





| Channel 151 (5755MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Channel 159 (5795MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spectrum Analyzer 1<br>Spectrum | Spectrum Analyzer 8<br>Spectrum Analyzer 9<br>Spectrum |







| Channel 50 (5250MHz)<br>Sector Advised T<br>Sector A | 802.11ax-HE160 Power Spectral Density- Ant 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|
| Spectrum Analyzer 12 Spectrum                                                                                                                                                                                                                                    | Channel 50 (5250MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Channel 114 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5570MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |  |  |  |
| Center 32/00 Otex avideo Birl 30 minz Span zeco min                                                                                                                                                                                                                                   | Spectrum Analyzer 11<br>Spectrum Analyzer 12<br>Spectrum Analyzer 13<br>Spectrum Analyzer 13<br>Spectrum Analyzer 14<br>Spectrum Analyzer 14 | Marker     Ref       led Marker     settings       led Marker     settings       riker Freesetory     settings       Peak Search     Ref       Next Peak     Properties       Next Pk Right     Properties       Minimum Peak     Marker       Pk-Pk Search     Counter       Marker Deta     Marker       Marker Deta     Marker       MarDet Littersons Peak     settersons Peak       on of     on | Spectrum Analyzer 11<br>Spectrum Analyzer 12<br>Spectrum Analyzer 13<br>Spectrum Analyzer 14<br>Spectrum Analyzer 14 | Ann Analyzer 12 Spectrum Analyzer 13 Sectors A | Врестил Analyzer 14<br>Акар Бра Токжет (1833) 2 3 4 3 0<br>Акар Бра Токжет (1833) 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 | Select Marker<br>Select Marker<br>Marker Frequency<br>Sch530000 Grtz<br>Peak Search<br>Noxt Peak<br>Next Pk Left<br>Minkmer Detta<br>Marker Detta | Settings<br>Settings<br>Peak<br>Search<br>Pk Search<br>Properties<br>Marker-<br>Counter |  |  |  |















| 802.11be-EHT40 Power Spectral Density- Ant 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Channel 151 (5755MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Channel 159 (5795MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | If 1     Spectrum Analyzer 2     Spectrum Analyzer 3     Spectrum Analyzer 4     < |  |  |  |  |  |  |  |  |  |
| 33         Counter           433         Marker Delta           638         Marker Delta           648         Marker Delta           649         Marker Delta           649         Marker Delta           649         Marker Delta           641         Marker Delta           642         Marker Delta           643         Marker Delta           644         Marker Delta           645         Marker Delta <td< td=""><td>303         Conter           438         Marco Delta           108         Marco</td></td<> | 303         Conter           438         Marco Delta           108         Marco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |







|                                                                                    |                                                                                                                                                                                                                                                                                                                                             | 802.11be-E                                                                                                         | HT160 Pov                                                                         | wer Spectral D                                                                       | ensity- Ant 1                                                                                                                                                                                                             |                                                                                                                              |                                                       |                                             |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|
|                                                                                    | Channel 50 (                                                                                                                                                                                                                                                                                                                                | 5250MHz)                                                                                                           |                                                                                   |                                                                                      | Channel 114                                                                                                                                                                                                               | (5570MHz)                                                                                                                    |                                                       |                                             |
| 5 Spectrum Analyzer<br>Swept SA<br>KEYSIGHT Input RF<br>Coupling AC<br>Align: Auto | 6         Spectrum Analyzer 7<br>swept SA         Spectrum Analyzer<br>Swept SA           Input 7: 60         Atten: 20 dB         PNO: Felt           Cont C50rr         Gate 101         FNO: Felt           File Ref. Int (S)         IF Gatt. Low         IF Gatt. Coll           NFE. Of         Sig Track. Off         Sig Track. Off | 8 Spectrum Analyzer + Swept SA<br>Avg Type: Power (RMS) 12 3 4 5 6<br>Avg)Hold: 200/200<br>Trig. Free Run ANN NN N | Marker v Select Marker<br>Marker 1<br>Marker Frequency                            | 5 Spectrum Analyzer I<br>Swept SA<br>KEYSIGHT Input RF<br>Coupling AC<br>Align: Auto | 5 Spectrum Analyzer 7 Stepetrum Analyzer 7 Swept SA Swept SA Swept SA Stepetrum Analyzer SA Swept SA PNO Fool Corr Coorr Fool And Into 20 dB Sede Off Fool And Int (S) Freq Roll Int (S) Freq Roll Int (S) Sig Track. Off | r 8 Spectrum Analyzer +<br>Swept SA<br>Avg Type: Power (RMS) 1 2 3 4 5 6<br>Avgthold: 200/200<br>Trig. Free Run<br>A NN NN N | Select Marker<br>Marker 1<br>Marker Frequency         | • 🔆                                         |
| 1 Spectrum v<br>Scale/Div 10 dB<br>Log<br>11 2                                     | Ref Level 21.20 dB<br>Ref Level 21.20 dBm                                                                                                                                                                                                                                                                                                   | Mkr1 5.307 12 GHz<br>-5.652 dBm                                                                                    | 5.307120000 GHz<br>Peak Search<br>Next Peak<br>Next Peak                          | 1 Spectrum v<br>Scale/Div 10 dB<br>Log<br>h 112                                      | Ref Lvi Offset 11.20 dB<br>Ref Level 21.20 dBm                                                                                                                                                                            | Mkr1 5.645 84 GHz<br>-5.957 dBm                                                                                              | 5.645840000 GHz<br>Peak Search<br>Next Peak           | Peak<br>Search<br>Pk Search<br>Config       |
| -18 8<br>-28 8                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    | Next Pk Right Propertie<br>Next Pk Left Marker<br>Function<br>Minimum Peak Marker | -18.8<br>28.8                                                                        |                                                                                                                                                                                                                           |                                                                                                                              | Next Pk Right<br>Next Pk Left<br>Minimum Peak         | Properties<br>Marker<br>Function<br>Marker→ |
| -38.8<br>-58.8                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    | Pk-Pk Search<br>Marker Delta<br>MkrCF                                             | -38.8<br>-48.8<br>-58.8                                                              |                                                                                                                                                                                                                           |                                                                                                                              | Pk-Pk Search<br>Marker Delta<br>MkrCF                 | Counter                                     |
| 00.8<br>Center 5.2500 GHz<br>≇Res BW 1.0 MHz                                       | #Video BW 3.0 MHz* Peo 21, 2023 144:65 PM                                                                                                                                                                                                                                                                                                   | Span 240.0 MHz<br>Sweep 1.00 ms (501 pts)                                                                          | MkrRef Lvl<br>Continuous Peak<br>Search<br>On<br>Off                              | 68.8<br>Center 5.5700 GHz<br>≇Res BW 1.0 MHz<br>■ つ C ■ ?                            | #Video BW 3.0 MHz*                                                                                                                                                                                                        | Span 240.0 MHz<br>Sweep 1.00 ms (501 pts)                                                                                    | Mkr→Ref Lvi<br>Continuous Peak<br>Search<br>On<br>Off |                                             |



| Test Site | WZ-SR5                  | Test Engineer | Luis Yang |
|-----------|-------------------------|---------------|-----------|
| Test Date | 2024-04-10 ~ 2024-04-11 |               |           |
| Test Item | Power Spectral Density  |               |           |

**Puncturing Mode** 

| Test Mode   | Data<br>Rate/ | Channel<br>No. | Freq.<br>(MHz) | Index<br>Punctured | AVPSD Note 3 |        | Duty Cycle<br>(%) | Total PSD<br>Note 3 | PSD<br>Limit <sup>Note 3</sup> |
|-------------|---------------|----------------|----------------|--------------------|--------------|--------|-------------------|---------------------|--------------------------------|
|             | MCS           |                |                |                    | Ant 0        | Ant 1  |                   |                     |                                |
| 11be-EHT80  | MCS0          | 42             | 5210           | 4_242              | -1.275       | -1.096 | 92.29             | 2.174               | ≤ 16.69                        |
| 11be-EHT80  | MCS0          | 58             | 5290           | 1_242              | -0.879       | -0.884 | 92.29             | 2.477               | ≤ 10.69                        |
| 11be-EHT80  | MCS0          | 106            | 5530           | 4_242              | -3.686       | -4.317 | 92.29             | -0.631              | ≤ 10.69                        |
| 11be-EHT80  | MCS0          | 122            | 5610           | 1_242              | -0.429       | -0.007 | 92.29             | 3.146               | ≤ 10.69                        |
| 11be-EHT80  | MCS0          | 138            | 5690           | 1_242              | 0.439        | 0.139  | 92.29             | 3.650               | ≤ 10.69                        |
| 11be-EHT80  | MCS0          | 155            | 5775           | 4_242              | -2.495       | -2.901 | 92.29             | 0.665               | ≤ 29.69                        |
| 11be-EHT160 | MCS0          | 50             | 5250           | 1_242              | -5.595       | -5.926 | 87.98             | -2.191              | ≤ 10.69 <sup>Note2</sup>       |
| 11be-EHT160 | MCS0          | 50             | 5250           | 8_242              | -5.313       | -6.237 | 87.98             | -2.184              | ≤ 10.69 <sup>Note2</sup>       |
| 11be-EHT160 | MCS0          | 50             | 5250           | 1_484              | -5.622       | -5.869 | 87.98             | -2.177              | ≤ 10.69 <sup>Note2</sup>       |
| 11be-EHT160 | MCS0          | 50             | 5250           | 4_484              | -5.743       | -6.147 | 87.98             | -2.374              | ≤ 10.69 <sup>Note2</sup>       |
| 11be-EHT160 | MCS0          | 114            | 5570           | 1_242              | -5.987       | -6.039 | 87.98             | -2.446              | ≤ 10.69                        |
| 11be-EHT160 | MCS0          | 114            | 5570           | 8_242              | -6.052       | -6.016 | 87.98             | -2.468              | ≤ 10.69                        |
| 11be-EHT160 | MCS0          | 114            | 5570           | 1_484              | -5.844       | -6.227 | 87.98             | -2.465              | ≤ 10.69                        |
| 11be-EHT160 | MCS0          | 114            | 5570           | 4_484              | -6.042       | -6.017 | 87.98             | -2.463              | ≤ 10.69                        |

Note 1: When EUT duty cycle < 98%, the total PSD =  $10^{\log \left\{10^{(Ant \ 0 \ AVGPSD/10)} + 10^{(Ant \ 1 \ AVGPSD/10)}\right\} + 10^{\log \left(1/Duty \ Cycle\right)}$ 

When EUT duty cycle  $\ge$  98%, the total PSD = 10\*log {10<sup>(Ant 0 AVGPSD/10)</sup> + 10<sup>(Ant 1 AVGPSD/10)</sup>}.

Note 2: This is a straddle channel, the maximum power density complies with the limit of NII-2A which is the more stringent limit of NII-1 and NII-2A.

Note 3: The unit is dBm/MHz for channels of NII-1, NII-2A, NII-2C and dBm/500kHz for NII-3.



















## A.6 Frequency Stability Test Result

| Test Site | WZ-TR3     | Test Engineer | Luis Yang              |
|-----------|------------|---------------|------------------------|
| Test Date | 2023-12-28 | Test Mode     | 5180MHz (Carrier Mode) |

| Voltage | Power | Temp | Frequency Tolerance (ppm) |           |           |            |      |  |
|---------|-------|------|---------------------------|-----------|-----------|------------|------|--|
| (%)     | (VAC) | (°C) | 0 minutes                 | 2 minutes | 5 minutes | 10 minutes |      |  |
|         |       | - 30 | 17.63                     | 17.61     | 17.60     | 17.57      |      |  |
|         |       | - 20 | 16.62                     | 16.65     | 16.68     | 16.71      |      |  |
|         |       | - 10 | 14.06                     | 14.14     | 14.21     | 14.32      |      |  |
|         |       | 0    | 10.53 10.56               |           | 10.59     | 10.63      |      |  |
| 100     | 120   | + 10 | 8.12                      | 8.18      | 8.27      | 8.34       |      |  |
|         |       |      | + 20                      | 5.81      | 5.84      | 5.86       | 5.89 |  |
|         |       | + 30 | 0.95                      | 0.99      | 1.01      | 1.06       |      |  |
|         |       |      | + 40                      | 0.77      | 0.76      | 0.76       | 0.76 |  |
|         |       | + 50 | 2.94                      | 2.41      | 2.32      | 2.25       |      |  |
| 115     | 138   | + 20 | 2.67                      | 3.20      | 3.68      | 3.84       |      |  |
| 85      | 102   | + 20 | 4.21                      | 4.28      | 4.34      | 4.46       |      |  |

Note: Frequency Tolerance (ppm) = {[Measured Frequency (Hz) - Declared Frequency (Hz)] / Declared Frequency (Hz)} \*10<sup>6</sup>.



## A.7 Radiated Spurious Emission Test Result

## ANT 311# Normal Mode:

| Test Site | WZ-AC2                                                                    | Test Engineer                                                                  | Dick Shen |  |  |  |  |
|-----------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                   | 024-01-03 ~ 2024-01-07 Test Mode 802.11a – Channe                              |           |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average |                                                                                |           |  |  |  |  |
|           | limit.                                                                    |                                                                                |           |  |  |  |  |
|           | 2. Other frequency was 20d                                                | Other frequency was 20dB below limit line within 1-18GHz, there is not show in |           |  |  |  |  |
|           | the report.                                                               |                                                                                |           |  |  |  |  |

| Mark                                                                                                                   | Frequency                                                                                             | Reading        | Factor        | Measure  | Limit    | Margin | Detector | Polarization |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------|---------------|----------|----------|--------|----------|--------------|--|--|--|--|
|                                                                                                                        | (MHz)                                                                                                 | Level          | (dB/m)        | Level    | (dBµV/m) | (dB)   |          |              |  |  |  |  |
|                                                                                                                        |                                                                                                       | (dBµV)         |               | (dBµV/m) |          |        |          |              |  |  |  |  |
|                                                                                                                        | 7451.5 32.8 12.2 45.0 74.0 -29.0 Peak Horizontal                                                      |                |               |          |          |        |          |              |  |  |  |  |
| *                                                                                                                      | 9865.5                                                                                                | 32.9           | 13.5          | 46.4     | 68.2     | -21.8  | Peak     | Horizontal   |  |  |  |  |
|                                                                                                                        | 10928.0                                                                                               | 31.3           | 16.7          | 48.0     | 74.0     | -26.0  | Peak     | Horizontal   |  |  |  |  |
| *                                                                                                                      | 14234.5                                                                                               | 31.1           | 20.0          | 51.1     | 68.2     | -17.1  | Peak     | Horizontal   |  |  |  |  |
|                                                                                                                        | 7519.5                                                                                                | 32.5           | 11.8          | 44.3     | 74.0     | -29.7  | Peak     | Vertical     |  |  |  |  |
| *                                                                                                                      | 10205.5                                                                                               | 32.7           | 14.3          | 47.0     | 68.2     | -21.2  | Peak     | Vertical     |  |  |  |  |
|                                                                                                                        | 11055.5                                                                                               | 32.6           | 16.3          | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |  |  |  |  |
| *                                                                                                                      | * 14039.0 31.4 19.9 51.3 68.2 -16.9 Peak Vertical                                                     |                |               |          |          |        |          |              |  |  |  |  |
| Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in |                                                                                                       |                |               |          |          |        |          |              |  |  |  |  |
| dBµV/m                                                                                                                 | dBμV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to |                |               |          |          |        |          |              |  |  |  |  |
| obtain t                                                                                                               | he limit for ou                                                                                       | ut of band spu | urious emissi | ons.     |          |        |          |              |  |  |  |  |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                                                                                | Test Engineer | Bob Zhang            |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------|----------------------|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                               | Test Mode     | 802.11a – Channel 44 |  |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit.      |               |                      |  |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |               |                      |  |  |  |  |
|           | report.                                                                               |               |                      |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7460.0    | 31.6    | 12.2   | 43.8     | 74.0     | -30.2  | Peak     | Horizontal   |
| *    | 9678.5    | 33.1    | 13.5   | 46.6     | 68.2     | -21.6  | Peak     | Horizontal   |
|      | 11183.0   | 31.3    | 17.0   | 48.3     | 74.0     | -25.7  | Peak     | Horizontal   |
| *    | 14064.5   | 30.9    | 19.8   | 50.7     | 68.2     | -17.5  | Peak     | Horizontal   |
|      | 7468.5    | 32.2    | 12.1   | 44.3     | 74.0     | -29.7  | Peak     | Vertical     |
| *    | 9593.5    | 33.4    | 13.3   | 46.7     | 68.2     | -21.5  | Peak     | Vertical     |
|      | 11574.0   | 31.5    | 17.7   | 49.2     | 74.0     | -24.8  | Peak     | Vertical     |
| *    | 14192.0   | 32.7    | 19.9   | 52.6     | 68.2     | -15.6  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Bob Zhang              |  |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07             | Test Mode                                                                        | 802.11a – Channel 48   |  |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                        |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-18GHz, th                                                     | ere is not show in the |  |  |  |  |  |
|           | report.                             |                                                                                  |                        |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8097.5    | 32.9    | 12.0   | 44.9     | 74.0     | -29.1  | Peak     | Horizontal   |
| *    | 9899.5    | 33.0    | 13.6   | 46.6     | 68.2     | -21.6  | Peak     | Horizontal   |
|      | 11429.5   | 31.7    | 17.3   | 49.0     | 74.0     | -25.0  | Peak     | Horizontal   |
| *    | 14455.5   | 32.5    | 20.3   | 52.8     | 68.2     | -15.4  | Peak     | Horizontal   |
|      | 7732.0    | 33.1    | 11.1   | 44.2     | 74.0     | -29.8  | Peak     | Vertical     |
| *    | 9942.0    | 33.0    | 13.8   | 46.8     | 68.2     | -21.4  | Peak     | Vertical     |
|      | 11378.5   | 30.7    | 17.3   | 48.0     | 74.0     | -26.0  | Peak     | Vertical     |
| *    | 14268.5   | 33.0    | 19.8   | 52.8     | 68.2     | -15.4  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Bob Zhang              |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|------------------------|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07             | Test Mode                                                                        | 802.11a – Channel 52   |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                        |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-18GHz, th                                                     | ere is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                        |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7443.0    | 31.8    | 12.1   | 43.9     | 74.0     | -30.1  | Peak     | Horizontal   |
| *    | 9619.0    | 33.9    | 13.2   | 47.1     | 68.2     | -21.1  | Peak     | Horizontal   |
|      | 11557.0   | 31.1    | 17.9   | 49.0     | 74.0     | -25.0  | Peak     | Horizontal   |
| *    | 14430.0   | 32.3    | 20.1   | 52.4     | 68.2     | -15.8  | Peak     | Horizontal   |
|      | 8106.0    | 32.4    | 12.1   | 44.5     | 74.0     | -29.5  | Peak     | Vertical     |
| *    | 9848.5    | 33.4    | 13.5   | 46.9     | 68.2     | -21.3  | Peak     | Vertical     |
|      | 11565.5   | 30.5    | 17.8   | 48.3     | 74.0     | -25.7  | Peak     | Vertical     |
| *    | 14447.0   | 32.3    | 20.4   | 52.7     | 68.2     | -15.5  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Bob Zhang              |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|------------------------|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07             | 802.11a – Channel 60                                                             |                        |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                        |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-18GHz, th                                                     | ere is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                        |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7451.5    | 31.8    | 12.2   | 44.0     | 74.0     | -30.0  | Peak     | Horizontal   |
| *    | 10452.0   | 32.4    | 15.4   | 47.8     | 68.2     | -20.4  | Peak     | Horizontal   |
|      | 11642.0   | 31.2    | 17.9   | 49.1     | 74.0     | -24.9  | Peak     | Horizontal   |
| *    | 14421.5   | 32.1    | 19.9   | 52.0     | 68.2     | -16.2  | Peak     | Horizontal   |
|      | 7307.0    | 32.5    | 11.5   | 44.0     | 74.0     | -30.0  | Peak     | Vertical     |
| *    | 10188.5   | 32.8    | 14.3   | 47.1     | 68.2     | -21.1  | Peak     | Vertical     |
|      | 11506.0   | 31.6    | 17.4   | 49.0     | 74.0     | -25.0  | Peak     | Vertical     |
| *    | 14319.5   | 31.7    | 20.0   | 51.7     | 68.2     | -16.5  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer                | Bob Zhang              |  |  |  |
|-----------|----------------------------------------------------------------------------------|------------------------------|------------------------|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                          | Test Mode                    | 802.11a – Channel 64   |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                              |                        |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1-18GHz, th | ere is not show in the |  |  |  |
|           | report.                                                                          |                              |                        |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7375.0    | 33.2    | 11.6   | 44.8     | 74.0     | -29.2  | Peak     | Horizontal   |
| *    | 10324.5   | 32.3    | 15.1   | 47.4     | 68.2     | -20.8  | Peak     | Horizontal   |
|      | 11591.0   | 31.6    | 17.3   | 48.9     | 74.0     | -25.1  | Peak     | Horizontal   |
| *    | 14328.0   | 31.5    | 20.2   | 51.7     | 68.2     | -16.5  | Peak     | Horizontal   |
|      | 7536.5    | 31.7    | 11.9   | 43.6     | 74.0     | -30.4  | Peak     | Vertical     |
| *    | 10052.5   | 33.5    | 13.8   | 47.3     | 68.2     | -20.9  | Peak     | Vertical     |
|      | 11812.0   | 30.7    | 17.7   | 48.4     | 74.0     | -25.6  | Peak     | Vertical     |
| *    | 14328.0   | 31.5    | 20.2   | 51.7     | 68.2     | -16.5  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                              | Test Engineer                                                                    | Bob Zhang                |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07             | Test Mode                                                                        | 802.11a – Channel 100    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                          |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-18GHz,                                                        | there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                          |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7689.5    | 33.4    | 11.2   | 44.6     | 74.0     | -29.4  | Peak     | Horizontal   |
| *    | 10231.0   | 33.4    | 14.2   | 47.6     | 68.2     | -20.6  | Peak     | Horizontal   |
|      | 11548.5   | 32.4    | 17.7   | 50.1     | 74.0     | -23.9  | Peak     | Horizontal   |
| *    | 13954.0   | 32.4    | 19.6   | 52.0     | 68.2     | -16.2  | Peak     | Horizontal   |
|      | 7477.0    | 31.8    | 12.1   | 43.9     | 74.0     | -30.1  | Peak     | Vertical     |
| *    | 9253.5    | 33.9    | 14.0   | 47.9     | 68.2     | -20.3  | Peak     | Vertical     |
|      | 11565.5   | 30.8    | 17.8   | 48.6     | 74.0     | -25.4  | Peak     | Vertical     |
| *    | 14319.5   | 32.1    | 20.0   | 52.1     | 68.2     | -16.1  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Bob Zhang                |  |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------|--|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07             | Test Mode                                                                        | 802.11a – Channel 116    |  |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                          |  |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-18GHz,                                                        | there is not show in the |  |  |  |  |  |
|           | report.                             |                                                                                  |                          |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7502.5    | 32.3    | 12.0   | 44.3     | 74.0     | -29.7  | Peak     | Horizontal   |
| *    | 10443.5   | 32.8    | 15.5   | 48.3     | 68.2     | -19.9  | Peak     | Horizontal   |
|      | 11693.0   | 32.5    | 17.3   | 49.8     | 74.0     | -24.2  | Peak     | Horizontal   |
| *    | 14098.5   | 31.9    | 19.8   | 51.7     | 68.2     | -16.5  | Peak     | Horizontal   |
|      | 7655.5    | 32.6    | 11.3   | 43.9     | 74.0     | -30.1  | Peak     | Vertical     |
| *    | 9882.5    | 32.8    | 13.6   | 46.4     | 68.2     | -21.8  | Peak     | Vertical     |
|      | 11735.5   | 31.5    | 17.7   | 49.2     | 74.0     | -24.8  | Peak     | Vertical     |
| *    | 14362.0   | 31.7    | 20.2   | 51.9     | 68.2     | -16.3  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Bob Zhang                |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07             | Test Mode                                                                        | 802.11a – Channel 140    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                          |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-18GHz,                                                        | there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                          |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7426.0    | 32.6    | 11.8   | 44.4     | 74.0     | -29.6  | Peak     | Horizontal   |
| *    | 9831.5    | 33.3    | 13.5   | 46.8     | 68.2     | -21.4  | Peak     | Horizontal   |
|      | 11565.5   | 32.2    | 17.8   | 50.0     | 74.0     | -24.0  | Peak     | Horizontal   |
| *    | 14056.0   | 30.7    | 20.0   | 50.7     | 68.2     | -17.5  | Peak     | Horizontal   |
|      | 7664.0    | 33.3    | 11.3   | 44.6     | 74.0     | -29.4  | Peak     | Vertical     |
| *    | 9695.5    | 33.2    | 13.5   | 46.7     | 68.2     | -21.5  | Peak     | Vertical     |
|      | 11854.5   | 31.7    | 17.2   | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |
| *    | 14302.5   | 32.7    | 19.9   | 52.6     | 68.2     | -15.6  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                | Test Engineer                                                                    | Bob Zhang               |  |  |  |  |
|-----------|---------------------------------------|----------------------------------------------------------------------------------|-------------------------|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07               | Test Mode                                                                        | 802.11a – Channel 144   |  |  |  |  |
| Remark    | 1. Average measurement was not perf   | 1. Average measurement was not performed if peak level lower than average limit. |                         |  |  |  |  |
|           | 2. Other frequency was 20dB below lir | nit line within 1-18GHz, t                                                       | here is not show in the |  |  |  |  |
|           | report.                               |                                                                                  |                         |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7613.0    | 32.4    | 11.8   | 44.2     | 74.0     | -29.8  | Peak     | Horizontal   |
| *    | 8012.5    | 34.4    | 11.9   | 46.3     | 68.2     | -21.9  | Peak     | Horizontal   |
| *    | 10443.5   | 32.4    | 15.5   | 47.9     | 68.2     | -20.3  | Peak     | Horizontal   |
|      | 12169.0   | 32.0    | 17.4   | 49.4     | 74.0     | -24.6  | Peak     | Horizontal   |
|      | 8165.5    | 33.9    | 11.5   | 45.4     | 74.0     | -28.6  | Peak     | Vertical     |
| *    | 9891.0    | 33.2    | 13.7   | 46.9     | 68.2     | -21.3  | Peak     | Vertical     |
|      | 11540.0   | 31.5    | 17.6   | 49.1     | 74.0     | -24.9  | Peak     | Vertical     |
| *    | 14081.5   | 31.3    | 19.5   | 50.8     | 68.2     | -17.4  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Bob Zhang                |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07             | Test Mode                                                                        | 802.11a – Channel 149    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                          |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-18GHz,                                                        | there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                          |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7332.5    | 33.0    | 11.4   | 44.4     | 74.0     | -29.6  | Peak     | Horizontal   |
| *    | 9806.0    | 32.8    | 13.8   | 46.6     | 68.2     | -21.6  | Peak     | Horizontal   |
|      | 10911.0   | 31.6    | 16.6   | 48.2     | 74.0     | -25.8  | Peak     | Horizontal   |
| *    | 14906.0   | 33.1    | 19.3   | 52.4     | 68.2     | -15.8  | Peak     | Horizontal   |
|      | 9007.0    | 33.6    | 13.3   | 46.9     | 74.0     | -27.1  | Peak     | Vertical     |
| *    | 10273.5   | 33.1    | 14.7   | 47.8     | 68.2     | -20.4  | Peak     | Vertical     |
|      | 11548.5   | 31.8    | 17.7   | 49.5     | 74.0     | -24.5  | Peak     | Vertical     |
| *    | 14404.5   | 32.7    | 19.8   | 52.5     | 68.2     | -15.7  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Bob Zhang                |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07             | Test Mode                                                                        | 802.11a – Channel 157    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                          |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-18GHz,                                                        | there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                          |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7392.0    | 31.9    | 11.8   | 43.7     | 74.0     | -30.3  | Peak     | Horizontal   |
| *    | 10520.0   | 32.6    | 15.4   | 48.0     | 68.2     | -20.2  | Peak     | Horizontal   |
|      | 11480.5   | 31.3    | 17.6   | 48.9     | 74.0     | -25.1  | Peak     | Horizontal   |
| *    | 14047.5   | 31.7    | 20.0   | 51.7     | 68.2     | -16.5  | Peak     | Horizontal   |
|      | 7715.0    | 33.7    | 11.2   | 44.9     | 74.0     | -29.1  | Peak     | Vertical     |
| *    | 9942.0    | 34.1    | 13.8   | 47.9     | 68.2     | -20.3  | Peak     | Vertical     |
|      | 11548.5   | 31.8    | 17.7   | 49.5     | 74.0     | -24.5  | Peak     | Vertical     |
| *    | 14183.5   | 32.5    | 19.9   | 52.4     | 68.2     | -15.8  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                    | Bob Zhang                |  |  |  |  |
|-----------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07             | Test Mode                                                                        | 802.11a – Channel 165    |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | 1. Average measurement was not performed if peak level lower than average limit. |                          |  |  |  |  |
|           | 2. Other frequency was 20dB below I | imit line within 1-18GHz, t                                                      | there is not show in the |  |  |  |  |
|           | report.                             |                                                                                  |                          |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7698.0    | 32.8    | 11.2   | 44.0     | 74.0     | -30.0  | Peak     | Horizontal   |
| *    | 9687.0    | 33.2    | 13.5   | 46.7     | 68.2     | -21.5  | Peak     | Horizontal   |
|      | 11548.5   | 31.2    | 17.7   | 48.9     | 74.0     | -25.1  | Peak     | Horizontal   |
| *    | 14192.0   | 31.6    | 19.9   | 51.5     | 68.2     | -16.7  | Peak     | Horizontal   |
|      | 7426.0    | 32.9    | 11.8   | 44.7     | 74.0     | -29.3  | Peak     | Vertical     |
| *    | 9704.0    | 32.6    | 13.5   | 46.1     | 68.2     | -22.1  | Peak     | Vertical     |
|      | 10919.5   | 31.6    | 16.7   | 48.3     | 74.0     | -25.7  | Peak     | Vertical     |
| *    | 14880.5   | 32.5    | 19.1   | 51.6     | 68.2     | -16.6  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)

| Test Site | WZ-AC2                                                                                | Test Engineer      | Bob Zhang                     |  |  |  |
|-----------|---------------------------------------------------------------------------------------|--------------------|-------------------------------|--|--|--|
| Test Date | 2024 01 02 - 2024 01 07                                                               | Test Made          | 802.11ac-VHT20 – Channel      |  |  |  |
| Test Date | 2024-01-03 ~ 2024-01-07                                                               | Test Mode          | 36                            |  |  |  |
| Remark    | 1. Average measurement was not pe                                                     | rformed if peak le | vel lower than average limit. |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                    |                               |  |  |  |
|           | report.                                                                               |                    |                               |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8250.5    | 32.3    | 11.0   | 43.3     | 74.0     | -30.7  | Peak     | Horizontal   |
| *    | 10486.0   | 32.3    | 15.4   | 47.7     | 68.2     | -20.5  | Peak     | Horizontal   |
|      | 11548.5   | 31.3    | 17.7   | 49.0     | 74.0     | -25.0  | Peak     | Horizontal   |
| *    | 12747.0   | 31.9    | 17.0   | 48.9     | 68.2     | -19.3  | Peak     | Horizontal   |
|      | 8412.0    | 32.9    | 11.4   | 44.3     | 74.0     | -29.7  | Peak     | Vertical     |
|      | 11922.5   | 32.8    | 17.1   | 49.9     | 74.0     | -24.1  | Peak     | Vertical     |
| *    | 13665.0   | 30.5    | 18.6   | 49.1     | 68.2     | -19.1  | Peak     | Vertical     |
| *    | 14413.0   | 32.3    | 19.7   | 52.0     | 68.2     | -16.2  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer       | Bob Zhang                       |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                          | Test Mode           | 802.11ac-VHT20 – Channel 44     |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7460.0    | 32.5    | 12.2   | 44.7     | 74.0     | -29.3  | Peak     | Horizontal   |
| *    | 10129.0   | 32.9    | 14.2   | 47.1     | 68.2     | -21.1  | Peak     | Horizontal   |
|      | 11574.0   | 31.8    | 17.7   | 49.5     | 74.0     | -24.5  | Peak     | Horizontal   |
| *    | 14455.5   | 32.1    | 20.3   | 52.4     | 68.2     | -15.8  | Peak     | Horizontal   |
|      | 8089.0    | 33.3    | 11.8   | 45.1     | 74.0     | -28.9  | Peak     | Vertical     |
| *    | 9789.0    | 33.4    | 13.6   | 47.0     | 68.2     | -21.2  | Peak     | Vertical     |
|      | 11514.5   | 31.7    | 17.3   | 49.0     | 74.0     | -25.0  | Peak     | Vertical     |
| *    | 13971.0   | 30.9    | 19.3   | 50.2     | 68.2     | -18.0  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                                | Test Engineer       | Bob Zhang                     |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------------|-------------------------------|--|--|--|--|
| Test Date | 2024 01 02 2024 01 07                                                                 | Test Made           | 802.11ac-VHT20 – Channel      |  |  |  |  |
| Test Date | 2024-01-03 ~ 2024-01-07                                                               | Test Mode           | 48                            |  |  |  |  |
| Remark    | 1. Average measurement was not pe                                                     | rformed if peak lev | vel lower than average limit. |  |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                     |                               |  |  |  |  |
|           | report.                                                                               |                     |                               |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8106.0    | 31.7    | 12.1   | 43.8     | 74.0     | -30.2  | Peak     | Horizontal   |
| *    | 9789.0    | 32.4    | 13.6   | 46.0     | 68.2     | -22.2  | Peak     | Horizontal   |
|      | 10902.5   | 32.3    | 16.6   | 48.9     | 74.0     | -25.1  | Peak     | Horizontal   |
| *    | 14438.5   | 32.5    | 20.2   | 52.7     | 68.2     | -15.5  | Peak     | Horizontal   |
| *    | 8658.5    | 31.8    | 12.5   | 44.3     | 68.2     | -23.9  | Peak     | Vertical     |
| *    | 10120.5   | 32.8    | 14.1   | 46.9     | 68.2     | -21.3  | Peak     | Vertical     |
|      | 11710.0   | 31.5    | 17.8   | 49.3     | 74.0     | -24.7  | Peak     | Vertical     |
|      | 14472.5   | 32.9    | 19.9   | 52.8     | 74.0     | -21.2  | Peak     | Vertical     |

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB/m)

| Test Site | WZ-AC2                                                                                | Test Engineer       | Bob Zhang                     |  |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------------|-------------------------------|--|--|--|
| Test Date | 2024 01 02 - 2024 01 07                                                               | Test Mede           | 802.11ac-VHT20 – Channel      |  |  |  |
| Test Date | 2024-01-03 ~ 2024-01-07                                                               | Test Mode           | 52                            |  |  |  |
| Remark    | 1. Average measurement was not pe                                                     | rformed if peak lev | vel lower than average limit. |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                     |                               |  |  |  |
|           | report.                                                                               |                     |                               |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8123.0    | 33.3    | 12.0   | 45.3     | 74.0     | -28.7  | Peak     | Horizontal   |
|      | 11327.5   | 31.8    | 17.4   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
| *    | 13673.5   | 31.7    | 18.5   | 50.2     | 68.2     | -18.0  | Peak     | Horizontal   |
| *    | 14319.5   | 32.0    | 20.0   | 52.0     | 68.2     | -16.2  | Peak     | Horizontal   |
|      | 8174.0    | 32.1    | 11.5   | 43.6     | 74.0     | -30.4  | Peak     | Vertical     |
| *    | 9661.5    | 33.5    | 13.5   | 47.0     | 68.2     | -21.2  | Peak     | Vertical     |
|      | 11650.5   | 31.9    | 17.8   | 49.7     | 74.0     | -24.3  | Peak     | Vertical     |
| *    | 14455.5   | 32.0    | 20.3   | 52.3     | 68.2     | -15.9  | Peak     | Vertical     |

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB/m)

| Test Site | WZ-AC2                                                                                | Test Engineer       | Bob Zhang                     |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------------|-------------------------------|--|--|--|--|
| Test Date | 2024 01 02 - 2024 01 07                                                               | Test Mede           | 802.11ac-VHT20 – Channel      |  |  |  |  |
| Test Date | 2024-01-03 ~ 2024-01-07                                                               | Test Mode           | 60                            |  |  |  |  |
| Remark    | 1. Average measurement was not pe                                                     | rformed if peak lev | vel lower than average limit. |  |  |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                     |                               |  |  |  |  |
|           | report.                                                                               |                     |                               |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8293.0    | 31.8    | 11.0   | 42.8     | 74.0     | -31.2  | Peak     | Horizontal   |
| *    | 8692.5    | 30.7    | 12.6   | 43.3     | 68.2     | -24.9  | Peak     | Horizontal   |
|      | 11710.0   | 31.6    | 17.8   | 49.4     | 74.0     | -24.6  | Peak     | Horizontal   |
| *    | 14370.5   | 32.4    | 20.2   | 52.6     | 68.2     | -15.6  | Peak     | Horizontal   |
|      | 8165.5    | 33.5    | 11.5   | 45.0     | 74.0     | -29.0  | Peak     | Vertical     |
|      | 10885.5   | 32.9    | 16.3   | 49.2     | 74.0     | -24.8  | Peak     | Vertical     |
| *    | 13639.5   | 31.5    | 19.1   | 50.6     | 68.2     | -17.6  | Peak     | Vertical     |
| *    | 14345.0   | 33.0    | 20.2   | 53.2     | 68.2     | -15.0  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer        | Bob Zhang                       |  |  |  |
|-----------|----------------------------------------------------------------------------------|----------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                          | Test Mode            | 802.11ac-VHT20 – Channel 64     |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                      |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1-1 | I8GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                      |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8089.0    | 34.4    | 11.8   | 46.2     | 74.0     | -27.8  | Peak     | Horizontal   |
| *    | 9797.5    | 34.2    | 13.7   | 47.9     | 68.2     | -20.3  | Peak     | Horizontal   |
|      | 11472.0   | 32.8    | 17.5   | 50.3     | 74.0     | -23.7  | Peak     | Horizontal   |
| *    | 13792.5   | 31.3    | 18.8   | 50.1     | 68.2     | -18.1  | Peak     | Horizontal   |
|      | 8242.0    | 31.2    | 11.0   | 42.2     | 74.0     | -31.8  | Peak     | Vertical     |
| *    | 10299.0   | 32.2    | 14.9   | 47.1     | 68.2     | -21.1  | Peak     | Vertical     |
|      | 11871.5   | 32.0    | 17.3   | 49.3     | 74.0     | -24.7  | Peak     | Vertical     |
| *    | 14464.0   | 32.0    | 20.2   | 52.2     | 68.2     | -16.0  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer       | Bob Zhang                       |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                          | Test Mode           | 802.11ac-VHT20 – Channel 100    |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 7409.0    | 31.3    | 11.7   | 43.0     | 74.0     | -31.0  | Peak     | Horizontal   |
| *    | 9865.5    | 33.1    | 13.5   | 46.6     | 68.2     | -21.6  | Peak     | Horizontal   |
|      | 11506.0   | 32.9    | 17.4   | 50.3     | 74.0     | -23.7  | Peak     | Horizontal   |
| *    | 14362.0   | 31.8    | 20.2   | 52.0     | 68.2     | -16.2  | Peak     | Horizontal   |
| *    | 9933.5    | 32.3    | 13.8   | 46.1     | 68.2     | -22.1  | Peak     | Vertical     |
|      | 11582.5   | 31.7    | 17.5   | 49.2     | 74.0     | -24.8  | Peak     | Vertical     |
| *    | 13886.0   | 30.5    | 19.4   | 49.9     | 68.2     | -18.3  | Peak     | Vertical     |
|      | 14472.5   | 32.4    | 19.9   | 52.3     | 74.0     | -21.7  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Bob Zhang                       |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                          | Test Mode           | 802.11ac-VHT20 – Channel 116    |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8259.0    | 31.9    | 11.1   | 43.0     | 74.0     | -31.0  | Peak     | Horizontal   |
|      | 11268.0   | 31.5    | 17.0   | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
| *    | 13801.0   | 29.6    | 18.7   | 48.3     | 68.2     | -19.9  | Peak     | Horizontal   |
| *    | 14379.0   | 31.9    | 20.1   | 52.0     | 68.2     | -16.2  | Peak     | Horizontal   |
|      | 8403.5    | 32.0    | 11.5   | 43.5     | 74.0     | -30.5  | Peak     | Vertical     |
|      | 11565.5   | 32.4    | 17.8   | 50.2     | 74.0     | -23.8  | Peak     | Vertical     |
| *    | 13665.0   | 30.4    | 18.6   | 49.0     | 68.2     | -19.2  | Peak     | Vertical     |
| *    | 14455.5   | 32.1    | 20.3   | 52.4     | 68.2     | -15.8  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                              | Test Engineer                                                                         | Bob Zhang                      |  |  |  |  |
|-----------|-------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| Test Date | 2024 01 02 - 2024 01 07             | Test Mede                                                                             | 802.11ac-VHT20 – Channel       |  |  |  |  |
| Test Date | 2024-01-03 ~ 2024-01-07             | Test Mode                                                                             | 140                            |  |  |  |  |
| Remark    | 1. Average measurement was not pe   | rformed if peak le                                                                    | evel lower than average limit. |  |  |  |  |
|           | 2. Other frequency was 20dB below I | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |                                |  |  |  |  |
|           | report.                             |                                                                                       |                                |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8174.0    | 32.8    | 11.5   | 44.3     | 74.0     | -29.7  | Peak     | Horizontal   |
| *    | 10256.5   | 32.9    | 14.5   | 47.4     | 68.2     | -20.8  | Peak     | Horizontal   |
|      | 11540.0   | 33.0    | 17.6   | 50.6     | 74.0     | -23.4  | Peak     | Horizontal   |
| *    | 14209.0   | 32.2    | 19.8   | 52.0     | 68.2     | -16.2  | Peak     | Horizontal   |
|      | 7451.5    | 32.1    | 12.2   | 44.3     | 74.0     | -29.7  | Peak     | Vertical     |
|      | 11480.5   | 32.6    | 17.6   | 50.2     | 74.0     | -23.8  | Peak     | Vertical     |
| *    | 13546.0   | 29.3    | 19.1   | 48.4     | 68.2     | -19.8  | Peak     | Vertical     |
| *    | 14421.5   | 32.7    | 19.9   | 52.6     | 68.2     | -15.6  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Bob Zhang                       |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                          | Test Mode           | 802.11ac-VHT20 – Channel 144    |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1. | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8191.0    | 34.3    | 11.5   | 45.8     | 74.0     | -28.2  | Peak     | Horizontal   |
| *    | 9780.5    | 34.0    | 13.6   | 47.6     | 68.2     | -20.6  | Peak     | Horizontal   |
|      | 11336.0   | 31.5    | 17.4   | 48.9     | 74.0     | -25.1  | Peak     | Horizontal   |
| *    | 14421.5   | 32.5    | 19.9   | 52.4     | 68.2     | -15.8  | Peak     | Horizontal   |
|      | 8412.0    | 33.7    | 11.4   | 45.1     | 74.0     | -28.9  | Peak     | Vertical     |
| *    | 9797.5    | 33.4    | 13.7   | 47.1     | 68.2     | -21.1  | Peak     | Vertical     |
|      | 11310.5   | 31.6    | 17.3   | 48.9     | 74.0     | -25.1  | Peak     | Vertical     |
| *    | 14455.5   | 32.1    | 20.3   | 52.4     | 68.2     | -15.8  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer       | Bob Zhang                         |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|-----------------------------------|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                          | Test Mode           | 802.11ac-VHT20 – Channel 149      |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                   |  |  |  |
|           | 2. Other frequency was 20dB below                                                | limit line within ? | 1-18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                   |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8208.0    | 32.4    | 11.3   | 43.7     | 74.0     | -30.3  | Peak     | Horizontal   |
| *    | 10205.5   | 32.9    | 14.3   | 47.2     | 68.2     | -21.0  | Peak     | Horizontal   |
|      | 11565.5   | 31.4    | 17.8   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
| *    | 14345.0   | 31.4    | 20.2   | 51.6     | 68.2     | -16.6  | Peak     | Horizontal   |
|      | 8327.0    | 30.7    | 11.0   | 41.7     | 74.0     | -32.3  | Peak     | Vertical     |
| *    | 10052.5   | 32.1    | 13.8   | 45.9     | 68.2     | -22.3  | Peak     | Vertical     |
|      | 11489.0   | 31.7    | 17.7   | 49.4     | 74.0     | -24.6  | Peak     | Vertical     |
| *    | 14438.5   | 31.6    | 20.2   | 51.8     | 68.2     | -16.4  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)

| Test Site | WZ-AC2                                                                           | Test Engineer       | Bob Zhang                        |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|----------------------------------|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                          | Test Mode           | 802.11ac-VHT20 – Channel 157     |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                  |  |  |  |
|           | 2. Other frequency was 20dB below                                                | limit line within 1 | -18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8199.5    | 33.3    | 11.4   | 44.7     | 74.0     | -29.3  | Peak     | Horizontal   |
| *    | 9865.5    | 33.4    | 13.5   | 46.9     | 68.2     | -21.3  | Peak     | Horizontal   |
|      | 11667.5   | 31.4    | 17.5   | 48.9     | 74.0     | -25.1  | Peak     | Horizontal   |
| *    | 14370.5   | 31.8    | 20.2   | 52.0     | 68.2     | -16.2  | Peak     | Horizontal   |
|      | 8352.5    | 33.2    | 11.1   | 44.3     | 74.0     | -29.7  | Peak     | Vertical     |
| *    | 10035.5   | 33.9    | 13.9   | 47.8     | 68.2     | -20.4  | Peak     | Vertical     |
|      | 11489.0   | 31.8    | 17.7   | 49.5     | 74.0     | -24.5  | Peak     | Vertical     |
| *    | 14523.5   | 32.8    | 19.9   | 52.7     | 68.2     | -15.5  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                                                                           | Test Engineer       | Bob Zhang                       |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------------------|---------------------------------|--|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                          | Test Mode           | 802.11ac-VHT20 – Channel 165    |  |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit. |                     |                                 |  |  |  |
|           | 2. Other frequency was 20dB below I                                              | imit line within 1- | 18GHz, there is not show in the |  |  |  |
|           | report.                                                                          |                     |                                 |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8123.0    | 32.9    | 12.0   | 44.9     | 74.0     | -29.1  | Peak     | Horizontal   |
| *    | 10112.0   | 32.4    | 14.0   | 46.4     | 68.2     | -21.8  | Peak     | Horizontal   |
|      | 11591.0   | 31.9    | 17.3   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
| *    | 14447.0   | 32.5    | 20.4   | 52.9     | 68.2     | -15.3  | Peak     | Horizontal   |
|      | 8182.5    | 33.2    | 11.5   | 44.7     | 74.0     | -29.3  | Peak     | Vertical     |
| *    | 10035.5   | 32.7    | 13.9   | 46.6     | 68.2     | -21.6  | Peak     | Vertical     |
|      | 11242.5   | 31.9    | 17.1   | 49.0     | 74.0     | -25.0  | Peak     | Vertical     |
| *    | 14404.5   | 33.3    | 19.8   | 53.1     | 68.2     | -15.1  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)



| Test Site | WZ-AC2                                                                                | Test Engineer | Bob Zhang                   |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------|-----------------------------|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                               | Test Mode     | 802.11ac-VHT40 – Channel 38 |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit.      |               |                             |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |               |                             |  |  |
|           | report.                                                                               |               |                             |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8327.0    | 32.7    | 11.0   | 43.7     | 74.0     | -30.3  | Peak     | Horizontal   |
| *    | 10061.0   | 33.4    | 13.7   | 47.1     | 68.2     | -21.1  | Peak     | Horizontal   |
|      | 11642.0   | 31.7    | 17.9   | 49.6     | 74.0     | -24.4  | Peak     | Horizontal   |
| *    | 14438.5   | 32.7    | 20.2   | 52.9     | 68.2     | -15.3  | Peak     | Horizontal   |
|      | 9049.5    | 30.2    | 13.1   | 43.3     | 74.0     | -30.7  | Peak     | Vertical     |
| *    | 10316.0   | 32.1    | 14.9   | 47.0     | 68.2     | -21.2  | Peak     | Vertical     |
|      | 11472.0   | 32.2    | 17.5   | 49.7     | 74.0     | -24.3  | Peak     | Vertical     |
| *    | 14846.5   | 32.4    | 19.7   | 52.1     | 68.2     | -16.1  | Peak     | Vertical     |

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB/m)

| Test Site | WZ-AC2                                                                                | Test Engineer | Bob Zhang                   |  |  |
|-----------|---------------------------------------------------------------------------------------|---------------|-----------------------------|--|--|
| Test Date | 2024-01-03 ~ 2024-01-07                                                               | Test Mode     | 802.11ac-VHT40 – Channel 46 |  |  |
| Remark    | 1. Average measurement was not performed if peak level lower than average limit.      |               |                             |  |  |
|           | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the |               |                             |  |  |
|           | report.                                                                               |               |                             |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB/m) | Level    | (dBµV/m) | (dB/m) |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 8055.0    | 32.4    | 12.0   | 44.4     | 74.0     | -29.6  | Peak     | Horizontal   |
| *    | 10095.0   | 33.3    | 13.8   | 47.1     | 68.2     | -21.1  | Peak     | Horizontal   |
|      | 11489.0   | 31.5    | 17.7   | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
| *    | 14404.5   | 32.6    | 19.8   | 52.4     | 68.2     | -15.8  | Peak     | Horizontal   |
|      | 8131.5    | 32.7    | 11.9   | 44.6     | 74.0     | -29.4  | Peak     | Vertical     |
| *    | 10188.5   | 32.6    | 14.3   | 46.9     | 68.2     | -21.3  | Peak     | Vertical     |
|      | 11497.5   | 31.5    | 17.6   | 49.1     | 74.0     | -24.9  | Peak     | Vertical     |
| *    | 14183.5   | 31.9    | 19.9   | 51.8     | 68.2     | -16.4  | Peak     | Vertical     |

Note 2: Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB/m)