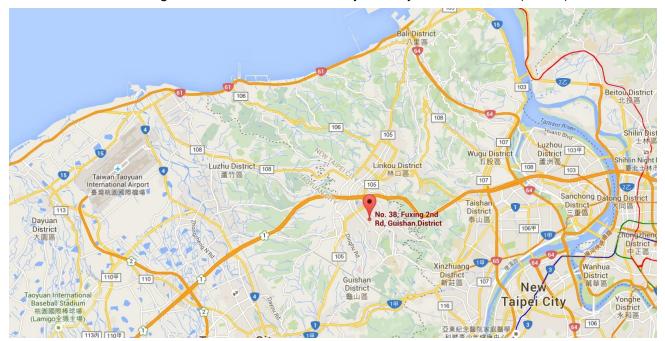
Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Fuxing Rd., Taoyuan, Taiwan (R.O.C)

- MRT facility is a FCC registered (MRT Reg. No. 153292) test facility with the site description report on file and is designated by the FCC as an Accredited Test Film.
- MRT facility is an IC registered (MRT Reg. No. 21723-1) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (TAF) under the American Association for Laboratory Accreditation Program (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC,

Industry Canada, Taiwan, EU and TELEC Rules.

TAF certificate here


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

sThe map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name:	ACCESS POINT	
Model No.:	APINH203	
Brand Name:	A Hewlett Packard Enterprise company,	
Software Version:	.10 RC178.40 e5.0.9.1	
Operating Temperature:) ~ 40 °C	
Power Type:	POE input	
Wi-Fi Specification:	802.11a/b/g/n/ac	

Note: The applicant has provided one POE adapter (Manufacturer: MICROSEMI & Model:

PD-9001GR/AT/AC & Output: 55VDC, 0.6A) for approval testing and it is not for sale.

2.2. Product Specification Subjective to this Report

Frequency Range:	For 802.11a/n-HT20/ ac-VHT20:			
	5240~5320MHz, 5500~5720MHz			
	For 802.11n-HT40/ac-VHT40:			
	5230~5310MHz, 5510~5710MHz			
	For 802.11ac-VHT80:			
	5290MHz, 5530MHz, 5610MHz, 5690MHz			
Type of Modulation:	802.11a/n/ac: OFDM			
Data Rate:	802.11a: 6/9/12/18/24/36/48/54Mbps			
	802.11n: up to 300Mbps			
	802.11ac: up to 866.6Mbps			
Maximum Average	802.11a: 19.79dBm			
Output Power:	802.11n-HT20: 19.83dBm			
	802.11n-HT40: 19.87dBm			
	802.11ac-VHT20: 19.72dBm			
	802.11ac-VHT40: 19.98dBm			
	802.11ac-VHT80: 19.46dBm			

Note: For other features of this EUT, test report will be issued separately.

2.3. Operating Frequency and Channel List

802.11a/n-HT20/ac-VHT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260 MHz	56	5280 MHz	60	5300 MHz
64	5320 MHz	100	5500 MHz	104	5520 MHz
108	5540 MHz	112	5560 MHz	116	5580 MHz
120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz
144	5720 MHz				

802.11n-HT40/ac-VHT40

Channel	Frequency	Channel	Frequency	Channel	Frequency
54	5270 MHz	62	5310 MHz	102	5510 MHz
110	5550 MHz	118	5590 MHz	126	5630 MHz
134	5670 MHz	142	5710 MHz		

802.11ac-VHT80

Channel	Frequency	Channel	Frequency	Channel	Frequency
58	5290 MHz	106	5530 MHz	122	5610 MHz
138	5690 MHz				

Antenna Type	Frequency Band (MHz)	TX Paths	Max Antenna Gain (dBi)	Directional Gain (dBi)
	2412 ~ 2462	1 (Note 3)	4.3	N/A
PCB	2412 ~ 2402	2	3.8	6.8
Antenna	5450 5050	1 (Note 3)	6.3	N/A
	5150 ~ 5850	2	4.0	7.0

2.4. Description of Available Antennas

Note 1: The EUT supports Cyclic Delay Diversity (CDD) technology for 802.11a/b/g/n/ac mode, and the transmitter output signal is correlated.

For CDD transmissions, directional gain = G_{ANT} + Array Gain, Array Gain = 3.0 dBi which is declared by the applicant. For power measurements on IEEE 802.11 devices, Array Gain = 0 dB for $N_{ANT} \le 4$. Note 2: The EUT also supports Beam Forming technology, and the Beam Forming only support 802.11n/ac mode. Directional gain = G_{ANT} + BF Gain, BF Gain = 3.0 dBi which is declared by the applicant.

Note 3: For SISO mode, only Ant 2 port can transmit 2.4GHz and Ant 1 port can transmit 5GHz.

2.5. Description of Antenna RF Port

Antenna RF Port				
	2.4GHz RF Port		5GHz RF Port	
Software Control Port for 1Tx		Ant 2	Ant 1	
Software Control Port for 2Tx	Ant 1	Ant 2	Ant 1	Ant 2

2.6. Test Mode

Test Mode	Mode 1: Transmit by 802.11a
Mode 2: Transmit by 802.11n-HT20 (CDD Mode / Beam-Forming Mod	
	Mode 3: Transmit by 802.11n-HT40 (CDD Mode / Beam-Forming Mode)
	Mode 4: Transmit by 802.11ac-VHT20 (CDD Mode / Beam-Forming Mode)
	Mode 5: Transmit by 802.11ac-VHT40 (CDD Mode / Beam-Forming Mode)
	Mode 6: Transmit by 802.11ac-VHT80 (CDD Mode / Beam-Forming Mode)

2.7. Description of Test Software

The test utility software used during testing was "AcctonMTool.exe".

1TX _ Ant 1

Test	Test	Power Parameter	Test	Test	Power Parameter
Mode	Frequency	Value	Mode	Frequency	Value
	5260	64.0		5260	66.0
	5300	64.0		5300	66.0
	5320	64.0	802.11n-	5320	66.0
802.11a	5500	66.0	802.111- HT20	5500	66.0
	5600	66.0	H120	5600	66.0
	5700	66.0		5700	66.0
	5720	66.0		5720	66.0
	5260	64.0		5270	64.0
	5300	64.0		5310	60.0
802.11ac-	5320	64.0	802.11n-		56.0
VHT20	5500	66.0	HT40	5590	66.0
V11120	5600	66.0		5670	66.0
	5700	66.0		5710	66.0
	5720	66.0		5270	64.0
	5290	60.0		5310	60.0
802.11ac-	5530	58.0	802.11ac-	5510	56.0
VHT80	5610	66.0	VHT40	5590	66.0
	5690	66.0		5670	66.0
				5710	66.0

CDD Mode

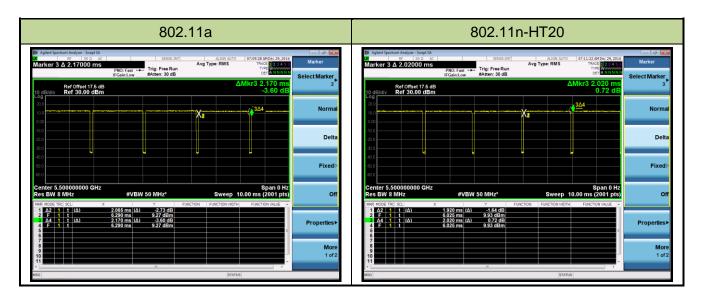
2TX _ Ant 1 + 2

Test	Test	Power Parameter	Test	Test	Power Parameter
Mode	Frequency	Value	Mode	Frequency	Value
	5260	64.0		5260	64.0
	5300	64.0		5300	64.0
	5320	64.0	802.11n-	5320	64.0
802.11a	5500	66.0	802.111- HT20	5500	60.0
	5600	66.0	H120	5600	66.0
	5700	60.0		5700	62.0
	5720	68.0		5720	68.0
	5260	64.0		5270	64.0
	5300	64.0		5310	56.0
802.11ac-	5320 64.0	64.0	802.11n-	5510	50.0
VHT20	5500	60.0	HT40	5590	66.0
V11120	5600	66.0		5670	66.0
	5700	60.0		5710	66.0
	5720	68.0		5270	64.0
	5290	50.0		5310	54.0
802.11ac-	5530	46.0	802.11ac-	5510	48.0
VHT80	5610	68.0	VHT40	5590	66.0
	5690	68.0		5670	62.0
				5710	68.0

Beam-Forming Mode

2TX _ Ant 1 + 2

Test	Test	Power Parameter	Test	Test	Power Parameter
Mode	Frequency	Value	Mode	Frequency	Value
	5260	64.0		5270	64.0
	5300	64.0		5310	50.0
000.11-	5320	64.0	802.11n-	5510	56.0
802.11n-	5500	58.0	HT40	5590	66.0
HT20	5600	64.0		5670	66.0
	5700	56.0		5710	68.0
	5720	64.0		5270	68.0
	5260	64.0		5310	50.0
	5300	64.0	802.11ac-	5510	50.0
802.11ac-	5320	64.0	VHT40	5590	68.0
	5500	60.0		5670	68.0
VHT20	5600	64.0		5710	68.0
	5700	62.0		5290	54.0
	5720	68.0	802.11ac-	5530	58.0
			VHT80	5610	66.0
				5690	66.0


2.8. Device Capabilities

This device contains the following capabilities:

2.4GHz WLAN (DTS) and 5GHz WLAN (NII)

Note: 5GHz (NII) operation is possible in 20MHz, 40MHz and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = average per the guidance of Section B)2)b) of KDB 789033 D02v01r03. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle
802.11a	95.16 %
802.11n-HT20	95.05 %
802.11n-HT40	90.41 %
802.11ac-VHT20	98.47 %
802.11ac-VHT40	97.03 %
802.11ac-VHT80	93.79 %

802.11n-HT40	802.11ac-VHT20
Agient Spectrum Analyser Sweet SA SREE INT All of April (713) 16 APDs (2) 2016 Marker 3 & 1.04267 SREE INT All of April (713) 16 APDs (2) 2016 Marker Marker 3 & 1.04267 SREE INT All of April (713) 16 APDs (2) 2016 Marker FNO: Fast Trig: Free Run Avg Type RMS Trig: Free Run Select Marker 10 dtbddiv Ref 07tset 17.6 dB American 20 dB AMkr3 1.0433 ms S 10 dtbddiv Ref 30.00 dBm -2.24 dB Normat	Agibert Spectrum Analyser Swegt SA OF Sign 2 AC Marker 3 & 1.957/00 ms PRO: Fast
0.50 0.00 Fixed>	000 000
Center 5.510000000 GHz Span 0 Hz Res BW 3 MHz #VBW 50 MHz* Sweep 3.067 ms (2001 pts) MR R05 HS ISL x Y FAction FAction word	Center 5.50000000 GHz Span 0 Hz Span 0 Hz Center 5.50000000 GHz Off Res BW 8 MHz #VBW 50 MHz* Sweep 7.600 ms (2001 pts) Off Off Off MM M008 HS SL X Y Fanction
1 0 2 1 t (Δ) 943 0 m (Δ) 3.34 68 2 F 1 t (Δ) 1528 m (Δ) 3.34 68 4 F 1 t (Δ) 1528 m (Δ) 2.24 8 4 F 1 t (Δ) 1542 m (Δ) 2.24 8 5 F 1 t (Δ) 1542 m (Δ) 2.24 8 5 F 1 t (Δ) 1542 m (Δ) 2.24 8 6 F 1 t (Δ) 1542 m (Δ) 2.24 8 7 F 1 t (Δ) 1542 m (Δ)	1 A2 1 t (A) 1927ms (A) 2.10 dB 2 F 1 t (A) 5065 ms 9.49 dBm 4 F 1 t (A) 1957ms (A) 4.18 dB 4 F 1 t (A) 1957ms (A) 4.18 dB
802.11ac-VHT40	802.11ac-VHT80
Aglert Spectrum Analyzer -Sweet SA Sevec Invi Algor Artic or 3 A DB1-333 US Photo Fast	Bit Aglert Spectrum Aadger - Swept SA SEXOE ENT ALION AUTO 9716 590 AHOC 59, 3016 Marker 3 & A 489, 600 us PROD Estat Traper Real Arg Typer RMS Prove Real Marker 3 & A 489, 600 us PROD Estat Traper Real Arg Typer RMS Prove Real If Galitation Ref Offset 17.5 dB O AMON 09,00 dBm Solo Calification Solo Calification 00 Bit Agle of Offset 17.5 dB O AMON 09,00 dBm Solo Calification Solo Calification 00 Define Solo Calification Solo Calification Solo Calification Solo Calification 00 Define Solo Calification Solo Calification Solo Calification Solo Calification 00 Define Solo Calification Solo Calification Solo Calification Solo Calification 00 Define Solo Calification Solo Calification Solo Calification Solo Calification 00 Define Solo Calification Solo Calification Solo Calification Solo Calification 00 Define Solo Calification Solo Calification Solo Calification Solo Calification 00 Define Solo Calification Solo Calification Solo Calification Solo Calification 00 Solo
Center 5.510000000 GHz Span 0 Hz Res BW 8 MHz #VBW 50 MHz* Sweep 3.057 ms (2001 pts) More More Tre-Col: x y 2 F 1 1.144 msl 2 F 1 1.144 msl	Center 5.330000000 GHz Span 0 Hz Res BW 8 MHz #VBW 50 MHz* Sweep 1.600 ms (2001 pts) Off Mon model for Coll X 1 1 L (a) -793 6 ms (a) 2 2 1 L (a) -793 6 ms (a)
3 A 4 1 (Δ) 981 3 up (Δ) -0.01 dB Properties 6 7 1 1.434 ms 6.73 dBm - - - More 7 - <td< td=""><td>3 A4 1 1 (Δ) 489 6 μe (Δ) -0.30 dB Properties 4 7 1 1 793.6 μe 4.22 dBm 4.2</td></td<>	3 A4 1 1 (Δ) 489 6 μe (Δ) -0.30 dB Properties 4 7 1 1 793.6 μe 4.22 dBm 4.2

2.9. Test Configuration

The **ACCESS POINT** was tested per the guidance of KDB 789033 D02v01r03. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.10. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.11. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 789033 D02v01r03 were used in the measurement of the **ACCESS POINT.**

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Line conducted emissions test results are shown in Section 7.8.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the ACCESS POINT is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The **ACCESS POINT** unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Due Date
Two-Line V-Network	R&S	ENV216	MRTTWA00019	2017.03.23
Two-Line V-Network	R&S	ENV216	MRTTWA00020	2017.03.23
Absorbing Clamp	R&S	MDS21	MRTTWA00016	2017.03.02
EMI Test Receiver	R&S	ESR3	MRTTWA00009	2017.03.17
Conducted Cable	Rosnol	N1C50-RG400-B1 C50-500CM	MRTTWE00013	2017.05.20
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	2017.06.09

Radiated Spurious Emission and Radiated Restricted Band Edge - AC1

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Due Date
A citure Leon Antonno				2017.04.06
Acitve Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002 MRTTWA00001 MRTTWA00003 MRTTWA00004 MRTTWA00005 MRTTWA00006	2018.04.06
Broadband TRILOG Antenna		VULB 9162		2017.04.06
	SCHWARZBECK	VULB 9162	MRTTWA00002 MRTTWA00001 MRTTWA00003 MRTTWA00004 MRTTWA00005 MRTTWA00006 MRTTWA00007	2018.04.06
Broadband Hornantenna	SCHWARZBECK	BBHA 9120D		2017.04.06
	SCHWARZBECK	BBHA 9120D		2018.04.06
Breitband Hornantenna	SCHWARZBECK	BBHA 9170		2017.04.06
	SURVIARZDEUK	DDNA 9170	WIRTTWA00004	2018.04.06
Broadband Broamplifier				2017.04.06
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	2018.04.06
Dreadband Amplifiar			0721 MRTTWA00006	2017.04.06
Broadband Amplifier	SCHWARZBECK	BBV 9721		2018.04.06
Signal Analyzar	R&S	FSV40 MRTTWA00007		2017.03.02
Signal Analyzer	Rad			2018.03.02
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	2017.07.11
Antonno Oskla			2017.05.20	
Antenna Cable	HUBERSUHNER	SF106		2018.05.20

Conducted Test Equipment - SR1

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Due Date
		F0\/40	MRTTWA00007 2 2 2 2 2 2 2 2 3 2 3 3 2 3 3 3 3 3 3 3	2017.03.02
Signal Analyzer	R&S	FSV40		2018.03.02
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	2017.07.11
	Desertes	55000	MRTTWA00012 MRTTWA00050	2017.05.08
USB wideband power sensor	Boonton	55006		2018.05.08
X-Series USB Peak and				2017.03.18
Average Power Sensor	KEYSIGHT	U2021XA	MRTTWA00014	2018.03.18

Software	Version	Function
e3	V 8.3.5	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

7. TEST RESULT

O

7.1. Summary	
Product Name:	ACCESS POINT
FCC ID:	Q9DAPINH203
FCC Classification:	Unlicensed National Information Infrastructure (UNII)
Data Rate / MCS	6Mbps for 802.11a;
Tested:	MCS0 for 802.11n-HT20MHz;
	MCS0 for 802.11n-HT40MHz;
	MCS0 for 802.11ac-VHT20MHz;
	MCS0 for 802.11ac-VHT40MHz;
	MCS0 for 802.11ac-VHT80MHz

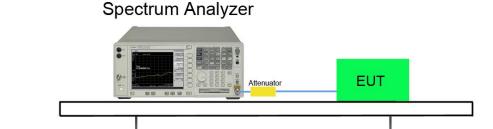
FCC Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.407(a)	26dB Bandwidth	N/A		Pass	Section 7.2
15.407(a)(2)	Maximum Conducted Output Power	≤ 24 dBm U-NII-2A & 2C		Pass	Section 7.3
15.407(a)(2), (5)	Peak Power Spectral Density	≤ 11 dBm/MHz U-NII-2A&2C	Conducted	Pass	Section 7.4
15.407(g)	Frequency Stability	N/A		Pass	Section 7.5
15.407(b)(2), (3)	Undesirable Emissions	Detail see section 7.8		Pass	
15.205, 15.209 15.407(b)(5), (6), (7)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.6 & 7.7
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8

Notes:

- 1) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- Test Items "26dB Bandwidth" & "6dB Bandwidth" & "Frequency Stability" have been assessed MIMO transmission, and showed the worst single test data in this report.

7.2. 26dB Bandwidth Measurement

7.2.1. Test Limit


N/A

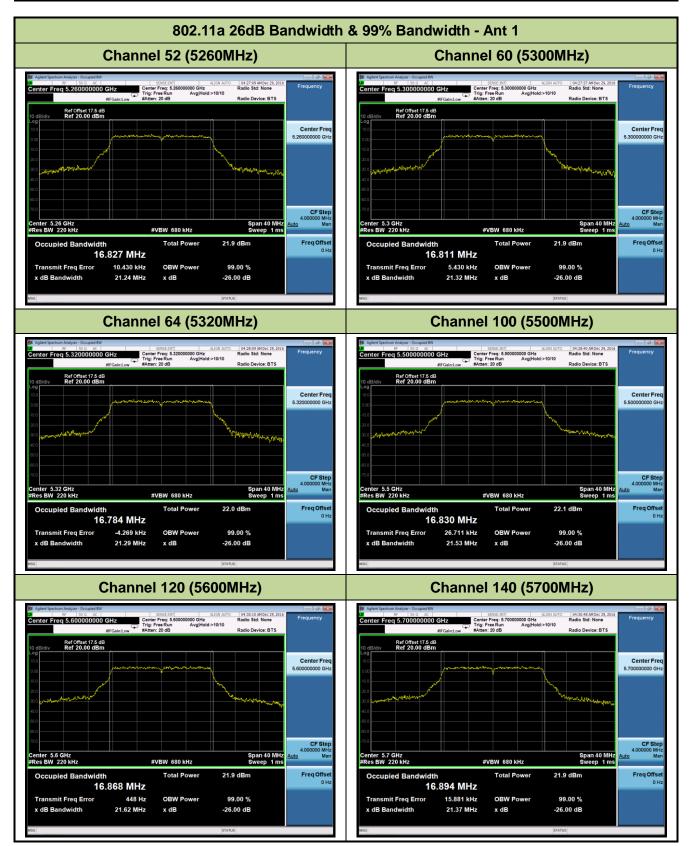
7.2.2. Test Procedure used

KDB 789033 D02v01r03 - Section C.1

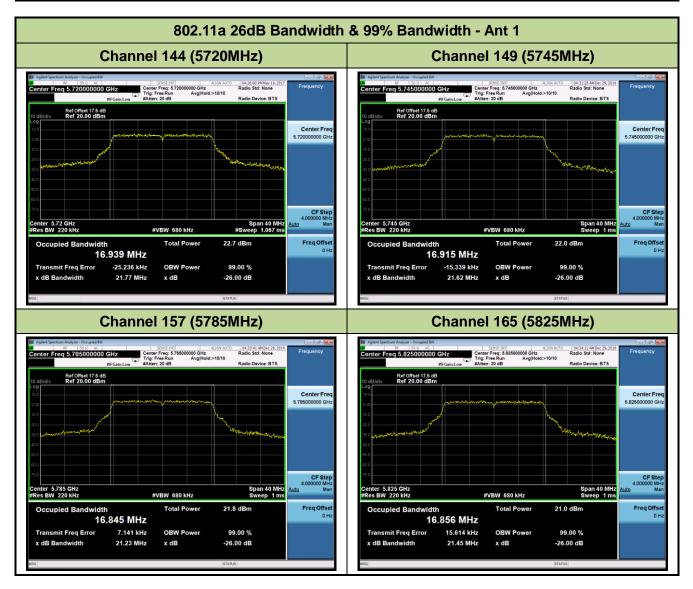
7.2.3. Test Setting

- The analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth.
- 3. VBW \geq 3 × RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 7.2.4. Test Setup

7.2.5. Test Result


Product	ACCESS POINT	Temperature	22°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR1	Test Date	2016/12/29

Test Mode	Data Rate / MCS	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
Ant 1	-			•	•	
802.11a	6Mbps	52	5260	21.24	16.83	Pass
802.11a	6Mbps	60	5300	21.32	16.81	Pass
802.11a	6Mbps	64	5320	21.29	16.78	Pass
802.11a	6Mbps	100	5500	21.53	16.83	Pass
802.11a	6Mbps	120	5600	21.62	16.87	Pass
802.11a	6Mbps	140	5700	21.37	16.89	Pass
802.11a	6Mbps	144	5720	21.77	16.94	Pass
802.11n-HT20	MCS0	52	5260	21.78	18.00	Pass
802.11n-HT20	MCS0	60	5300	21.72	17.97	Pass
802.11n-HT20	MCS0	64	5320	21.72	18.00	Pass
802.11n-HT20	MCS0	100	5500	22.84	18.02	Pass
802.11n-HT20	MCS0	120	5600	23.35	18.06	Pass
802.11n-HT20	MCS0	140	5700	22.12	18.04	Pass
802.11n-HT20	MCS0	144	5720	22.07	18.04	Pass
802.11n-HT40	MCS0	54	5270	41.89	36.46	Pass
802.11n-HT40	MCS0	62	5310	40.37	36.43	Pass
802.11n-HT40	MCS0	102	5510	40.24	36.43	Pass
802.11n-HT40	MCS0	118	5590	44.78	36.55	Pass
802.11n-HT40	MCS0	134	5670	40.55	36.46	Pass
802.11n-HT40	MCS0	142	5710	53.43	36.49	Pass
802.11ac-VHT20	MCS0	52	5260	21.68	18.00	Pass
802.11ac-VHT20	MCS0	60	5300	21.78	18.02	Pass
802.11ac-VHT20	MCS0	64	5320	21.78	18.00	Pass
802.11ac-VHT20	MCS0	100	5500	22.26	18.04	Pass
802.11ac-VHT20	MCS0	120	5600	21.94	18.08	Pass
802.11ac-VHT20	MCS0	140	5700	21.94	18.03	Pass
802.11ac-VHT20	MCS0	144	5720	22.08	18.08	Pass



Test Mode	Data Rate / MCS	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result		
Ant 1								
802.11ac-VHT40	MCS0	54	5270	40.29	36.44	Pass		
802.11ac-VHT40	MCS0	62	5310	40.20	36.47	Pass		
802.11ac-VHT40	MCS0	102	5510	45.45	36.45	Pass		
802.11ac-VHT40	MCS0	118	5590	40.46	36.49	Pass		
802.11ac-VHT40	MCS0	134	5670	51.07	36.58	Pass		
802.11ac-VHT40	MCS0	142	5710	40.39	36.54	Pass		
802.11ac-VHT80	MCS0	58	5290	82.06	75.96	Pass		
802.11ac-VHT80	MCS0	106	5530	83.31	75.82	Pass		
802.11ac-VHT80	MCS0	122	5610	81.70	75.96	Pass		
802.11ac-VHT80	MCS0	138	5690	81.88	75.99	Pass		

