

Test Mode:	802.11ac-VHT40 - Ant 1	Test Site:	AC1
Test Channel:	151	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7961.5	31.7	12.5	44.2	68.2	-24.0	Peak	Horizontal
*	8658.5	31.2	13.6	44.8	68.2	-23.4	Peak	Horizontal
	9304.5	30.5	14.7	45.2	74.0	-28.8	Peak	Horizontal
	11004.5	29.1	18.5	47.6	74.0	-26.4	Peak	Horizontal
*	7936.0	32.2	12.4	44.6	68.2	-23.6	Peak	Vertical
*	8616.0	31.3	13.5	44.8	68.2	-23.4	Peak	Vertical
	9440.5	31.5	14.4	45.9	74.0	-28.1	Peak	Vertical
	11021.5	29.2	18.5	47.7	74.0	-26.3	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT40 - Ant 1	Test Site:	AC1
Test Channel:	159	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7953.0	32.5	12.5	45.0	68.2	-23.2	Peak	Horizontal
*	8692.5	30.7	13.7	44.4	68.2	-23.8	Peak	Horizontal
	9304.5	30.8	14.7	45.5	74.0	-28.5	Peak	Horizontal
	10953.5	30.2	18.4	48.6	74.0	-25.4	Peak	Horizontal
*	7927.5	32.9	12.4	45.3	68.2	-22.9	Peak	Vertical
*	8599.0	31.4	13.4	44.8	68.2	-23.4	Peak	Vertical
	9321.5	30.0	14.6	44.6	74.0	-29.4	Peak	Vertical
	11047.0	29.1	18.5	47.6	74.0	-26.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT80 - Ant 1	Test Site:	AC1
Test Channel:	42	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel 		C C
	in the report.		

Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
	(dBµV)		(dBµV/m)				
7842.5	31.2	12.4	43.6	68.2	-24.6	Peak	Horizontal
8599.0	31.6	13.4	45.0	68.2	-23.2	Peak	Horizontal
9432.0	30.3	14.4	44.7	74.0	-29.3	Peak	Horizontal
11098.0	29.3	18.6	47.9	74.0	-26.1	Peak	Horizontal
7944.5	32.2	12.5	44.7	68.2	-23.5	Peak	Vertical
8616.0	30.9	13.5	44.4	68.2	-23.8	Peak	Vertical
9474.5	30.2	14.4	44.6	74.0	-29.4	Peak	Vertical
11013.0	29.7	18.5	48.2	74.0	-25.8	Peak	Vertical
	7842.5 8599.0 9432.0 11098.0 7944.5 8616.0 9474.5 11013.0	(dBµV)7842.531.28599.031.69432.030.311098.029.37944.532.28616.030.99474.530.211013.029.7	(dBµV)7842.531.212.48599.031.613.49432.030.314.411098.029.318.67944.532.212.58616.030.913.59474.530.214.411013.029.718.5	(dBµV)(dBµV/m)7842.531.212.443.68599.031.613.445.09432.030.314.444.711098.029.318.647.97944.532.212.544.78616.030.913.544.49474.530.214.444.611013.029.718.548.2	(dBµV)(dBµV/m)7842.531.212.443.668.28599.031.613.445.068.29432.030.314.444.774.011098.029.318.647.974.07944.532.212.544.768.28616.030.913.544.468.29474.530.214.444.674.011013.029.718.548.274.0	(dBµV)(dBµV/m)(dBµV/m)7842.531.212.443.668.2-24.68599.031.613.445.068.2-23.29432.030.314.444.774.0-29.311098.029.318.647.974.0-26.17944.532.212.544.768.2-23.58616.030.913.544.468.2-23.89474.530.214.444.674.0-29.411013.029.718.548.274.0-25.8	(dBµV)(dBµV/m)(dBµV/m)7842.531.212.443.668.2-24.6Peak8599.031.613.445.068.2-23.2Peak9432.030.314.444.774.0-29.3Peak11098.029.318.647.974.0-26.1Peak7944.532.212.544.768.2-23.5Peak8616.030.913.544.468.2-23.8Peak9474.530.214.444.674.0-29.4Peak

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT80 - Ant 1	Test Site:	AC1
Test Channel:	155	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7851.0	31.6	12.4	44.0	68.2	-24.2	Peak	Horizontal
*	8735.0	30.6	13.9	44.5	68.2	-23.7	Peak	Horizontal
	9381.0	30.3	14.5	44.8	74.0	-29.2	Peak	Horizontal
	11081.0	30.0	18.6	48.6	74.0	-25.4	Peak	Horizontal
*	7910.5	31.9	12.4	44.3	68.2	-23.9	Peak	Vertical
*	8701.0	30.9	13.8	44.7	68.2	-23.5	Peak	Vertical
	9321.5	30.9	14.6	45.5	74.0	-28.5	Peak	Vertical
	10919.5	29.1	18.4	47.5	74.0	-26.5	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

CDD Mode

Test Mode:	802.11a - Ant 1 + 2	Test Site:	AC1					
Test Channel:	36	Test Engineer:	Kevin					
Remark:	1. Average measurement was no	Average measurement was not performed if peak level lower than average						
	limit.							
	2. Other frequency was 20dB bel	ow limit line within 1-	18GHz, there is not show in					
	the report.							

Mark	Frequency (MHz)	Reading Level	Factor (dB)	Measure Level	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
	(11112)	(dBµV)	(ub)	(dBµV/m)				
*	7893.5	31.2	12.4	43.6	68.2	-24.6	Peak	Horizontal
*	8675.5	32.5	13.7	46.2	68.2	-22.0	Peak	Horizontal
	9338.5	31.8	14.6	46.4	74.0	-27.6	Peak	Horizontal
	10622.0	30.3	17.3	47.6	74.0	-26.4	Peak	Horizontal
*	7817.0	32.0	12.4	44.4	68.2	-23.8	Peak	Vertical
*	8633.0	31.5	13.5	45.0	68.2	-23.2	Peak	Vertical
	9313.0	31.4	14.7	46.1	74.0	-27.9	Peak	Vertical
	10894.0	29.1	18.3	47.4	74.0	-26.6	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11a - Ant 1 + 2	Test Site:	AC1						
Test Channel:	44	Test Engineer:	Kevin						
Remark:	1. Average measurement was no	. Average measurement was not performed if peak level lower than average							
	limit.	limit.							
	2. Other frequency was 20dB bel	ow limit line within 1	-18GHz, there is not show						
	in the report.								

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7944.5	32.2	12.5	44.7	68.2	-23.5	Peak	Horizontal
*	8650.0	31.7	13.6	45.3	68.2	-22.9	Peak	Horizontal
	9355.5	31.3	14.5	45.8	74.0	-28.2	Peak	Horizontal
	10996.0	30.2	18.5	48.7	74.0	-25.3	Peak	Horizontal
*	7842.5	30.9	12.4	43.3	68.2	-24.9	Peak	Vertical
*	8854.0	30.7	14.0	44.7	68.2	-23.5	Peak	Vertical
	9321.5	31.2	14.6	45.8	74.0	-28.2	Peak	Vertical
	11038.5	29.4	18.5	47.9	74.0	-26.1	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11a - Ant 1 + 2	Test Site:	AC1						
Test Channel:	48	Test Engineer:	Kevin						
Remark:	 Average measurement was no limit. 	1. Average measurement was not performed if peak level lower than average							
	 Other frequency was 20dB bel in the report. 	ow limit line within 1	-18GHz, there is not show						

Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
	(dBµV)		(dBµV/m)				
7944.5	31.6	12.5	44.1	68.2	-24.1	Peak	Horizontal
8607.5	31.6	13.5	45.1	68.2	-23.1	Peak	Horizontal
9406.5	31.6	14.5	46.1	74.0	-27.9	Peak	Horizontal
10987.5	29.5	18.5	48.0	74.0	-26.0	Peak	Horizontal
7987.0	32.0	12.5	44.5	68.2	-23.7	Peak	Vertical
8616.0	31.2	13.5	44.7	68.2	-23.5	Peak	Vertical
9398.0	32.0	14.5	46.5	74.0	-27.5	Peak	Vertical
10996.0	29.3	18.5	47.8	74.0	-26.2	Peak	Vertical
	(MHz) 7944.5 8607.5 9406.5 10987.5 7987.0 8616.0 9398.0	(MHz) Level (dBμV) 7944.5 31.6 8607.5 31.6 9406.5 31.6 10987.5 29.5 7987.0 32.0 8616.0 31.2 9398.0 32.0	(MHz) Level (dBµV) (dB) 7944.5 31.6 12.5 8607.5 31.6 13.5 9406.5 31.6 14.5 10987.5 29.5 18.5 7987.0 32.0 12.5 8616.0 31.2 13.5 9398.0 32.0 14.5	(MHz) Level (dBμV) (dB) Level (dBμV/m) 7944.5 31.6 12.5 44.1 8607.5 31.6 13.5 45.1 9406.5 31.6 14.5 46.1 10987.5 29.5 18.5 48.0 7987.0 32.0 12.5 44.7 9398.0 32.0 14.5 46.5	(MHz)Level (dBμV)(dB)Level (dBμV/m)(dBμV/m)7944.531.612.544.168.28607.531.613.545.168.29406.531.614.546.174.010987.529.518.548.074.07987.032.012.544.568.28616.031.213.544.768.29398.032.014.546.574.0	(MHz)Level (dBμV)(dB)Level (dBμV/m)(dBμV/m)(dB)7944.531.612.544.168.2-24.18607.531.613.545.168.2-23.19406.531.614.546.174.0-27.910987.529.518.548.074.0-26.07987.032.012.544.768.2-23.78616.031.213.544.768.2-23.59398.032.014.546.574.0-27.5	(MHz)Level (dBµV)(dB)Level (dBµV/m)(dBµV/m)(dB)7944.531.612.544.168.2-24.1Peak8607.531.613.545.168.2-23.1Peak9406.531.614.546.174.0-27.9Peak10987.529.518.548.074.0-26.0Peak7987.032.012.544.768.2-23.7Peak8616.031.213.544.768.2-23.5Peak9398.032.014.546.574.0-27.5Peak

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11a - Ant 1 + 2	Test Site:	AC1
Test Channel:	149	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7800.0	31.3	12.4	43.7	68.2	-24.5	Peak	Horizontal
*	8675.5	30.4	13.7	44.1	68.2	-24.1	Peak	Horizontal
	9423.5	30.7	14.5	45.2	74.0	-28.8	Peak	Horizontal
	11038.5	29.5	18.5	48.0	74.0	-26.0	Peak	Horizontal
*	7978.5	31.6	12.5	44.1	68.2	-24.1	Peak	Vertical
*	8675.5	30.9	13.7	44.6	68.2	-23.6	Peak	Vertical
	9338.5	31.7	14.6	46.3	74.0	-27.7	Peak	Vertical
	11038.5	29.8	18.5	48.3	74.0	-25.7	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11a - Ant 1 + 2	Test Site:	AC1
Test Channel:	157	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7919.0	31.3	12.4	43.7	68.2	-24.5	Peak	Horizontal
*	8735.0	31.3	13.9	45.2	68.2	-23.0	Peak	Horizontal
	9347.0	32.1	14.5	46.6	74.0	-27.4	Peak	Horizontal
	11081.0	29.0	18.6	47.6	74.0	-26.4	Peak	Horizontal
*	7919.0	31.0	12.4	43.4	68.2	-24.8	Peak	Vertical
*	8837.0	30.6	14.0	44.6	68.2	-23.6	Peak	Vertical
	9432.0	31.4	14.4	45.8	74.0	-28.2	Peak	Vertical
	11319.0	29.2	18.9	48.1	74.0	-25.9	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11a - Ant 1 + 2	Test Site:	AC1
Test Channel:	165	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7910.5	30.4	12.4	42.8	68.2	-25.4	Peak	Horizontal
*	8854.0	31.3	14.0	45.3	68.2	-22.9	Peak	Horizontal
	9355.5	31.6	14.5	46.1	74.0	-27.9	Peak	Horizontal
	11013.0	29.3	18.5	47.8	74.0	-26.2	Peak	Horizontal
*	7851.0	31.4	12.4	43.8	68.2	-24.4	Peak	Vertical
*	8624.5	31.4	13.5	44.9	68.2	-23.3	Peak	Vertical
	9355.5	31.7	14.5	46.2	74.0	-27.8	Peak	Vertical
	10962.0	29.6	18.4	48.0	74.0	-26.0	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	36	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7817.0	31.2	12.4	43.6	68.2	-24.6	Peak	Horizontal
*	8633.0	31.3	13.5	44.8	68.2	-23.4	Peak	Horizontal
	9406.5	31.6	14.5	46.1	74.0	-27.9	Peak	Horizontal
	11344.5	28.5	19.0	47.5	74.0	-26.5	Peak	Horizontal
*	7961.5	31.5	12.5	44.0	68.2	-24.2	Peak	Vertical
*	8616.0	31.1	13.5	44.6	68.2	-23.6	Peak	Vertical
	9338.5	31.1	14.6	45.7	74.0	-28.3	Peak	Vertical
	10885.5	30.1	18.3	48.4	74.0	-25.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	44	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel 		C C
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7834.0	31.5	12.4	43.9	68.2	-24.3	Peak	Horizontal
*	8735.0	31.4	13.9	45.3	68.2	-22.9	Peak	Horizontal
	9338.5	31.2	14.6	45.8	74.0	-28.2	Peak	Horizontal
	11013.0	29.3	18.5	47.8	74.0	-26.2	Peak	Horizontal
*	7851.0	32.1	12.4	44.5	68.2	-23.7	Peak	Vertical
*	8871.0	30.9	14.0	44.9	68.2	-23.3	Peak	Vertical
	9364.0	31.3	14.5	45.8	74.0	-28.2	Peak	Vertical
	10996.0	29.2	18.5	47.7	74.0	-26.3	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	48	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7851.0	31.2	12.4	43.6	68.2	-24.6	Peak	Horizontal
*	8735.0	31.4	13.9	45.3	68.2	-22.9	Peak	Horizontal
	9304.5	31.4	14.7	46.1	74.0	-27.9	Peak	Horizontal
	10902.5	30.4	18.3	48.7	74.0	-25.3	Peak	Horizontal
*	7936.0	31.8	12.4	44.2	68.2	-24.0	Peak	Vertical
*	8667.0	30.7	13.6	44.3	68.2	-23.9	Peak	Vertical
	9338.5	31.9	14.6	46.5	74.0	-27.5	Peak	Vertical
	10979.0	29.3	18.5	47.8	74.0	-26.2	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	149	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7944.5	32.8	12.5	45.3	68.2	-22.9	Peak	Horizontal
*	8616.0	31.9	13.5	45.4	68.2	-22.8	Peak	Horizontal
	9440.5	30.7	14.4	45.1	74.0	-28.9	Peak	Horizontal
	10970.5	29.8	18.4	48.2	74.0	-25.8	Peak	Horizontal
*	7987.0	32.0	12.5	44.5	68.2	-23.7	Peak	Vertical
*	8633.0	31.4	13.5	44.9	68.2	-23.3	Peak	Vertical
	9338.5	31.2	14.6	45.8	74.0	-28.2	Peak	Vertical
	10962.0	29.2	18.4	47.6	74.0	-26.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	157	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7817.0	32.8	12.4	45.2	68.2	-23.0	Peak	Horizontal
*	8837.0	30.3	14.0	44.3	68.2	-23.9	Peak	Horizontal
	9134.5	28.9	14.6	43.5	74.0	-30.5	Peak	Horizontal
	10860.0	29.5	18.2	47.7	74.0	-26.3	Peak	Horizontal
*	7944.5	31.9	12.5	44.4	68.2	-23.8	Peak	Vertical
*	8658.5	31.0	13.6	44.6	68.2	-23.6	Peak	Vertical
	9347.0	31.4	14.5	45.9	74.0	-28.1	Peak	Vertical
	11344.5	29.1	19.0	48.1	74.0	-25.9	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	165	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7825.5	31.9	12.4	44.3	68.2	-23.9	Peak	Horizontal
*	8811.5	31.7	14.0	45.7	68.2	-22.5	Peak	Horizontal
	9355.5	32.5	14.5	47.0	74.0	-27.0	Peak	Horizontal
	11361.5	28.6	19.0	47.6	74.0	-26.4	Peak	Horizontal
*	7910.5	30.6	12.4	43.0	68.2	-25.2	Peak	Vertical
*	8565.0	31.0	13.3	44.3	68.2	-23.9	Peak	Vertical
	9466.0	31.4	14.4	45.8	74.0	-28.2	Peak	Vertical
	10979.0	29.1	18.5	47.6	74.0	-26.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	38	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7953.0	30.3	12.5	42.8	68.2	-25.4	Peak	Horizontal
*	8888.0	31.9	14.0	45.9	68.2	-22.3	Peak	Horizontal
	9389.5	31.0	14.5	45.5	74.0	-28.5	Peak	Horizontal
	11047.0	29.9	18.5	48.4	74.0	-25.6	Peak	Horizontal
*	7885.0	30.4	12.4	42.8	68.2	-25.4	Peak	Vertical
*	8658.5	30.7	13.6	44.3	68.2	-23.9	Peak	Vertical
	9398.0	30.9	14.5	45.4	74.0	-28.6	Peak	Vertical
	11047.0	28.6	18.5	47.1	74.0	-26.9	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	46	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7851.0	30.9	12.4	43.3	68.2	-24.9	Peak	Horizontal
*	8624.5	31.3	13.5	44.8	68.2	-23.4	Peak	Horizontal
	9313.0	31.0	14.7	45.7	74.0	-28.3	Peak	Horizontal
	11064.0	29.2	18.5	47.7	74.0	-26.3	Peak	Horizontal
*	7842.5	31.1	12.4	43.5	68.2	-24.7	Peak	Vertical
*	8616.0	32.9	13.5	46.4	68.2	-21.8	Peak	Vertical
	9364.0	31.5	14.5	46.0	74.0	-28.0	Peak	Vertical
	11463.5	28.8	19.3	48.1	74.0	-25.9	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	151	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7978.5	32.2	12.5	44.7	68.2	-23.5	Peak	Horizontal
*	8650.0	31.8	13.6	45.4	68.2	-22.8	Peak	Horizontal
	9330.0	31.2	14.6	45.8	74.0	-28.2	Peak	Horizontal
	11098.0	29.5	18.6	48.1	74.0	-25.9	Peak	Horizontal
*	7995.5	31.5	12.5	44.0	68.2	-24.2	Peak	Vertical
*	8828.5	30.9	14.0	44.9	68.2	-23.3	Peak	Vertical
	9474.5	31.2	14.4	45.6	74.0	-28.4	Peak	Vertical
	11608.0	28.7	19.4	48.1	74.0	-25.9	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	159	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7808.5	31.6	12.4	44.0	68.2	-24.2	Peak	Horizontal
*	8837.0	30.8	14.0	44.8	68.2	-23.4	Peak	Horizontal
	9338.5	32.2	14.6	46.8	74.0	-27.2	Peak	Horizontal
	10868.5	30.0	18.2	48.2	74.0	-25.8	Peak	Horizontal
*	7808.5	32.0	12.4	44.4	68.2	-23.8	Peak	Vertical
*	8854.0	31.2	14.0	45.2	68.2	-23.0	Peak	Vertical
	9338.5	31.2	14.6	45.8	74.0	-28.2	Peak	Vertical
	11455.0	28.7	19.2	47.9	74.0	-26.1	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	36	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7834.0	31.8	12.4	44.2	68.2	-24.0	Peak	Horizontal
*	8633.0	31.2	13.5	44.7	68.2	-23.5	Peak	Horizontal
	9338.5	30.9	14.6	45.5	74.0	-28.5	Peak	Horizontal
	11625.0	28.2	19.4	47.6	74.0	-26.4	Peak	Horizontal
*	7825.5	31.6	12.4	44.0	68.2	-24.2	Peak	Vertical
*	8820.0	31.2	14.0	45.2	68.2	-23.0	Peak	Vertical
	9347.0	31.6	14.5	46.1	74.0	-27.9	Peak	Vertical
	11251.0	28.9	18.8	47.7	74.0	-26.3	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1						
Test Channel:	44	Test Engineer:	Kevin						
Remark:	1. Average measurement was no limit.	. Average measurement was not performed if peak level lower than average limit.							
	 Other frequency was 20dB bel in the report. 	. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7834.0	32.0	12.4	44.4	68.2	-23.8	Peak	Horizontal
*	8616.0	31.1	13.5	44.6	68.2	-23.6	Peak	Horizontal
	9347.0	32.1	14.5	46.6	74.0	-27.4	Peak	Horizontal
	11038.5	29.3	18.5	47.8	74.0	-26.2	Peak	Horizontal
*	7970.0	31.4	12.5	43.9	68.2	-24.3	Peak	Vertical
*	8616.0	32.2	13.5	45.7	68.2	-22.5	Peak	Vertical
	9321.5	31.2	14.6	45.8	74.0	-28.2	Peak	Vertical
	10953.5	29.5	18.4	47.9	74.0	-26.1	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	48	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. 		, C
	 Other frequency was 20dB bel in the report. 	ow limit line within 1	-18GHz, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7927.5	32.0	12.4	44.4	68.2	-23.8	Peak	Horizontal
*	8624.5	32.2	13.5	45.7	68.2	-22.5	Peak	Horizontal
	9372.5	31.7	14.5	46.2	74.0	-27.8	Peak	Horizontal
	11140.5	29.4	18.7	48.1	74.0	-25.9	Peak	Horizontal
*	7808.5	31.4	12.4	43.8	68.2	-24.4	Peak	Vertical
*	8650.0	31.4	13.6	45.0	68.2	-23.2	Peak	Vertical
	9347.0	30.9	14.5	45.4	74.0	-28.6	Peak	Vertical
	11319.0	28.6	18.9	47.5	74.0	-26.5	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	149	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7936.0	32.1	12.4	44.5	68.2	-23.7	Peak	Horizontal
*	8633.0	31.3	13.5	44.8	68.2	-23.4	Peak	Horizontal
	9338.5	31.5	14.6	46.1	74.0	-27.9	Peak	Horizontal
	11523.0	28.9	19.4	48.3	74.0	-25.7	Peak	Horizontal
*	7851.0	32.4	12.4	44.8	68.2	-23.4	Peak	Vertical
*	8845.5	31.8	14.0	45.8	68.2	-22.4	Peak	Vertical
	9355.5	31.2	14.5	45.7	74.0	-28.3	Peak	Vertical
	11489.0	28.1	19.3	47.4	74.0	-26.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	157	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7808.5	31.6	12.4	44.0	68.2	-24.2	Peak	Horizontal
*	8633.0	31.3	13.5	44.8	68.2	-23.4	Peak	Horizontal
	9389.5	31.5	14.5	46.0	74.0	-28.0	Peak	Horizontal
	11361.5	29.6	19.0	48.6	74.0	-25.4	Peak	Horizontal
*	7919.0	31.6	12.4	44.0	68.2	-24.2	Peak	Vertical
*	8607.5	32.0	13.5	45.5	68.2	-22.7	Peak	Vertical
	9321.5	31.4	14.6	46.0	74.0	-28.0	Peak	Vertical
	11234.0	29.2	18.8	48.0	74.0	-26.0	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	165	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7995.5	32.5	12.5	45.0	68.2	-23.2	Peak	Horizontal
*	8641.5	32.4	13.5	45.9	68.2	-22.3	Peak	Horizontal
	9372.5	31.6	14.5	46.1	74.0	-27.9	Peak	Horizontal
	11234.0	29.2	18.8	48.0	74.0	-26.0	Peak	Horizontal
*	7910.5	31.3	12.4	43.7	68.2	-24.5	Peak	Vertical
*	8641.5	32.4	13.5	45.9	68.2	-22.3	Peak	Vertical
	9372.5	31.6	14.5	46.1	74.0	-27.9	Peak	Vertical
	11072.5	29.4	18.6	48.0	74.0	-26.0	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	38	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7910.5	31.1	12.4	43.5	68.2	-24.7	Peak	Horizontal
*	8701.0	31.2	13.8	45.0	68.2	-23.2	Peak	Horizontal
	9466.0	31.2	14.4	45.6	74.0	-28.4	Peak	Horizontal
	11506.0	29.0	19.4	48.4	74.0	-25.6	Peak	Horizontal
*	7808.5	31.9	12.4	44.3	68.2	-23.9	Peak	Vertical
*	8675.5	30.9	13.7	44.6	68.2	-23.6	Peak	Vertical
	9389.5	31.3	14.5	45.8	74.0	-28.2	Peak	Vertical
	11234.0	28.9	18.8	47.7	74.0	-26.3	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT40 - Ant 1 + 2	Test Site:	AC1						
Test Channel:	46	Test Engineer:	Kevin						
Remark:	 Average measurement was no limit. 	Average measurement was not performed if peak level lower than average limit.							
	 Other frequency was 20dB bel in the report. 	ow limit line within 1	-18GHz, there is not show						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7859.5	31.3	12.4	43.7	68.2	-24.5	Peak	Horizontal
*	8667.0	31.8	13.6	45.4	68.2	-22.8	Peak	Horizontal
	9372.5	31.0	14.5	45.5	74.0	-28.5	Peak	Horizontal
	11098.0	28.9	18.6	47.5	74.0	-26.5	Peak	Horizontal
*	7919.0	29.9	12.4	42.3	68.2	-25.9	Peak	Vertical
*	8879.5	31.4	14.0	45.4	68.2	-22.8	Peak	Vertical
	9423.5	29.8	14.5	44.3	74.0	-29.7	Peak	Vertical
	11030.0	28.9	18.5	47.4	74.0	-26.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	151	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7842.5	31.3	12.4	43.7	68.2	-24.5	Peak	Horizontal
*	8845.5	31.2	14.0	45.2	68.2	-23.0	Peak	Horizontal
	9372.5	31.8	14.5	46.3	74.0	-27.7	Peak	Horizontal
	11514.5	29.4	19.4	48.8	74.0	-25.2	Peak	Horizontal
*	7842.5	31.7	12.4	44.1	68.2	-24.1	Peak	Vertical
*	8871.0	31.4	14.0	45.4	68.2	-22.8	Peak	Vertical
	9313.0	30.8	14.7	45.5	74.0	-28.5	Peak	Vertical
	10953.5	29.7	18.4	48.1	74.0	-25.9	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	159	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7842.5	31.7	12.4	44.1	68.2	-24.1	Peak	Horizontal
*	8633.0	31.3	13.5	44.8	68.2	-23.4	Peak	Horizontal
	9364.0	31.6	14.5	46.1	74.0	-27.9	Peak	Horizontal
	10945.0	29.4	18.4	47.8	74.0	-26.2	Peak	Horizontal
*	7842.5	31.7	12.4	44.1	68.2	-24.1	Peak	Vertical
*	8667.0	31.0	13.6	44.6	68.2	-23.6	Peak	Vertical
	9347.0	31.6	14.5	46.1	74.0	-27.9	Peak	Vertical
	11506.0	28.6	19.4	48.0	74.0	-26.0	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT80 - Ant 1 + 2	Test Site:	AC1
Test Channel:	42	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel 		C C
	in the report.		

(MHz) 7944.5	Level (dBµV) 31.8	(dB)	Level (dBµV/m)	(dBµV/m)	(dB)		
7944.5			(dBµV/m)				
7944.5	31.8						
	51.0	12.5	44.3	68.2	-23.9	Peak	Horizontal
8624.5	31.2	13.5	44.7	68.2	-23.5	Peak	Horizontal
9381.0	31.8	14.5	46.3	74.0	-27.7	Peak	Horizontal
1344.5	28.7	19.0	47.7	74.0	-26.3	Peak	Horizontal
7936.0	31.7	12.4	44.1	68.2	-24.1	Peak	Vertical
8862.5	30.2	14.0	44.2	68.2	-24.0	Peak	Vertical
9330.0	31.3	14.6	45.9	74.0	-28.1	Peak	Vertical
0902.5	29.7	18.3	48.0	74.0	-26.0	Peak	Vertical
9 1 7 8 9 (381.0 1344.5 936.0 862.5 330.0 0902.5	381.0 31.8 1344.5 28.7 '936.0 31.7 '862.5 30.2 '330.0 31.3 '9902.5 29.7	381.031.814.51344.528.719.01936.031.712.41862.530.214.01330.031.314.61902.529.718.3	381.031.814.546.31344.528.719.047.7936.031.712.444.1862.530.214.044.2330.031.314.645.90902.529.718.348.0	381.0 31.8 14.5 46.3 74.0 1344.5 28.7 19.0 47.7 74.0 936.0 31.7 12.4 44.1 68.2 862.5 30.2 14.0 44.2 68.2 330.0 31.3 14.6 45.9 74.0	381.031.814.546.374.0-27.71344.528.719.047.774.0-26.3936.031.712.444.168.2-24.1862.530.214.044.268.2-24.0330.031.314.645.974.0-28.10902.529.718.348.074.0-26.0	381.031.814.546.374.0-27.7Peak1344.528.719.047.774.0-26.3Peak936.031.712.444.168.2-24.1Peak862.530.214.044.268.2-24.0Peak330.031.314.645.974.0-28.1Peak0902.529.718.348.074.0-26.0Peak

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT80 - Ant 1 + 2	Test Site:	AC1
Test Channel:	155	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	7987.0	31.3	12.5	43.8	68.2	-24.4	Peak	Horizontal
*	8854.0	31.1	14.0	45.1	68.2	-23.1	Peak	Horizontal
	9338.5	31.6	14.6	46.2	74.0	-27.8	Peak	Horizontal
	11047.0	29.2	18.5	47.7	74.0	-26.3	Peak	Horizontal
*	7953.0	31.5	12.5	44.0	68.2	-24.2	Peak	Vertical
*	8709.5	30.8	13.8	44.6	68.2	-23.6	Peak	Vertical
	9338.5	31.1	14.6	45.7	74.0	-28.3	Peak	Vertical
	10928.0	29.6	18.4	48.0	74.0	-26.0	Peak	Vertical
							" .	(0)

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Beam-Forming Mode

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1						
Test Channel:	36	Test Engineer:	Kevin						
Remark:	1. Average measurement was not performed if peak level lower than average								
	-	limit. 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.								

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7434.5	30.8	12.7	43.5	74.0	-30.5	Peak	Horizontal
*	8692.5	30.2	13.7	43.9	68.2	-24.3	Peak	Horizontal
	11650.5	28.2	19.3	47.5	74.0	-26.5	Peak	Horizontal
*	13180.5	26.9	20.2	47.1	68.2	-21.1	Peak	Horizontal
	7570.5	31.6	12.8	44.4	74.0	-29.6	Peak	Vertical
*	8896.5	30.6	14.0	44.6	68.2	-23.6	Peak	Vertical
	11650.5	28.0	19.3	47.3	74.0	-26.7	Peak	Vertical
*	13180.5	26.9	20.2	47.1	68.2	-21.1	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	44	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7570.5	31.6	12.8	44.4	74.0	-29.6	Peak	Horizontal
*	8888.0	29.5	14.0	43.5	68.2	-24.7	Peak	Horizontal
	11251.0	28.7	18.8	47.5	74.0	-26.5	Peak	Horizontal
*	13019.0	26.8	19.9	46.7	68.2	-21.5	Peak	Horizontal
	7502.5	30.7	12.8	43.5	74.0	-30.5	Peak	Vertical
*	8845.5	31.5	14.0	45.5	68.2	-22.7	Peak	Vertical
	11548.5	28.8	19.4	48.2	74.0	-25.8	Peak	Vertical
*	13019.0	26.8	19.9	46.7	68.2	-21.5	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	48	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7502.5	30.7	12.8	43.5	74.0	-30.5	Peak	Horizontal
*	8854.0	30.9	14.0	44.9	68.2	-23.3	Peak	Horizontal
	11174.5	27.1	18.7	45.8	74.0	-28.2	Peak	Horizontal
*	12815.0	27.1	19.1	46.2	68.2	-22.0	Peak	Horizontal
	7562.0	31.3	12.8	44.1	74.0	-29.9	Peak	Vertical
*	8811.5	30.6	14.0	44.6	68.2	-23.6	Peak	Vertical
	11565.5	28.6	19.5	48.1	74.0	-25.9	Peak	Vertical
*	12815.0	27.1	19.1	46.2	68.2	-22.0	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	149	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7672.5	30.9	12.5	43.4	74.0	-30.6	Peak	Horizontal
*	8862.5	31.2	14.0	45.2	68.2	-23.0	Peak	Horizontal
	11480.5	28.4	19.3	47.7	74.0	-26.3	Peak	Horizontal
*	12951.0	25.9	19.7	45.6	68.2	-22.6	Peak	Horizontal
	7477.0	31.0	12.8	43.8	74.0	-30.2	Peak	Vertical
*	8667.0	30.6	13.6	44.2	68.2	-24.0	Peak	Vertical
	11497.5	28.3	19.3	47.6	74.0	-26.4	Peak	Vertical
*	12951.0	25.9	19.7	45.6	68.2	-22.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	157	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7477.0	31.0	12.8	43.8	74.0	-30.2	Peak	Horizontal
*	8743.5	30.3	13.9	44.2	68.2	-24.0	Peak	Horizontal
	11004.5	29.5	18.5	48.0	74.0	-26.0	Peak	Horizontal
*	12942.5	27.1	19.7	46.8	68.2	-21.4	Peak	Horizontal
	7502.5	30.1	12.8	42.9	74.0	-31.1	Peak	Vertical
*	8531.0	30.5	13.1	43.6	68.2	-24.6	Peak	Vertical
	11038.5	29.0	18.5	47.5	74.0	-26.5	Peak	Vertical
*	12942.5	27.1	19.7	46.8	68.2	-21.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	165	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7502.5	30.1	12.8	42.9	74.0	-31.1	Peak	Horizontal
*	8675.5	30.3	13.7	44.0	68.2	-24.2	Peak	Horizontal
	11616.5	28.0	19.4	47.4	74.0	-26.6	Peak	Horizontal
*	12832.0	28.4	19.2	47.6	68.2	-20.6	Peak	Horizontal
	7511.0	30.6	12.8	43.4	74.0	-30.6	Peak	Vertical
*	8837.0	30.2	14.0	44.2	68.2	-24.0	Peak	Vertical
	11727.0	28.4	19.0	47.4	74.0	-26.6	Peak	Vertical
*	12832.0	28.4	19.2	47.6	68.2	-20.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	38	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7511.0	30.6	12.8	43.4	74.0	-30.6	Peak	Horizontal
*	8837.0	30.7	14.0	44.7	68.2	-23.5	Peak	Horizontal
	11285.0	29.4	18.8	48.2	74.0	-25.8	Peak	Horizontal
*	13095.5	26.5	20.1	46.6	68.2	-21.6	Peak	Horizontal
	7545.0	30.8	12.8	43.6	74.0	-30.4	Peak	Vertical
*	8641.5	30.6	13.5	44.1	68.2	-24.1	Peak	Vertical
	11370.0	28.6	19.0	47.6	74.0	-26.4	Peak	Vertical
*	13095.5	26.5	20.1	46.6	68.2	-21.6	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	46	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7545.0	30.8	12.8	43.6	74.0	-30.4	Peak	Horizontal
*	8845.5	31.2	14.0	45.2	68.2	-23.0	Peak	Horizontal
	11523.0	29.0	19.4	48.4	74.0	-25.6	Peak	Horizontal
*	12840.5	27.3	19.2	46.5	68.2	-21.7	Peak	Horizontal
	7621.5	31.1	12.6	43.7	74.0	-30.3	Peak	Vertical
*	8624.5	30.4	13.5	43.9	68.2	-24.3	Peak	Vertical
	11548.5	28.1	19.4	47.5	74.0	-26.5	Peak	Vertical
*	12840.5	27.3	19.2	46.5	68.2	-21.7	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	151	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7409.0	30.6	12.6	43.2	74.0	-30.8	Peak	Horizontal
*	8616.0	30.4	13.5	43.9	68.2	-24.3	Peak	Horizontal
	11735.5	28.2	19.0	47.2	74.0	-26.8	Peak	Horizontal
*	12900.0	26.3	19.5	45.8	68.2	-22.4	Peak	Horizontal
	7417.5	30.3	12.6	42.9	74.0	-31.1	Peak	Vertical
*	8624.5	30.4	13.5	43.9	68.2	-24.3	Peak	Vertical
	11531.5	29.0	19.4	48.4	74.0	-25.6	Peak	Vertical
*	12900.0	26.3	19.5	45.8	68.2	-22.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11n-HT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	159	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7417.5	30.3	12.6	42.9	74.0	-31.1	Peak	Horizontal
*	8837.0	29.6	14.0	43.6	68.2	-24.6	Peak	Horizontal
	11565.5	28.2	19.5	47.7	74.0	-26.3	Peak	Horizontal
*	12789.5	26.9	19.0	45.9	68.2	-22.3	Peak	Horizontal
	7468.5	30.1	12.8	42.9	74.0	-31.1	Peak	Vertical
*	8726.5	29.9	13.8	43.7	68.2	-24.5	Peak	Vertical
	11608.0	27.6	19.4	47.0	74.0	-27.0	Peak	Vertical
*	12789.5	26.9	19.0	45.9	68.2	-22.3	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	36	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
	(dBµV)		(dBµV/m)				
7468.5	30.1	12.8	42.9	74.0	-31.1	Peak	Horizontal
8837.0	30.5	14.0	44.5	68.2	-23.7	Peak	Horizontal
11506.0	28.7	19.4	48.1	74.0	-25.9	Peak	Horizontal
13061.5	26.2	20.0	46.2	68.2	-22.0	Peak	Horizontal
7417.5	30.7	12.6	43.3	74.0	-30.7	Peak	Vertical
8862.5	30.2	14.0	44.2	68.2	-24.0	Peak	Vertical
11004.5	29.0	18.5	47.5	74.0	-26.5	Peak	Vertical
13061.5	26.2	20.0	46.2	68.2	-22.0	Peak	Vertical
	(MHz) 7468.5 8837.0 11506.0 13061.5 7417.5 8862.5 11004.5	(MHz) Level (dBμV) 7468.5 30.1 8837.0 30.5 11506.0 28.7 13061.5 26.2 7417.5 30.7 8862.5 30.2 11004.5 29.0	(MHz) Level (dBµV) (dB) 7468.5 30.1 12.8 8837.0 30.5 14.0 11506.0 28.7 19.4 13061.5 26.2 20.0 7417.5 30.7 12.6 8862.5 30.2 14.0 11004.5 29.0 18.5	(MHz) Level (dBμV) (dB) Level (dBμV/m) 7468.5 30.1 12.8 42.9 8837.0 30.5 14.0 44.5 11506.0 28.7 19.4 48.1 13061.5 26.2 20.0 46.2 7417.5 30.7 12.6 43.3 8862.5 30.2 14.0 44.2 11004.5 29.0 18.5 47.5	(MHz) Level (dBμV) (dB) Level (dBμV/m) (dBμV/m) 7468.5 30.1 12.8 42.9 74.0 8837.0 30.5 14.0 44.5 68.2 11506.0 28.7 19.4 48.1 74.0 13061.5 26.2 20.0 46.2 68.2 7417.5 30.7 12.6 43.3 74.0 8862.5 30.2 14.0 44.2 68.2 11004.5 29.0 18.5 47.5 74.0	(MHz) Level (dBμV) (dB) Level (dBμV/m) (dBμV/m) (dBμV/m) (dB) 7468.5 30.1 12.8 42.9 74.0 -31.1 8837.0 30.5 14.0 44.5 68.2 -23.7 11506.0 28.7 19.4 48.1 74.0 -25.9 13061.5 26.2 20.0 46.2 68.2 -22.0 7417.5 30.7 12.6 43.3 74.0 -30.7 8862.5 30.2 14.0 44.2 68.2 -24.0 11004.5 29.0 18.5 47.5 74.0 -26.5	(MHz)Level (dBμV)(dB)Level (dBμV)(dBμV/m)(dB)7468.530.112.842.974.0-31.1Peak8837.030.514.044.568.2-23.7Peak11506.028.719.448.174.0-25.9Peak13061.526.220.046.268.2-22.0Peak7417.530.712.643.374.0-30.7Peak8862.530.214.044.268.2-24.0Peak11004.529.018.547.574.0-26.5Peak

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	44	Test Engineer:	Kevin
Remark:	1. Average measurement was no limit.	t performed if peak l	evel lower than average
	 Other frequency was 20dB bel in the report. 	ow limit line within 1	-18GHz, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7417.5	30.7	12.6	43.3	74.0	-30.7	Peak	Horizontal
*	8684.0	30.0	13.7	43.7	68.2	-24.5	Peak	Horizontal
	11761.0	27.3	18.9	46.2	74.0	-27.8	Peak	Horizontal
*	13027.5	26.4	19.9	46.3	68.2	-21.9	Peak	Horizontal
	7434.5	29.1	12.7	41.8	74.0	-32.2	Peak	Vertical
*	8845.5	29.6	14.0	43.6	68.2	-24.6	Peak	Vertical
	11523.0	27.9	19.4	47.3	74.0	-26.7	Peak	Vertical
*	12781.0	26.3	19.0	45.3	68.2	-22.9	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	48	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. 		, C
	 Other frequency was 20dB bel in the report. 	ow limit line within 1	-18GHz, there is not show

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7613.0	30.1	12.6	42.7	74.0	-31.3	Peak	Horizontal
*	8828.5	30.0	14.0	44.0	68.2	-24.2	Peak	Horizontal
	11608.0	27.5	19.4	46.9	74.0	-27.1	Peak	Horizontal
*	12781.0	26.3	19.0	45.3	68.2	-22.9	Peak	Horizontal
	7613.0	30.1	12.6	42.7	74.0	-31.3	Peak	Vertical
*	8854.0	29.6	14.0	43.6	68.2	-24.6	Peak	Vertical
	11523.0	27.9	19.4	47.3	74.0	-26.7	Peak	Vertical
*	12968.0	26.4	19.8	46.2	68.2	-22.0	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	149	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7460.0	30.6	12.8	43.4	74.0	-30.6	Peak	Horizontal
*	8624.5	30.2	13.5	43.7	68.2	-24.5	Peak	Horizontal
	11004.5	29.2	18.5	47.7	74.0	-26.3	Peak	Horizontal
*	12857.5	26.5	19.3	45.8	68.2	-22.4	Peak	Horizontal
	7460.0	30.6	12.8	43.4	74.0	-30.6	Peak	Vertical
*	8837.0	30.5	14.0	44.5	68.2	-23.7	Peak	Vertical
	11081.0	27.8	18.6	46.4	74.0	-27.6	Peak	Vertical
*	12849.0	27.3	19.2	46.5	68.2	-21.7	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	157	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7451.5	30.8	12.8	43.6	74.0	-30.4	Peak	Horizontal
*	8828.5	29.9	14.0	43.9	68.2	-24.3	Peak	Horizontal
	11293.5	28.5	18.9	47.4	74.0	-26.6	Peak	Horizontal
*	12849.0	27.3	19.2	46.5	68.2	-21.7	Peak	Horizontal
	7451.5	30.8	12.8	43.6	74.0	-30.4	Peak	Vertical
*	8862.5	29.2	14.0	43.2	68.2	-25.0	Peak	Vertical
	11540.0	28.5	19.4	47.9	74.0	-26.1	Peak	Vertical
*	12730.0	27.9	18.8	46.7	68.2	-21.5	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT20 - Ant 1 + 2	Test Site:	AC1
Test Channel:	165	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7519.5	30.7	12.8	43.5	74.0	-30.5	Peak	Horizontal
*	8616.0	30.6	13.5	44.1	68.2	-24.1	Peak	Horizontal
	11004.5	29.2	18.5	47.7	74.0	-26.3	Peak	Horizontal
*	12730.0	27.9	18.8	46.7	68.2	-21.5	Peak	Horizontal
	7519.5	30.7	12.8	43.5	74.0	-30.5	Peak	Vertical
*	8633.0	29.8	13.5	43.3	68.2	-24.9	Peak	Vertical
	11353.0	28.6	19.0	47.6	74.0	-26.4	Peak	Vertical
*	13019.0	26.0	19.9	45.9	68.2	-22.3	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	38	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel 		C C
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7647.0	30.5	12.5	43.0	74.0	-31.0	Peak	Horizontal
*	8658.5	30.3	13.6	43.9	68.2	-24.3	Peak	Horizontal
	11004.5	30.2	18.5	48.7	74.0	-25.3	Peak	Horizontal
*	13019.0	26.0	19.9	45.9	68.2	-22.3	Peak	Horizontal
	7647.0	30.5	12.5	43.0	74.0	-31.0	Peak	Vertical
*	8845.5	30.0	14.0	44.0	68.2	-24.2	Peak	Vertical
	11370.0	28.7	19.0	47.7	74.0	-26.3	Peak	Vertical
*	12951.0	26.1	19.7	45.8	68.2	-22.4	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	46	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel 		C C
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7613.0	31.0	12.6	43.6	74.0	-30.4	Peak	Horizontal
*	8743.5	30.0	13.9	43.9	68.2	-24.3	Peak	Horizontal
	11540.0	27.5	19.4	46.9	74.0	-27.1	Peak	Horizontal
*	12951.0	26.1	19.7	45.8	68.2	-22.4	Peak	Horizontal
	7613.0	31.0	12.6	43.6	74.0	-30.4	Peak	Vertical
*	8845.5	29.6	14.0	43.6	68.2	-24.6	Peak	Vertical
	11013.0	29.3	18.5	47.8	74.0	-26.2	Peak	Vertical
*	12891.5	26.6	19.4	46.0	68.2	-22.2	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	151	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7417.5	30.8	12.6	43.4	74.0	-30.6	Peak	Horizontal
*	8735.0	29.8	13.9	43.7	68.2	-24.5	Peak	Horizontal
	11013.0	28.5	18.5	47.0	74.0	-27.0	Peak	Horizontal
*	12934.0	25.8	19.6	45.4	68.2	-22.8	Peak	Horizontal
	7417.5	30.8	12.6	43.4	74.0	-30.6	Peak	Vertical
*	8862.5	29.9	14.0	43.9	68.2	-24.3	Peak	Vertical
	11684.5	27.2	19.2	46.4	74.0	-27.6	Peak	Vertical
*	12900.0	26.0	19.5	45.5	68.2	-22.7	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT40 - Ant 1 + 2	Test Site:	AC1
Test Channel:	159	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7434.5	29.3	12.7	42.0	74.0	-32.0	Peak	Horizontal
*	8811.5	28.8	14.0	42.8	68.2	-25.4	Peak	Horizontal
	11370.0	28.3	19.0	47.3	74.0	-26.7	Peak	Horizontal
*	12900.0	26.0	19.5	45.5	68.2	-22.7	Peak	Horizontal
	7434.5	29.3	12.7	42.0	74.0	-32.0	Peak	Vertical
*	8641.5	30.5	13.5	44.0	68.2	-24.2	Peak	Vertical
	11038.5	28.0	18.5	46.5	74.0	-27.5	Peak	Vertical
*	12891.5	25.1	19.4	44.5	68.2	-23.7	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

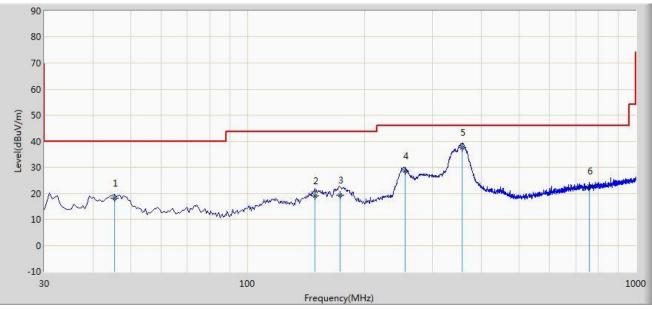
Test Mode:	802.11ac-VHT80 - Ant 1 + 2	Test Site:	AC1
Test Channel:	42	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel 		C C
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7400.5	30.1	12.6	42.7	74.0	-31.3	Peak	Horizontal
*	8607.5	30.3	13.5	43.8	68.2	-24.4	Peak	Horizontal
	11370.0	28.0	19.0	47.0	74.0	-27.0	Peak	Horizontal
*	12891.5	25.1	19.4	44.5	68.2	-23.7	Peak	Horizontal
	7400.5	30.1	12.6	42.7	74.0	-31.3	Peak	Vertical
*	8871.0	30.9	14.0	44.9	68.2	-23.3	Peak	Vertical
	11650.5	28.0	19.3	47.3	74.0	-26.7	Peak	Vertical
*	12951.0	26.7	19.7	46.4	68.2	-21.8	Peak	Vertical

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Test Mode:	802.11ac-VHT80 - Ant 1 + 2	Test Site:	AC1
Test Channel:	155	Test Engineer:	Kevin
Remark:	 Average measurement was no limit. Other frequency was 20dB bel in the report. 		C C

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7485.5	30.0	12.8	42.8	74.0	-31.2	Peak	Horizontal
*	8837.0	31.4	14.0	45.4	68.2	-22.8	Peak	Horizontal
	11327.5	28.7	18.9	47.6	74.0	-26.4	Peak	Horizontal
*	12900.0	26.4	19.5	45.9	68.2	-22.3	Peak	Horizontal
	7485.5	30.0	12.8	42.8	74.0	-31.2	Peak	Vertical
*	8837.0	30.6	14.0	44.6	68.2	-23.6	Peak	Vertical
	11531.5	27.9	19.4	47.3	74.0	-26.7	Peak	Vertical
*	12891.5	27.0	19.4	46.4	68.2	-21.8	Peak	Vertical


Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

The worst case of Radiated Emission:

Site: AC1	Time: 2017/02/10 - 20:32
Limit: FCC_Part15.209_RE(3m)	Engineer: Kevin
Probe: VULB9162_0.03GHz_8GHz	Polarity: Horizontal
EUT: ACCESS POINT	Power: By POE Adapter

Worst Mode: Transmit by 802.11a at channel 5745MHz Ant 1 + 2

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			45.520	18.095	3.164	-21.905	40.000	14.931	QP
2			149.310	19.113	9.536	-24.387	43.500	9.577	QP
3			173.560	19.396	8.837	-24.104	43.500	10.559	QP
4			254.555	28.581	14.630	-17.419	46.000	13.951	QP
5			356.405	37.542	21.394	-8.458	46.000	16.148	QP
6			758.470	22.863	0.234	-23.137	46.000	22.629	QP

Note 1: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 40GHz), therefore no data appear in the report.

Site: AC1	Time: 2017/02/10 - 20:34
Limit: FCC_Part15.209_RE(3m)	Engineer: Kevin
Probe: VULB9162_0.03GHz_8GHz	Polarity: Vertical
EUT: ACCESS POINT	Power: By POE Adapter
Worst Mode: Transmit by 802.11a at cha	iel 5745MHz Ant 1 + 2
90	
80	
70	
60	
Ê 50	
	5
1 30	3 4
	man for the second seco
20/ hmmmmm	without the manual and the second of the sec
10	
0	
-10 30	1000
	Frequency(MHz)

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			45.035	33.564	18.726	-6.436	40.000	14.838	QP
2			97.415	19.989	7.263	-23.511	43.500	12.726	QP
3			257.950	27.476	13.458	-18.524	46.000	14.018	QP
4			309.845	29.245	14.238	-16.755	46.000	15.007	QP
5			346.705	36.356	20.364	-9.644	46.000	15.992	QP
6			727.915	20.624	-1.635	-25.376	46.000	22.259	QP

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 40GHz), therefore no data appear in the report.

7.9. Radiated Restricted Band Edge Measurement

7.9.1. Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

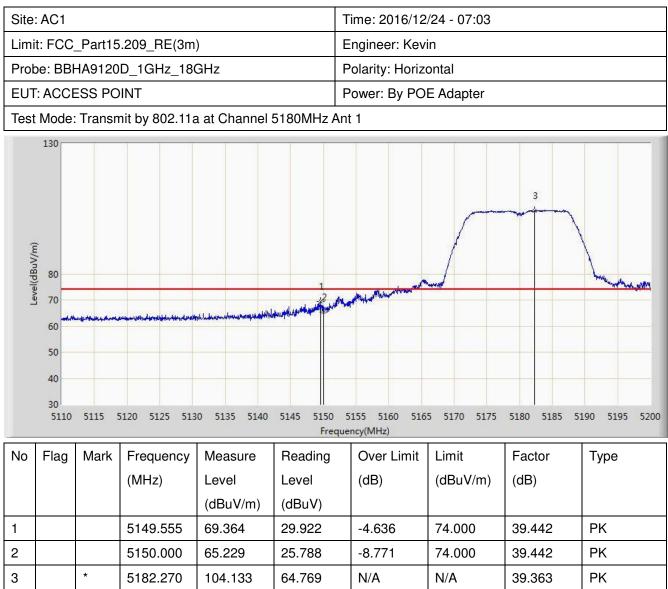
		·	()
Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.25 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 – 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

For 15.407(b) requirement:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not

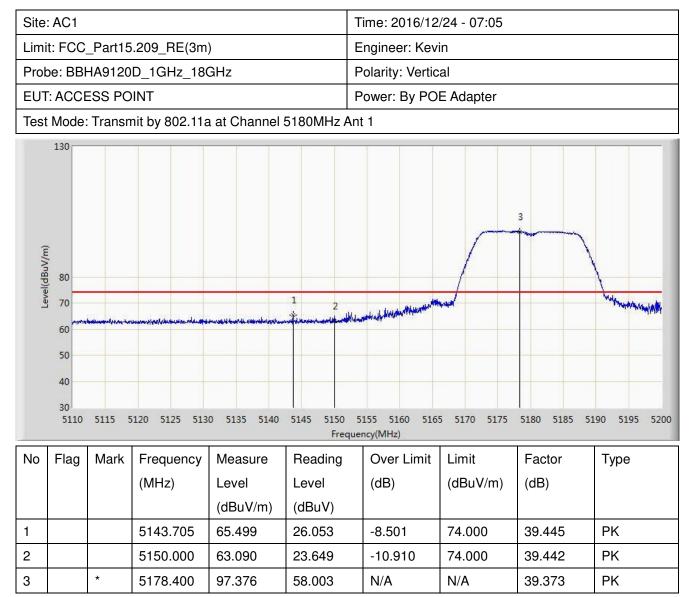
exceed an e.i.r.p. of -27 dBm/MHz.


Refer to KDB 789033 D02v01r03 G)2)c), as specified in § 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a maximum emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in § 15.407(b)(4)). However, an out-of-band emission that complies with both the peak and average limits of § 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz maximum emission limit.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC	C Part 15 Subpart C Paragraph 1	5.209
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meters]
0.009 – 0.490	2400/F (kHz)	300
0.490 – 1.705	24000/F (kHz)	30
1.705 - 30	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

7.9.2. Test Result of Radiated Restricted Band Edge



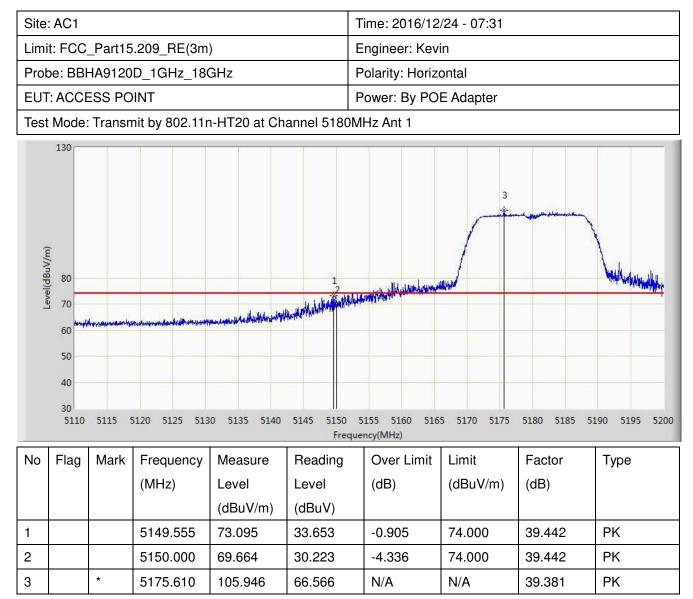
Note: Measure Level $(dB\mu V/m) = Reading Level (dB\mu V) + Factor (dB)$

Site:	AC1				Т	ïme: 2016/12	/24 - 07:05				
Limit	t: FCC	_Part15	.209_RE(3m))	E	Engineer: Kevin					
Prob	e: BBI	HA9120	D_1GHz_180	GHz	F	Polarity: Horizontal					
EUT	: ACCI	ESS PO	INT		F	ower: By PO	E Adapter				
Test	Mode	Transn	nit by 802.11a	a at Channel	5180MHz An	t 1					
Level(dBuV/m)	130 80 70 60 50 40 30 5110	5115	5120 5125 513	0 5135 5140		5155 5160 516 ency(MHz)	5 5170 5175	2	i190 5195 5200		
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре		
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)			
			((dBuV/m)	(dBuV)	()	(()			
1			5150.000	51.031	11.590	-2.969	54.000	39.442	AV		
2		*	5183.980	91.748	52.389	N/A	N/A	39.359	AV		

Site:	AC1				ŗ	Time: 2016/12/24 - 07:07					
Limit	t: FCC	_Part15	.209_RE(3m)	E	Engineer: Kevin					
Prob	e: BBI	HA9120	D_1GHz_180	GHz	F	Polarity: Vertical					
EUT	: ACCE	ESS PO	INT		F	Power: By POE Adapter					
Test	Mode:	Transn	nit by 802.11a	a at Channel	5180MHz An	t 1					
Level(dBuV/m)	130 80 70 60 50 40 30 5110	5115	3120 5125 513	0 5135 5140	1	5155 5160 516	5 5170 5175	2	190 5195 5200		
3						ency(MHz)					
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре		
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)			
				(dBuV/m)	(dBuV)						
1			5150.000	49.967	10.526	-4.033	54.000	39.442	AV		
2		*	5178.175	85.187	45.813	N/A	N/A	39.374	AV		

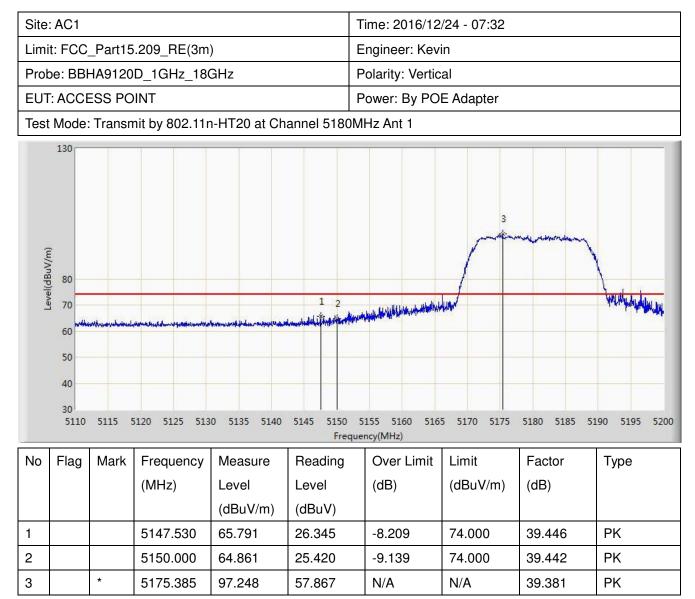
Site	AC1				Т	īme: 2016/12	/24 - 07:27			
Limi	t: FCC	_Part15	.407_RE(3m)	E	Engineer: Kevin				
Prot	e: BBI	HA9120	D_1GHz_180	GHz	F	olarity: Horiz	ontal			
EUT	: ACCE	ESS PO	INT		F	Power: By POE Adapter				
Test	Mode:	Transn	nit by 802.11a	a at Channel	5745MHz An	t 1				
Level(dBuV/m)	130 80 70 80 50 40 30 5600	5610	5620 5630 5	1 2 1 2 640 5650 56	1/v/n-de/ul/man 1/v/n-de/ul/man 560 5670 568	3 allo 4. and a second and a se	and I have a start	5	5750 5765	
2					Freque	ncy(MHz)				
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level (dBuV/m)	Level (dBuV)	(dB)	(dBuV/m)	(dB)		
1		*	5639.270	65.264	25.357	-8.736	74.000	39.906	PK	
2			5650.000	64.338	24.409	-9.662	74.000	39.929	РК	
3			5700.000	63.658	23.601	-41.542	105.200	40.057	РК	
4			5720.000	72.548	32.407	-38.252	110.800	40.141	PK	
5			5725.000	73.762	33.598	-48.438	122.200	40.164	РК	
6			5743.550	104.777	64.528	N/A	N/A	40.249	PK	

Site	: AC1				٦	Time: 2016/12	/24 - 07:28			
Limi	t: FCC	_Part15	.407_RE(3m)	E	Engineer: Kevi	in			
Prot	be: BBI	HA9120	D_1GHz_180	GHz	F	Polarity: Vertic	al			
EUT	: ACCE	ESS PO	INT		F	Power: By POE Adapter				
Test	Mode:	Transn	nit by 802.11a	a at Channel	5745MHz An	t 1				
I avual (cdRuV/m)	130 80 70 60 50 40 30 5600	5610	1	2	560 5670 56		4	5	5750 5765	
No	Flag	Mark	Frequency	Measure	Reading	over Limit	Limit	Factor	Туре	
	i iay	IVIAIN	(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	1 ype	
			()	(dBuV/m)	(dBuV)	(32)	(222.1/11)	()		
1		*	5619.305	66.243	26.374	-7.757	74.000	39.869	PK	
2			5650.000	63.977	24.048	-10.023	74.000	39.929	РК	
3			5700.000	63.414	23.357	-41.786	105.200	40.057	PK	
4			5720.000	68.224	28.083	-42.576	110.800	40.141	PK	
5			5725.000	68.279	28.115	-53.921	122.200	40.164	PK	
6			5741.158	99.199	58.961	N/A	N/A	40.238	PK	



One	: AC1				Г	- ime: 2016/12	/24 - 07:29			
Limi	it: FCC	_Part15	.407_RE(3m))	E	Engineer: Kev	in			
Pro	be: BBH	HA9120	D_1GHz_180	GHz	F	Polarity: Horizontal				
EUT	: ACCE	ESS PO	INT		F	Power: By POE Adapter				
Test	Mode:	Transm	nit by 802.11a	a at Channel	5825MHz An	t 1				
(mi)/Mgb/jerre 1			- Comment	2 3 10 10 10 10 10 10 10 10 10 10 10 10 10	1 1 1	where we have a factor	6	ien Algufikan sebahan udang innya dalar	putere and the ball of the	
	60 50 40 30 5805	5820	5830 5840 58	50 5860 5870		00 5910 5920 ency(MHz)	5930 5940 5950	0 5960 5970 !	5980 5990 6000	
No	50 40 30	5820 Mark	5830 5840 58 Frequency	50 5860 5870 Measure			5930 5940 5950 Limit	5960 5970 S		
No	50 40 30 5805				Freque	ency(MHz)			5980 5990 6000 Type	
No 1	50 40 30 5805		Frequency	Measure Level	Freque Reading Level	over Limit	Limit	Factor		
	50 40 30 5805		Frequency (MHz)	Measure Level (dBuV/m)	Freque Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре	
1	50 40 30 5805		Frequency (MHz) 5823.135	Measure Level (dBuV/m) 104.075	Freque Reading Level (dBuV) 63.515	ncy(MHz) Over Limit (dB) N/A	Limit (dBuV/m) N/A	Factor (dB) 40.560	Type PK	
1	50 40 30 5805		Frequency (MHz) 5823.135 5850.000	Measure Level (dBuV/m) 104.075 69.783	Freque Reading Level (dBuV) 63.515 29.117	N/A -52.417	Limit (dBuV/m) N/A 122.200	Factor (dB) 40.560 40.666	Type PK PK	
1 2 3	50 40 30 5805		Frequency (MHz) 5823.135 5850.000 5855.000	Measure Level (dBuV/m) 104.075 69.783 65.247	Freque Reading Level (dBuV) 63.515 29.117 24.569	N/A -52.417 -45.553	Limit (dBuV/m) N/A 122.200 110.800	Factor (dB) 40.560 40.666 40.678	Type PK PK PK PK	

Site	: AC1				Г	ime: 2016/12	/24 - 07:30				
Limi	it: FCC	_Part15	.407_RE(3m)	E	Engineer: Kevin					
Prot	be: BBI	HA9120	D_1GHz_180	GHz	F	Polarity: Vertical					
EUT	: ACCE	ESS PO	INT		F	Power: By POE Adapter					
Test	Mode	Transn	nit by 802.11a	a at Channel	5825MHz An	t 1					
Laural (ABAAV/m)	130 80 70 60 50 40 30 5805	5820		2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		00 5910 5920 ency(MHz)	6 6 1000 1000 1000 1000 1000 1000 1000 1	0 5960 5970	1,444,		
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре		
	Ŭ		(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)			
				(dBuV/m)	(dBuV)		, , ,				
1			5820.893	98.878	58.328	N/A	N/A	40.551	PK		
2			5850.000	65.662	24.996	-56.538	122.200	40.666	PK		
				1		40.000	44.0.000	40.070	PK		
3			5855.000	64.577	23.899	-46.223	110.800	40.678	Ph		
3 4			5855.000 5875.000	64.577 64.663	23.899 23.943	-46.223 -40.537	110.800	40.678	PK PK		



Site:	AC1				ŗ	Time: 2016/12	/24 - 07:32		
Limi	t: FCC	_Part15	.209_RE(3m)	E	Engineer: Kev	in		
Prob	e: BBH	HA9120	D_1GHz_180	GHz	F	Polarity: Horiz	ontal		
EUT	: ACCE	ESS PO	INT		F	Power: By PO	E Adapter		
Test	Mode:	Transn	nit by 802.11r	n-HT20 at Ch	annel 5180N	IHz Ant 1			
Level(dBuV/m)	130 80 70 60 50							2	
	40				5				
	30 5110	5115 5	5120 5125 513	0 5135 5140		5155 5160 516 ency(MHz)	5 <mark>5170 5175</mark>	5180 5185 5	190 5195 5200
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5150.000	51.493	12.052	-2.507	54.000	39.442	AV
2		*	5177.275	91.411	52.035	N/A	N/A	39.376	AV

Site	AC1					Time: 2016/12	2/24 - 07:33			
Limi	t: FCC	_Part15	.209_RE(3m)		Engineer: Kevin				
Probe: BBHA9120D_1GHz_18GHz						Polarity: Vertical				
EUT	: ACCE	ESS PO	INT			Power: By PC	E Adapter			
Test	Mode:	Transn	nit by 802.11r	n-HT20 at Ch	annel 5180	MHz Ant 1				
Level(dBiJV/m)	130 80 70 60 50 40 30 5110	5115 5	5120 5125 513	0 5135 5140	5145 5150	5155 5160 510		2	190 5195 5200	
						quency(MHz)			-	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1			5150.000	50.082	10.641	-3.918	54.000	39.442	AV	
2		*	5177.995	83.588	44.214	N/A	N/A	39.375	AV	

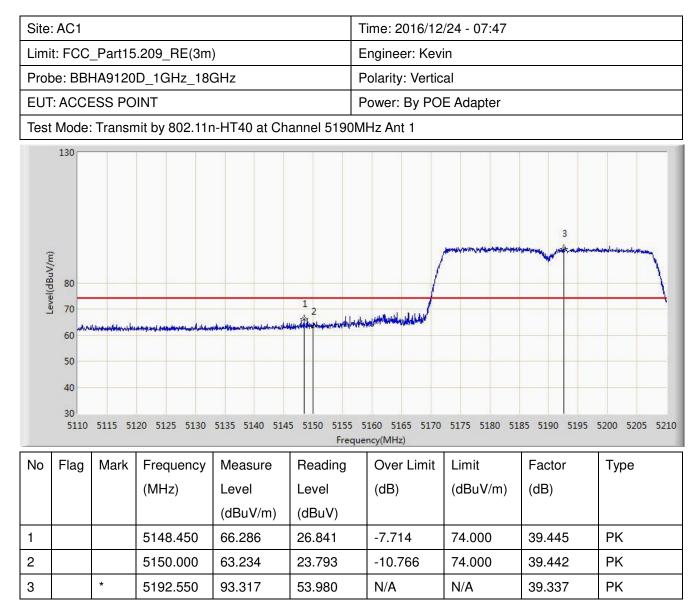
Site	: AC1				1	Time: 2016/12	/24 - 07:41		
Limi	t: FCC	_Part15	.407_RE(3m)	E	Engineer: Kevin Polarity: Horizontal			
Prob	be: BBI	HA9120	D_1GHz_180	GHz	F				
EUT	: ACCE	ESS PO	INT		F	Power: By PO	E Adapter		
Test	Mode:	Transn	nit by 802.11r	n-HT20 at Ch	annel 5745N	IHz Ant 1			
l anal(ABuVVa)	130 80 70 60 50 40 30 5600	5610	1 	2 400444,9 460, 4749, Marian 5640 5650 56	ана, 1 у Циницици 160 5670 560 Freque		5710 5720	5730 5740	5750 5765
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level (dBuV/m)	Level (dBuV)	(dB)	(dBuV/m)	(dB)	
1		*	5616.913	66.100	26.235	-7.900	74.000	39.865	PK
2			5650.000	63.920	23.991	-10.080	74.000	39.929	PK
3			5700.000	62.974	22.917	-42.226	105.200	40.057	PK
4			5720.000	70.777	30.636	-40.023	110.800	40.141	PK
5			5725.000	73.379	33.215	-48.821	122.200	40.164	PK

Sile:	AC1				Т	ime: 2016/12	/24 - 07:41		
Limi	t: FCC	_Part15	.407_RE(3m)	E	Engineer: Kev	in		
Prob	e: BBI	HA9120	D_1GHz_180	GHz	F	olarity: Vertic	al		
EUT	: ACCE	ESS PO	NT		F	Power: By PO	E Adapter		
Test	Mode	Transn	nit by 802.11r	n-HT20 at Ch	annel 5745M	Hz Ant 1			
Level(dBuV/m)	130 80 70 60	ser Mentshephen	1	2	House in the sector of	Wentleman Lim Lin Chan	anone shereby the south	5	ummen Markelinada
	50 40								
		5610	5620 5630 5	5640 5650 56	560 5670 568 Freque	30 5690 5700 ncy(MHz)) 5710 5720	5730 5740	5750 5765
No	40	5610 Mark	5620 5630 5 Frequency	5640 5650 56 Measure			5710 5720	5730 5740 Factor	5750 5765 Type
No	40 30 5600				Freque	ency(MHz)			
No	40 30 5600		Frequency	Measure	Freque	Over Limit	Limit	Factor	
No 1	40 30 5600		Frequency	Measure Level	Freque Reading Level	Over Limit	Limit	Factor	
	40 30 5600	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Freque Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	40 30 5600	Mark	Frequency (MHz) 5633.000	Measure Level (dBuV/m) 66.020	Freque Reading Level (dBuV) 26.125	ncy(MHz) Over Limit (dB) -7.980	Limit (dBuV/m) 74.000	Factor (dB) 39.895	Type PK
1 2	40 30 5600	Mark	Frequency (MHz) 5633.000 5650.000	Measure Level (dBuV/m) 66.020 64.354	Freque Reading Level (dBuV) 26.125 24.425	ncy(MHz) Over Limit (dB) -7.980 -9.646	Limit (dBuV/m) 74.000 74.000	Factor (dB) 39.895 39.929	Type PK PK PK
1 2 3	40 30 5600	Mark	Frequency (MHz) 5633.000 5650.000 5700.000	Measure Level (dBuV/m) 66.020 64.354 64.602	Freque Reading Level (dBuV) 26.125 24.425 24.545	-7.980 -9.646 -40.598	Limit (dBuV/m) 74.000 74.000 105.200	Factor (dB) 39.895 39.929 40.057	Type PK PK PK PK PK



One	: AC1				۲	Time: 2016/12	/24 - 07:43		
Limi	it: FCC	_Part15	.407_RE(3m))	E	Engineer: Kev	in		
Prol	be: BBI	HA9120	D_1GHz_180	GHz	F	Polarity: Horiz	ontal		
EUT	: ACCE	ESS PO	INT		F	Power: By PO	E Adapter		
Test	Mode:	Transm	nit by 802.11r	n-HT20 at Ch	annel 5825N	IHz Ant 1			
(m/M, db/low	130 80 70	1 Ma		2 3		5	6.	. Harek en elde en eld and and	
	60 50 40 30 5805	5820	5830 5840 58	50 5860 5870		00 5910 5920 ency(MHz)	5930 5940 595	0 5960 5970	5980 5990 6000
No	50 40 30	5820 Mark	5830 5840 58 Frequency	50 5860 5870 Measure			5930 5940 595 Limit	0 5960 5970 Factor	
No	50 40 30 5805				Freque	ency(MHz)			5980 5990 6000 Type
No 1	50 40 30 5805		Frequency	Measure Level	Freque Reading Level	over Limit	Limit	Factor	
	50 40 30 5805		Frequency (MHz)	Measure Level (dBuV/m)	Freque Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	50 40 30 5805		Frequency (MHz) 5820.502	Measure Level (dBuV/m) 104.583	Freque Reading Level (dBuV) 64.034	Over Limit (dB) N/A	Limit (dBuV/m) N/A	Factor (dB) 40.548	Type PK
1 2	50 40 30 5805		Frequency (MHz) 5820.502 5850.000	Measure Level (dBuV/m) 104.583 68.936	Freque Reading Level (dBuV) 64.034 28.270	N/A -53.264	Limit (dBuV/m) N/A 122.200	Factor (dB) 40.548 40.666	Type PK PK
1 2 3	50 40 30 5805		Frequency (MHz) 5820.502 5850.000 5855.000	Measure Level (dBuV/m) 104.583 68.936 68.124	Freque Reading Level (dBuV) 64.034 28.270 27.446	N/A -53.264 -42.676	Limit (dBuV/m) N/A 122.200 110.800	Factor (dB) 40.548 40.666 40.678	Type PK PK PK PK PK

One	: AC1				۲	Time: 2016/12	/24 - 07:44		
Limi	it: FCC	_Part15	.407_RE(3m))	E	Engineer: Kev	in		
Prob	be: BBI	HA9120	D_1GHz_180	GHz	F	Polarity: Vertic	al		
EUT	T: ACCI	ESS PO	INT		F	Power: By PO	E Adapter		
Test	t Mode	: Transm	nit by 802.11r	n-HT20 at Ch	annel 5825N	1Hz Ant 1			
Level(dBuV/m)	130 80 70 M				1 mind. w/	5 and the second statements	6		ulinghang and history and and history
	50 40 30 5805	5820	5830 5840 58	50 5860 5870		000 5910 5920 ency(MHz)	5930 5940 595	0 5960 5970	5980 5990 6000
No	50 40 30 5805	5820 Mark		50 5860 5870 Measure	Freque		5930 5940 595 Limit	0 5960 5970 Factor	
No	50 40 30		5830 5840 58 Frequency (MHz)			ency(MHz)			5980 5990 6000 Type
No 1	50 40 30 5805		Frequency	Measure Level	Freque Reading Level	over Limit	Limit	Factor	
	50 40 30 5805		Frequency (MHz)	Measure Level (dBuV/m)	Freque Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	50 40 30 5805		Frequency (MHz) 5827.717	Measure Level (dBuV/m) 98.186	Freque Reading Level (dBuV) 57.607	Over Limit (dB) N/A	Limit (dBuV/m) N/A	Factor (dB) 40.579	Type PK
1 2	50 40 30 5805		Frequency (MHz) 5827.717 5850.000	Measure Level (dBuV/m) 98.186 65.333	Freque Reading Level (dBuV) 57.607 24.667	Over Limit (dB) N/A -56.867	Limit (dBuV/m) N/A 122.200	Factor (dB) 40.579 40.666	Type PK PK
1 2 3	50 40 30 5805		Frequency (MHz) 5827.717 5850.000 5855.000	Measure Level (dBuV/m) 98.186 65.333 65.333	Freque Reading Level (dBuV) 57.607 24.667 24.655	N/A -56.867 -45.467	Limit (dBuV/m) N/A 122.200 110.800	Factor (dB) 40.579 40.666 40.678	Type PK PK PK PK



Site:	AC1					Time: 2016/12	/24 - 07:46		
Limi	t: FCC	_Part15	.209_RE(3m))		Engineer: Kev	in		
Prob	e: BBI	HA9120	D_1GHz_180	GHz		Polarity: Horiz	ontal		
EUT	: ACCE	ESS PO	INT			Power: By PO	E Adapter		
Test	Mode:	Transn	nit by 802.11r	n-HT40 at Ch	annel 5190l	MHz Ant 1			
Level(dBuV/m)	130 80 70 60 50 40 30 5110	5115 51	20 5125 5130	5135 5140 514		5160 5165 5170 Jency(MHz)	5175 5180 51	2	5200 5205 5210
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5150.000	52.810	13.369	-1.190	54.000	39.442	AV
2		*	5185.550	86.552	47.197	N/A	N/A	39.355	AV

Site	: AC1					Time: 2016/12	/24 - 07:48		
Limi	it: FCC	_Part15	.209_RE(3m)		Engineer: Kev	in		
Prob	be: BB	HA9120	D_1GHz_180	GHz		Polarity: Vertic	al		
EUT	: ACCI	ESS PC	INT			Power: By PO	E Adapter		
Test	Mode	: Transn	nit by 802.11r	n-HT40 at Ch	annel 5190N	/IHz Ant 1			
Level(AB, VV /m)	60 50 40 30	5115 51	20 5125 5130	5135 5140 514		5160 5165 5170 ency(MHz)	5175 5180 51	.85 5190 5195	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
	Ĵ		(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
			. ,	(dBuV/m)	(dBuV)				
1			5150.000	50.633	11.192	-3.367	54.000	39.442	AV
2		*	5196.400	78.949	39.622	N/A	N/A	39.327	AV

	: AC1				-	Time: 2016/12	/24 - 07:58		
Lim	it: FCC	_Part15	5.407_RE(3m)		Engineer: Kev	in		
Prol	be: BBI	HA9120	D_1GHz_180	GHz		Polarity: Horiz	ontal		
EUT	T: ACCI	ESS PC	NINT			Power: By PO	E Adapter		
Test	t Mode	: Transn	nit by 802.11r	n-HT40 at Ch	annel 5755N	1Hz Ant 1			
V-TAVE OF A	with the	1. Star Star Star Star Star Star Star Star	1	2		3 alfleen-sdallermetterstalld	historian and the	6	W ^{anne} t son
	60 50 40 30								
	50		5625	5650	5675 Frequ	5700 ency(MHz)	5725	5750	5775
No	50 40 30	Mark	5625 Frequency (MHz)	5650 Measure Level (dBuV/m)		5700			5775
No 1	50 40 30 5600	Mark	Frequency	Measure Level	Freque Reading Level	5700 ency(MHz) Over Limit	5725 Limit	5750 Factor	
	50 40 30 5600		Frequency (MHz)	Measure Level (dBuV/m)	Freque Reading Level (dBuV)	5700 ency(MHz) Over Limit (dB)	5725 Limit (dBuV/m)	5750 Factor (dB)	Туре
1	50 40 30 5600		Frequency (MHz) 5620.212	Measure Level (dBuV/m) 65.269	Frequ Reading Level (dBuV) 25.398	5700 ency(MHz) Over Limit (dB) -8.731	5725 Limit (dBuV/m) 74.000	5750 Factor (dB) 39.871	Type PK
1 2	50 40 30 5600		Frequency (MHz) 5620.212 5650.000	Measure Level (dBuV/m) 65.269 63.830	Frequ Reading Level (dBuV) 25.398 23.901	5700 ency(MHz) Over Limit (dB) -8.731 -10.170	5725 Limit (dBuV/m) 74.000 74.000	5750 Factor (dB) 39.871 39.929	Type PK PK
1 2 3	50 40 30 5600		Frequency (MHz) 5620.212 5650.000 5700.000	Measure Level (dBuV/m) 65.269 63.830 65.604	Frequ Reading Level (dBuV) 25.398 23.901 25.547	5700 ency(MHz) Over Limit (dB) -8.731 -10.170 -39.596	5725 Limit (dBuV/m) 74.000 74.000 105.200	5750 Factor (dB) 39.871 39.929 40.057	Type PK PK PK

Site	AC1					Time: 2016/12	/24 - 07:59			
Limi	t: FCC	_Part15	.407_RE(3m)		Engineer: Kev	in			
Prot	be: BBI	HA9120	D_1GHz_180	GHz		Polarity: Vertic	al			
EUT	: ACCE	ESS PO	INT			Power: By PO	E Adapter			
Test	Mode	Transn	nit by 802.11r	n-HT40 at Ch	annel 5755	MHz Ant 1 Pow	/er=1			
I muelfd Ruivinn)	130 80 70 60 50 40 30		1 here and particular	2 asternu atteritu Antony web			4 5	6	y	
3	5600		5625	5650	5675 Free	5700 quency(MHz)	5725	5750		5775
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level (dBuV/m)	Level (dBuV)	(dB)	(dBuV/m)	(dB)		
1		*	5632.375	65.660	25.766	-8.340	74.000	39.894	PK	
2			5650.000	63.937	24.008	-10.063	74.000	39.929	PK	
3			5700.000	64.010	23.953	-41.190	105.200	40.057	PK	
4			5720.000	68.300	28.159	-42.500	110.800	40.141	PK	
5			5725.000	69.083	28.919	-53.117	122.200	40.164	PK	
6			5751.900	95.560	55.277	N/A	N/A	40.283	PK	

Site	AC1					Time: 2016/12	/24 - 08:00			
Limi	t: FCC	_Part15	.407_RE(3m)		Engineer: Kev	in			
Prot	be: BBH	HA9120	D_1GHz_180	GHz		Polarity: Horiz	ontal			
EUT	: ACCE	ESS PO	INT			Power: By PO	E Adapter			
Test	Mode:	Transn	nit by 802.11r	n-HT40 at Ch	annel 5795N	/IHz Ant 1				
I evel(48,1V/m)	130 80 70 60 50 40 30			Maril Hugh 2 3				1.15 miles - 1.4 m	une and english all accession	
	5775	5	5800 582	5 5850	5875 Frequ	5900 ency(MHz)	5925	5950	5975	6000
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level (dBuV/m)	Level (dBuV)	(dB)	(dBuV/m)	(dB)		
1			5790.300	101.093	60.666	N/A	N/A	40.427	PK	
2			5850.000	65.880	25.214	-56.320	122.200	40.666	PK	
3			5855.000	65.563	24.885	-45.237	110.800	40.678	PK	
4			5875.000	65.396	24.676	-39.804	105.200	40.720	PK	
5			5925.000	64.612	23.820	-9.388	74.000	40.792	PK	
6		*	5931.487	67.257	26.458	-6.743	74.000	40.798	PK	

Site	: AC1				Т	īme: 2016/12	/24 - 08:00		
Limi	t: FCC	_Part15	.407_RE(3m)	E	Engineer: Kev	in		
Prot	be: BBH	HA9120	D_1GHz_180	GHz	F	Polarity: Vertic	al		
EUT	: ACCE	ESS PO	INT		F	Power: By PO	E Adapter		
Test	Mode:	Transn	nit by 802.11r	n-HT40 at Ch	annel 5795M	IHz Ant 1			
Laval/AR.NV/m)	130 80 70 60 50 40 30 5775		5800 582	2 - 3 	4	5900	5 6		unang da mang da
						ency(MHz)			
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5789.513	96.737	56.313	N/A	N/A	40.425	PK
2			5850.000	64.616	23.950	-57.584	122.200	40.666	PK
3			5855.000	64.115	23.437	-46.685	110.800	40.678	PK
4			5875.000	64.242	23.522	-40.958	105.200	40.720	PK

64.140

66.571

23.348

25.762

-9.860

-7.429

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

5925.000

5941.388

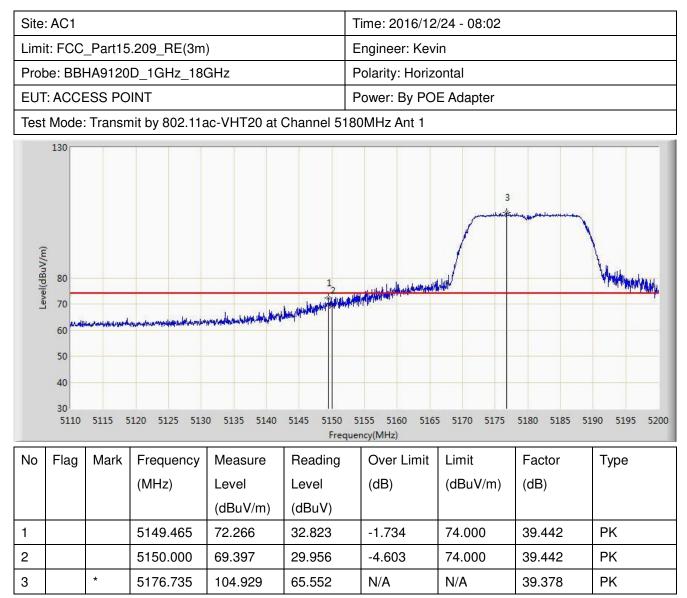
*

5

6

ΡK

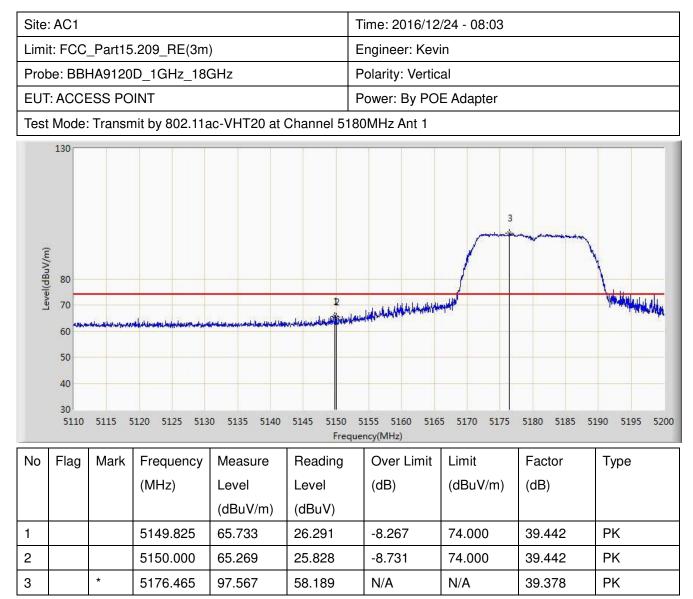
ΡK


40.792

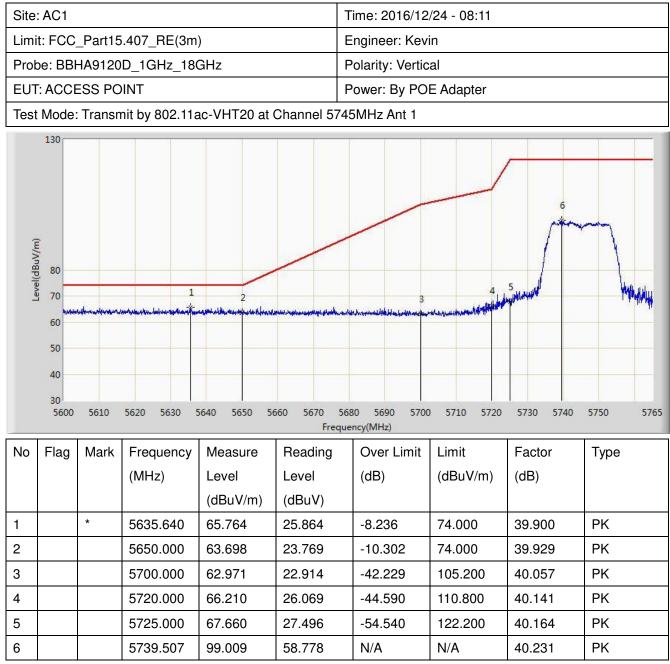
40.809

74.000

74.000

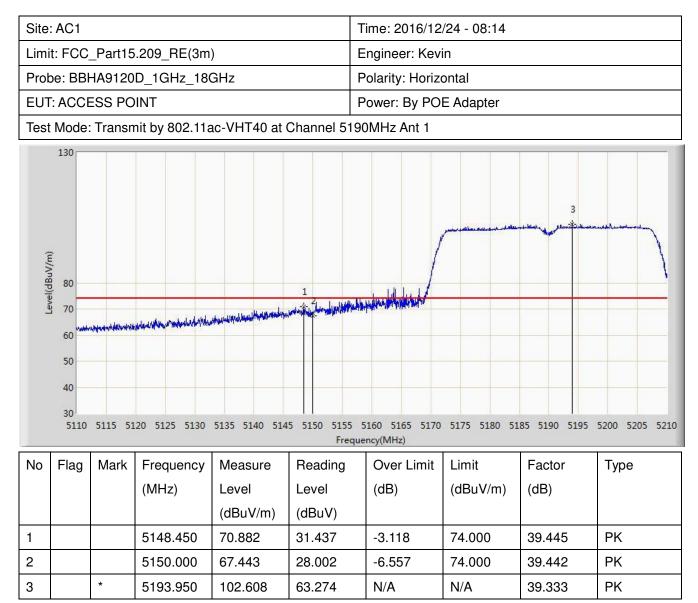


Site	: AC1				-	Time: 2016/12	/24 - 08:02		
Limi	it: FCC	_Part15	5.209_RE(3m)		Engineer: Kev	in		
Prob	be: BB	HA9120	D_1GHz_18	GHz		Polarity: Horiz	ontal		
EUT	: ACCI	ESS PC	DINT			Power: By PO	E Adapter		
Test	Mode	: Transn	nit by 802.11a	ac-VHT20 at (Channel 518	0MHz Ant 1			
Laval/dB,M/m)	60 50 40 30							2	
	5110		5120 5125 513		Frequ	5155 5160 516 ency(MHz)			190 5195 5200
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5150.000	51.600	12.159	-2.400	54.000	39.442	AV
2		*	5183.305	92.946	53.585	N/A	N/A	39.361	AV

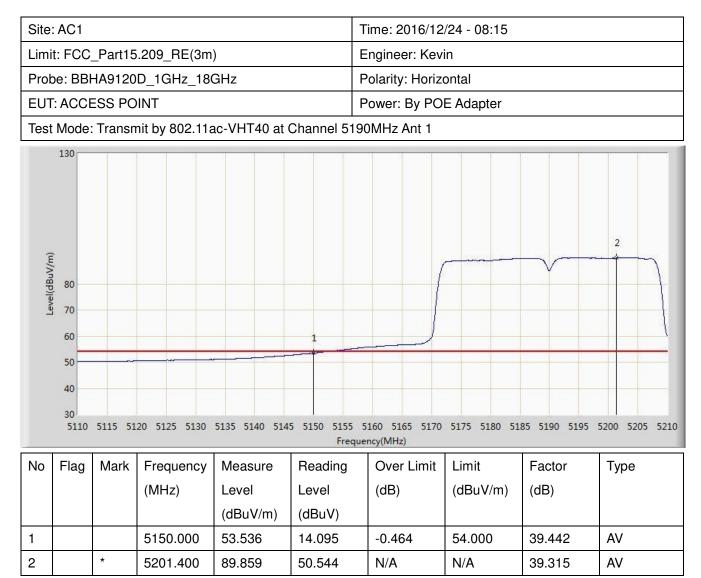


Site	AC1					Time: 2016/12	2/24 - 08:03		
Limi	t: FCC	_Part15	5.209_RE(3m)		Engineer: Kev	vin		
Prot	be: BBI	HA9120	D_1GHz_180	GHz		Polarity: Verti	cal		
EUT	: ACCI	ESS PC	NT			Power: By PC	E Adapter		
Test	Mode	: Transn	nit by 802.11a	ac-VHT20 at (Channel 51	80MHz Ant 1			
Level(dBuV/m)	60 50 40 30						2		
	5110		5120 5125 513	0 5135 5140	5145 5150 Freq	5155 5160 510 uency(MHz)	55 5170 5175	5180 5185 5	190 5195 5200
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5150.000	50.160	10.719	-3.840	54.000	39.442	AV
2		*	5176.420	86.063	46.685	N/A	N/A	39.378	AV

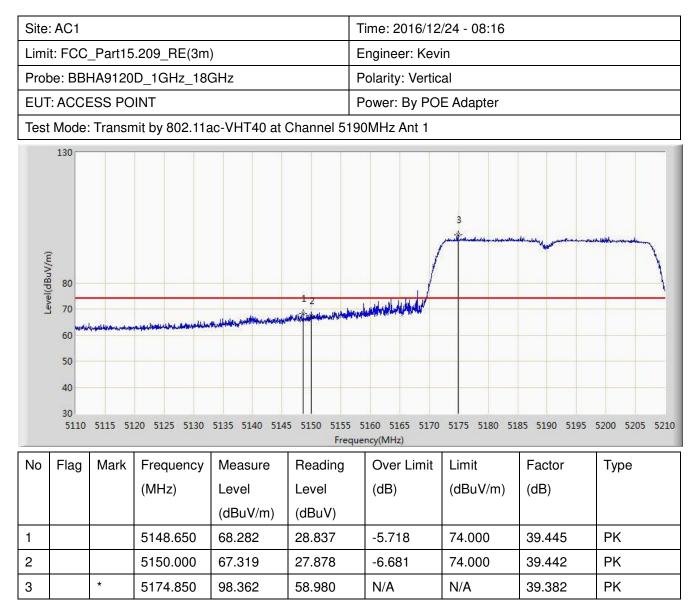
One.	AC1				Т	- ime: 2016/12	/24 - 08:10		
Limi	t: FCC	_Part15	.407_RE(3m)	E	Engineer: Kev	in		
Prob	be: BBI	HA9120	D_1GHz_180	GHz	F	olarity: Horiz	ontal		
EUT	: ACCI	ESS PO	NT		F	Power: By PO	E Adapter		
Test	Mode	Transn	nit by 802.11a	ac-VHT20 at (Channel 574	5MHz Ant 1			
Level(dBuV/m)	130 80 70 60	Mary Shithe palers		1 2 Marit		3	Lander Lack Will Mar Mar Mill	5	6
	50 40 30 5600	5610	5620 5630 5	640 5650 56	560 5670 56	80 5690 5700		5730 5740	5750 5765
	50 40 30 5600				Freque	80 5690 5700 ency(MHz)) 5710 5720	5730 5740	
No	50 40 30	5610 Mark	Frequency	Measure	Freque	80 5690 5700 ency(MHz) Over Limit) 5710 5720 Limit	5730 5740 Factor	5750 5765 Type
No	50 40 30 5600				Freque	80 5690 5700 ency(MHz)) 5710 5720	5730 5740	
No 1	50 40 30 5600		Frequency	Measure Level	Freque Reading Level	80 5690 5700 ency(MHz) Over Limit) 5710 5720 Limit	5730 5740 Factor	
	50 40 30 5600	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Freque Reading Level (dBuV)	80 5690 5700 ency(MHz) Over Limit (dB)	5710 5720 Limit (dBuV/m)	5730 5740 Factor (dB)	Туре
1	50 40 30 5600	Mark	Frequency (MHz) 5643.560	Measure Level (dBuV/m) 65.805	Freque Reading Level (dBuV) 25.890	80 5690 5700 ency(MHz) Over Limit (dB) -8.195	5710 5720 Limit (dBuV/m) 74.000	5730 5740 Factor (dB) 39.915	Type PK
1 2	50 40 30 5600	Mark	Frequency (MHz) 5643.560 5650.000	Measure Level (dBuV/m) 65.805 63.786	Freque Reading Level (dBuV) 25.890 23.857	80 5690 5700 ency(MHz) Over Limit (dB) -8.195 -10.214	5710 5720 Limit (dBuV/m) 74.000 74.000	5730 5740 Factor (dB) 39.915 39.929	Туре РК РК
1 2 3	50 40 30 5600	Mark	Frequency (MHz) 5643.560 5650.000 5700.000	Measure Level (dBuV/m) 65.805 63.786 62.879	Freque Reading Level (dBuV) 25.890 23.857 22.822	80 5690 5700 ency(MHz) Over Limit (dB) -8.195 -10.214 -42.321	5710 5720 Limit (dBuV/m) 74.000 74.000 105.200	5730 5740 Factor (dB) 39.915 39.929 40.057	Туре РК РК РК РК

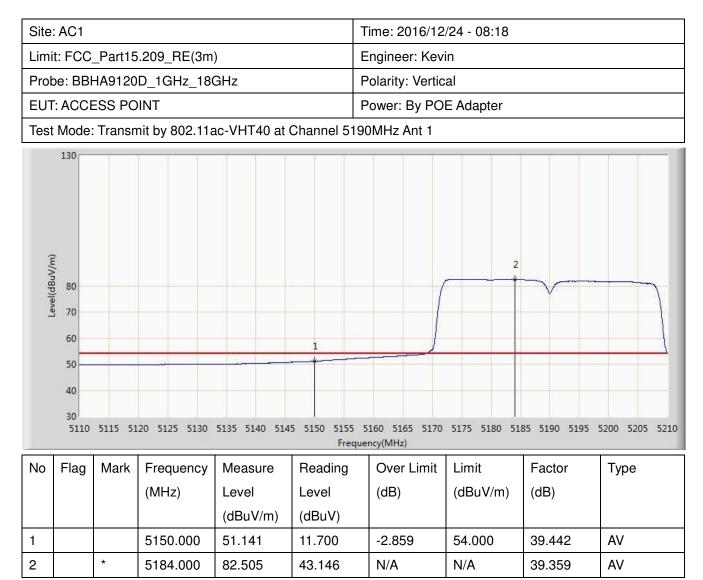


Sile	: AC1				-	Time: 2016/12	/24 - 08:12		
Limi	t: FCC	_Part15	.407_RE(3m))	E	Engineer: Kev	in		
Prob	be: BBH	HA9120	D_1GHz_180	GHz	F	Polarity: Horiz	ontal		
EUT	: ACCE	ESS PO	INT		F	Power: By PO	E Adapter		
Test	Mode:	Transm	nit by 802.11a	ac-VHT20 at (Channel 582	5MHz Ant 1			
Laural (AB, M//m)	80			2 3	4	5			6
	60 50 40 30 5805	5820	5830 5840 58	50 5860 5870		900 5910 5920 ency(MHz)	5930 5940 595	0 5960 5970	5980 5990 6000
No	50 40 30	5820 Mark	5830 5840 58 Frequency	50 5860 5870 Measure			5930 5940 595 Limit	0 5960 5970 Factor	5980 5990 6000 Type
No	50 40 30 5805				Frequ	ency(MHz)			
No 1	50 40 30 5805		Frequency	Measure Level	Frequ Reading Level	over Limit	Limit	Factor	
	50 40 30 5805		Frequency (MHz)	Measure Level (dBuV/m)	Frequi Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	50 40 30 5805		Frequency (MHz) 5819.723	Measure Level (dBuV/m) 104.767	Frequi Reading Level (dBuV) 64.221	over Limit (dB) N/A	Limit (dBuV/m) N/A	Factor (dB) 40.546	Type PK
1 2	50 40 30 5805		Frequency (MHz) 5819.723 5850.000	Measure Level (dBuV/m) 104.767 69.903	Frequi Reading Level (dBuV) 64.221 29.237	ency(MHz) Over Limit (dB) N/A -52.297	Limit (dBuV/m) N/A 122.200	Factor (dB) 40.546 40.666	Type PK PK
1 2 3	50 40 30 5805		Frequency (MHz) 5819.723 5850.000 5855.000	Measure Level (dBuV/m) 104.767 69.903 66.785	Frequi Reading Level (dBuV) 64.221 29.237 26.107	over Limit (dB) N/A -52.297 -44.015	Limit (dBuV/m) N/A 122.200 110.800	Factor (dB) 40.546 40.666 40.678	Type PK PK PK PK



0.00	: AC1				-	Time: 2016/12	/24 - 08:12			
Limi	it: FCC	_Part15	.407_RE(3m))	E	Engineer: Kevin				
Prol	be: BBI	HA9120	D_1GHz_180	GHz	F	Polarity: Vertic	al			
EUT	T: ACCE	ESS PO	INT		F	Power: By PO	E Adapter			
Test	t Mode:	Transm	nit by 802.11a	ac-VHT20 at (Channel 582	5MHz Ant 1				
I ministration of the second	130 80 70		ermannen UMManney Hureka	2 3		sedere series and series of the	6			
	60 50 40 30 5805	5820	5830 5840 58	50 5860 5870		000 5910 5920 ency(MHz)	5930 5940 595	0 5960 5970	5980 5990 6000	
No	50 40 30	5820 Mark	5830 5840 58 Frequency	150 5860 5870 Measure			5930 5940 595 Limit	0 5960 5970 Factor	5980 5990 6000 Type	
No	50 40 30 5805				Frequ	ency(MHz)				
No	50 40 30 5805		Frequency	Measure	Frequi Reading	over Limit	Limit	Factor		
No 1	50 40 30 5805		Frequency	Measure Level	Frequ Reading Level	over Limit	Limit	Factor		
	50 40 30 5805		Frequency (MHz)	Measure Level (dBuV/m)	Frequi Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре	
1	50 40 30 5805		Frequency (MHz) 5822.745	Measure Level (dBuV/m) 98.279	Frequi Reading Level (dBuV) 57.721	Over Limit (dB) N/A	Limit (dBuV/m) N/A	Factor (dB) 40.558	Type PK	
1 2	50 40 30 5805		Frequency (MHz) 5822.745 5850.000	Measure Level (dBuV/m) 98.279 66.324	Frequi Reading Level (dBuV) 57.721 25.658	Over Limit (dB) N/A -55.876	Limit (dBuV/m) N/A 122.200	Factor (dB) 40.558 40.666	Type PK PK	
1 2 3	50 40 30 5805		Frequency (MHz) 5822.745 5850.000 5855.000	Measure Level (dBuV/m) 98.279 66.324 64.258	Frequi Reading Level (dBuV) 57.721 25.658 23.580	Over Limit (dB) N/A -55.876 -46.542	Limit (dBuV/m) N/A 122.200 110.800	Factor (dB) 40.558 40.666 40.678	Type PK PK PK PK	





Site: AC1						Time: 2016/12/24 - 08:29				
Limi	it: FCC	_Part15	.407_RE(3m)		Engineer: Kevin Polarity: Horizontal				
Prol	be: BBI	HA9120	D_1GHz_180	GHz						
EUT	T: ACCI	ESS PO	INT			Power: By PO	E Adapter			
Test	t Mode	: Transn	nit by 802.11a	ac-VHT40 at	Channel 575	55MHz Ant 1				
I. ministry of the second s	130 80 70 60 50	supticles, M by	1	2	producerno en restante posse en Annon	3 halts with hele with the first hele for	4 5	6	W ¹	
	40									
	40 30 5600		5625	5650	5675 Frequ	5700 iency(MHz)	5725	5750	5775	
No	30	Mark	5625 Frequency (MHz)	5650 Measure Level (dBuV/m)			5725 Limit (dBuV/m)	5750 Factor (dB)	5775 Type	
No	30 5600	Mark	Frequency	Measure Level	Freque Reading Level	Over Limit	Limit	Factor		
	30 5600		Frequency (MHz)	Measure Level (dBuV/m)	Frequ Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре	
1	30 5600		Frequency (MHz) 5638.587	Measure Level (dBuV/m) 65.036	Frequ Reading Level (dBuV) 25.131	Over Limit (dB) -8.964	Limit (dBuV/m) 74.000	Factor (dB) 39.906	Туре РК	
1	30 5600		Frequency (MHz) 5638.587 5650.000	Measure Level (dBuV/m) 65.036 64.795	Frequ Reading Level (dBuV) 25.131 24.866	ency(MHz) Over Limit (dB) -8.964 -9.205	Limit (dBuV/m) 74.000 74.000	Factor (dB) 39.906 39.929	Type PK PK	
1 2 3	30 5600		Frequency (MHz) 5638.587 5650.000 5700.000	Measure Level (dBuV/m) 65.036 64.795 67.602	Frequ Reading Level (dBuV) 25.131 24.866 27.545	ency(MHz) Over Limit (dB) -8.964 -9.205 -37.598	Limit (dBuV/m) 74.000 74.000 105.200	Factor (dB) 39.906 39.929 40.057	Type PK PK PK	

Site	: AC1				-	Time: 2016/12/24 - 08:30 Engineer: Kevin Polarity: Vertical				
Limi	t: FCC	_Part15	.407_RE(3m)	E					
Prob	be: BBI	HA9120	D_1GHz_180	GHz	F					
EUT	: ACCE	ESS PO	INT		F	Power: By PO	E Adapter			
Test	Mode	Transn	nit by 802.11a	ac-VHT40 at (Channel 575	5MHz Ant 1				
I evel(dBuV/m)	130 80 70 60 50 40 30	ni anton antonia de la composiciona de la composiciona de la composiciona de la composiciona de la composicion	1	2 shadelika areas	urlanung sekartusen sekingense	and two concerned to give defined	4 5		6 	
3	5600		5625	5650	5675 Freque	5700 ency(MHz)	5725	5750	5775	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level (dBuV/m)	Level (dBuV)	(dB)	(dBuV/m)	(dB)		
1		*	5638.413	(dBd V/III) 65.555	(dBdV) 25.650	-8.445	74.000	39.905	PK	
2			5650.000	64.074	24.145	-9.926	74.000	39.929	РК	
3			5700.000	63.841	23.784	-41.359	105.200	40.057	РК	
4			5720.000	67.549	27.408	-43.251	110.800	40.141	РК	
5			5725.000	69.471	29.307	-52.729	122.200	40.164	РК	
6			5764.937	95.325	54.991	N/A	N/A	40.334	PK	

Site	: AC1				1	Time: 2016/12/24 - 08:30				
Limi	t: FCC	_Part15	.407_RE(3m)	E	Engineer: Kevin				
Prob	be: BBH	HA9120	D_1GHz_180	GHz	F	Polarity: Horizontal				
EUT	: ACCE	ESS PO	INT		F	Power: By PO	E Adapter			
Test	Mode:	Transn	nit by 802.11a	ac-VHT40 at (Channel 579	5MHz Ant 1				
Lavel(dBr.W/m)	130 80 70 60 50 40 30 5775	v [*]	1	5 5850	4 	5900 ency(MHz)	5	6 h, vířen – dra –	5975 6000	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
	5		(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1			5798.288	101.320	60.862	N/A	N/A	40.458	PK	
2			5850.000	65.866	25.200	-56.334	122.200	40.666	PK	
3			5855.000	64.670	23.992	-46.130	110.800	40.678	PK	

-39.672

-9.133

105.200

74.000

74.000

40.720

40.792

40.816

ΡK

ΡK

ΡK

 6
 *
 5948.587
 66.578
 25.762
 -7.422

 Note: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

65.528

64.867

24.808

24.075

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

5875.000

5925.000

4 5

Site	: AC1					Time: 2016/12/24 - 08:31			
Limi	t: FCC	_Part15	5.407_RE(3m)		Engineer: Kevin			
Prot	be: BBI	HA9120	D_1GHz_18	GHz		Polarity: Vertical			
EUT	: ACCE	ESS PC	DINT			Power: By PO	E Adapter		
Test	Mode:	: Transr	nit by 802.11a	ac-VHT40 at	Channel 57	95MHz Ant 1			
evel(dRuV/m)	130 1 80 70 60 50 40 30 5775	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5800 582	2 = 2 10 15 5 5 5 850	5875	5900 juency(MHz)	5		5975 6000
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			5779.837	97.535	57.146	N/A	N/A	40.390	PK

* 5955.225 6 66.607 25.788 -7.393

64.521

64.391

65.248

64.430

23.855

23.713

24.528

23.638

-57.679

-46.409

-39.952

-9.570

122.200

110.800

105.200

74.000

74.000

Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

5850.000

5855.000

5875.000

5925.000

2

3

4

5

ΡK

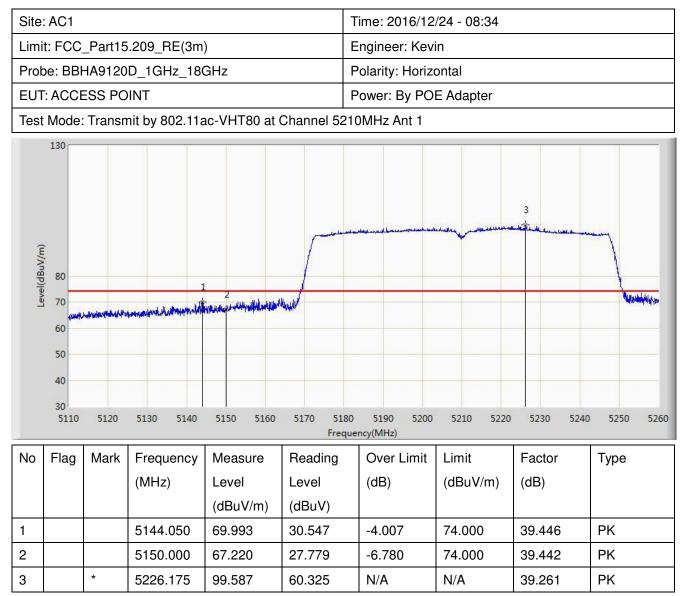
ΡK

ΡK

ΡK

ΡK

40.666


40.678

40.720

40.792

40.820

Site	: AC1				-	Time: 2016/12/24 - 08:33					
Limi	t: FCC	_Part15	.209_RE(3m)		Engineer: Kevin					
Prot	Probe: BBHA9120D_1GHz_18GHz						Polarity: Horizontal				
EUT	: ACCE	ESS PO	INT			Power: By PO	E Adapter				
Test	Mode:	: Transn	nit by 802.11a	ac-VHT80 at (Channel 521	0MHz Ant 1					
l evel(dRi,V/m)	130 80 70 60 50 40 30 5110	5120	5130 5140	1	5170 5180	0 5190 5200	5210 5220	5230 5240	0 5250 5260		
	F 1		E	N4		ency(MHz)	11.00	E	T		
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре		
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)			
				(dBuV/m)	(dBuV)						
1			5150.000	52.999	13.558	-1.001	54.000	39.442	AV		
2		*	5221.675	85.848	46.577	N/A	N/A	39.271	AV		