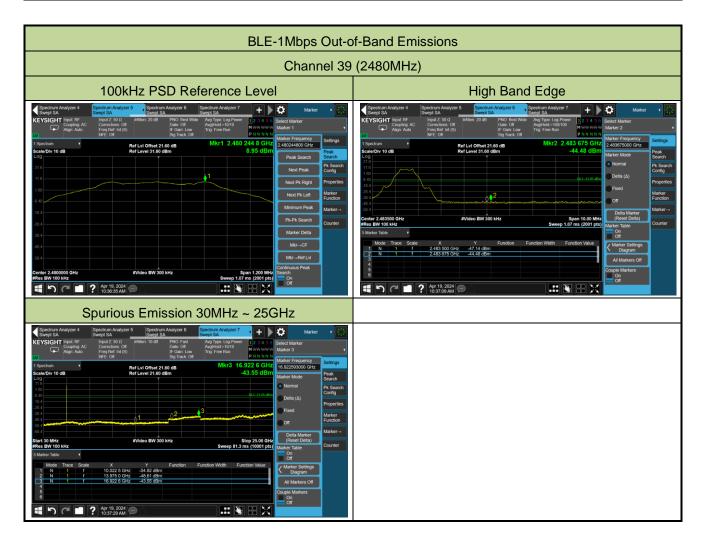
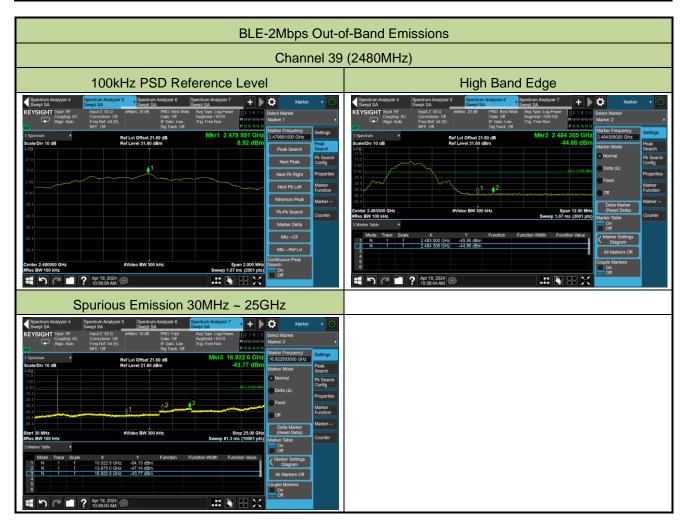


Test Site	WZ-SR5	Test Engineer	Jeff Yang
Test Date	2024-04-19	Filter	2#

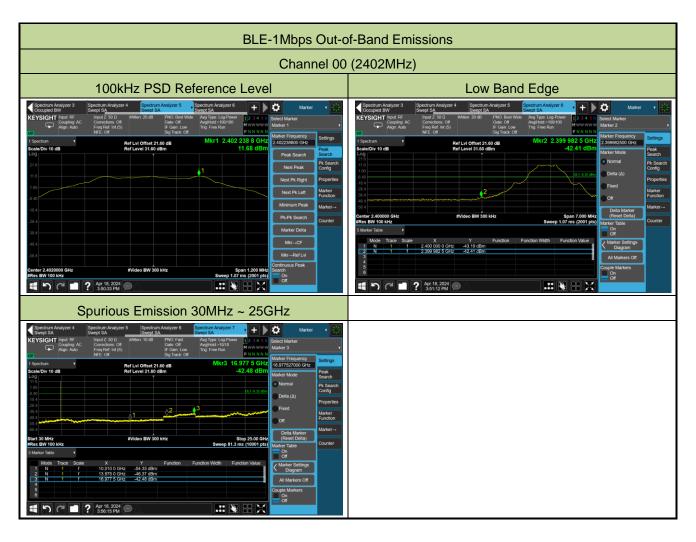
Test Mode	Data Rate	Channel No.	Frequency	Limit	Result
	/ Mbps		(MHz)	(dBc)	
BLE	1	00	2402	20	Pass
BLE	2	00	2402	20	Pass

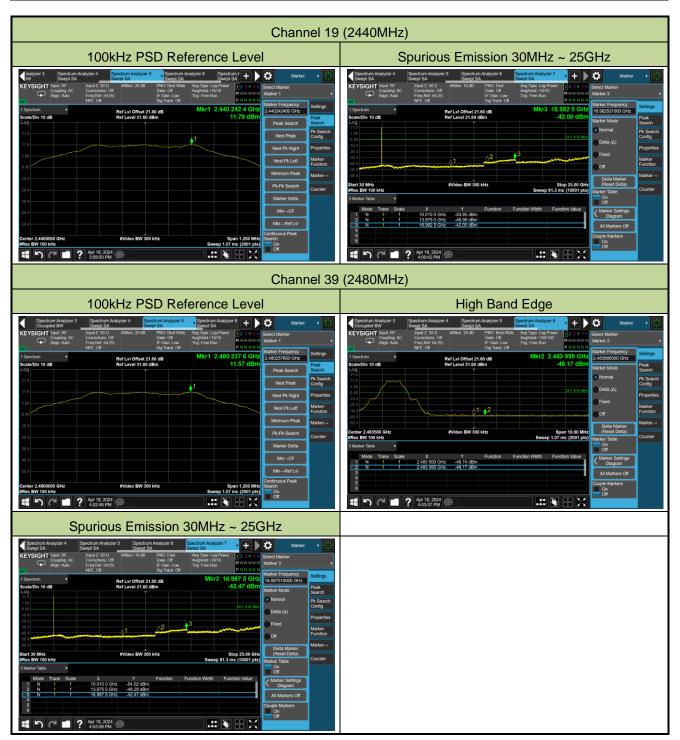




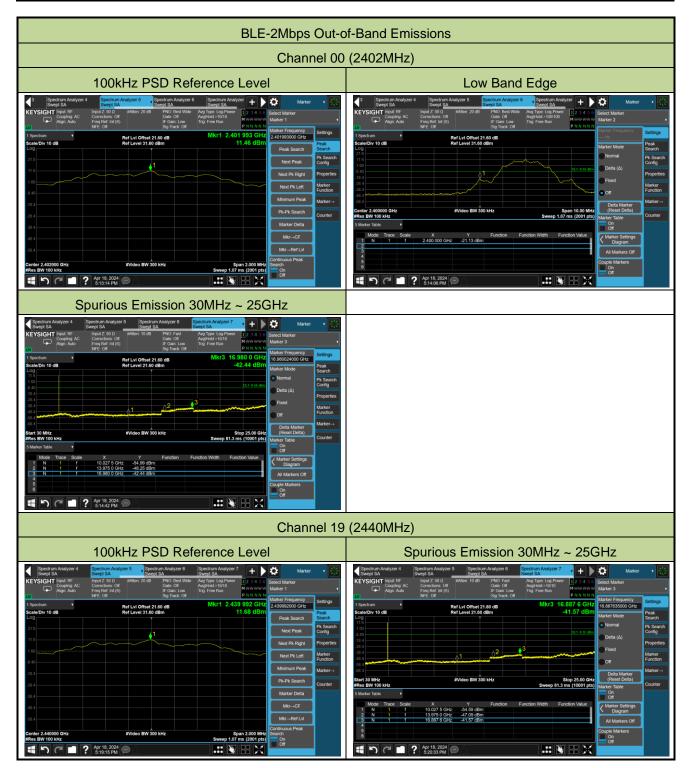
Test Site	WZ-SR5	Test Engineer	Jeff Yang
Test Date	2024-04-19	Filter	3#

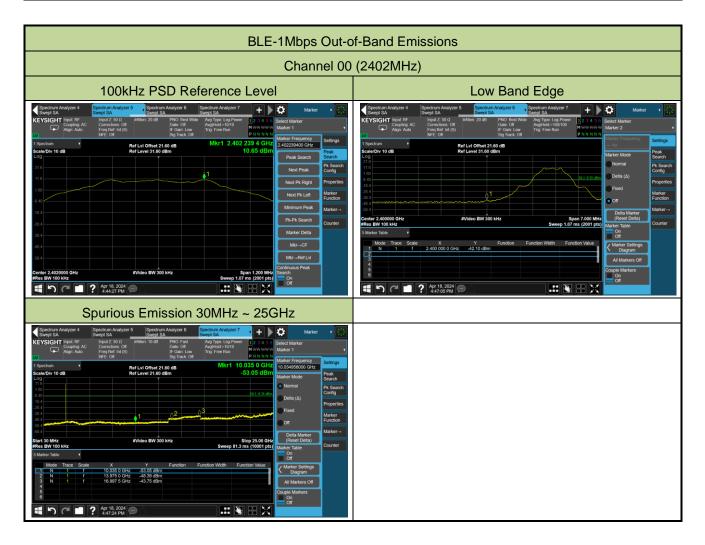
Test Mode	Data Rate	Channel No.	Frequency	Limit	Result
	/ Mbps		(MHz)	(dBc)	
BLE	1	39	2480	20	Pass
BLE	2	39	2480	20	Pass

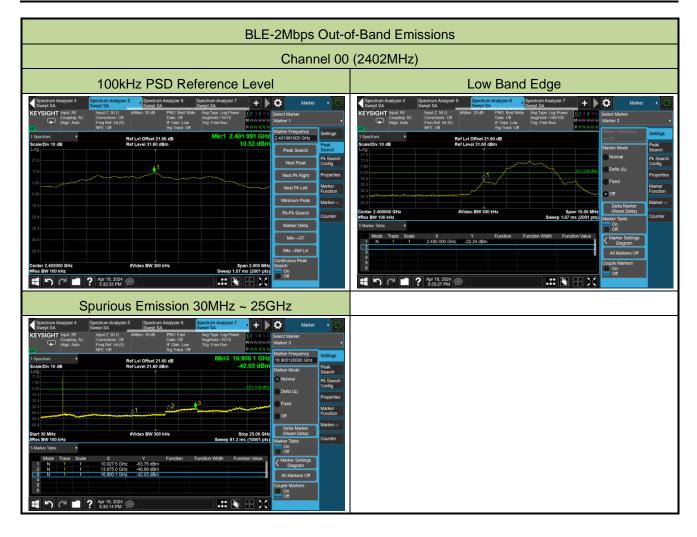



Test Site	WZ-SR5	Test Engineer	Jeff Yang
Test Date	2024-04-18	Filter	4#

Test Mode	Data Rate / Mbps	Channel No.	Frequency (MHz)	Limit (dBc)	Result
BLE	1	00	2402	20	Pass
BLE	1	19	2440	20	Pass
BLE	1	39	2480	20	Pass
BLE	2	00	2402	20	Pass
BLE	2	19	2440	20	Pass
BLE	2	39	2480	20	Pass

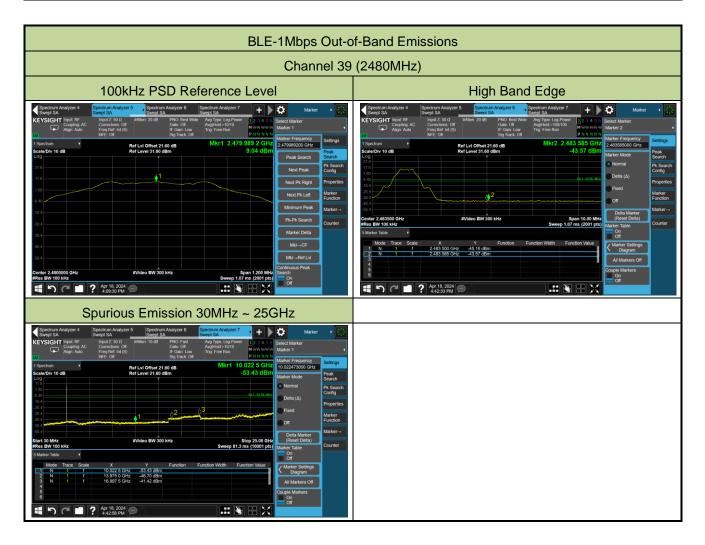


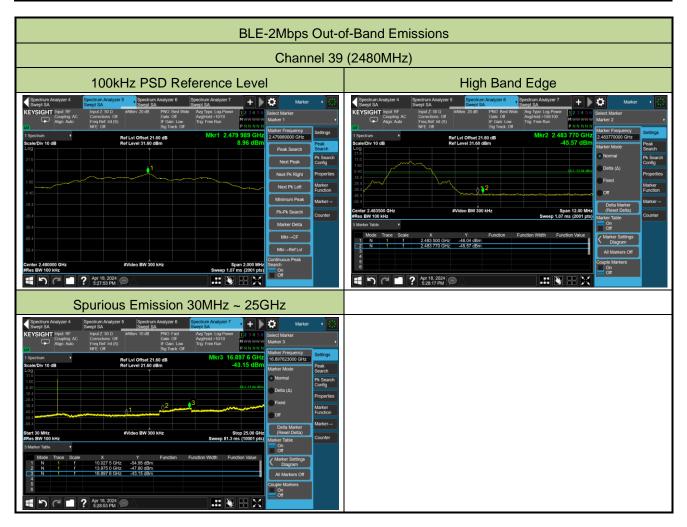



Channel 39	(2480MHz)
100kHz PSD Reference Level	High Band Edge
Beechtern Analyzer 4 Beechtern Analyz	Spectrum Analyzer 4 Spectrum Analyzer 4 Spectrum Analyzer 4 Spectrum Analyzer 4 Marker 1 KEVSIGHT Agen Adaption mode Fig. Marker 30 all Marker 30 all

Test Site	WZ-SR5	Test Engineer	Jeff Yang
Test Date	2024-04-18	Filter	5#

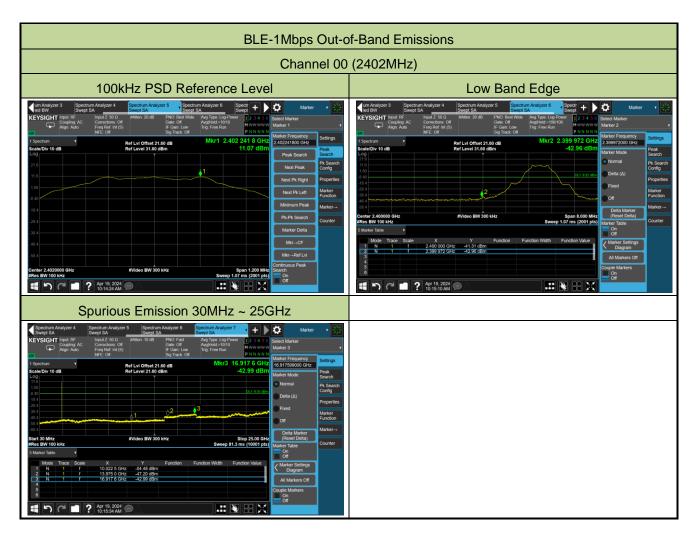
Test Mode	Data Rate	Channel No.	Frequency	Limit	Result
	/ Mbps		(MHz)	(dBc)	
BLE	1	00	2402	20	Pass
BLE	2	00	2402	20	Pass

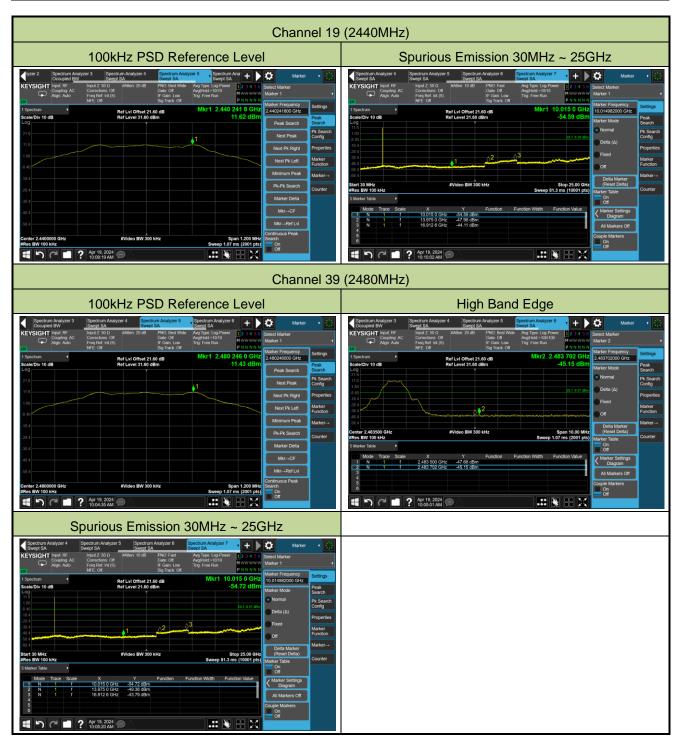




Test Site	WZ-SR5	Test Engineer	Jeff Yang
Test Date	2024-04-18	Filter	6#

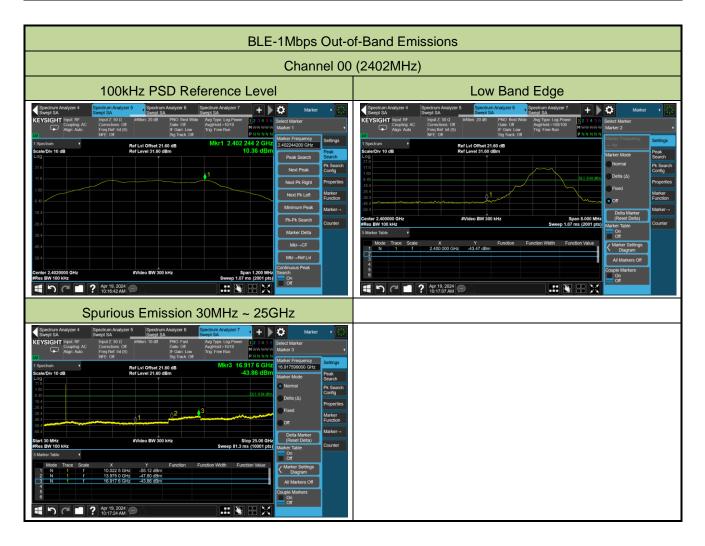
Test Mode	Data Rate	Channel No.	Frequency	Limit	Result
	/ Mbps		(MHz)	(dBc)	
BLE	1	39	2480	20	Pass
BLE	2	39	2480	20	Pass



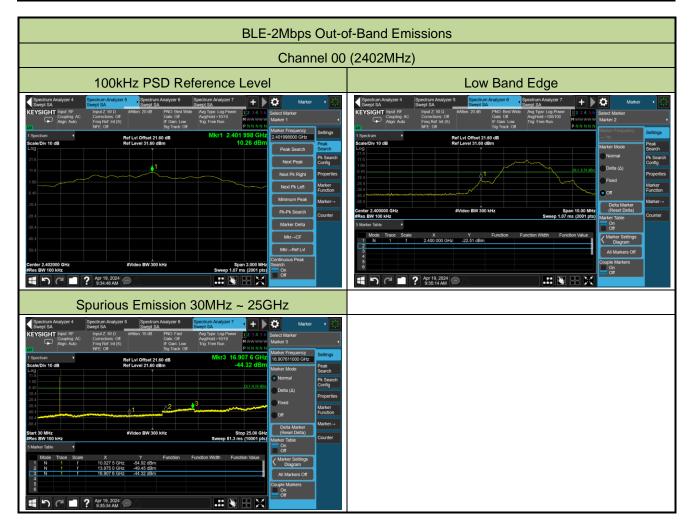

Test Site	WZ-SR5	Test Engineer	Jeff Yang
Test Date	2024-04-19	Filter	7#

Test Mode	Data Rate / Mbps	Channel No.	Frequency (MHz)	Limit (dBc)	Result
BLE	1	00	2402	20	Pass
BLE	1	19	2440	20	Pass
BLE	1	39	2480	20	Pass
BLE	2	00	2402	20	Pass
BLE	2	19	2440	20	Pass
BLE	2	39	2480	20	Pass



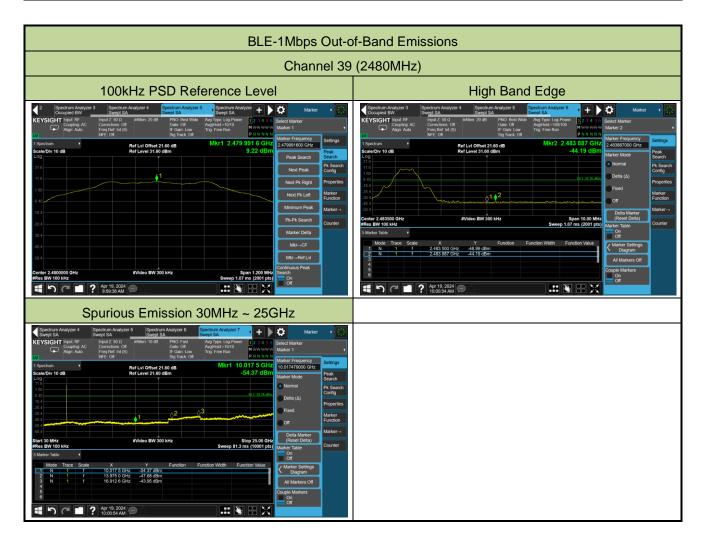


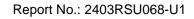
Channel 39	(2480MHz)
100kHz PSD Reference Level	High Band Edge
Beeckerter Andrewert	Street an Avalyzer 4 Street an Avalyzer 5 Agend 4.0 Avalyzer 5 Agend 4.0 Avalyzer 5 Agend 4.0 Avalyzer 5 Agend 4.0 Avalyzer 7 Avalyzer 6 Avalyzer 6 Avalyzer 7 Avalyzer 6 Avalyzer 7 Avalyzer 6 Avalyzer 7 Avalyzer 6 Avalyzer 7 Avalyzer 7

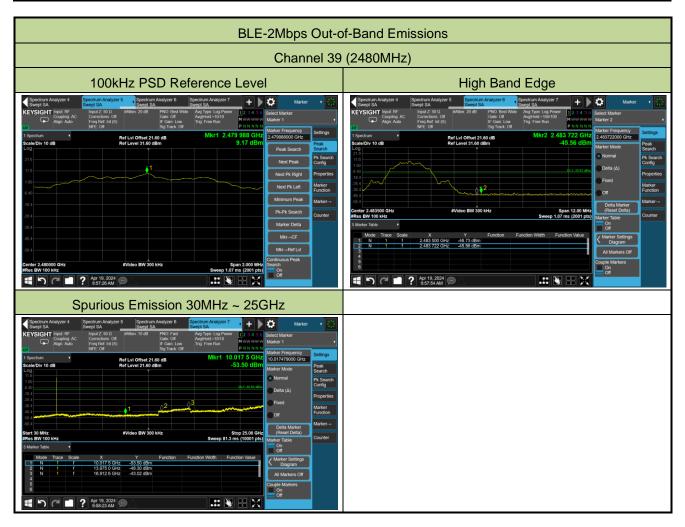


Test Site	WZ-SR5	Test Engineer	Jeff Yang
Test Date	2024-04-19	Filter	8#

Test Mode	Data Rate	Channel No.	Frequency	Limit	Result
	/ Mbps		(MHz)	(dBc)	
BLE	1	00	2402	20	Pass
BLE	2	00	2402	20	Pass






Test Site	WZ-SR5	Test Engineer	Jeff Yang
Test Date	2024-04-19	Filter	9#

Test Mode	Data Rate	Channel No.	Frequency	Limit	Result
	/ Mbps		(MHz)	(dBc)	
BLE	1	39	2480	20	Pass
BLE	2	39	2480	20	Pass

A.6 Radiated Spurious Emission Test Result

Test Site	SIP-AC3	Test Engineer	Justin Guo			
Test Date	2024-04-19	Filter	1#			
Test Mode	BLE-1Mbps					
Remark	1. Average measurement was not p	erformed if peak level	lower than average limit.			
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.					

Test	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
Channel	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	11710.0	49.0	-1.6	47.4	74.0	-26.6	Peak	Horizontal
	15883.5	46.4	5.1	51.5	74.0	-22.5	Peak	Horizontal
	15883.5	34.9	5.1	40.0	54.0	-14.0	Average	Horizontal
	17855.5	45.9	7.9	53.8	74.0	-20.2	Peak	Horizontal
00	17855.5	35.0	7.9	42.9	54.0	-11.1	Average	Horizontal
	11183.0	48.6	-1.7	46.9	74.0	-27.1	Peak	Vertical
	15892.0	46.0	5.0	51.0	74.0	-23.0	Peak	Vertical
	17906.5	44.1	8.2	52.3	74.0	-21.7	Peak	Vertical
	17906.5	35.0	8.2	43.2	54.0	-10.8	Average	Vertical
	8310.0	49.1	-3.1	46.0	74.0	-28.0	Peak	Horizontal
	11412.5	48.8	-1.5	47.3	74.0	-26.7	Peak	Horizontal
	15909.0	46.1	5.2	51.3	74.0	-22.7	Peak	Horizontal
19	15909.0	36.1	5.2	41.3	54.0	-12.7	Average	Horizontal
	8250.5	48.8	-3.2	45.6	74.0	-28.4	Peak	Vertical
	10945.0	48.2	-1.3	46.9	74.0	-27.1	Peak	Vertical
	15807.0	45.6	4.9	50.5	74.0	-23.5	Peak	Vertical
	8191.0	49.1	-3.4	45.7	74.0	-28.3	Peak	Horizontal
	12143.5	49.8	-1.7	48.1	74.0	-25.9	Peak	Horizontal
20	15722.0	45.6	4.6	50.2	74.0	-23.8	Peak	Horizontal
39	8259.0	48.7	-3.3	45.4	74.0	-28.6	Peak	Vertical
	11701.5	48.1	-1.6	46.5	74.0	-27.5	Peak	Vertical
	15688.0	45.3	4.8	50.1	74.0	-23.9	Peak	Vertical
Note: Mea	sure Level (dB	µV/m) = Read	ling Level	(dBµV) + Fact	or (dB/m)			
Factor (dB	/m) = Cable Lo	oss (dB) + Ante	enna Fact	or (dB/m) - Pre	e_Amplifier Ga	in (dB)		

Test Site	SIP-AC3	Test Engineer	Justin Guo				
Test Date	2024-04-19 Filter 1#						
Test Mode	BLE-2Mbps	BLE-2Mbps					
Remark	1. Average measurement was not p	erformed if peak level	lower than average limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the						
	report.						

Test Channel	Frequency (MHz)	Reading Level (dBµV)	Factor (dB/m)	Measure Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Polarization		
	8259.0	49.2	-3.3	45.9	74.0	-28.1	Peak	Horizontal		
	11395.5	47.9	-1.7	46.2	74.0	-27.8	Peak	Horizontal		
	15866.5	45.8	4.8	50.6	74.0	-23.4	Peak	Horizontal		
00	8157.0	49.6	-3.4	46.2	74.0	-27.8	Peak	Vertical		
	11047.0	48.4	-1.4	47.0	74.0	-27.0	Peak	Vertical		
	15900.5	45.4	5.1	50.5	74.0	-23.5	Peak	Vertical		
	8250.5	48.8	-3.2	45.6	74.0	-28.4	Peak	Horizontal		
	11344.5	48.2	-1.5	46.7	74.0	-27.3	Peak	Horizontal		
10	15807.0	46.0	4.9	50.9	74.0	-23.1	Peak	Horizontal		
19	8369.5	49.2	-3.4	45.8	74.0	-28.2	Peak	Vertical		
	11234.0	48.9	-1.5	47.4	74.0	-26.6	Peak	Vertical		
	15883.5	45.5	5.1	50.6	74.0	-23.4	Peak	Vertical		
	8276.0	49.1	-3.3	45.8	74.0	-28.2	Peak	Horizontal		
	11897.0	49.1	-1.7	47.4	74.0	-26.6	Peak	Horizontal		
	15926.0	47.0	5.1	52.1	74.0	-21.9	Peak	Horizontal		
39	15926.0	36.1	5.1	41.2	54.0	-12.8	Average	Horizontal		
	7672.5	49.7	-4.2	45.5	74.0	-28.5	Peak	Vertical		
	11676.0	48.2	-1.7	46.5	74.0	-27.5	Peak	Vertical		
	15790.0 44.6 5.0 49.6 74.0 -24.4 Peak Vertical									
		. ,	•	(dBµV) + Fact or (dB/m) - Pre	, ,	in (dB)				

Test Site	SIP-AC3	Test Engineer	Justin Guo					
Test Date	2024-04-19	Filter	2#					
Test Mode	BLE-1Mbps	BLE-1Mbps						
Remark	1. Average measurement was not p	erformed if peak level	lower than average limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the							
	report.							

Test	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization	
Channel	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)			
		(dBµV)		(dBµV/m)					
	8293.0	49.6	-3.2	46.4	74.0	-27.6	Peak	Horizontal	
	12092.5	48.5	-1.8	46.7	74.0	-27.3	Peak	Horizontal	
	15883.5	46.4	5.1	51.5	74.0	-22.5	Peak	Horizontal	
00	15883.5	35.5	5.1	40.6	54.0	-13.4	Average	Horizontal	
	8344.0	49.3	-3.4	45.9	74.0	-28.1	Peak	Vertical	
	11310.5	48.4	-1.6	46.8	74.0	-27.2	Peak	Vertical	
	15773.0	45.0	4.9	49.9	74.0	-24.1	Peak	Vertical	
Note: Meas	Note: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB/m)								
Factor (dB	/m) = Cable Lo	oss (dB) + Ant	enna Fact	or (dB/m) - Pre	e_Amplifier Ga	in (dB)			

Test Site	SIP-AC3	Test Engineer	Justin Guo						
Test Date	2024-04-19	Filter	2#						
Test Mode	BLE-2Mbps	BLE-2Mbps							
Remark	1. Average measurement was not performed if peak level lower than average limit.								
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the								
	report.								

Test	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization	
Channel	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)			
		(dBµV)		(dBµV/m)					
	8310.0	49.7	-3.1	46.6	74.0	-27.4	Peak	Horizontal	
	11693.0	47.8	-1.6	46.2	74.0	-27.8	Peak	Horizontal	
	15875.0	47.0	5.1	52.1	74.0	-21.9	Peak	Horizontal	
00	15875.0	36.6	5.1	41.7	54.0	-12.3	Average	Horizontal	
	8216.5	50.7	-3.2	47.5	74.0	-26.5	Peak	Vertical	
	11234.0	48.2	-1.5	46.7	74.0	-27.3	Peak	Vertical	
	15781.5	45.3	5.0	50.3	74.0	-23.7	Peak	Vertical	
Note: Meas	Note: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB/m)								
Factor (dB	/m) = Cable Lo	oss (dB) + Ant	enna Fact	or (dB/m) - Pre	e_Amplifier Ga	in (dB)			

Test Site	SIP-AC3	Test Engineer	Justin Guo					
Test Date	2024-04-19	Filter	3#					
Test Mode	BLE-1Mbps							
Remark	1. Average measurement was not performed if peak level lower than average limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the							
	report.							

Test Channel	Frequency (MHz)	Reading Level	Factor (dB/m)	Measure Level	Limit (dBµV/m)	Margin (dB)	Detector	Polarization	
Onanner	(11112)	(dBµV)	(uD/m)	(dBµV/m)		(UD)			
	8386.5	49.4	-3.4	46.0	74.0	-28.0	Peak	Horizontal	
	11030.0	48.8	-1.4	47.4	74.0	-26.6	Peak	Horizontal	
	15756.0	45.8	4.3	50.1	74.0	-23.9	Peak	Horizontal	
39	8378.0	49.3	-3.5	45.8	74.0	-28.2	Peak	Vertical	
	11157.5	48.0	-1.3	46.7	74.0	-27.3	Peak	Vertical	
	15798.5	46.2	4.9	51.1	74.0	-22.9	Peak	Vertical	
	15798.5	36.1	4.9	41.0	54.0	-13.0	Average	Vertical	
Note: Meas	Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB/m)								
Factor (dB	/m) = Cable Lo	oss (dB) + Ant	enna Fact	or (dB/m) - Pre	e_Amplifier Ga	in (dB)			

Test Site	SIP-AC3	Test Engineer	Justin Guo					
Test Date	2024-04-19	Filter	3#					
Test Mode	BLE-2Mbps							
Remark	1. Average measurement was not performed if peak level lower than average limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the							
	report.							

Test Channel	Frequency (MHz)	Reading Level (dBµV)	Factor (dB/m)	Measure Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Polarization	
	9066.5	50.1	-2.4	47.7	74.0	-26.3	Peak	Horizontal	
	10868.5	48.6	-1.5	47.1	74.0	-26.9	Peak	Horizontal	
20	15781.5	45.6	5.0	50.6	74.0	-23.4	Peak	Horizontal	
39	8097.5	49.7	-3.8	45.9	74.0	-28.1	Peak	Vertical	
	11115.0	48.3	-1.5	46.8	74.0	-27.2	Peak	Vertical	
	15713.5	44.9	4.8	49.7	74.0	-24.3	Peak	Vertical	
Note: Mea	Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB/m)								
Factor (dB	/m) = Cable Lo	oss (dB) + Ant	enna Fact	or (dB/m) - Pre	e_Amplifier Ga	in (dB)			

Test Site	SIP-AC3	Test Engineer	Justin Guo						
Test Date	2024-04-19 Filter 4#								
Test Mode	BLE-1Mbps	BLE-1Mbps							
Remark	1. Average measurement was not performed if peak level lower than average limit.								
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the								
	report.								

Test	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization	
Channel	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)			
		(dBµV)		(dBµV/m)					
	7689.5	49.8	-4.2	45.6	74.0	-28.4	Peak	Horizontal	
	11030.0	47.9	-1.4	46.5	74.0	-27.5	Peak	Horizontal	
	15671.0	44.4	4.6	49.0	74.0	-25.0	Peak	Horizontal	
00	8259.0	49.6	-3.3	46.3	74.0	-27.7	Peak	Vertical	
	11030.0	48.5	-1.4	47.1	74.0	-26.9	Peak	Vertical	
	15909.0	46.7	5.2	51.9	74.0	-22.1	Peak	Vertical	
	15909.0	36.2	5.2	41.4	54.0	-12.6	Average	Vertical	
	7596.0	49.2	-4.4	44.8	74.0	-29.2	Peak	Horizontal	
	11055.5	48.7	-1.5	47.2	74.0	-26.8	Peak	Horizontal	
	15883.5	46.5	5.1	51.6	74.0	-22.4	Peak	Horizontal	
19	15883.5	36.1	5.1	41.2	54.0	-12.8	Average	Horizontal	
	8284.5	49.4	-3.3	46.1	74.0	-27.9	Peak	Vertical	
	11387.0	48.9	-1.8	47.1	74.0	-26.9	Peak	Vertical	
	15832.5	46.0	4.4	50.4	74.0	-23.6	Peak	Vertical	
	8233.5	49.0	-3.2	45.8	74.0	-28.2	Peak	Horizontal	
	11412.5	48.8	-1.5	47.3	74.0	-26.7	Peak	Horizontal	
20	15773.0	45.4	4.9	50.3	74.0	-23.7	Peak	Horizontal	
39	8174.0	49.5	-3.5	46.0	74.0	-28.0	Peak	Vertical	
	12143.5	48.9	-1.7	47.2	74.0	-26.8	Peak	Vertical	
	15917.5	45.2	5.1	50.3	74.0	-23.7	Peak	Vertical	
Note: Meas	Note: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB/m)								
Factor (dB	/m) = Cable Lo	oss (dB) + Ante	enna Fact	or (dB/m) - Pre	e_Amplifier Ga	in (dB)			