

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388

Web: www.mrt-cert.com

Report No.: 2105TW0006-U5 Report Version: V1.0 Issue Date: 06-22-2022

DFS MEASUREMENT REPORT

FCC 15.407 WLAN 802.11a/n/ac/ax

FCC ID: Q9DAPIN0615

Applicant: Hewlett Packard Enterprise Company

Application Type: Certification

Product: ACCESS POINT

Model No.: APIN0615

Trademark:

FCC Classification: Unlicensed National Information Infrastructure (NII)

Type of Device: Master Device

FCC Rule Part(s): Part 15 Subpart E - 15.407 Section (h)(2)

Result: Complies

Test Date: May 17, 2022 ~ June 15, 2022

Reviewed By: Faddy Chen

(Paddy Chen)

Approved By:

(Chenz Ker)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 905462 D02v02. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

FCC ID: Q9DAPIN0615 Page Number: 1 of 186

Revision History

Report No.	Version	Description	Issue Date	Note
2105TW0006-U5	V1.0	Initial Report	06-22-2022	Valid

FCC ID: Q9DAPIN0615 Page Number: 2 of 186

CONTENTS

De	scriptic	on	Page
1.	INTR	ODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROI	DUCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Product Specification Subjective to this Report	7
	2.3.	Working Frequencies for this report	8
	2.4.	Description of Available Antennas	9
	2.5.	Description of Operating Paths	9
	2.6.	Test Channel for this Report	10
	2.7.	Test Mode	10
	2.8.	Applicable Standards	10
3.	DFS	DETECTION THRESHOLDS AND RADAR TEST WAVEFORMS	11
	3.1.	Applicability	11
	3.2.	DFS Devices Requirements	12
	3.3.	DFS Detection Threshold Values	13
	3.4.	Parameters of DFS Test Signals	14
	3.5.	Test Setup	17
4.	TEST	EQUIPMENT CALIBRATION DATE	18
5.	TEST	RESULT	19
	5.1.	Summary	19
	5.2.	Radar Waveform Calibration	20
	5.2.1.	Calibration Setup	20
	5.2.2.	Calibration Procedure	20
	5.2.3.	Test Result of Calibration	21
	5.2.4.	Test Result of Channel Loading	23
	5.3.	NII Detection Bandwidth Measurement	25
	5.3.1.	Test Limit	25
	5.3.2.	Test Procedure	25
	5.3.3.	Test Result	27
	5.4.	Initial Channel Availability Check Time Measurement	33
	5.4.1.	Test Limit	33
	5.4.2.	Test Procedure	33
	5.4.3.	Test Result	34

	5.5.	Radar Burst at the Beginning of the Channel Availability Check Time Measurement	35
	5.5.1.	Test Limit	35
	5.5.2.	Test Procedure	35
	5.5.3.	Test Result	36
	5.6.	Radar Burst at the End of the Channel Availability Check Time Measurement	37
	5.6.1.	Test Limit	37
	5.6.2.	Test Procedure	37
	5.6.3.	Test Result	38
	5.7.	In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time	and
	Non-O	ccupancy Period Measurement	39
	5.7.1.	Test Limit	39
	5.7.2.	Test Procedure Used	39
	5.7.3.	Test Result	40
	5.8.	Statistical Performance Check Measurement	44
	5.8.1.	Test Limit	44
	5.8.2.	Test Procedure	44
	5.8.3.	Test Result	45
Δрј	pendix /	A - Test Setup Photograph	185
Αрі	oendix l	B-EUT Photograph	186

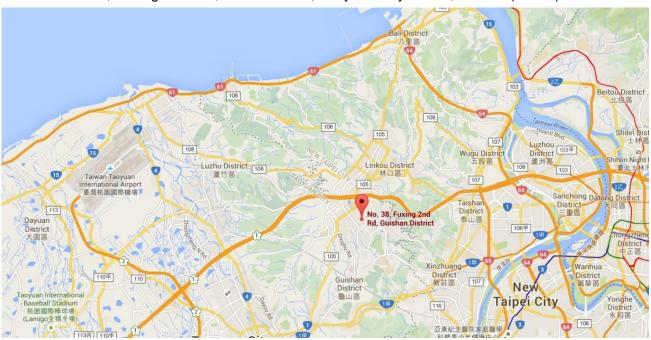
General Information

Applicant	Hewlett Packard Enterprise Company		
Applicant Address	3333 Scott Blvd, Santa Clara, CA 95054, USA		
Manufacturer	Hewlett Packard Enterprise Company		
Manufacturer Address	3333 Scott Blvd, Santa Clara, CA 95054, USA		
Test Site	MRT Technology (Taiwan) Co., Ltd		
Test Site Address	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 33: Taiwan (R.O.C)		
MRT FCC Registration No.	291082		
FCC Rule Part(s)	Part 15.407		
Test Device Serial No.	VNMFKZD05Q ☐ Production ☐ Pre-Production ☐ Engineering		

Test Facility / Accreditations

- 1. MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- **3.** MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Taiwan, EU and TELEC Rules.

FCC ID: Q9DAPIN0615 Page Number: 5 of 186


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

FCC ID: Q9DAPIN0615 Page Number: 6 of 186

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	ACCESS POINT
Model No.	APIN0615
Software Version	ArubaOS_70xx_8.11.0.0_83876
Wi-Fi Specification	802.11a/b/g/n/ac/ax
Bluetooth Version	v5.0 single mode, BLE only
Zigbee Specification	802.15.4
GNSS Specification	GPS, GLONASS, Galileo
Operating Temperature	0 ~ 50 °C
Power Type	AC/DC Adapter or PoE input
Operating Environment	Indoor Use
Pomark:	

Remark:

The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.

2.2. Product Specification Subjective to this Report

Frequency Range	For 802.11a/n-HT20/ac-VHT20/ax-HE20:
	5260~5320MHz, 5500~5720MHz
	For 802.11n-HT40/ac-VHT40/ax-HE40:
	5270~5310MHz, 5510~5710MHz
	For 802.11ac-VHT80/ax-HE80:
	5290MHz, 5530MHz, 5610MHz, 5690MHz
	For 802.11ac-VHT160/ax-HE160:
	5250MHz, 5570MHz
Type of Modulation	802.11a/n/ac: OFDM
	802.11ax: OFDMA
Data Rate	802.11a: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 300Mbps
	802.11ac: up to 1733.3Mbps
	802.11ax: up to 2402Mbps
Power-on cycle	Requires 75.3 seconds to complete its power-on cycle
Uniform Spreading	For the 5250-5350MHz, 5470-5725 MHz bands, the Master device
	provides, on aggregate, uniform loading of the spectrum across all
	devices by selecting an operating channel among the available channels
	using a random algorithm.

FCC ID: Q9DAPIN0615 Page Number: 7 of 186

2.3. Working Frequencies for this report

802.11a/n-HT20/ac-VHT20/ax-HE20

Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260 MHz	56	5280 MHz	60	5300 MHz
64	5320 MHz	100	5500 MHz	104	5520 MHz
108	5540 MHz	112	5560 MHz	116	5580 MHz
120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz
144	5720 MHz				

802.11n-HT40/ac-VHT40/ax-HE40

Channel	Frequency	Channel	Frequency	Channel	Frequency
54	5270 MHz	62	5310 MHz	102	5510 MHz
110	5550 MHz	118	5590 MHz	126	5630 MHz
134	5670 MHz	142	5710 MHz		

802.11ac-VHT80/ax-HE80

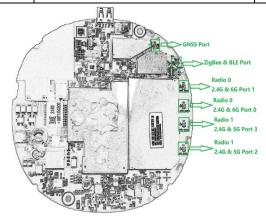
Channel	Frequency	Channel	Frequency	Channel	Frequency
58	5290 MHz	106	5530 MHz	122	5610 MHz
138	5690 MHz				

802.11ac-VHT160/ax-HE160

Channel	Frequency	Channel	Frequency	Channel	Frequency
50	5250MHz	114	5570 MHz		

FCC ID: Q9DAPIN0615 Page Number: 8 of 186

2.4. Description of Available Antennas


Antenna	Frequency Band	Max Peak	BF Directional	CDD Direction	onal Gain
Type	(GHz)	Gain	Gain	(dBi)
		(dBi)	(dBi)	For Power	For PSD
Wi-Fi Inter	Wi-Fi Internal Antenna (2*2 MIMO)				
PIFA	5.15 ~ 5.9	3.8	6.8	3.8	6.8

Note:

- 1. The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.
- 2. The EUT also supports Beam Forming mode, and the Beam Forming support 802.11n/ac/ax, not include 802.11a/b/g.
- 3. For beamforming operation, Aruba OS automatically backs power down based on a 10log(N) factor based on CDD power.
- 4. The antenna gain and directional gain refer to the manufacturer's antenna specification.

2.5. Description of Operating Paths

Frequency Band (GHz)	Radio 0	Radio 1
2.4 ~ 2.5	Υ	Υ
5.15 ~ 5.9	N	Υ
5.9 ~ 7.2	Υ	N

Note:

- 1, Both 2.4GHz radios can't operate at the same time.
- 2, The device has three path combinations.
- a, Radio 0# 2.4GHz and Radio 1# 5GHz (Full Band, 5150-5895MHz)
- b, Radio 0# 6GHz and Radio 1# 2.4GHz
- c, Radio 0# 6GHz and Radio 1# 5GHz (Partial Band, 5150-5850MHz)
- 3, For Radio 0# 6GHz path and Radio 1# 5GHz path C, there are two types of filter configurations, Akoustic and Sunyear.

FCC ID: Q9DAPIN0615 Page Number: 9 of 186

2.6. Test Channel for this Report

Test Mode	Test Channel	Test Frequency
802.11ax-HE20	100	5500 MHz
802.11ax-HE40	102	5510 MHz
802.11ax-HE80	106	5530 MHz
802.11ax-HE160	50	5250 MHz
802.11ax-HE160	114	5570 MHz

2.7. Test Mode

Mode 1: Make the EUT (AP Mode) communicate with client device at DFS channel

Mode 2: Make the EUT (Mesh Mode) communicate with client device at DFS channel

2.8. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- Part 15 Subpart E 15.407 Section (h)(2)
- KDB 905462 D02v02
- KDB 905462 D04v01

FCC ID: Q9DAPIN0615 Page Number: 10 of 186

3. DFS DETECTION THRESHOLDS AND RADAR TEST WAVEFORMS

3.1. Applicability

The following table from FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 lists the applicable requirements for the DFS testing.

Requirement	Operational Mode				
	Master Client Without Client With Rad				
		Radar Detection	Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 3-1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode			
	Master Device or Client	Client Without Radar		
	With Radar Detection	Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with	Master Device or Client	Client Without Radar
multiple bandwidth modes	with Radar Detection	Detection
U-NII Detection Bandwidth and	All BW modes must be	Not required
Statistical Performance Check	tested	Not required
Channel Move Time and Channel	Test using widest BW mode	Test using the widest BW
Closing Transmission Time	available	mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 3-2: Applicability of DFS Requirements during normal operation

FCC ID: Q9DAPIN0615 Page Number: 11 of 186

3.2. DFS Devices Requirements

Per FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 the following are the requirements for Master Devices:

- (a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 ~ 5350 MHz and 5470 ~ 5725 MHz bands. DFS is not required in the 5150 ~ 5250 MHz or 5725 ~ 5825 MHz bands.
- (b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under sub section a) above.
- (c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device.
- (d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a).
- (e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time.
- (f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period.
- (g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above.

Channel Move Time and Channel Closing Transmission Time requirements are listed in the following table.

Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds		
Channel wove Time	See Note 1.		
	200 milliseconds + an aggregate of 60		
Channel Closing Transmission Time	milliseconds over remaining 10 second period.		
	See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission		
O-MI Detection Dandwidth	power bandwidth. See Note 3.		

FCC ID: Q9DAPIN0615 Page Number: 12 of 186

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 3-3: DFS Response Requirements

3.3. DFS Detection Threshold Values

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection thresholds are listed in the following table.

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP< 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP< 200 milliwatt that do not meet the power	-64 dBm
spectral density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 3-4: Detection Thresholds for Master Devices and Client Devices with Radar Detection

FCC ID: Q9DAPIN0615 Page Number: 13 of 186

3.4. Parameters of DFS Test Signals

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 3-6 Test B: 15 unique PRI values randomly selected within the	$ \begin{array}{c} \text{Roundup} \left\{ \left(\frac{1}{360} \right). \\ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\text{usec}}} \right) \right\} \end{array} $	60%	30
		range of 518-3066 µsec, with a			
		minimum increment			
		of 1 µsec, excluding PRI values selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Typ	oes 1-4)		80%	120

Note: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 3-5: Parameters for Short Pulse Radar Waveforms

FCC ID: Q9DAPIN0615 Page Number: 14 of 186

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through

4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms.

Pulse Repetition Frequency	Pulse Repetition Frequency	Pulse Repetition Interval
Number	(Pulses Per Second)	(Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 3-6: Pulse Repetition Intervals Values for Test A

FCC ID: Q9DAPIN0615 Page Number: 15 of 186

Long Pulse Radar Test Waveform

Radar	Pulse	Chirp	PRI	Number	Number of	Minimum	Minimum
Туре	Width	Width	(µsec)	of Pulses	Bursts	Percentage of	Number of
	(µsec)	(MHz)		per Burst		Successful	Trials
						Detection	
5	50 - 100	5 - 20	1000 - 2000	1 - 3	8 - 20	80%	30

Table 3-7: Parameters for Long Pulse Radar Waveforms

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Table 3-8: Parameters for Frequency Hopping Radar Waveforms

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

FCC ID: Q9DAPIN0615 Page Number: 16 of 186

3.5. Test Setup

The FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 3-1 shows the typical test setup.

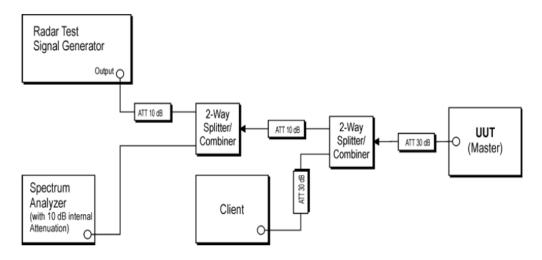


Figure 3-1: Conducted Test Setup where UUT is a Master and Radar Test Waveforms are injected into the Master

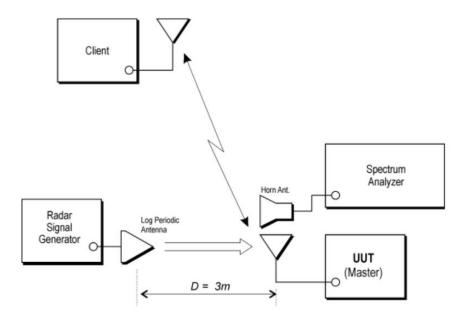


Figure 3-2: Radiated Test Setup where UUT is a master mode and Radar Test Waveforms are injected into the UUT

FCC ID: Q9DAPIN0615 Page Number: 17 of 186

4. TEST EQUIPMENT CALIBRATION DATE

Dynamic Frequency Selection (DFS) - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2022/10/18
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2022/7/19
Vector Signal Generator	Keysight	N5182B	MRTTWA00010	1 year	2023/5/23
Combiner	WOKEN	0120A04208001S	MRTTWE00008	1 year	2022/6/16
Broadband Horn Antenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2023/3/30
Antenna Cable	HUBERSUHNER	SF106	MRTTWE00010	1 year	2023/6/14
Attenuator	WTI	218FS-10	MRTTWE00028	1 year	2022/6/16
Allendator	VVII	2105-10	IVIKTTVVE00028	1 year	2023/6/15
Attenuator WTI 218FS-06 MRTTWE		MRTTWE00029	1 year	2022/6/16	
Attenuator	WTI	21013-00	IVIN 1 1 VVEUUU29	1 year	2023/6/15

Client Information

Instrument	Manufacturer	Type No.	FCC ID
Wireless Network Adapter	Intel	AX200NGW	PD9AX200NG

Software	Version	Manufacturer	Function
Pulse Building(N7607B)	V3.0.0	Keysight	Radar Signal Generation Software
DFS Tool	V6.7	Keysight	DFS Test Software

FCC ID: Q9DAPIN0615 Page Number: 18 of 186

5. TEST RESULT

5.1. Summary

Parameter	Limit	Test Result	Reference
UNII Detection Bandwidth Measurement	Refer Table 3-3	Pass	Section 5.4
Initial Channel Availability Check Time	Refer Table 3-3	Pass	Section 5.5
Radar Burst at the Beginning of the Channel Availability Check Time	Refer Table 3-3	Pass	Section 5.6
Radar Burst at the End of the Channel Availability Check Time	Refer Table 3-3	Pass	Section 5.7
In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time	Refer Table 3-3	Pass	Section 5.8
Non-Occupancy Period	Refer Table 3-3	Pass	Section 5.8
Statistical Performance Check	Refer Table 3-3	Pass	Section 5.9

Note 1: We used the worst case level -64dBm as DFS detection thresholds for all DFS testing.

Note 2: For mesh mode, only In-Service Monitoring was tested by the manufacturer.

Note 3: Statistical Performance Check was tested using the radiated method, others items were tested using the conducted method.

FCC ID: Q9DAPIN0615 Page Number: 19 of 186

5.2. Radar Waveform Calibration

5.2.1. Calibration Setup

The conducted test setup was used for this calibration testing. Figure 3-2 shows the typical test setup.

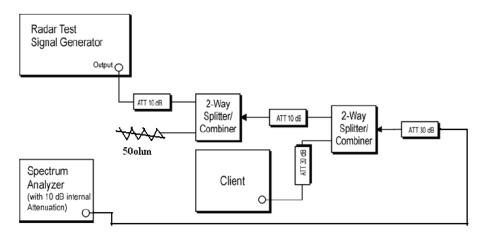


Figure 3-2: Conducted Test Setup

5.2.2. Calibration Procedure

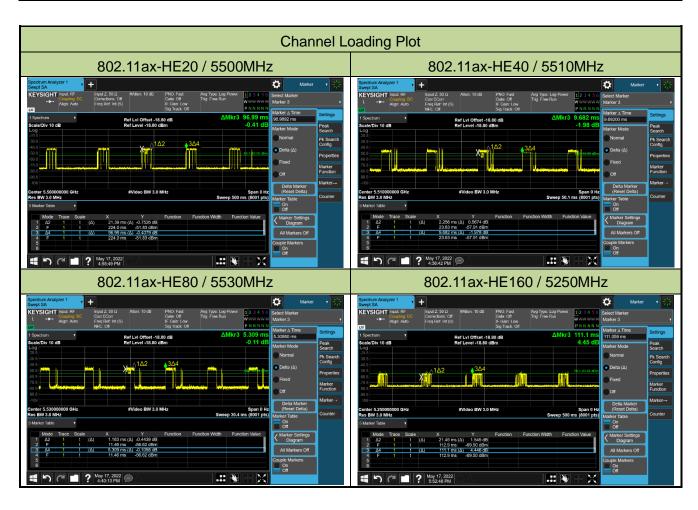

The Interference Radar Detection Threshold Level is (-64dBm) + (0) [dBi]+ 1 dB= -63 dBm that had been taken into account the output power range and antenna gain. The above equipment setup was used to calibrate the conducted Radar Waveform. A vector signal generator was utilized to establish the test signal level for each radar type. During this process there were replace 50ohm terminal form Master and Client device and no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) at the frequency of the Radar Waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to at least 3MHz. The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was(-64dBm) + (0) [dBi]+ 1 dB= -63dBm. Capture the spectrum analyzer plots on short pulse radar types, long pulse radar type and hopping radar waveform.

FCC ID: Q9DAPIN0615 Page Number: 20 of 186

5.2.3. Test Result of Calibration

Product	ACCESS POINT	Test Site	SR2				
Test Engineer	Eric Lin	Test Date	2022/05/17				
Test Item	Radar Waveform Calibration						

FCC ID: Q9DAPIN0615 Page Number: 21 of 186



5.2.4. Test Result of Channel Loading

Test Engineer	Eric Lin	Test Site	SR2		
Test Item	Channel Loading	Test Date	2022/05/17		

FCC ID: Q9DAPIN0615 Page Number: 23 of 186

Test Mode	Test Frequency	Packet ratio	Requirement ratio	Test Result
802.11ax-HE20	5500 MHz	22.04%	≥ 17%	Pass
802.11ax-HE40	5510 MHz	23.30%	≥ 17%	Pass
802.11ax-HE80	5530 MHz	21.91%	≥ 17%	Pass
802.11ax-HE160	5250 MHz	19.31%	≥ 17%	Pass
802.11ax-HE160	5570 MHz	17.81%	≥ 17%	Pass

Note: System testing was performed with the designated iperf test file. This file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Packet ratio = Time On/ (Time On + Off Time).

FCC ID: Q9DAPIN0615 Page Number: 24 of 186

5.3. NII Detection Bandwidth Measurement

5.3.1. Test Limit

Minimum 100% of the NII 99% transmission power bandwidth. During the U-NII Detection Bandwidth detection test, each frequency step the minimum percentage of detection is 90 percent.

Measurements are performed with no data traffic.

5.3.2. Test Procedure

- 1. Adjust the equipment to produce a single Burst of any one of the Short Pulse Radar Types 0-4 in Table 3-5 at the center frequency of the EUT Operating Channel at the specified DFS Detection Threshold level.
- 2. The generating equipment is configured as shown in the Conducted Test Setup above section 3.5.
- 3. The EUT is set up as a stand-alone device (no associated Client or Master, as appropriate) and no traffic. Frame based systems will be set to a talk/listen ratio reflecting the worst case (maximum) that is user configurable during this test.
- 4. Generate a single radar Burst, and note the response of the EUT. Repeat for a minimum of 10 trials. The EUT must detect the Radar Waveform using the specified U-NII Detection Bandwidth criterion shown in Table 3-5. In cases where the channel bandwidth may exceed past the DFS band edge on specific channels (i.e., 802.11ac or wideband frame based systems) select a channel that has the entire emission bandwidth within the DFS band. If this is not possible, test the detection BW to the DFS band edge.
- 5. Starting at the center frequency of the UUT operating Channel, increase the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion specified in Table 3-3. Repeat this measurement in 1MHz steps at frequencies 5 MHz below where the detection rate begins to fall. Record the highest frequency (denote as FH) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies above FH is not required to demonstrate compliance.
- 6. Starting at the center frequency of the EUT operating Channel, decrease the radar frequency in 1 MHz steps, repeating the above item 4 test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion. Record the lowest frequency (denote as FL) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies below FL is not required to demonstrate compliance.

FCC ID: Q9DAPIN0615 Page Number: 25 of 186

- 7. The U-NII Detection Bandwidth is calculated as follows: U-NII Detection Bandwidth = FH FL
- 8. The U-NII Detection Bandwidth must be at least 100% of the EUT transmitter 99% power, otherwise, the EUT does not comply with DFS requirements.

FCC ID: Q9DAPIN0615 Page Number: 26 of 186

5.3.3. Test Result

Product	ACCESS POINT	Test Site	SR2		
Test Engineer	Eric Lin	Test Date 2022/05/25			
Test Item	Detection Bandwidth (802.11ax-l	HE20 mode - 5500M	Hz)		

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 F _L	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510 F _н	1	1	1	1	1	1	1	1	1	1	100

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5500MHz. The 99% channel bandwidth is 19.02MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5510MHz - 5490MHz = 20MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 19.02MHz x 100% = 19.02MHz.

FCC ID: Q9DAPIN0615 Page Number: 27 of 186

Product	ACCESS POINT	Test Site	SR2						
Test Engineer	Eric Lin	Test Date	2022/05/25						
Test Item	Detection Bandwidth (802.11ax-l	Detection Bandwidth (802.11ax-HE40 mode - 5510MHz)							

Radar Frequency		DFS Detection Trials (1=Detection, 0= No Detection)									
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490 F _L	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5525	1	1	1	1	1	1	1	1	1	1	100
5530 F _н	1	1	1	1	1	1	1	1	1	1	100

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5510MHz. The 99% channel bandwidth is 37.61MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5530MHz - 5490MHz = 40MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 37.61MHz x 100% = 37.61MHz.

FCC ID: Q9DAPIN0615 Page Number: 28 of 186

Product	ACCESS POINT	Test Site	SR2							
Test Engineer	Eric Lin	Test Date	2022/05/25							
Test Item	Detection Bandwidth (802.11ax-l	Detection Bandwidth (802.11ax-HE80 mode - 5530MHz)								

Radar Frequency			DF	S Dete	ection	Trials	(1=D	etectio	on, 0=	No D	etection)
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5491 F _L	1	1	1	1	1	1	1	1	1	1	100
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5525	1	1	1	1	1	1	1	1	1	1	100
5530	1	1	1	1	1	1	1	1	1	1	100
5535	1	1	1	1	1	1	1	1	1	1	100
5540	1	1	1	1	1	1	1	1	1	1	100
5545	1	1	1	1	1	1	1	1	1	1	100
5550	1	1	1	1	1	1	1	1	1	1	100
5555	1	1	1	1	1	1	1	1	1	1	100
5560	1	1	1	1	1	1	1	1	1	1	100
5565	1	1	1	1	1	1	1	1	1	1	100
5566	1	1	1	1	1	1	1	1	1	1	100
5567	1	1	1	1	1	1	1	1	1	1	100
5568	1	1	1	1	1	1	1	1	1	1	100
5569 F _H	1	1	1	1	1	1	1	1	1	1	100

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5530MHz. The 99% channel bandwidth is 76.87MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5569MHz - 5491MHz = 78MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 76.87MHz x 100% = 76.87MHz.

FCC ID: Q9DAPIN0615 Page Number: 29 of 186

Product	ACCESS POINT	Test Site	SR2							
Test Engineer	Eric Lin	Test Date	2022/05/25							
Test Item	Detection Bandwidth (802.11ax-l	Detection Bandwidth (802.11ax-HE160 mode - 5250MHz)								

Radar Frequency	DFS Detection Trials (1=Detection, 0= No Detection)										
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5250 F _L	1	1	1	1	1	1	1	1	1	1	100
5255	1	1	1	1	1	1	1	1	1	1	100
5260	1	1	1	1	1	1	1	1	1	1	100
5265	1	1	1	1	1	1	1	1	1	1	100
5270	1	1	1	1	1	1	1	1	1	1	100
5275	1	1	1	1	1	1	1	1	1	1	100
5280	1	1	1	1	1	1	1	1	1	1	100
5285	1	1	1	1	1	1	1	1	1	1	100
5290	1	1	1	1	1	1	1	1	1	1	100
5295	1	1	1	1	1	1	1	1	1	1	100
5300	1	1	1	1	1	1	1	1	1	1	100
5305	1	1	1	1	1	1	1	1	1	1	100
5310	1	1	1	1	1	1	1	1	1	1	100
5315	1	1	1	1	1	1	1	1	1	1	100
5320	1	1	1	1	1	1	1	1	1	1	100
5325	1	1	1	1	1	1	1	1	1	1	100
5329 F _н	1	1	1	1	1	1	1	1	1	1	100
5330	0	0	0	0	0	0	0	0	0	0	0

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5250MHz. The 99% channel bandwidth located in the 5250MHz is 77.54MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5329MHz - 5250MHz = 79MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 77.54MHz x 100% = 77.54MHz.

Product	ACCESS POINT	Test Site	SR2				
Test Engineer	Eric Lin	Test Date	2022/05/25				
Test Item	Detection Bandwidth (802.11ax-HE160 mode - 5570MHz)						

Radar Frequency	DFS Detection Trials (1=Detection, 0= No Detection)										
(MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490	0	0	0	0	0	0	0	0	0	0	0
5491 F _L	1	1	1	1	1	1	1	1	1	1	100
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5525	1	1	1	1	1	1	1	1	1	1	100
5530	1	1	1	1	1	1	1	1	1	1	100
5535	1	1	1	1	1	1	1	1	1	1	100
5540	1	1	1	1	1	1	1	1	1	1	100
5545	1	1	1	1	1	1	1	1	1	1	100
5550	1	1	1	1	1	1	1	1	1	1	100
5555	1	1	1	1	1	1	1	1	1	1	100
5560	1	1	1	1	1	1	1	1	1	1	100
5565	1	1	1	1	1	1	1	1	1	1	100
5570	1	1	1	1	1	1	1	1	1	1	100
5575	1	1	1	1	1	1	1	1	1	1	100
5580	1	1	1	1	1	1	1	1	1	1	100
5585	1	1	1	1	1	1	1	1	1	1	100
5590	1	1	1	1	1	1	1	1	1	1	100
5595	1	1	1	1	1	1	1	1	1	1	100
5600	1	1	1	1	1	1	1	1	1	1	100
5605	1	1	1	1	1	1	1	1	1	1	100
5610	1	1	1	1	1	1	1	1	1	1	100
5615	1	1	1	1	1	1	1	1	1	1	100
5620	1	1	1	1	1	1	1	1	1	1	100
5625	1	1	1	1	1	1	1	1	1	1	100

5630	1	1	1	1	1	1	1	1	1	1	100
5635	1	1	1	1	1	1	1	1	1	1	100
5640	1	1	1	1	1	1	1	1	1	1	100
5645	1	1	1	1	1	1	1	1	1	1	100
5646	1	1	1	1	1	1	1	1	1	1	100
5647	1	1	1	1	1	1	1	1	1	1	100
5648	1	1	1	1	1	1	1	1	1	1	100
5649 F _H	1	1	1	1	1	1	1	1	1	1	100
5650	0	0	0	0	0	0	0	0	0	0	0

Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5570MHz. The 99% channel bandwidth is 155.25MHz. (See the 99% BW section of the RF report for further measurement details).

Note 2: Detection Bandwidth = F_H - F_L = 5649MHz - 5491MHz = 158MHz.

Note 3: NII Detection Bandwidth Min. Limit (MHz): 155.25MHz x 100% = 155.25MHz.

5.4. Initial Channel Availability Check Time Measurement

5.4.1. Test Limit

The EUT shall perform a Channel Availability Check to ensure that there is no radar operating on the channel. After power-up sequence, receive at least 1 minute on the intended operating frequency.

5.4.2. Test Procedure


- 1. The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the EUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar (Chr) with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.
- 2. The EUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.
- 3. Confirm that the EUT initiates transmission on the channel. Measurement system showing its nominal noise floor is marker1.

FCC ID: Q9DAPIN0615 Page Number: 33 of 186

5.4.3. Test Result

Product	ACCESS POINT	Test Site	SR2				
Test Engineer	Eric Lin	Test Date	2022/05/17				
Test Item	Initial Channel Availability Check Time (802.11ax-HE20 mode - 5500MHz)						

Note: The EUT does not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle (75.3sec). Initial beacons/data transmissions are indicated by marker 1 (135.3 sec).

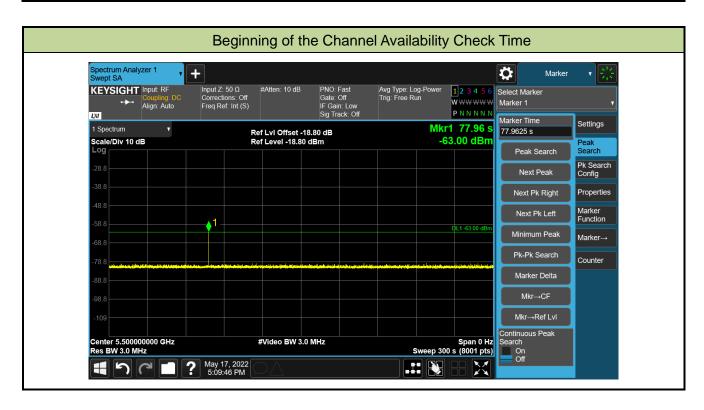
FCC ID: Q9DAPIN0615 Page Number: 34 of 186

5.5. Radar Burst at the Beginning of the Channel Availability Check Time Measurement

5.5.1. Test Limit

In beginning of the Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC on that channel.

5.5.2. Test Procedure


- 1. The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the Channel Availability Check Time.
- 2. The EUT is in completion power-up cycle (from T0 to T1). T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner than T1 + 60 seconds. A single Burst of one of Short Pulse Radar Types 0-4 at DFS Detection Threshold + 1 dB will commence within a 6 second window starting at T1.
- 3. Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions will continue for 2.5 minutes after the radar Burst has been generated. Verify that during the 2.5 minutes measurement window no EUT transmissions occurred.

FCC ID: Q9DAPIN0615 Page Number: 35 of 186

5.5.3. Test Result

Product	ACCESS POINT	Test Site	SR2						
Test Engineer	Eric Lin	Test Date	2022/05/17						
Test Item	Beginning of the Channel Availability Check Time (802.11ax-HE20 mode -								
rest item	5500MHz)								

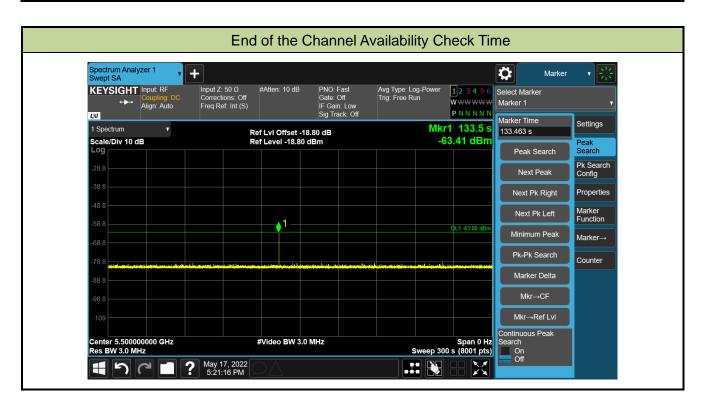
FCC ID: Q9DAPIN0615 Page Number: 36 of 186

5.6. Radar Burst at the End of the Channel Availability Check Time Measurement

5.6.1. Test Limit

In the end of Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC on that channel.

5.6.2. Test Procedure


- 1. The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the Channel Availability Check Time.
- 2. The EUT is powered on at T0. T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner thanT1 + 60 seconds. A single Burst of one of Short Pulse Radar Types 0-4 at DFS Detection Threshold + 1 dB will commence within a 6 second window starting at T1+ 54 seconds.
- 3. Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions will continue for 2.5 minutes after the radar Burst has been generated. Verify that during the 2.5 minutes measurement window no EUT transmissions occurred.

FCC ID: Q9DAPIN0615 Page Number: 37 of 186

5.6.3. Test Result

Product	ACCESS POINT	Test Site	SR2	
Test Engineer	Eric Lin	Test Date	2022/05/17	
Test Item	End of the Channel Availability Check Time (802.11ax-HE20 mode - 5500MHz)			

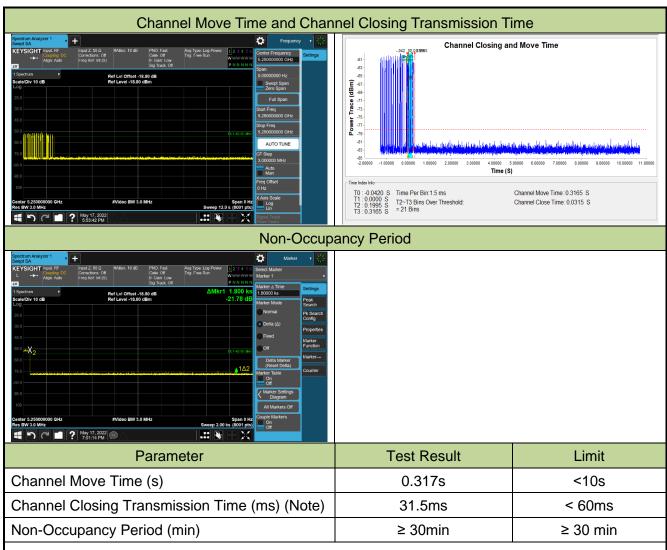
FCC ID: Q9DAPIN0615 Page Number: 38 of 186

5.7. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period Measurement

5.7.1. Test Limit

The EUT has In-Service Monitoring function to continuously monitor the radar signals. If the radar is detected, must leave the channel (Shutdown). The Channel Move Time to cease all transmissions on the current channel upon detection of a Radar Waveform above the DFS Detection Threshold within 10 sec. The total duration of Channel Closing Transmission Time is 260ms, consisting of data signals and the aggregate of control signals, by a U-NII device during the Channel Move Time. The Non-Occupancy Period time is 30minute during which a Channel will not be utilized after a Radar Waveform is detected on that Channel.

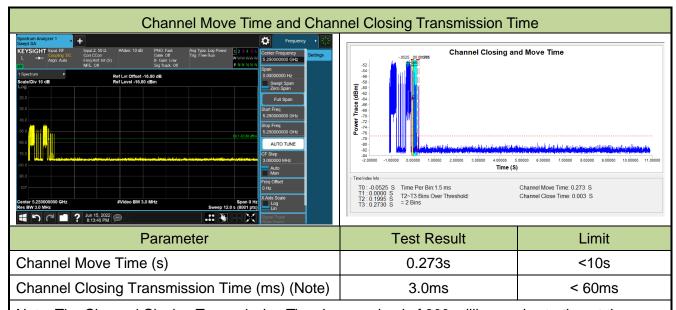
5.7.2. Test Procedure Used


- 1. The test should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0.
- 2. When the radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device. A U-NII device operating as a Master Device will associate with the Client Device at Channel. Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test. At time T0 the Radar Waveform generator sends a Burst of pulses for each of the radar types at Detection Threshold + 1dB.
- 3. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the EUT during the observation time (Channel Move Time).
- 4. Measurement of the aggregate duration of the Channel Closing Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (1.5ms) = S (12 sec) / B (8000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C = N X Dwell; where C is the Closing Time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and Dwell is the dwell timeper bin.
- 5. Measure the EUT for more than 30 minutes following the channel close/move time to verify that the EUT does not resume any transmissions on this Channel.

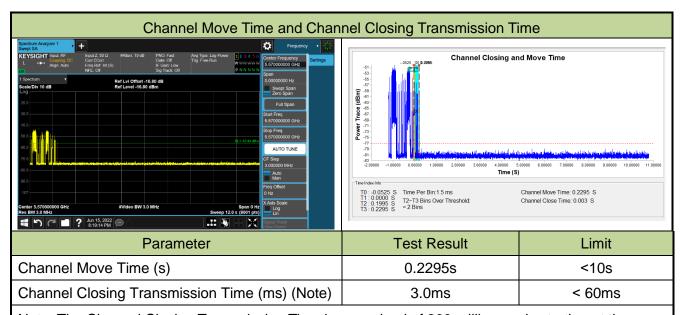
FCC ID: Q9DAPIN0615 Page Number: 39 of 186


5.7.3. Test Result

Product	ACCESS POINT	Test Site	SR2	
Test Engineer	Eric Lin	Test Date	2022/05/17	
Test Item	Channel Move Time and Channel Closing Transmission Time			
Test Mode	802.11ax-HE160 mode - 5250 MHz, AP Mode			



Product	ACCESS POINT	Test Site	SR2	
Test Engineer	Eric Lin	Test Date	2022/05/17	
Test Item	Channel Move Time and Channel Closing Transmission Time			
Test Mode	802.11ax-HE160 mode - 5570 MHz, AP mode			



Product	ACCESS POINT	Test Site	SR2	
Test Engineer	Eric Lin	Test Date	2022/06/15	
Test Item	Channel Move Time and Channel Closing Transmission Time			
Test Mode	802.11ax-HE160 mode - 5250 MHz, Mesh Mode			

Product	ACCESS POINT	Test Site	SR2	
Test Engineer	Eric Lin	Test Date	2022/06/15	
Test Item	Channel Move Time and Channel Closing Transmission Time			
Test Mode	802.11ax-HE160 mode - 5570 MHz, Mesh mode			

5.8. Statistical Performance Check Measurement

5.8.1. Test Limit

The minimum percentage of successful detection requirements found in below table when a radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).

Radar Type	Minimum Number of Trails	Detection Probability
0	30	Pd > 60%
1	30(15 of test A and 15 of test B)	Pd > 60%
2	30	Pd > 60%
3	30	Pd > 60%
4	30	Pd > 60%
Aggregate (Radar Types 1-4)	120	Pd > 80%
5	30	Pd > 80%
6	30	Pd > 70%

Note: The percentage of successful detection is calculated by:

(Total Waveform Detections/ Total Waveform Trails) * 100 = Probability of Detection Radar Waveform In addition an aggregate minimum percentage of successful detection across all Short Pulse Radar Types 1-4 is required and is calculated as follows:(Pd1 + Pd2 + Pd3 + Pd4) / 4.

5.8.2. Test Procedure

- 1. Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test.
- 2. At time T0 the Radar Waveform generator sends the individual waveform for each of the Radar Types 1-6, at levels equal to the DFS Detection Threshold + 1dB, on the Operating Channel.
- 3. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 10 seconds for Short Pulse Radar Types 0 to ensure detection occurs.
- 4. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs.
- 5. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs.
- 6. The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in below table.

FCC ID: Q9DAPIN0615 Page Number: 44 of 186

5.8.3. Test Result

Product	ACCESS POINT	Test Site	SR2	
Test Engineer	Eric Lin	Test Date	2022/06/12	
Test Item	Radar Statistical Performance Check (802.11ax-HE20 – 5500MHz)			

Radar Type 1 - Radar Statistical Performance

Trail #	Test Freq.	1=Detection	Trail #	Test Freq.	1=Detection
	(MHz)	0=No Detection		(MHz)	0=No Detection
1	5510	0	16	5503	1
2	5491	1	17	5495	1
3	5490	0	18	5491	1
4	5508	1	19	5490	0
5	5506	1	20	5502	1
6	5507	1	21	5510	0
7	5499	1	22	5502	1
8	5490	0	23	5503	1
9	5495	1	24	5499	1
10	5507	1	25	5492	1
11	5507	1	26	5507	1
12	5496	1	27	5508	1
13	5495	1	28	5498	1
14	5501	1	29	5502	1
15	5497	1	30	5496	1
	Det	ection Percentage	(%)		83.3%

FCC ID: Q9DAPIN0615 Page Number: 45 of 186

Radar Type 2 - Radar Statistical Performance

Trail #	Test Freq.	1=Detection	Trail #	Test Freq.	1=Detection
	(MHz)	0=No Detection		(MHz)	0=No Detection
1	5494	1	16	5502	1
2	5510	0	17	5508	0
3	5498	1	18	5503	1
4	5495	1	19	5490	0
5	5495	0	20	5492	1
6	5504	1	21	5495	1
7	5501	1	22	5509	0
8	5499	1	23	5503	1
9	5504	1	24	5498	1
10	5505	1	25	5495	1
11	5507	1	26	5493	1
12	5497	1	27	5500	0
13	5501	1	28	5494	1
14	5493	1	29	5500	1
15	5497	1	30	5509	1
	Det	ection Percentage	(%)		80.0%

Radar Type 3 - Radar Statistical Performance

Trail #	Test Freq.	1=Detection	Trail #	Test Freq.	1=Detection
	(MHz)	0=No Detection		(MHz)	0=No Detection
1	5504	1	16	5496	1
2	5510	0	17	5507	1
3	5508	1	18	5493	1
4	5497	1	19	5496	1
5	5504	1	20	5499	1
6	5510	0	21	5494	1
7	5493	1	22	5492	1
8	5499	1	23	5496	1
9	5493	1	24	5490	0
10	5496	1	25	5508	1
11	5507	1	26	5495	1
12	5501	1	27	5496	1
13	5497	1	28	5495	1
14	5491	1	29	5495	1
15	5509	0	30	5495	1
	Det	ection Percentage	(%)		86.7%

Radar Type 4 - Radar Statistical Performance

Trail #	Test Freq.	1=Detection	Trail #	Test Freq.	1=Detection
	(MHz)	0=No Detection		(MHz)	0=No Detection
1	5502	1	16	5501	1
2	5493	1	17	5510	0
3	5503	1	18	5503	1
4	5499	1	19	5506	1
5	5509	1	20	5495	1
6	5495	1	21	5507	1
7	5504	1	22	5506	1
8	5509	1	23	5490	0
9	5491	1	24	5492	1
10	5496	1	25	5490	0
11	5504	1	26	5492	1
12	5499	1	27	5496	1
13	5491	1	28	5502	1
14	5510	0	29	5508	1
15	5505	1	30	5496	1
	Det	ection Percentage	(%)		86.7%

Note: In addition an average minimum percentage of successful detection across all four Short pulse radar test waveforms is as follows: $\frac{P_d 1 + P_d 2 + P_d 3 + P_d 4}{4} = (83.3\% + 80.0\% + 86.7\% + 86.7\%)/4 = 84.175\% (>80\%)$

FCC ID: Q9DAPIN0615 Page Number: 48 of 186

Type 1 Radar Statistical Performance

	Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Number of Pulses	Taveform Length (us)
Download	0	Type 1	1.0	678.0	78	52884.0
Download	1	Type 1	1.0	858.0	62	53196.0
Download	2	Type 1	1.0	738. 0	72	53136.0
Download	3	Type 1	1.0	878.0	61	53558.0
Download	4	Type 1	1.0	938.0	57	53466.0
Download	5	Type 1	1.0	918.0	58	53244.0
Download	6	Type 1	1.0	538.0	99	53262.0
Download	7	Type 1	1.0	618.0	86	53148.0
Download	8	Type 1	1.0	798.0	67	53466.0
Download	9	Type 1	1.0	898.0	59	52982.0
Download	10	Type 1	1.0	518.0	102	52836.0
Download	11	Type 1	1.0	718.0	74	53132.0
Download	12	Type 1	1.0	3066.0	18	55188.0
Download	13	Type 1	1.0	598.0	89	53222.0
Download	14	Type 1	1.0	838.0	63	52794.0
Download	15	Type 1	1.0	2846.0	19	54074.0
Download	16	Type 1	1.0	562.0	94	52828.0
Download	17	Type 1	1.0	1335.0	40	53400.0
Download	18	Type 1	1.0	1748.0	31	54188.0
Download	19	Type 1	1.0	3047.0	18	54846.0
Download	20	Type 1	1.0	850.0	63	53550.0
Download	21	Type 1	1.0	2404.0	22	52888.0
Download	22	Type 1	1.0	1611.0	33	53163.0
Download	23	Type 1	1.0	2904.0	19	55176.0
Download	24	Type 1	1.0	2736.0	20	54720.0
Download	25	Type 1	1.0	3044.0	18	54792.0
Download	26	Type 1	1.0	1604.0	33	52932.0
Download	27	Type 1	1.0	2695.0	20	53900.0
Download	28	Type 1	1.0	2004.0	27	54108.0
Download	29	Type 1	1.0	2642.0	20	52840.0

Type 2 Radar Statistical Performance

	Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Humber of Pulses	Taveform Length (us)
Download	0	Type 2	2.8	164.0	26	4264.0
Download	1	Type 2	3.9	160.0	27	4320.0
Download	2	Type 2	4.8	215.0	29	6235.0
Download	3	Type 2	4.1	202.0	28	5656.0
Download	4	Type 2	3.5	203.0	27	5481.0
Download	5	Type 2	3. 7	154.0	27	4158.0
Download	6	Type 2	1.1	230.0	23	5290.0
Download	7	Type 2	4.2	204.0	28	5712.0
Download	8	Type 2	1.0	166.0	23	3818.0
Download	9	Type 2	2. 7	169.0	25	4225.0
Download	10	Type 2	4.5	190.0	29	5510.0
Download	11	Type 2	4.4	195.0	28	5460.0
Download	12	Type 2	2.8	185.0	26	4810.0
Download	13	Type 2	3.0	181.0	26	4706.0
Download	14	Type 2	1.0	218.0	23	5014.0
Download	15	Type 2	3.5	173.0	27	4671.0
Download	16	Type 2	1.1	227.0	23	5221.0
Download	17	Type 2	2.5	193.0	25	4825.0
Download	18	Type 2	2.4	205.0	25	5125.0
Download	19	Type 2	5.0	208.0	29	6032.0
Download	20	Type 2	2.5	152.0	25	3800.0
Download	21	Type 2	4.9	210.0	29	6090.0
Download	22	Type 2	4.5	211.0	29	6119.0
Download	23	Type 2	1.5	158.0	23	3634.0
Download	24	Type 2	3. 7	179.0	27	4833.0
Download	25	Type 2	3.9	199.0	27	5373.0
Download	26	Type 2	3.9	222.0	28	6216.0
Download	27	Type 2	1.6	171.0	24	4104.0
Download	28	Type 2	2.6	225.0	25	5625.0
Download	29	Type 2	4.5	216.0	29	6264.0

Type 3 Radar Statistical Performance

	Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Humber of Pulses	Taveform Length (us)
Download	0	Туре З	7. 8	333.0	17	5661.0
Download	1	Туре З	8.9	349.0	18	6282.0
Download	2	Type 3	9.8	228.0	18	4104.0
Download	3	Type 3	9.1	256.0	18	4608.0
Download	4	Type 3	8.5	402.0	17	6834.0
Download	5	Type 3	8. 7	340.0	17	5780.0
Download	6	Type 3	6.1	392.0	16	6272.0
Download	7	Type 3	9.2	383.0	18	6894.0
Download	8	Туре З	6.0	460.0	16	7360.0
Download	9	Type 3	7. 7	336.0	17	5712.0
Download	10	Type 3	9.5	381.0	18	6858.0
Download	11	Type 3	9.4	306.0	18	5508.0
Download	12	Type 3	7.8	210.0	17	3570.0
Download	13	Type 3	8.0	222.0	17	3774.0
Download	14	Type 3	6.0	480.0	16	7680.0
Download	15	Type 3	8.5	358.0	17	6086.0
Download	16	Type 3	6.1	470.0	16	7520.0
Download	17	Type 3	7. 5	465.0	17	7905.0
Download	18	Type 3	7. 4	217.0	17	3689.0
Download	19	Туре З	10.0	278.0	18	5004.0
Download	20	Type 3	7. 5	407.0	17	6919.0
Download	21	Type 3	9.9	281.0	18	5058.0
Download	22	Туре З	9.5	226.0	18	4068.0
Download	23	Туре З	6.5	297. 0	16	4752.0
Download	24	Type 3	8. 7	406.0	17	6902.0
Download	25	Type 3	8.9	235.0	18	4230.0
Download	26	Туре З	8.9	479.0	18	8622.0
Download	27	Туре З	6.6	401.0	16	6416.0
Download	28	Type 3	7. 6	219.0	17	3723.0
Download	29	Туре З	9.5	354.0	18	6372.0

Type 4 Radar Statistical Performance

	Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Humber of Pulses	Taveform Length (us)
Download	0	Type 4	15. 1	333.0	14	4662.0
Download	1	Type 4	17.4	349.0	15	5235.0
Download	2	Type 4	19.6	228.0	16	3648.0
Download	3	Type 4	18.0	256.0	15	3840.0
Download	4	Type 4	16.5	402.0	15	6030.0
Download	5	Type 4	17.0	340.0	15	5100.0
Download	6	Type 4	11.2	392.0	12	4704.0
Download	7	Type 4	18.1	383.0	15	5745.0
Download	8	Type 4	11.1	460.0	12	5520.0
Download	9	Type 4	14.7	336.0	14	4704.0
Download	10	Type 4	18.8	381.0	16	6096.0
Download	11	Type 4	18.5	306.0	16	4896.0
Download	12	Type 4	15.1	210.0	14	2940.0
Download	13	Type 4	15.5	222.0	14	3108.0
Download	14	Type 4	11.0	480.0	12	5760.0
Download	15	Type 4	16.5	358.0	15	5370.0
Download	16	Type 4	11.2	470.0	12	5640.0
Download	17	Type 4	14.3	465.0	13	6045.0
Download	18	Type 4	14.2	217.0	13	2821.0
Download	19	Type 4	19.8	278.0	16	4448.0
Download	20	Type 4	14.5	407.0	13	5291.0
Download	21	Type 4	19.8	281.0	16	4496.0
Download	22	Type 4	18.9	226.0	16	3616.0
Download	23	Type 4	12.2	297.0	12	3564.0
Download	24	Type 4	16.9	406.0	15	6090.0
Download	25	Type 4	17.4	235.0	15	3525.0
Download	26	Type 4	17.5	479.0	15	7185.0
Download	27	Type 4	12.3	401.0	12	4812.0
Download	28	Type 4	14.6	219.0	14	3066.0
Download	29	Type 4	18.9	354.0	16	5664.0

Radar Type 5 - Radar Statistical Performance

Trail #	Test Freq.	1=Detection	Trail #	Test Freq.	1=Detection
	(MHz)	0=No Detection		(MHz)	0=No Detection
1	5500	1	16	5497	1
2	5500	1	17	5493	0
3	5500	1	18	5495	1
4	5500	1	19	5495	1
5	5500	1	20	5499	1
6	5500	1	21	5505	1
7	5500	1	22	5501	1
8	5500	1	23	5502	1
9	5500	1	24	5506	1
10	5500	1	25	5503	1
11	5498	1	26	5503	1
12	5498	1	27	5503	1
13	5496	1	28	5506	0
14	5496	1	29	5505	1
15	5493	1	30	5502	1
	Det	ection Percentage	(%)		93.3%

				Type 5 F	Radar Wa	veform_1			
Download	0	Type 5	13	0. 9230769	12.0000000	5.500000000			
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	644105.0	72.8	12	2	1089.0	1169.0	-
		1	865014.0	85.5	12	3	1476.0	1358.0	1992.0
		2	169540.0	97.5	12	3	1112.0	1742.0	1581.0
		3	392549.0	88. 7	12	3	1216.0	1568.0	1160.0
		4	615845.0	80.6	12	2	1475.0	1906.0	-
		5	839990.0	83.2	12	2	1152.0	1034.0	-
		6	142624.0	51.2	12	1	1022.0	-	-
		7	364785.0	89.3	12	3	1368.0	1722.0	1623.0
		8	589498.0	51.0	12	1	1617.0	-	-
		9	811564.0	70.8	12	2	2000.0	1223.0	-
		10	114631.0	93.1	12	3	1751.0	1199.0	1656.0
		11	337387.0	91.6	12	3	1453.0	1829.0	1329.0
		12	560765.0	72.8	12	2	1830.0	1763.0	_

FCC ID: Q9DAPIN0615 Page Number: 51 of 186

Download	1 Type 5	17	0. 7058824	12.0000000	5.500000000			
	Burst	Burst ID Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
	0	599783.0	75. 1	16	2	1180.0	1063.0	-
	1	66838.0	50.0	16	1	1817.0	-	-
	2	237079.0	80.8	16	2	1747.0	1603.0	-
	3	408420.0	51.6	16	1	1704.0	-	-
-	4	578645.0	68.4	16	2	1033.0	1352.0	_
	5	45703.0	67. 7	16	2	1657.0	1723.0	-
	6	215589.0	98.9	16	3	1898.0	1472.0	1613.0
	7	387194.0	69.5	16	2	1010.0	1038.0	-
	8	555677.0	98.5	16	3	1113.0	1819.0	1916.0
	9	24683.0	93. 7	16	3	1240.0	1904.0	1171.0
	10	195662.0	57. 1	16	1	1338.0	-	-
	11	365865.0	83.0	16	2	1511.0	1119.0	-
	12	534815.0	85. 7	16	3	1673.0	1910.0	1159.0
	13	3723.0	86.2	16	3	1589.0	1914.0	1166.0
	14	174636.0	57.3	16	1	1252.0	-	-
	15	344822.0	70.0	16	2	1641.0	1058.0	-
	16	513873.0	93.6	16	3	1982.0	1412.0	1342.0

Type 5 Radar Waveform_3

Download	2	Type 5	20	0.6000000	12.0000000	5.500000000			
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (THz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	582244.0	79.8	20	2	1407.0	1686.0	_
		1	130437.0	62.9	20	1	1573.0	-	-
		2	275567.0	56. 7	20	1	1588.0	-	_
		3	418675.0	83.5	20	3	1219.0	1896.0	1355.0
		4	565679.0	53.9	20	1	1753.0	-	_
		5	112641.0	54.9	20	1	1138.0	_	-
		6	256430.0	84.8	20	3	1811.0	1161.0	1543.0
		7	400592.0	84.4	20	3	1636.0	1678.0	1590.0
		8	544739.0	84.6	20	3	1861.0	1262.0	1980.0
		9	94426.0	71.0	20	2	1306.0	1881.0	-
		10	238804.0	84.9	20	3	1183.0	1047.0	1876.0
		11	382865.0	83.8	20	3	1016.0	1998.0	1810.0
		12	530029.0	50.6	20	1	1646.0	_	-
		13	76503.0	90.0	20	3	1084.0	1808.0	1030.0
		14	221071.0	87.0	20	3	1024.0	1665.0	1230.0
		15	367071.0	65. 7	20	1	1586.0	-	-
		16	511930.0	60.5	20	1	1907.0	_	-
		17	58930.0	55.0	20	1	1534.0	-	-
		18	203216.0	99.4	20	3	1205.0	1444.0	1409.0
		19	347636.0	89.2	20	3	1621.0	1535.0	1099.0

ownload 3	Type 5	18	0.6666667	12.0000000	5.500000000			
	Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
	0	549676.0	54.3	17	1	1251.0	-	-
	1	45658.0	63.6	17	1	1046.0	_	_
	2	206709.0	73.4	17	2	1278.0	1000.0	-
	3	367291.0	77. 7	17	2	1304.0	1973.0	_
	4	529651.0	64.5	17	1	1434.0	-	_
	5	25704.0	74. 4	17	2	1036.0	1781.0	-
	6	186096.0	91.9	17	3	1503.0	1526.0	1967.0
	7	346617.0	90.4	17	3	1860.0	1339.0	1711.0
	8	509597.0	55. 7	17	1	1669.0	-	_
	9	5859.0	95.0	17	3	1585.0	1519.0	1224.0
	10	166336.0	97.0	17	3	1938.0	1345.0	1685.0
	11	327211.0	93.9	17	3	1580.0	1057.0	1536.0
	12	489185.0	69.2	17	2	1150.0	1260.0	-
	13	650785.0	57.4	17	1	1903.0	-	_
	14	146384.0	91.1	17	3	1950.0	1878.0	1972.0
	15	308062.0	80.1	17	2	1720.0	1070.0	-
	16	467721.0	84.8	17	3	1782.0	1609.0	1312.0
	17	628391.0	89.3	17	3	1447.0	1990.0	1137.0

Tv	na	5	Dac	lar	Wav	of o	rm	5
Ιy	μe	J	Rac	ıaı	vva	/eio	1111_	_၁

Download	4	Type 5	15	0.8000000	12.0000000	5.500000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	152871.0	71.1	14	2	1060.0	1193.0	_
		1	344891.0	95. 1	14	3	1929.0	1984.0	1700.0
		2	537817.0	96.0	14	3	1954.0	1952.0	1320.0
		3	732393.0	67.2	14	2	1718.0	1529.0	_
		4	128780.0	83.9	14	3	1307.0	1064.0	1484.0
		5	321745.0	96. 7	14	3	1874.0	1151.0	1139.0
		6	516470.0	63.9	14	1	1521.0	_	-
		7	706746.0	85. 7	14	3	1602.0	1831.0	1890.0
		8	104854.0	97.8	14	3	1505.0	1531.0	1894.0
		9	299102.0	53.6	14	1	1140.0	_	-
		10	492125.0	70. 1	14	2	1229.0	1088.0	_
		11	685607.0	67.3	14	2	1087.0	1209.0	-
		12	81269.0	75. 1	14	2	1538.0	1745.0	-
		13	274690.0	81.2	14	2	1653.0	1075.0	-
		14	468815.0	58.0	14	1	1431.0	_	-

Download	5	Туре 5	16	0.7500000	12.0000000	5.500000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	619700.0	80.9	15	2	1452.0	1561.0	-
		1	53790.0	89.2	15	3	1204.0	1630.0	1443.0
		2	235473.0	66.1	15	1	1666.0	-	-
		3	414999.0	89.5	15	3	1999.0	1651.0	1549.0
		4	597619.0	79. 1	15	2	1102.0	1618.0	-
		5	31582.0	68.9	15	2	1380.0	1231.0	-
		6	212768.0	79. 6	15	2	1853.0	1039.0	-
		7	394576.0	63.1	15	1	1732.0	_	-
		8	574303.0	94.5	15	3	1059.0	1065.0	1883. 0
		9	9249.0	78.6	15	2	1220.0	1857.0	-
		10	189910.0	89.6	15	3	1221.0	1841.0	1942.0
		11	371511.0	74. 1	15	2	1962.0	1201.0	-
		12	551978.0	91.0	15	3	1182.0	1092.0	1787.0
		13	734935.0	64.6	15	1	1981.0	_	-
		14	167799.0	93.3	15	3	1494.0	1071.0	1794.0
		15	348331.0	99.0	15	3	1682.0	1471.0	1867.0

Download	6	Type 5	8	1.5000000	12.0000000	5.500000000				
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
		0	1064019.0	56.8	5	1	1598.0	-	-	
		1	1426096.0	80.9	5	2	1604.0	1393.0	-	
		2	292117.0	71.2	5	2	1749.0	1483.0	-	
		3	654352.0	83.9	5	3	1779.0	1532.0	1698.0	
		4	1019358.0	54.2	5	1	1446.0	-	-	
		5	1380862.0	93.2	5	3	1142.0	1389.0	1020.0	
		6	247087.0	87.2	5	3	1812.0	1415.0	1911.0	
		7	610196.0	79.8	5	2	1924.0	1847.0	-	

14 15 16

30478.0

191406.0

55. 7

70.4

			Type 5	Radar Wa	aveform_8	-		
Download 7	7 Type 5	18	0. 6666667	12.0000000	5. 500000000			
	Burst II	Burst D Offset (us)	Pulse Tidth (us)	Chirp Width (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
	0	431661.0	76. 7	17	2	1640.0	1295.0	-
	1	594359.0	63. 7	17	1	1006.0	_	-
	2	89930.0	78.9	17	2	1086.0	1482.0	-
	3	250888.0	76.6	17	2	1571.0	1279.0	-
	4	410939.0	88.2	17	3	1145.0	1986.0	1243.0
	5	573111.0	70.2	17	2	1118.0	1466.0	-
	6	69860.0	88.5	17	3	1421.0	1424.0	1905.0
	7	231039.0	69.8	17	2	1002.0	1901.0	-
	8	392765.0	65.8	17	1	1645.0	_	-
	9	551598.0	85.8	17	3	1170.0	1696.0	1727.0
	10	50098.0	88.3	17	3	1514.0	1267.0	1815.0
	11	211377.0	68.2	17	2	1100.0	1277. 0	_
	12	372008.0	74. 9	17	2	1273.0	1960.0	-
	13	532114.0	90. 7	17	3	1562.0	1663.0	1001.0

Type 5 Radar Waveform_9

1697.0 1497.0

17

Download	8	Туре 5	8	1.5000000	12.0000000	5.500000000				
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
		0	23854.0	51.5	5	1	1563.0	-	-	
		1	386520.0	88.6	5	3	1608.0	1019.0	1845.0	
		2	749142.0	94.3	5	3	1994.0	1652.0	1008.0	
		3	1113558.0	72.6	5	2	1124.0	1179.0	-	
		4	1476963.0	73.0	5	2	1121.0	1014.0	-	
		5	342068.0	71.0	5	2	1805.0	1680.0	-	
		6	705854.0	54.5	5	1	1715.0	-	-	
		7	1069120.0	54.6	5	1	1877.0	-	-	

Download	Type 5	13	0.9230769	12.0000000	5.500000000			
	Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
	0	880776.0	63.2	11	1	1928.0	-	_
	1	182492.0	86.4	11	3	1395.0	1314.0	1947. 0
	2	406738.0	53.9	11	1	1256.0	-	_
	3	627842.0	97.3	11	3	1401.0	1792.0	1671.0
	4	853693.0	53.8	11	1	1457.0	-	-
	5	154972.0	87.8	11	3	1430.0	1912.0	1804.0
	6	379193.0	52.0	11	1	1271.0	-	-
	7	600292.0	86.4	11	3	1995.0	1731.0	1319.0
	8	826502.0	62. 7	11	1	1076.0	-	_
	9	128020.0	65.3	11	1	1761.0	-	-
	10	350191.0	90.0	11	3	1939.0	1376.0	1793.0
	11	575343.0	53.0	11	1	1077.0	-	-
	12	797778.0	74.9	11	2	1284.0	1153.0	_

Type 5 Radar Waveform 11

ownload	10	Туре 5	19	0.6315789	12.0000000	5.498000000			
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Width (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	68581.0	74.2	18	2	1210.0	1642.0	-
		1	220705.0	90.2	18	3	1143.0	1181.0	1559.0
		2	373962.0	69.8	18	2	1041.0	1123.0	-
		3	527241.0	58.2	18	1	1416.0	-	-
		4	49925.0	55. 1	18	1	1250.0	-	-
		5	201973.0	76.3	18	2	1949.0	1870.0	-
		6	354511.0	75.0	18	2	1360.0	1951.0	-
		7	507582.0	74. 1	18	2	1396.0	1052.0	-
		8	31080.0	66.2	18	1	1552.0	-	-
		9	183577.0	75. 1	18	2	1237.0	1356.0	-
		10	336452.0	50.8	18	1	1983.0	-	-
		11	487115.0	92.5	18	3	1649.0	1490.0	1462.0
		12	12245.0	72.3	18	2	1178.0	1040.0	-
		13	164511.0	91.6	18	3	1021.0	1451.0	1173.0
		14	316645.0	98.6	18	3	1550.0	1177.0	1234.0
		15	468484.0	85.5	18	3	1507.0	1852.0	1108.0
		16	623780.0	54.1	18	1	1232.0	-	-
		17	145598.0	90. 7	18	3	1163.0	1280.0	1866.0
		18	298993.0	57.9	18	1	1648.0	_	_

wnload	11	Type 5	18	0.6666667	12.0000000	5.498000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	475441.0	72.0	18	2	1965.0	1767.0	-
		1	635471.0	83.6	18	3	1714.0	1587. 0	1215.0
		2	134490.0	56.9	18	1	1661.0	-	_
		3	296006.0	52.0	18	1	1141.0	_	_
		4	456845.0	65.8	18	1	1974.0	-	-
		5	616728.0	68.5	18	2	1766.0	1634.0	_
		6	114479.0	82.0	18	2	1300.0	1198.0	_
		7	276128.0	50.5	18	1	1132.0	-	-
		8	436970.0	66.2	18	1	2000.0	-	_
		9	596383.0	88.5	18	3	1548.0	1375.0	1066.0
		10	94606.0	77.9	18	2	1594.0	1126.0	-
		11	255263.0	90.4	18	3	1184.0	1258.0	1241.0
		12	416565.0	80.4	18	2	1293.0	1582.0	_
		13	575561.0	88.5	18	3	1762.0	1777.0	1628.0
		14	74927.0	57.0	18	1	1336.0	-	_
		15	235539.0	77. 4	18	2	1991.0	1461.0	_
		16	395489.0	98.5	18	3	1557.0	1575.0	1826.0
		17	558061.0	74. 4	18	2	1131.0	1344.0	_

Download	12	Type 5	13	0.9230769	12.0000000	5.496000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	76279.0	64.3	12	1	1185.0	-	-
		1	299186.0	67.8	12	2	1290.0	1987.0	-
		2	521477.0	94. 7	12	3	1744.0	1025.0	1899.0
		3	745462.0	79.6	12	2	1217.0	1918.0	-
		4	48685.0	80.6	12	2	1120.0	1062.0	-
		5	271087.0	97.1	12	3	1959.0	1814.0	1605.0
		6	495907.0	61.3	12	1	1197.0	-	-
		7	719340.0	53.1	12	1	1391.0	-	-
		8	21188.0	54.8	12	1	1551.0	-	-
		9	244421.0	81.5	12	2	1311.0	1244.0	-
		10	467184.0	96.2	12	3	1301.0	1098.0	1125.0
		11	691567.0	53.5	12	1	1709.0	-	_
		12	915272.0	50.9	12	1	1463.0	_	_

				Type 5 F	≀adar Wa	veform_1	4		
Download	13	Type 5	14	0.8571429	12.0000000	5. 496000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	201742.0	58.6	13	1	1035.0		-
		1	408710.0	74. 7	13	2	1353.0	1073.0	
		2	615404.0	82.1	13	2	1276.0	1985.0	
		3	823409.0	81.1	13	2	1028.0	1286.0	-
		4	175442.0	91.4	13	3	1439.0	1774.0	1341.0
		5	383075.0	67.2	13	2	1495.0	1155.0	-
		6	589472.0	88. 1	13	3	1564.0	1265.0	1043.0
		7	798924.0	53.9	13	1	1187.0	-	-
		8	149946.0	89.8	13	3	1206.0	1788.0	1706.0
		9	357263.0	73. 2	13	2	1619.0	1712.0	-
		10	564509.0	75. 7	13	2	1743.0	1331.0	-
		11	772637.0	58.8	13	1	1979.0	-	-
		12	124392.0	85.6	13	3	1659.0	1679.0	1964.0
		13	330934.0	88.4	13	3	1886.0	1650.0	1909.0

Download	14	Type 5	8	1.5000000	12.0000000	5.493000000				
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
		0	943933.0	84. 7	5	3	1577.0	1164.0	1539.0	
		1	1307743.0	70.4	5	2	1746.0	1332.0	-	
		2	174056.0	54.0	5	1	1489.0	-	-	
		3	537615.0	65.3	5	1	1146.0	_	-	
		4	900747.0	64.2	5	1	1789.0	-	-	
		5	1264050.0	50.0	5	1	1862.0	-	-	
		6	129324.0	61.0	5	1	1082.0	-	-	
		7	491459.0	89.8	5	3	1567.0	1948.0	1825.0	

wnload	15	Type 5	15	0.8000000	12.0000000	5.497000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	455402.0	72.9	14	2	1639.0	1287.0	_
		1	649506.0	63.2	14	1	1957.0	_	_
		2	44867.0	92.5	14	3	1626.0	1684.0	1227.0
		3	238615.0	53.0	14	1	1786.0	-	-
		4	432430.0	59.9	14	1	1374.0	-	-
		5	623922.0	90.8	14	3	1689.0	1468.0	1023.0
		6	21193.0	62. 7	14	1	1165.0	-	_
		7	214798.0	63. 7	14	1	1676.0	-	-
		8	408331.0	50.5	14	1	1843.0	-	-
		9	602360.0	54.4	14	1	1245.0	-	_
		10	796153.0	62.6	14	1	1176.0	_	_
		11	190234.0	87. 6	14	3	1485.0	1798.0	1383.0
		12	383932.0	69.2	14	2	1597.0	1397.0	_
		13	577995.0	65. 7	14	1	1940.0	-	_
		14	769650.0	98.3	14	3	1078.0	1270.0	1558.0

			Type 5 R	adar Wav	eform_17				
Download 16	Type 5	8	1.5000000	12.0000000	5. 493000000				
		Burst Offset (us)	Pulse Vidth (us)	Ţ i dtĥ	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
	0	313619.0	57.3	5	1	1670.0	-	-	
	1	676925.0	65.6	5	1	1859.0	-	-	
	2	1040511.0	60.1	5	1	1515.0	-	_	
	3	1404219.0	60.3	5	1	1218.0	-	-	
	4	268585.0	70.5	5	2	1426.0	1759.0	-	
	5	631661.0	74.6	5	2	1919.0	1144.0	-	
	6	993961.0	94. 7	5	3	1865.0	1303.0	1032.0	

1795.0

1632.0

1357440.0

69.0

Download	4.7		10	4 0000000	40.0000000	F 40500000			
DownTogg	17	Type 5	12	1.0000000	12.0000000	5. 495000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	149142.0	70.8	10	2	1436.0	1384.0	-
		1	390519.0	95.0	10	3	1067.0	1750.0	1202.0
		2	633381.0	58.6	10	1	1963.0	-	-
		3	875041.0	76.6	10	2	1027.0	1386.0	_
		4	119273.0	82. 7	10	2	1600.0	1879.0	_
		5	361521.0	50.8	10	1	1933.0	-	_
		6	603841.0	66.1	10	1	1506.0	-	_
		7	844666.0	82.0	10	2	1835.0	1255.0	_
		8	89680.0	53.5	10	1	1501.0	-	_
		9	330863.0	89.9	10	3	1128.0	1915.0	1422.0
		10	573019.0	68.8	10	2	1349.0	1885.0	_
		11	815806.0	51.7	10	1	1961.0	-	-

ownload)	18	Type 5	12	1.0000000	12.0000000	5.495000000				
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
		0	59777.0	68.9	10	2	1042.0	1692.0	-	
		1	300836.0	88. 7	10	3	1944.0	1627.0	1837. 0	
		2	542413.0	88.4	10	3	1595.0	1268.0	1892.0	
		3	786472.0	57.2	10	1	1350.0	-	-	
		4	29909.0	97.4	10	3	1887.0	1418.0	1930.0	
		5	271382.0	91.3	10	3	1136.0	1856.0	1469.0	
		6	513552.0	76.0	10	2	1129.0	1932.0	_	
		7	755404.0	72. 7	10	2	1875.0	1103.0	-	
		8	191.0	71.3	10	2	1797.0	1486.0	-	
		9	241678.0	96.2	10	3	1523.0	1327.0	1458.0	
		10	483046.0	98.1	10	3	1233.0	1540.0	1780.0	
		11	726064.0	69.1	10	2	1363.0	1004.0	-	

Type 5	Radar	Waveform	_20
--------	-------	----------	-----

Download	19	Type 5	20	0.6000000	12.0000000	5. 499000000			
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	578922.0	69.0	20	2	1674.0	1695.0	_
		1	127146.0	72.1	20	2	1596.0	1053.0	_
		2	271050.0	96. 7	20	3	1802.0	1556.0	1425.0
		3	416145.0	99. 7	20	3	1517.0	1095.0	1117.0
		4	563240.0	54.0	20	1	1091.0	-	_
		5	108887.0	89.8	20	3	1996.0	1574.0	1340.0
		6	253577.0	90.6	20	3	1011.0	1699.0	1348.0
		7	399957.0	65.2	20	1	1296.0	-	-
		8	544276.0	78.3	20	2	1122.0	1147.0	_
		9	91298.0	94.3	20	3	1009.0	1051.0	1616.0
		10	236194.0	71.6	20	2	1610.0	1387.0	-
		11	381797.0	58.0	20	1	1725.0	-	_
		12	527181.0	51.2	20	1	1404.0	-	-
		13	73780.0	64.1	20	1	1266.0	_	-
		14	218405.0	80.1	20	2	1351.0	1520.0	_
		15	363938.0	62.9	20	1	1703.0	_	-
		16	506802.0	84.4	20	3	1454.0	1513.0	1370.0
		17	55815.0	72.5	20	2	1061.0	1044.0	-
		18	201067.0	59.1	20	1	1378.0	_	_
		19	343971.0	97. 7	20	3	1736.0	1734.0	1851.0

ownload	20	Type 5	13	0.9230769	12.0000000	5.505000000			
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	756743.0	50.4	11	1	1283.0	-	-
		1	58488.0	64.0	11	1	1687.0	-	-
		2	281506.0	79.4	11	2	1195.0	1955.0	-
		3	504286.0	68. 7	11	2	1840.0	1913.0	-
		4	727940.0	77.3	11	2	1510.0	1373.0	-
		5	30963.0	52.8	11	1	1647.0	-	-
		6	254540.0	62.9	11	1	1281.0	-	-
		7	477249.0	79.3	11	2	1406.0	1525.0	-
		8	698629.0	98.6	11	3	1863.0	1542.0	1869.0
		9	3432.0	71.9	11	2	1432.0	1365.0	-
		10	226156.0	97. 7	11	3	1713.0	1096.0	1908.0
		11	449763.0	74.6	11	2	1248.0	1677.0	-
		12	671538.0	97.0	11	3	1402.0	1946.0	1479.0

Download	21	Type 5	20	0.6000000	12.0000000	5.501000000			
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	579967.0	89.6	20	3	1369.0	1809.0	1285.0
		1	129612.0	57.6	20	1	1017.0	-	-
		2	274607.0	60.5	20	1	1620.0	_	-
		3	419768.0	54.2	20	1	1570.0	-	-
		4	564795.0	66.4	20	1	1688.0	-	-
		5	111329.0	77.9	20	2	1816.0	1282.0	-
		6	256612.0	63. 7	20	1	1897.0	-	-
		7	399649.0	99.4	20	3	1796.0	1818.0	1294.0
		8	547374.0	53.6	20	1	1192.0	-	-
		9	93573.0	73.5	20	2	1298.0	1317.0	-
		10	238487.0	74. 7	20	2	1487.0	1055.0	-
		11	383439.0	67.0	20	2	1222.0	1242.0	-
		12	527896.0	80.3	20	2	1188.0	1801.0	-
		13	75846.0	55.9	20	1	1675.0	_	-
		14	220357.0	83.3	20	2	1478.0	1824.0	-
		15	365991.0	61.1	20	1	1806.0	-	-
		16	511104.0	63.1	20	1	1768.0	-	-
		17	57666.0	88.3	20	3	1196.0	1868.0	1760.0
		18	201947.0	98.8	20	3	1880.0	1323.0	1820.0
		19	346339.0	87.1	20	3	1110.0	1769.0	1988.0

Type 5	Radar	Waveform	_23
--------	-------	----------	-----

Download	22	Type 5	19	0.6315789	12.0000000	5.502000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	519182.0	50.3	18	1	1873.0	-	-
		1	42163.0	68. 7	18	2	1175.0	1247.0	-
		2	195036.0	55.0	18	1	1508.0	-	-
		3	346356.0	92.8	18	3	1717.0	1186.0	1308.0
		4	499495.0	77. 9	18	2	1584.0	1390.0	-
		5	23329.0	72.4	18	2	1705.0	1755.0	-
		6	176089.0	51.1	18	1	1953.0	_	_
		7	328264.0	76.8	18	2	1450.0	1516.0	-
		8	482105.0	61.3	18	1	1158.0	-	-
		9	4576.0	66.6	18	1	1739.0	_	-
		10	157359.0	56.3	18	1	1631.0	-	-
		11	308606.0	96.6	18	3	1545.0	1807. 0	1398.0
		12	460916.0	97.1	18	3	1726.0	1502.0	1135.0
		13	615899.0	61.1	18	1	1433.0	-	-
		14	138624.0	61.7	18	1	1249.0	_	-
		15	291399.0	56.5	18	1	1465.0	_	-
		16	443197.0	69.5	18	2	1162.0	1756.0	-
		17	597111.0	58.6	18	1	1394.0	_	-
		18	119411.0	67.9	18	2	1764.0	1496.0	-

Download	23	Type 5	9	1.3333333	12.0000000	5.506000000			
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	574817.0	94.6	7	3	1728.0	1437.0	1357.0
		1	897051.0	95.4	7	3	1388.0	1624.0	1576.0
		2	1219439.0	98.4	7	3	1773.0	1212.0	1467.0
		3	212916.0	96.8	7	3	1664.0	1156.0	1236.0
		4	535156.0	90.6	7	3	1931.0	1372.0	1130.0
		5	859130.0	54. 7	7	1	1839.0	-	-
		6	1182302.0	51.7	7	1	1565.0	-	-
		7	173079.0	97.1	7	3	1833.0	1361.0	1827.0
		8	495380.0	96.9	7	3	1724.0	1546.0	1366.0

Download	24	Type 5	16	0. 7500000	12.0000000	5.503000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	460026.0	79. 7	15	2	1085.0	1347.0	-
		1	641497.0	68.1	15	2	1174.0	1068.0	-
		2	74768.0	85.4	15	3	1770.0	1937.0	1784.0
		3	255740.0	83. 7	15	3	1442.0	1799.0	1069.0
•		4	436135.0	98.9	15	3	1660.0	1997.0	1435.0
		5	617628.0	87.5	15	3	1328.0	1528.0	1235.0
		6	52582.0	96.6	15	3	1758.0	1941.0	1007.0
		7	233768.0	70.9	15	2	1633.0	1701.0	-
		8	415937.0	52.5	15	1	1392.0	-	-
		9	596088.0	67.8	15	2	1637.0	1522.0	-
		10	30396.0	76.3	15	2	1213.0	1544.0	-
		11	211176.0	94.1	15	3	1591.0	1752.0	1003.0
		12	393182.0	76. 7	15	2	1056.0	1079.0	-
		13	573126.0	87.0	15	3	1629.0	1018.0	1359.0
		14	8055.0	88.1	15	3	1614.0	1414.0	1299.0
		15	188857.0	87.0	15	3	1134.0	1672.0	1707.0

Type	5 F	Radar	Waveform	26
.,,	•		11410101111	

ownload	25	Type 5	17	0.7058824	12.0000000	5.503000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	348355.0	67.1	16	2	1926.0	1438.0	-
		1	518499.0	78. 1	16	2	1966.0	1721.0	-
		2	689512.0	70.0	16	2	1611.0	1354.0	-
		3	157156.0	69.1	16	2	1333.0	1263.0	-
		4	326994.0	94.3	16	3	1470.0	1272.0	1423.0
		5	497831.0	76. 7	16	2	1871.0	1379.0	-
		6	666982.0	91.6	16	3	1480.0	1785.0	1310.0
		7	136454.0	54.4	16	1	1005.0	-	-
		8	306409.0	70.3	16	2	1693.0	1606.0	-
		9	478008.0	54.1	16	1	1530.0	-	-
		10	646484.0	91.8	16	3	1473.0	1499.0	1111.0
		11	115342.0	51.9	16	1	1337.0	-	-
		12	285362.0	71.9	16	2	1518.0	1922.0	-
		13	456921.0	64.5	16	1	1599.0	_	-
		14	624734.0	88.0	16	3	1923.0	1168.0	1872.0
		15	94084.0	76. 1	16	2	1322.0	1583.0	-
		16	264570.0	75.3	16	2	1157.0	1771.0	-

ownload	26	Type 5	17	0. 7058824	12.0000000	5.503000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	436085.0	54.2	16	1	1269.0	_	_
		1	603607.0	97.2	16	3	1572.0	1772.0	1836.0
		2	72911.0	93.2	16	3	1417.0	1846.0	1302.0
		3	243597.0	81.2	16	2	1655.0	1194.0	_
		4	414133.0	72. 7	16	2	1403.0	1399.0	-
		5	583580.0	97. 7	16	3	1254.0	1429.0	1408.0
		6	52163.0	59.5	16	1	1822.0	-	-
		7	222871.0	64.5	16	1	1975.0	-	-
		8	392281.0	90.9	16	3	1449.0	1504.0	1364.0
		9	564449.0	53.9	16	1	1803.0	-	-
		10	31161.0	51.7	16	1	1105.0	_	-
		11	201509.0	82.4	16	2	1850.0	1288.0	-
		12	372429.0	73.9	16	2	1190.0	1037.0	_
		13	542259.0	67.8	16	2	1524.0	1776.0	_
		14	10098.0	58.4	16	1	1691.0	_	-
		15	180982.0	60.3	16	1	1318.0	-	-
		16	351901.0	59.8	16	1	1239.0	-	-

Download	27	Type 5	9	1, 3333333	12.0000000	5.506000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	986720.0	73.4	7	2	1848.0	1555.0	-
		1	1309799.0	76.6	7	2	1172.0	1694.0	-
		2	301874.0	81.8	7	2	1615.0	1855.0	-
		3	624506.0	78.0	7	2	1969.0	1292.0	-
		4	948318.0	52.6	7	1	1537.0	-	-
		5	1271395.0	52.9	7	1	1459.0	-	-
		6	262098.0	76.5	7	2	1828.0	1882.0	-
		7	584867.0	80.9	7	2	1464.0	1579.0	-
		8	908432.0	63.3	7	1	1683.0	-	-

Download	28	Туре 5	13	0.9230769	12.0000000	5.505000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	849421.0	94. 7	11	3	1849.0	1440.0	1214.0
		1	153600.0	95.8	11	3	1821.0	1512.0	1346.0
		2	376557.0	94.6	11	3	1405.0	1456.0	1289.0
		3	599464.0	99.1	11	3	1029.0	1509.0	1553.0
		4	822342.0	88.1	11	3	1149.0	1800.0	1148.0
		5	126363.0	79.8	11	2	1313.0	1917.0	-
		6	350158.0	50.2	11	1	1377.0	-	-
		7	572772.0	68.8	11	2	1668.0	1200.0	-
		8	795507.0	72.5	11	2	1662.0	1719.0	-
		9	98723.0	89.9	11	3	1775.0	1735.0	1208.0
		10	321211.0	94.9	11	3	1488.0	1945.0	1978.0
		11	545833.0	55. 7	11	1	1936.0	-	-
		12	766555.0	94.5	11	3	1813.0	1730.0	1607.0

wnload	29	Type 5	19	0.6315789	12.0000000	5,502000000			
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	48775.0	80.5	18	2	1601.0	1643.0	-
		1	201573.0	60.4	18	1	1970.0	_	-
		2	354758.0	54.5	18	1	1109.0	_	-
		3	507124.0	53.3	18	1	1783.0	-	-
		4	30043.0	72. 7	18	2	1167.0	1253.0	-
		5	182207.0	89.9	18	3	1225.0	1031.0	1635.0
		6	334929.0	72. 1	18	2	1748.0	1226.0	-
		7	486044.0	96.5	18	3	1259.0	1612.0	1834.0
		8	11206.0	86.3	18	3	1638.0	1382.0	1716.0
		9	163195.0	83.4	18	3	1958.0	1012.0	1920.0
		10	315673.0	91.7	18	3	1203.0	1385.0	1334.0
		11	469725.0	62.0	18	1	1474.0	_	-
		12	620867.0	91.1	18	3	1045.0	1013.0	1114.0
		13	145176.0	61.3	18	1	1838.0	-	-
		14	297128.0	94.4	18	3	1026.0	1050.0	1411.0
		15	449111.0	97.4	18	3	1592.0	1335.0	1048.0
		16	603503.0	51.5	18	1	1702.0	_	-
		17	125758.0	94.2	18	3	1854.0	1107.0	1895.0
		18	278985.0	66.7	18	2	1072.0	1015.0	_

Radar Type 6 - Radar Statistical Performance

Trail #	1=Detection	Trail #	1=Detection
	0=No Detection		0=No Detection
1	1	16	1
2	1	17	1
3	1	18	1
4	1	19	1
5	1	20	1
6	1	21	1
7	1	22	1
8	1	23	1
9	1	24	1
10	1	25	1
11	1	26	1
12	1	27	1
13	1	28	1
14	1	29	1
15	1	30	1
	Detection Percentage (%)		100.0%

Type 6 Radar Waveform_1											
Download 0	Type 6	1.0	333.3	9	0.3333	300.0000000 4					
	Frequency List (MHz)	0	1	2	3	4					
	0	5624	5513	5554	5305	5628					
	5	5422	5470	5499	5407	5306					
	10	5485	5466	5478	5479	5420					
	15	5636	5661	5264	5720	5279					
	20	5649	5325	5596	5287	5386					
	25	5262	5389	5297	5321	5648					
	30	5476	5643	5274	5630	5599					
	35	5679	5398	5662	5269	5313					
	40	5498	5312	5416	5540	5647					
	45	5544	5388	5383	5434	5358					
	50	5586	5441	5412	5347	5322					
	55	5535	5683	5268	5589	5507					
	60	5428	5452	5433	5480	5259					
	65	5548	5551	5574	5304	5610					
	70	5424	5323	5403	5603	5587					
	75	5634	5365	5567	5353	5685					
	80	5688	5382	5578	5652	5655					
	85	5411	5343	5380	5584	5707					
	90	5296	5701	5283	5531	5446					
	95	5340	5465	5477	5570	5509					

FCC ID: Q9DAPIN0615 Page Number: 62 of 186

Type 6 Radar Waveform 2

Download	1	Type 6	1.0	333.3	9	0.3333	300,0000000	2
		Frequency List (MHz)	0	1	2	3	4	
		0	5404	5277	5490	5466	5373	
		5	5464	5492	5574	5570	5513	
		10	5319	5255	5519	5674	5441	
		15	5724	5313	5367	5290	5658	
		20	5287	5718	5266	5685	5260	
		25	5652	5589	5592	5401	5355	
		30	5690	5462	5600	5489	5419	
		35	5343	5458	5422	5702	5337	
		40	5354	5683	5644	5473	5368	
		45	5395	5411	5317	5588	5398	
		50	5261	5530	5456	5543	5625	
		55	5423	5562	5645	5679	5380	
		60	5377	5520	5369	5253	5646	
		65	5634	5593	5681	5675	5573	
		70	5259	5252	5341	5526	5471	
		75	5256	5669	5564	5359	5408	
		80	5538	5283	5262	5547	5327	
		85	5655	5434	5351	5611	5346	
		90	5347	5587	5449	5632	5448	
		95	5660	5349	5267	5379	5499	

Download	2	Туре 6	1.0	333.3	9	0.3333	300.0000000	3
		Frequency List (MHz)	0	1	2	3	4	
		0	5659	5516	5426	5530	5690	
		5	5506	5514	5649	5258	5342	
		10	5250	5519	5560	5394	5462	
		15	5715	5440	5470	5335	5375	
		20	5673	5409	5682	5677	5708	
		25	5540	5538	5320	5602	5389	
		30	5354	5351	5557	5607	5556	
		35	5714	5385	5580	5254	5672	
		40	5616	5651	5575	5670	5448	
		45	5263	5305	5348	5549	5453	
		50	5464	5571	5289	5449	5500	
		55	5559	5474	5644	5400	5315	
		60	5444	5691	5624	5687	5678	
		65	5563	5570	5585	5466	5388	
		70	5484	5369	5262	5576	5317	
		75	5485	5593	5399	5650	5341	
		80	5505	5615	5306	5405	5283	
		85	5579	5604	5706	5301	5704	
		90	5598	5619	5627	5427	5288	
		95	5547	5720	5674	5697	5719	

Download	3	Type 6	1.0	333.3	9	0.3333	300.0000000	4
·		Frequency List (MHz)	0	1	2	3	4	
		0	5342	5280	5362	5691	5435	
		5	5645	5439	5724	5421	5549	
		10	5656	5308	5601	5492	5580	
		15	5328	5567	5573	5283	5681	
		20	5478	5720	5291	5331	5390	
		25	5523	5706	5326	5396	5715	
		30	5514	5347	5330	5437	5524	
		35	5671	5622	5350	5627	5490	
		40	5658	5608	5688	5260	5709	
		45	5632	5511	5517	5625	5447	
		50	5465	5500	5686	5382	5321	
		55	5357	5354	5505	5263	5268	
		60	5345	5666	5519	5509	5393	
		65	5626	5621	5676	5287	5441	
		70	5545	5293	5444	5409	5713	
		75	5542	5631	5593	5615	5572	
		80	5466	5402	5453	5661	5518	
		85	5570	5711	5569	5660	5455	
		90	5369	5544	5489	5707	5674	
-		95	5525	5406	5391	5367	5718	

Type 6 Radar Waveform_5 Download Frequency List (MHz)

Type 6 Radar Waveform_6

ownload	5	Type 6	1.0	333.3	9	0.3333	300,0000000	5
		Frequency List (MHz)	0	1	2	3	4	
		0	5377	5283	5709	5538	5497	
		5	5254	5386	5399	5650	5585	
		10	5421	5458	5305	5407	5622	
		15	5504	5724	5682	5373	5476	
		20	5600	5713	5602	5372	5627	
		25	5582	5666	5357	5439	5394	
		30	5480	5590	5428	5302	5256	
		35	5455	5705	5475	5689	5278	
		40	5265	5446	5484	5596	5470	
		45	5288	5323	5530	5623	5674	
		50	5342	5389	5406	5587	5258	
		55	5262	5410	5279	5685	5506	
		60	5355	5556	5280	5350	5498	
		65	5417	5524	5718	5442	5271	
		70	5614	5465	5501	5362	5250	
		75	5381	5593	5525	5263	5433	
		80	5425	5592	5299	5564	5523	
		85	5402	5665	5387	5321	5467	
		90	5612	5631	5353	5277	5309	
		95	5579	5267	5597	5360	5722	

Download	6	Туре 6	1.0	333, 3	9	0.3333	300,0000000	2
		Frequency List (MHz)	0	1	2	3	4	
		0	5632	5522	5645	5699	5339	
		5	5296	5408	5474	5338	5317	
		10	5255	5722	5346	5602	5643	
		15	5495	5376	5310	5418	5668	
		20	5608	5404	5543	5364	5600	
		25	5373	5518	5560	5640	5428	
		30	5619	5479	5385	5420	5275	
		35	5369	5566	5582	5431	5466	
		40	5579	5529	5422	5361	5251	
		45	5399	5646	5406	5588	5567	
		50	5453	5653	5478	5704	5531	
		55	5349	5691	5573	5656	5635	
		60	5520	5501	5587	5651	5444	
		65	5618	5473	5550	5712	5549	
		70	5279	5468	5350	5599	5321	
		75	5597	5302	5574	5689	5589	
		80	5277	5660	5467	5616	5270	
		85	5724	5585	5486	5513	5365	
		90	5294	5563	5694	5624	5700	
		95	5583	5572	5717	5253	5322	

			Туре	6 Radar V	Vaveform_8		Type 6 Radar Waveform_8											
Download	7	Type 6	1.0	333.3	9	0. 3333	300, 0000000	5										
		Frequency List (MHz)	0	1	2	3	4											
		0	5315	5286	5581	5385	5559											
		5	5435	5333	5549	5501	5524											
		10	5661	5511	5387	5322	5664											
		15	5583	5503	5413	5366	5616											
		20	5473	5453	5573	5261	5467											
		25	5288	5269	5462	5465	5342											
		30	5635	5657	5508	5378	5584											
	<u> </u>	35	5380	5418	5612	5360	5601											
	<u> </u>	40	5345	5706	5626	5489	5632											
		45	5454	5329	5694	5704	5527											
		50	5537	5645	5392	5530	5289											
		55	5685	5543	5419	5477	5390											
		60	5441	5422	5571	5285	5507											
		65	5352	5448	5586	5568	5674											
		70	5575	5280	5566	5621	5445											
		75	5555	5554	5386	5470	5656											
		80	5340	5293	5370	5458	5335											
		85	5710	5670	5497	5405	5651											
		90	5576	5395	5474	5311	5547											
		95	5592	5603	5328	5306	5526											

Type 6 Radar Waveform_9

ownload	8	Type 6	1.0	333.3	9	0.3333	300,0000000	4
		Frequency List (MHz)	0	1	2	3	4	
		0	5570	5525	5517	5546	5401	
		5	5477	5355	5624	5664	5353	
		10	5592	5300	5428	5420	5685	
		15	5671	5630	5516	5411	5674	
		20	5527	5639	5522	5445	5319	
		25	5491	5373	5496	5703	5354	
		30	5299	5375	5334	5293	5647	
		35	5273	5649	5359	5294	5317	
		40	5298	5366	5342	5635	5606	
		45	5572	5607	5719	5680	5395	
		50	5280	5278	5350	5322	5250	
		55	5599	5408	5589	5501	5418	
		60	5488	5348	5400	5336	5642	
		65	5371	5399	5520	5669	5571	
		70	5426	5551	5714	5438	5266	
		75	5633	5331	5251	5345	5403	
		80	5290	5575	5370	5397	5676	
		85	5578	5648	5603	5341	5582	
		90	5655	5583	5425	5474	5628	
		95	5490	5485	5431	5504	5621	

Download	9	Type 6	1.0	333.3	9	0.3333	300,0000000	4
		Frequency List (MHz)	0	1	2	3	4	
		0	5350	5289	5453	5707	5621	
		5	5519	5280	5699	5255	5560	
		10	5426	5564	5469	5615	5706	
		15	5284	5282	5522	5456	5391	
		20	5535	5708	5463	5534	5415	
		25	5646	5694	5477	5530	5367	
		30	5340	5256	5590	5583	5491	
		35	5689	5364	5445	5512	5305	
		40	5668	5400	5711	5509	5339	
		45	5586	5655	5665	5263	5606	
		50	5556	5571	5331	5551	5644	
		55	5438	5553	5598	5408	5472	
		60	5547	5540	5433	5701	5379	
		65	5465	5320	5643	5327	5669	
		70	5336	5574	5275	5527	5673	
		75	5407	5634	5614	5507	5466	
		80	5287	5392	5273	5714	5639	
		85	5622	5446	5675	5421	5423	
		90	5506	5588	5554	5537	5595	
		95	5442	5529	5612	5485	5464	

					aveform_11			
Download	10	Type 6	1.0	333.3	9	0.3333	300,0000000	4
		Frequency List (MHz)	0	1	2	3	4	
		0	5605	5528	5389	5296	5463	
		5	5561	5302	5299	5418	5292	
		10	5357	5450	5510	5335	5252	
		15	5275	5312	5625	5404	5583	
		20	5543	5399	5501	5526	5492	
		25	5681	5595	5325	5581	5564	
		30	5409	5704	5688	5708	5311	
		35	5353	5552	5338	5665	5694	-
		40	5507	5483	5274	5336	5396	-
		45 50	5566	5263	5723	5316	5272	
		55	5382 5313	5456 5702	5374 5443	5588 5676	5626 5705	+
		60	5475	5487	5527	5666	5269	
	-	65	5582	5634	5614	5286	5641	+
		70	5674	5599	5406	5632	5279	1
		75	5680	5619	5288	5673	5662	1
		80	5587	5651	5556	5699	5339	1
		85	5411	5629	5669	5621	5671	1
		90	5594	5491	5322	5459	5584	1
	$\overline{}$	95	5596	5383	5346	5637	5522	1
								-
			Туре	6 Radar W	aveform_12	2		
ownload	11	Туре 6	1.0	333.3	9	0.3333	300,0000000	4
		Frequency List (MHz)	0	1	2	3	4	
		0	5385	5389	5325	5457	5683	
		5	5700	5702	5374	5581	5596	
		10	5288	5714	5551	5530	5273	
		15	5363	5439	5253	5449	5300	
		20	5454	5565	5442	5615	5465	
		25	5569	5447	5528	5307	5598	
		30	5451	5593	5645	5448	5509	
		35	5606	5492	5643	5609	5440	
		40	5608	5346	5663	5490	5514	
		45	5333	5546	5684	5369	5283	
		50	5686	5433	5642	5672	5435	
		55	5339	5461	5503	5424	5317	
		60	5708	5395	5420	5319	5450	
		65	5271	5392	5693	5618	5356	
		70	5417	5455	5627	5677	5382	
		75	5591	5723	5529	5348	5576	
		80	5515	5254	5544	5265	5689	
		85	5659	5651	5495	5662	5434	
		90	5279	5680	5344	5361	5697	
		95	5525	5679	5338	5476	5639	
ownload	12	Туре 6	Type	6 Radar W	aveform_13	0. 3333	300. 0000000	7
		Frequency List (MHz)	o	1	2	3	4	
		0	5543	5628	5261	5618	5525	
			5267	5724	5449	5269	5328	
		5	5261	0.22			1	
		10	5597	5503	5689	5250	5294	
		10 15			5689 5356	5250 5494	5294 5492	
		10 15 20	5597	5503				
		10 15 20 25	5597 5451	5503 5566	5356	5494	5492	
		10 15 20 25 30	5597 5451 5462	5503 5566 5634 5396 5579	5356 5383 5256 5602	5494 5607 5411 5663	5492 5438 5632 5283	
		10 15 20 25 30 35	5597 5451 5462 5457 5590 5329	5503 5566 5634 5396 5579 5534	5356 5383 5256 5602 5259	5494 5607 5411 5663 5405	5492 5438 5632 5283 5593	
		10 15 20 25 30 35	5597 5451 5462 5457 5590	5503 5566 5634 5396 5579	5356 5383 5256 5602	5494 5607 5411 5663	5492 5438 5632 5283 5593 5657	
		10 15 20 25 30 35	5597 5451 5462 5457 5590 5329	5503 5566 5634 5396 5579 5534	5356 5383 5256 5602 5259	5494 5607 5411 5663 5405	5492 5438 5632 5283 5593	
		10 15 20 25 30 35 40 45	5597 5451 5462 5457 5590 5329 5619	5503 5566 5634 5396 5579 5534 5660	5356 5383 5256 5602 5259 5271 5429 5484	5494 5607 5411 5663 5405 5428 5325 5496	5492 5438 5632 5283 5593 5657 5648 5379	
		10 15 20 25 30 35 40	5597 5451 5462 5467 5590 5329 5619	5503 5566 5634 5396 5579 5534 5660 5526	5356 5383 5256 5602 5259 5271 5429	5494 5607 5411 5663 5405 5428 5325	5492 5438 5632 5283 5593 5657 5548	
		10 15 20 25 30 35 40 45 50 55	5597 5451 5462 5457 5590 5329 5619 5427 5562	5503 5566 5634 5396 5579 5534 5660 5526 5527	5356 5383 5256 5602 5259 5271 5429 5484 5718	5494 5607 5411 5663 5405 5428 5325 5496	5492 5438 5632 5283 5593 5657 5648 5379	
		10 15 20 25 30 35 40 45 50 56	5597 5451 5462 5467 5590 5329 5619 5427 5562	5503 5566 5634 5396 5579 5534 5660 5526 5527 5693	5356 5383 5256 5602 5259 5271 5429 5484 5718	5494 5607 5411 5663 5405 5428 5325 5496 5288	5492 5438 5632 5283 5593 5657 5548 5379 5362	
		10 15 20 25 30 35 40 45 50 55 60 65	5597 5451 5462 5457 5590 5329 5619 5427 5562 5415 5560 5690 5710	5503 5566 5634 5396 5579 5534 5660 5526 5527 5693 5365 5642 5302	5356 5383 5256 5602 5259 5271 5429 5484 5718 5626 5557	5494 5607 5411 5663 5405 5428 5325 5495 5288 5276 5676 5358	5492 5438 5632 5283 5593 5657 5548 5379 5362 5314 5695 5550	
		10 15 20 25 30 35 40 45 50 55 60 65 70	5597 5451 5462 5457 5590 5329 5619 5427 5562 5415 5560 5690 5710 5692	5503 5566 5634 5396 5579 5534 5660 5526 5527 5693 5365 5642 5302 5649	5356 5383 5256 5602 5259 5271 5429 5484 5718 5626 5557 5675	5494 5607 5411 5663 5405 5428 5325 5495 5288 5276 5676 5358 5292	5492 5438 5632 5283 5593 5657 5548 5379 5362 5314 5695 5550 5277	
		10 15 20 25 30 35 40 45 50 66 67 70 75	5597 5451 5462 5457 5590 5329 5619 5427 5562 5415 5560 5690 5710 5692 5656	5503 5566 5634 5396 5579 5534 5660 5526 5527 5693 5365 5642 5302 5649 5502	5356 5383 5256 5602 5259 5271 5429 5484 5718 5626 5557 5675 5491	5494 5607 5411 5663 5405 5428 5325 5495 5288 5276 5676 5358 5292 5337	5492 5438 5632 5283 5593 5657 5548 5379 5362 5314 5695 5550 5277 5722	
		10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	5597 5451 5462 5457 5590 5329 5619 5427 5562 5415 5560 5690 5710 5692 5696 5719	5503 5566 5634 5396 5579 5534 5660 5526 5527 5693 5365 5642 5302 5649 5502 5639	5356 5383 5256 5602 5259 5271 5429 5484 5718 5626 5657 5675 5491 5654 5703	5494 5607 5411 5663 5405 5428 5325 5495 5288 5276 5676 5358 5292 5337 5464	5492 5438 5632 5283 5593 5657 5548 5379 5362 5314 5695 5650 5277 5722 5350	
		10 15 20 25 30 35 40 45 50 66 67 70 75	5597 5451 5462 5457 5590 5329 5619 5427 5562 5415 5560 5690 5710 5692 5656	5503 5566 5634 5396 5579 5534 5660 5526 5527 5693 5365 5642 5302 5649 5502	5356 5383 5256 5602 5259 5271 5429 5484 5718 5626 5557 5675 5491	5494 5607 5411 5663 5405 5428 5325 5495 5288 5276 5676 5358 5292 5337	5492 5438 5632 5283 5593 5657 5548 5379 5362 5314 5695 5550 5277 5722	

			Туре	6 Radar W	aveform_1	4	
Download	13	Type 6	1.0	333.3	9	0. 3333	300.0
		Frequency List (MHz)	o	1	2	3	4
		0	5323	5392	5672	5304	5270
		5	5309	5649	5427	5335	5535
		10	5528	5292	5255	5348	5315
		15	5539	5693	5459	5684	5470
		20	5325	5421	5696	5411	5723

Type 6 Radar Waveform_15

Download	14	Type 6	1.0	333.3	9	0.3333	300,0000000	3
		Frequency List (MHz)	0	1	2	3	4	
		0	5578	5631	5608	5465	5587	
		5	5351	5671	5502	5498	5267	
		10	5362	5556	5296	5543	5336	
		15	5530	5345	5487	5401	5478	
		20	5394	5688	5384	5611	5575	
		25	5662	5619	5700	5674	5357	
		30	5516	5521	5684	5347	5337	
		35	5441	5569	5447	5435	5437	
		40	5304	5421	5490	5389	5595	
		45	5286	5431	5692	5404	5586	
		50	5434	5519	5645	5331	5701	
		55	5598	5356	5705	5620	5415	
		60	5352	5387	5500	5681	5714	
		65	5540	5629	5718	5313	5679	
		70	5293	5682	5405	5373	5310	
		75	5468	5533	5317	5680	5321	
		80	5282	5650	5514	5457	5593	
		85	5270	5438	5552	5639	5711	
		90	5657	5381	5715	5703	5568	
		95	5624	5329	5251	5450	5640	

Download	15	Type 6	1.0	333.3	9	0.3333	300.0000000	2
		Frequency List (MHz)	0	1	2	3	4	
		0	5358	5395	5544	5626	5332	
		5	5490	5596	5577	5661	5571	
		10	5293	5442	5337	5263	5357	
		15	5618	5375	5568	5532	5593	
		20	5389	5560	5303	5302	5402	
		25	5524	5345	5259	5338	5343	
		30	5473	5261	5361	5642	5476	
		35	5629	5365	5674	5458	5274	
		40	5617	5717	5427	5418	5322	
		45	5369	5678	5344	5484	5587	
		50	5580	5637	5523	5342	5492	
		55	5519	5655	5691	5553	5579	
		60	5297	5694	5326	5627	5440	
		65	5489	5550	5680	5482	5462	
		70	5290	5408	5697	5286	5405	
		75	5437	5251	5500	5349	5563	
•		80	5709	5360	5435	5708	5630	
		85	5420	5690	5387	5380	5546	
		90	5721	5467	5488	5641	5384	
-		95	5710	5445	5522	5659	5575	

			туре	6 Radar W	averorm_1			
ownload	16	Type 6	1.0	333.3	9	0.3333	300.0000000 3	
		Frequency List (MHz)	0	1	2	3	4	
		0	5516	5634	5480	5312	5649	
		5	5532	5618	5652	5349	5303	
		10	5699	5706	5378	5458	5502	
		15	5671	5577	5407	5397	5629	
		20	5341	5294	5330	5290	5376	
		25	5496	5449	5293	5380	5707	
		30	5430	5476	5610	5365	5518	
		35	5720	5636	5352	5372	5588	
		40	5700	5655	5570	5415	5251	
		45	5286	5402	5537	5377	5444	
		50	5281	5688	5709	5640	5436	
		55	5609	5406	5550	5306	5270	
		60	5717	5526	5724	5670	5263	
		65	5438	5604	5285	5475	5534	
		70	5276	5411	5546	5386	5374	
		75	5557	5394	5481	5253	5399	
		80	5513	5626	5547	5429	5250	
		85	5385	5644	5635	5675	5711	
		90	5501	5370	5689	5658	5439	
		95	5694	5343	5683	5479	5712	

Download	17	Type 6	1.0	333.3	9	0.3333	300.0000000	4
		Frequency List (MHz)	0	1	2	3	4	
		0	5296	5398	5416	5376	5394	
		5	5574	5543	5252	5415	5510	
		10	5533	5495	5419	5653	5399	
		15	5319	5629	5299	5622	5599	
		20	5405	5320	5282	5383	5303	
		25	5556	5325	5699	5553	5327	
		30	5422	5596	5387	5691	5287	
		35	5660	5657	5336	5529	5602	
		40	5286	5524	5308	5496	5335	
		45	5412	5558	5329	5369	5363	
		50	5590	5264	5698	5457	5323	
		55	5463	5283	5420	5563	5666	
		60	5521	5435	5662	5358	5550	
		65	5616	5464	5640	5592	5270	
		70	5606	5262	5511	5298	5723	
		75	5721	5677	5440	5559	5505	
		80	5623	5655	5311	5544	5624	
		85	5263	5256	5442	5253	5598	
		90	5408	5401	5355	5438	5630	
		95	5297	5494	5678	5716	5710	

Download	18	Туре 6	1.0	333.3	9	0. 3333	300.0000000	2
		Frequency List (MHz)	o	1	2	3	4	
		0	5551	5637	5352	5537	5711	
		5	5713	5565	5327	5578	5339	
		10	5464	5284	5460	5276	5420	
		15	5310	5281	5402	5570	5316	
		20	5389	5698	5375	5444	5652	
		25	5427	5657	5361	5582	5344	
		30	5334	5536	5480	5321	5325	
		35	5280	5297	5363	5391	5434	
		40	5575	5506	5487	5309	5452	
		45	5421	5643	5529	5574	5633	
		50	5315	5412	5664	5702	5608	
		55	5517	5311	5485	5492	5564	
		60	5600	5704	5287	5376	5562	
		65	5665	5336	5579	5366	5300	
		70	5723	5514	5622	5592	5682	
		75	5690	5700	5583	5540	5282	
		80	5258	5436	5374	5541	5641	
		85	5533	5694	5634	5693	5649	
		90	5656	5566	5472	5512	5335	
		95	5314	5549	5614	5362	5414	

		Type 6 F	Radar Wave	form_20			
Download 19 Ty	ype 6	1.0	333.3	9	0. 3333	300.0000000	4
				2	3	4	
0		5331	5401	5288	5698	5456	
5	/ r	5280	5490	5402	5266	5546	
10	0	5395	5548	5501	5471	5441	
15	5	5398	5408	5615	5508	5324	
20	0	5555	5261	5464	5724	5332	
25	5	5504	5630	5383	5603	5301	
30	0	5549	5688	5678	5363	5518	
35	5	5596	5433	5686	5677	5571	
40	0	5372	5340	5503	5416	5667	
45	5	5535	5479	5599	5450	5334	
50	0	5366	5487	5699	5682	5693	
55	5	5290	5649	5594	5299	5605	
60	0	5488	5285	5634	5432	5644	
65	5	5614	5568	5641	5562	5345	
70	0	5251	5521	5534	5368	5692	
75	5	5437	5538	5636	5544	5472	
80	0	5279	5254	5561	5429	5367	
85		5409	5394	5444	5604	5268	
90	0	5512	5719	5517	5695	5425	

Download	20	Туре 6	1.0	333.3	9	0.3333	300,0000000	5
		Frequency List (MHz)	0	1	2	3	4	
		O	5586	5640	5699	5384	5298	
		5	5322	5512	5477	5429	5278	
		10	5704	5434	5639	5666	5462	
		15	5486	5438	5511	5660	5700	
		20	5332	5624	5677	5456	5697	
		25	5598	5453	5261	5487	5645	
		30	5457	5258	5289	5498	5502	
		35	5706	5489	5683	5600	5516	
		40	5654	5310	5483	5500	5723	
		45	5647	5618	5440	5652	5681	
		50	5326	5510	5417	5687	5493	
		55	5412	5425	5691	5501	5337	
		60	5347	5455	5594	5426	5551	
		65	5689	5709	5554	5369	5324	
		70	5350	5541	5317	5617	5320	
		75	5544	5531	5465	5297	5381	
		80	5473	5597	5356	5314	5717	
		85	5446	5526	5711	5470	5443	
		90	5348	5659	5252	5410	5698	
		95	5620	5418	5520	5690	5550	

ownload	21	Type 6	1.0	333.3	9	0.3333	300.0000000	6
		Frequency List (MHz)	0	1	2	3	4	
		0	5269	5404	5635	5545	5518	
		5	5364	5437	5552	5495	5582	
		10	5698	5680	5386	5483	5574	
		15	5565	5614	5608	5417	5718	
		20	5315	5618	5670	5486	5305	
		25	5464	5591	5463	5687	5346	
		30	5690	5504	5696	5641	5322	
		35	5285	5361	5611	5355	5262	
		40	5723	5497	5652	5627	5701	
		45	5498	5705	5568	5580	5686	
		50	5468	5301	5340	5600	5379	
		55	5406	5320	5308	5620	5539	
		60	5258	5523	5512	5658	5590	
		65	5676	5594	5628	5613	5303	
		70	5717	5547	5520	5559	5500	
		75	5585	5440	5466	5491	5254	
		80	5286	5660	5435	5551	5447	
		85	5631	5302	5541	5394	5450	
		90	5434	5489	5476	5380	5536	
		95	5462	5617	5333	5405	5616	

	Type 6 Radar Waveform_23										
Download	22	Туре 6	1.0	333.3	9	0. 3333	300.0000000	5			
		Frequency List (MHz)	0	1	2	3	4				
		0	5524	5643	5571	5706	5360				
		5	5503	5459	5627	5658	5314				
		10	5566	5487	5721	5581	5504				
		15	5565	5692	5717	5653	5609				
		20	5251	5481	5559	5634	5277				
		25	5254	5667	5695	5400	5351				
		30	5710	5647	5622	5388	5516				
		35	5305	5413	5556	5514	5525				
		40	5291	5442	5661	5488	5494				
		45	5484	5607	5309	5283	5358				
		50	5456	5387	5519	5390	5334				
		55	5284	5313	5333	5499	5517				
		60	5279	5508	5310	5662	5349				
		65	5443	5713	5626	5411	5486				
		70	5431	5307	5289	5720	5396				
		75	5399	5518	5372	5705	5464				
		80	5718	5601	5510	5450	5723				
		85	5432	5271	5350	5570	5265				
ı		90	5258	5359	5659	5698	5654				

ownload	23	Type 6	1.0	333.3	9	0.3333	300,0000000	6
		Frequency List (MHz)	0	1	2	3	4	
		0	5304	5407	5507	5392	5580	
		5	5545	5384	5702	5346	5521	
		10	5400	5276	5287	5679	5525	
		15	5653	5344	5345	5698	5326	
		20	5259	5550	5597	5626	5616	
		25	5640	5581	5395	5421	5434	
		30	5393	5696	5604	5362	5540	
		35	5714	5347	5504	5352	5667	
		40	5439	5605	5599	5631	5588	
		45	5413	5587	5517	5336	5720	
		50	5332	5563	5570	5479	5632	
		55	5606	5501	5689	5628	5637	
		60	5475	5526	5494	5650	5486	
		65	5536	5556	5565	5718	5281	
		70	5709	5379	5372	5375	5477	
		75	5341	5253	5629	5445	5495	
		80	5614	5291	5311	5429	5350	
		85	5412	5325	5450	5613	5374	
		90	5452	5488	5448	5678	5686	1
		95	5496	5252	5301	5676	5538	1

Download	24	Туре 6	1.0	333.3	9	0.3333	300,0000000	3
		Frequency List (MHz)	o	1	2	3	4	
		0	5559	5646	5443	5456	5422	
		5	5587	5406	5302	5509	5350	
		10	5331	5540	5328	5399	5546	
		15	5266	5471	5351	5268	5615	
		20	5645	5716	5538	5715	5589	
		25	5431	5433	5598	5525	5468	
		30	5435	5585	5561	5577	5314	
		35	5534	5486	5595	5720	5442	
		40	5450	5444	5608	5537	5396	
		45	5342	5567	5475	5575	5389	
		50	5510	5683	5264	5621	5665	
		55	5455	5550	5689	5404	5630	
		60	5599	5291	5640	5326	5573	
		65	5432	5262	5505	5601	5453	
		70	5551	5512	5548	5358	5348	
		75	5569	5436	5688	5373	5675	
		80	5426	5272	5724	5547	5681	
		85	5283	5253	5288	5545	5667	
		90	5664	5622	5650	5494	5385	
		95	5560	5320	5513	5307	5382	

	Type 6 Radar Waveform_26									
Download	25	Type 6	1.0	333.3	9	0. 3333	300.0000000	3		
		Frequency List (MHz)	0	1	2	3	4			
		0	5717	5410	5379	5617	5642			
		5	5629	5331	5377	5672	5557			
		10	5640	5329	5369	5594	5567			
		15	5354	5501	5454	5691	5332			
		20	5653	5310	5479	5707	5562			
		25	5319	5382	5704	5502	5574			
		30	5474	5518	5317	5466	5625			
		35	5686	5516	5595	5364	5283			
		40	5378	5636	5582	5649	5450			
		45	5558	5633	5345	5397	5462			
		50	5440	5279	5278	5402	5670			
		55	5449	5570	5420	5330	5513			
		60	5399	5463	5551	5540	5285			
		65	5443	5693	5620	5344	5351			
		70	5418	5327	5395	5657	5493			
		75	5343	5407	5524	5359	5328			
-										

Type 6 Radar Waveform_27

Download	26	Туре 6	1.0	333, 3	9	0.3333	300,0000000	5
		Frequency List (MHz)	0	1	2	3	4	
		0	5497	5271	5315	5303	5484	
		5	5293	5353	5452	5263	5289	
		10	5571	5690	5410	5314	5588	
		15	5442	5628	5557	5261	5524	
		20	5661	5476	5517	5321	5535	
		25	5682	5709	5432	5258	5536	
		30	5616	5460	5475	5435	5715	
		35	5552	5667	5399	5312	5273	
		40	5278	5694	5396	5316	5401	
		45	5579	5578	5430	5641	5594	
		50	5398	5662	5338	5723	5368	
		55	5479	5341	5493	5527	5309	
		60	5646	5444	5549	5495	5458	
		65	5465	5700	5421	5286	5500	
		70	5576	5713	5496	5692	5427	
		75	5451	5645	5354	5529	5613	
		80	5389	5485	5679	5372	5584	1
		85	5534	5597	5323	5673	5631	
		90	5510	5311	5357	5669	5643	1
		95	5668	5364	5603	5356	5702	

Download	27	Type 6	1.0	333.3	9	0.3333	300,0000000	6
		Frequency List (MHz)	0	1	2	3	4	
		0	5277	5510	5251	5464	5704	
		5	5335	5278	5527	5426	5593	
		10	5502	5479	5451	5509	5609	
		15	5433	5280	5660	5306	5716	
		20	5572	5545	5458	5313	5508	
		25	5473	5658	5635	5459	5570	
		30	5349	5432	5650	5392	5372	
		35	5331	5490	5680	5523	5289	
		40	5533	5254	5544	5576	5410	
		45	5724	5652	5549	5689	5317	
		50	5299	5457	5302	5663	5681	
		55	5481	5499	5465	5415	5581	
		60	5403	5394	5623	5367	5487	
		65	5449	5612	5327	5605	5386	
		70	5413	5454	5494	5657	5498	
-		75	5636	5532	5466	5456	5482	
		80	5365	5601	5320	5393	5534	
		85	5371	5368	5416	5488	5529	
		90	5390	5550	5661	5472	5431	
-		95	5268	5260	5391	5573	5516	

Type 6 Radar Waveform_29 Download Frequency List (MHz) 4Ω Type 6 Radar Waveform_30 Download Frequency List (MHz)

Product	ACCESS POINT	Test Site	SR2			
Test Engineer	Eric Lin	Test Date	2022/06/12			
Test Item	Radar Statistical Performance Check (802.11ax-HE40 – 5510MHz)					

Radar Type 1 - Radar Statistical Performance

Trail #	Test Freq.	1=Detection	Trail #	Test Freq.	1=Detection	
	(MHz)	0=No Detection		(MHz)	0=No Detection	
1	5502	1	16	5506	1	
2	5519	1	17	5492	1	
3	5524	1	18	5515	1	
4	5495	1	19	5521	1	
5	5520	1	20	5495	1	
6	5492	1	21	5525	1	
7	5524	1	22	5493	1	
8	5530	0	23	5507	1	
9	5491	1	24	5494	1	
10	5495	1	25	5500	1	
11	5504	1	26	5494	1	
12	5524	1	27	5524	1	
13	5507	1	28	5497	1	
14	5516	1	29	5502	1	
15	5524	1	30	5490	0	
	Det	ection Percentage	(%)		93.3%	

FCC ID: Q9DAPIN0615 Page Number: 73 of 186

Radar Type 2 - Radar Statistical Performance

Trail #	Test Freq.	1=Detection	Trail #	Test Freq.	1=Detection
	(MHz)	0=No Detection		(MHz)	0=No Detection
1	5525	1	16	5502	1
2	5500	1	17	5508	1
3	5490	1	18	5493	1
4	5499	1	19	5526	0
5	5509	1	20	5528	1
6	5492	1	21	5495	1
7	5516	1	22	5525	1
8	5517	1	23	5524	0
9	5513	1	24	5526	1
10	5502	1	25	5516	1
11	5495	1	26	5497	1
12	5530	0	27	5527	1
13	5513	1	28	5503	1
14	5524	1	29	5522	1
15	5524	1	30	5527	0
	Det	ection Percentage	(%)		86.7%

FCC ID: Q9DAPIN0615 Page Number: 74 of 186

Radar Type 3 - Radar Statistical Performance

Trail #	Test Freq.	1=Detection	Trail #	Test Freq.	1=Detection	
	(MHz)	0=No Detection		(MHz)	0=No Detection	
1	5498	1	16	5491	1	
2	5521	0	17	5498	1	
3	5515	1	18	5505	1	
4	5504	1	19	5504	1	
5	5509	1	20	5528	0	
6	5506	1	21	5524	0	
7	5519	0	22	5505	1	
8	5518	1	23	5523	1	
9	5493	1	24	5495	1	
10	5499	1	25	5530	0	
11	5521	0	26	5499	1	
12	5490	0	27	5490	0	
13	5492	1	28	5509	1	
14	5495	1	29	5523	1	
15	5505	1	30	5518	1	
	Det	ection Percentage	(%)		73.3%	

FCC ID: Q9DAPIN0615 Page Number: 75 of 186

Radar Type 4 - Radar Statistical Performance

Trail #	Test Freq.	1=Detection	Trail #	Test Freq.	1=Detection
	(MHz)	0=No Detection		(MHz)	0=No Detection
1	5530	0	16	5504	1
2	5494	1	17	5501	1
3	5501	1	18	5519	1
4	5527	1	19	5521	0
5	5504	1	20	5519	1
6	5499	1	21	5502	1
7	5494	1	22	5522	1
8	5505	1	23	5528	1
9	5529	1	24	5503	1
10	5518	1	25	5490	0
11	5509	1	26	5504	1
12	5507	1	27	5509	1
13	5492	1	28	5497	1
14	5520	1	29	5511	1
15	5512	1	30	5496	1
	Det	ection Percentage	(%)		90.0%

Note: In addition an average minimum percentage of successful detection across all four Short pulse radar test

waveforms is as follows:
$$\frac{P_d 1 + P_d 2 + P_d 3 + P_d 4}{4} = (93.3\% + 86.7\% + 73.3\% + 90.0\%)/4 = 85.825\% (>80\%)$$

FCC ID: Q9DAPIN0615 Page Number: 76 of 186

53200.0

53100.0

53088.0

52844.0

52782.0

Download

Download

Download

Download

Download

Download

24

25

26

28

					1	
	Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Humber of Pulses	Taveform Length (us)
Download	0	Type 1	1.0	778.0	68	52904.0
Download	1	Type 1	1.0	738. 0	72	53136.0
Download	2	Type 1	1.0	578.0	92	53176.0
Download	3	Type 1	1.0	538. 0	99	53262.0
Download	4	Type 1	1.0	838. 0	63	52794.0
Download	5	Type 1	1.0	658.0	81	53298.0
Download	6	Type 1	1.0	618.0	86	53148.0
Download	7	Type 1	1.0	3066.0	18	55188.0
Download	8	Type 1	1.0	598. 0	89	53222.0
Download	9	Type 1	1.0	818.0	65	53170.0
Download	10	Type 1	1.0	678.0	78	52884.0
Download	11	Type 1	1.0	878.0	61	53558.0
Download	12	Type 1	1.0	718.0	74	53132.0
Download	13	Type 1	1.0	518.0	102	52836.0
Download	14	Type 1	1.0	638.0	83	52954.0
Download	15	Type 1	1.0	820.0	65	53300.0
Download	16	Type 1	1.0	2796.0	19	53124.0
Download	17	Type 1	1.0	987.0	54	53298.0
Download	18	Type 1	1.0	1349.0	40	53960.0
Download	19	Type 1	1.0	2203.0	24	52872.0
Download	20	Type 1	1.0	1773.0	30	53190.0
Download	21	Type 1	1.0	1062.0	50	53100.0
Download	22	Type 1	1.0	1218.0	44	53592.0
Download	23	Type 1	1.0	2742.0	20	54840.0
Deedlawell	24	Turno 1	1.0	1129 0	4.7	E3063 0

Type 2 Radar Statistical Performance

1.0

1.0

1.0

1.0

1.0

1.0

Type 1

Type 1

Type 1

Type 1

Type 1

Type 1

1129.0

1400.0

531.0

1106.0

2402.0

2778.0

47

38

48

22

19

100

	Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Number of Pulses	Taveform Length (us)
Download	0	Type 2	2.6	220.0	25	5500.0
Download	1	Type 2	1.5	228.0	23	5244.0
Download	2	Type 2	3.2	180.0	26	4680.0
Download	3	Type 2	2.4	175.0	25	4375.0
Download	4	Type 2	3.9	210.0	27	5670.0
Download	5	Type 2	4.7	151.0	29	4379.0
Download	6	Type 2	1.5	170.0	23	3910.0
Download	7	Type 2	4.2	209.0	28	5852.0
Download	8	Type 2	4.1	195.0	28	5460.0
Download	9	Type 2	3. 7	202.0	27	5454.0
Download	10	Type 2	2.5	152.0	25	3800.0
Download	11	Type 2	2.1	207.0	24	4968.0
Download	12	Type 2	1.3	167.0	23	3841.0
Download	13	Type 2	2.8	196.0	26	5096.0
Download	14	Type 2	3.4	183.0	27	4941.0
Download	15	Type 2	2.4	187.0	25	4675.0
Download	16	Type 2	1.7	153.0	24	3672.0
Download	17	Type 2	1.5	224.0	23	5152.0
Download	18	Type 2	2.2	225.0	25	5625.0
Download	19	Type 2	1.8	161.0	24	3864.0
Download	20	Type 2	1.5	191.0	23	4393.0
Download	21	Type 2	2.9	223.0	26	5798.0
Download	22	Type 2	3.1	218.0	26	5668.0
Download	23	Type 2	2.8	206.0	26	5356.0
Download	24	Type 2	2.8	199.0	26	5174.0
Download	25	Type 2	2. 7	203.0	25	5075.0
Download	26	Type 2	1.0	198.0	23	4554.0
Download	27	Type 2	4.7	174.0	29	5046.0
Download	28	Type 2	4.4	221.0	28	6188.0
Download	29	Type 2	2.0	166.0	24	3984.0

Type 3 Radar Statistical Performance

	Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Humber of Pulses	Taveform Length (us)
Download	0	Type 3	7. 6	296.0	17	5032.0
Download	1	Type 3	6.5	333.0	16	5328.0
Download	2	Type 3	8.2	331.0	17	5627.0
Download	3	Type 3	7.4	212.0	17	3604.0
Download	4	Type 3	8.9	247.0	18	4446.0
Download	5	Type 3	9. 7	450.0	18	8100.0
Download	6	Type 3	6.5	227.0	16	3632.0
Download	7	Type 3	9.2	338.0	18	6084.0
Download	8	Туре З	9.1	245.0	18	4410.0
Download	9	Type 3	8. 7	325.0	18	5850.0
Download	10	Type 3	7. 5	203.0	17	3451.0
Download	11	Type 3	7. 1	218.0	16	3488.0
Download	12	Type 3	6.3	201.0	16	3216.0
Download	13	Type 3	7. 8	423.0	17	7191.0
Download	14	Type 3	8.4	500.0	17	8500.0
Download	15	Туре З	7.4	311.0	17	5287.0
Download	16	Type 3	6. 7	381.0	16	6096.0
Download	17	Type 3	6.5	485.0	16	7760.0
Download	18	Type 3	7. 2	417.0	16	6672.0
Download	19	Type 3	6.8	371.0	16	5936.0
Download	20	Type 3	6.5	264.0	16	4224.0
Download	21	Type 3	7. 9	347.0	17	5899.0
Download	22	Туре З	8. 1	483.0	17	8211.0
Download	23	Туре З	7.8	419.0	17	7123.0
Download	24	Type 3	7. 8	489.0	17	8313.0
Download	25	Type 3	7. 7	283.0	17	4811.0
Download	26	Туре З	6.0	254.0	16	4064.0
Download	27	Туре З	9. 7	473.0	18	8514.0
Download	28	Type 3	9.4	380.0	18	6840.0
Download	29	Туре З	7. 0	445.0	16	7120.0

Type 4 Radar Statistical Performance

Trial List						
	Trial Id	Radar Type	Pulse Width (us)	PRI (us)	Mumber of Pulses	Taveform Length (us)
Download	0	Type 4	14. 7	296. 0	14	4144.0
Download	1	Type 4	12.1	333.0	12	3996.0
Download	2	Type 4	16.0	331.0	14	4634.0
Download	3	Type 4	14.1	212.0	13	2756.0
Download	4	Type 4	17.4	247.0	15	3705.0
Download	5	Type 4	19.3	450.0	16	7200.0
Download	6	Type 4	12.1	227.0	12	2724.0
Download	7	Type 4	18.1	338.0	15	5070.0
Download	8	Type 4	18.0	245.0	15	3675.0
Download	9	Type 4	17.1	325.0	15	4875.0
Download	10	Type 4	14.5	203.0	13	2639.0
Download	11	Type 4	13.4	218.0	13	2834.0
Download	12	Type 4	11.7	201.0	12	2412.0
Download	13	Type 4	15. 1	423.0	14	5922.0
Download	14	Type 4	16.4	500.0	15	7500.0
Download	15	Type 4	14.3	311.0	13	4043.0
Download	16	Type 4	12. 7	381.0	12	4572.0
Download	17	Type 4	12.1	485.0	12	5820.0
Download	18	Type 4	13. 7	417.0	13	5421.0
Download	19	Type 4	12.8	371.0	13	4823.0
Download	20	Type 4	12.1	264.0	12	3168.0
Download	21	Type 4	15.3	347.0	14	4858.0
Download	22	Type 4	15.8	483.0	14	6762.0
Download	23	Type 4	15.0	419.0	14	5866.0
Download	24	Type 4	15.2	489.0	14	6846.0
Download	25	Type 4	14.8	283.0	14	3962.0
Download	26	Type 4	11.0	254.0	12	3048.0
Download	27	Type 4	19.2	473.0	16	7568.0
Download	28	Type 4	18. 7	380.0	16	6080.0
Download	29	Type 4	13.3	445.0	13	5785.0

Radar Type 5 - Radar Statistical Performance

Trail #	Test Freq.	1=Detection	Trail #	Test Freq.	1=Detection	
	(MHz)	0=No Detection		(MHz)	0=No Detection	
1	5510	1	16	5496	1	
2	5510	1	17	5495	1	
3	5510	1	18	5495	1	
4	5510	1	19	5496	1	
5	5510	1	20	5495	1	
6	5510	1	21	5526	1	
7	5510	1	22	5523	1	
8	5510	1	23	5523	1	
9	5510	1	24	5523	0	
10	5510	1	25	5523	1	
11	5496	1	26	5524	1	
12	5496	1	27	5526	1	
13	5494	1	28	5520	1	
14	5497	1	29	5521	1	
15	5498	1	30	5524	1	
	Det	ection Percentage	(%)		96.7%	

			Type 5 F	Radar Wa	veform_1						
Download 0	load 0 Type 5 13 0.9230769 12.0000000 5.510000000										
	Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)			
	0	602605.0	70.6	11	2	1346.0	1219.0	-			
	1	826861.0	56.1	11	1	1447.0	-	-			
	2	128538.0	77.6	11	2	1754.0	1249.0	-			
	3	351652.0	67.3	11	2	1862.0	1227.0	-			
	4	573839.0	85.5	11	3	1566.0	1885.0	1141.0			
	5	796191.0	95.8	11	3	1727.0	1620.0	1717.0			
	6	101263.0	56.4	11	1	1077.0	-	-			
	7	323448.0	89.1	11	3	1982.0	1337.0	1813.0			
	8	546592.0	88. 7	11	3	1265.0	1267.0	1737.0			
	9	769315.0	83.9	11	3	1454.0	1351.0	1603.0			
	10	73596.0	69.3	11	2	1563.0	1047.0	-			
	11	297104.0	63.5	11	1	1787.0	-	-			
	12	520487.0	54.0	11	1	1890.0	_	_			

FCC ID: Q9DAPIN0615 Page Number: 79 of 186

Tv		_	Doc	lar	Ma	vofo	rm	2
Ιy	he	J	nac	ıaı	vva	vefo	1111	

Download	1	Type 5	9	1.3333333	12.0000000	5.510000000				
		Burst ID	Burst Offset (us)	Pulse Fidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
		0	1074397.0	73. 1	6	2	1179.0	1714.0	-	
		1	66638.0	80.1	6	2	1157.0	1572.0	-	
		2	389203.0	68.3	6	2	1879.0	1356.0	-	
		3	712865.0	59.6	6	1	1233.0	-	-	
		4	1035605.0	56.4	6	1	1666.0	-	-	
		5	26906.0	65.0	6	1	1767.0	-	-	
		6	350044.0	60.1	6	1	1041.0	_	-	
		7	672936.0	56.1	6	1	1498.0	-	-	
		8	994807.0	73.9	6	2	1110.0	1914.0	-	

ownload	2	Type 5	15	0.8000000	12.0000000	5.510000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	789673.0	76.8	13	2	1292.0	1326.0	-
		1	185692.0	72.2	13	2	1512.0	1061.0	-
		2	378783.0	73. 1	13	2	1867.0	1360.0	-
		3	572101.0	71.3	13	2	1508.0	1613.0	-
		4	767275.0	50.2	13	1	1136.0	-	-
		5	161389.0	95.5	13	3	1840.0	1895.0	1205.0
		6	354276.0	92.4	13	3	1948.0	1422.0	1436.0
		7	549583.0	63.0	13	1	1248.0	-	-
		8	739148.0	92.9	13	3	1871.0	1886.0	1960.0
		9	137672.0	86.6	13	3	1464.0	1974.0	1301.0
		10	332058.0	66.5	13	1	1105.0	-	-
		11	524205.0	81.0	13	2	1728.0	1824.0	-
		12	718210.0	69.1	13	2	1101.0	1517.0	-
		13	114390.0	50.6	13	1	1413.0	_	-
		14	308150.0	51.9	13	1	1215.0	_	_

Download	3	Type 5	12	1.0000000	12.0000000	5.510000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	627489.0	66.2	10	1	1296.0	-	-
		1	868243.0	67.4	10	2	1568.0	1408.0	-
		2	113213.0	64.2	10	1	1355.0	-	-
		3	355384.0	58.0	10	1	1445.0	-	-
		4	597754.0	56.0	10	1	1128.0	-	-
		5	836892.0	93.5	10	3	1092.0	1795.0	1951.0
		6	83202.0	78. 7	10	2	1942.0	1532.0	-
		7	324573.0	84.3	10	3	1530.0	1043.0	1876.0
		8	566679.0	77.6	10	2	1367.0	1933.0	-
		9	808665.0	76.5	10	2	1936.0	1050.0	-
		10	53528.0	53.4	10	1	1671.0	-	-
		11	294860.0	89.6	10	3	1149.0	1410.0	1793.0

Tv	na	5	Dac	lar	Wav	of o	rm	5
Ιy	μe	J	Rac	ıaı	vva	/eio	1111_	_၁

Download	4	Type 5	17	0.7058824	12.0000000	5.510000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	378715.0	75.9	16	2	1648.0	1193.0	-
		1	547926.0	92.8	16	3	1244.0	1474.0	1786.0
		2	16683.0	68.5	16	2	1492.0	1766.0	-
		3	187667.0	50. 7	16	1	1096.0	-	-
		4	358256.0	57.3	16	1	1773.0	-	-
		5	526660.0	94.6	16	3	1453.0	1923.0	1544.0
		6	696184.0	96. 7	16	3	1580.0	1846.0	1979.0
		7	166289.0	79.4	16	2	1308.0	1156.0	-
		8	337434.0	55.3	16	1	1329.0	-	-
		9	506640.0	94.2	16	3	1188.0	1271.0	1185.0
		10	678832.0	64.1	16	1	1697.0	-	-
		11	145019.0	95.6	16	3	1258.0	1231.0	1211.0
		12	316328.0	61.0	16	1	1457.0	_	-
		13	484761.0	96. 7	16	3	1423.0	1583.0	1940.0
		14	656519.0	75.6	16	2	1997.0	1066.0	-
		15	123869.0	91.1	16	3	1139.0	1777.0	1762.0
		16	294501.0	82.8	16	2	1415.0	1909.0	-

Download	5	Type 5	19	0.6315789	12.0000000	5.510000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Width (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	415018.0	97.0	19	3	1303.0	1761.0	1330.0
		1	568655.0	73. 1	19	2	1375.0	1332.0	_
		2	92527.0	54.0	19	1	1190.0	_	_
		3	244747.0	79.4	19	2	1570.0	1340.0	_
		4	397820.0	66.4	19	1	1959.0	-	_
		5	548904.0	93.4	19	3	1515.0	1073.0	1222.0
		6	73221.0	89.0	19	3	1775.0	1716.0	1751.0
		7	226297.0	50.7	19	1	1988.0	-	_
		8	379289.0	52.0	19	1	1496.0	-	-
		9	532037.0	50.1	19	1	1575.0	-	-
		10	54737.0	80.5	19	2	1035.0	1596.0	-
		11	206723.0	98.1	19	3	1768.0	1086.0	1458.0
		12	358278.0	87.9	19	3	1857.0	1658.0	1805.0
		13	510834.0	95.6	19	3	1543.0	1431.0	1525.0
		14	35853.0	94.9	19	3	1401.0	1850.0	1026.0
		15	187968.0	96.8	19	3	1256.0	1427.0	1679.0
		16	341423.0	55.8	19	1	1901.0	_	-
		17	494631.0	66.5	19	1	1274.0	-	-
		18	17169.0	70.3	19	2	1140.0	1083.0	-

ownload	6	Type 5	9	1.3333333	12.0000000	5.510000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	358988.0	74.3	7	2	1626.0	1196.0	-
		1	681127.0	85.8	7	3	1482.0	1246.0	1170.0
		2	1005552.0	59.2	7	1	1255.0	-	-
		3	1325385.0	86.5	7	3	1046.0	1721.0	1735.0
		4	319170.0	72.4	7	2	1521.0	1591.0	-
		5	641842.0	71.2	7	2	1331.0	1675.0	-
		6	962808.0	96.6	7	3	1874.0	1520.0	1929.0
		7	1287462.0	72.0	7	2	1640.0	1027.0	-
		8	279683.0	53.3	7	1	1911.0	-	-

Type 5	Radar	Waveform_	_8
--------	-------	-----------	----

ownload	7 Type 5	18	0.6666667	12.0000000	5.510000000			
	Burst	Burst ID Offset (us)	Pulse Vidth (us)	Chirp Tidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
	0	300327.0	68. 7	17	2	1434.0	1667.0	-
	1	460622.0	97.1	17	3	1601.0	1037.0	1384.0
	2	623369.0	59.4	17	1	1852.0	_	-
	3	119558.0	67.8	17	2	1597.0	1554.0	-
	4	280363.0	87. 7	17	3	1148.0	1142.0	1143.0
	5	442684.0	51.4	17	1	1229.0	-	-
	6	601917.0	80. 7	17	2	1864.0	1741.0	-
	7	99939.0	53.4	17	1	1803.0	-	-
	8	260407.0	99.5	17	3	1497.0	1057.0	1241.0
	9	422877.0	60.1	17	1	1115.0	_	-
	10	583728.0	59.5	17	1	1760.0	_	-
	11	79731.0	99.4	17	3	1920.0	1004.0	1748.0
	12	240892.0	79.6	17	2	1889.0	1113.0	-
	13	400877.0	100.0	17	3	1192.0	1602.0	1817.0
	14	564125.0	55.2	17	1	1452.0	_	-
	15	60004.0	94.4	17	3	1204.0	1656.0	1262.0
	16	221554.0	66.2	17	1	1535.0	_	-
	17	382060.0	81.4	17	2	1122.0	1818.0	_

Download	8	т	18	0.6666667	12.0000000	5.510000000			
DOWNLOSE	8	Type 5 Burst ID	Burst Offset (us)		Chirp Width (MHz)	Humber of	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	543586.0	67.5	17	2	1078.0	1189.0	_
		1	40147.0	98. 7	17	3	1898.0	1441.0	1839.0
		2	201261.0	69.2	17	2	1785.0	1144.0	-
		3	361228.0	98.8	17	3	1630.0	1608.0	1542.0
		4	524338.0	55.1	17	1	1505.0	_	-
-		5	20455.0	80.2	17	2	1033.0	1891.0	-
		6	181691.0	55.3	17	1	1983.0	_	-
		7	342261.0	66.8	17	2	1878.0	1339.0	-
		8	502361.0	97.0	17	3	1203.0	1414.0	1665.0
		9	625.0	87.8	17	3	1537.0	1147.0	1488.0
		10	161136.0	86. 7	17	3	1485.0	1937.0	1425.0
		11	322435.0	81.6	17	2	1387.0	1842.0	-
		12	484847.0	58.1	17	1	1160.0	_	-
		13	645130.0	69.8	17	2	1103.0	1213.0	-
		14	141792.0	71.3	17	2	1283.0	1564.0	-
		15	301778.0	85. 7	17	3	1247.0	1912.0	1905.0
		16	463468.0	82.1	17	2	1404.0	1899.0	-
		17	625798.0	54.9	17	1	1769.0	_	_

Download	9	Type 5	16	0. 7500000	12.0000000	5.510000000			
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Humber of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	137066.0	90.8	15	3	1239.0	1242.0	1484.0
		1	318880.0	62.6	15	1	1906.0	_	-
		2	500291.0	60.4	15	1	1945.0	_	_
		3	679019.0	86.5	15	3	1550.0	1661.0	1695.0
		4	115207.0	64.9	15	1	1183.0	_	_
		5	295326.0	91.5	15	3	1598.0	1561.0	1788.0
		6	475769.0	97.3	15	3	1770.0	1870.0	1707.0
		7	657248.0	95.8	15	3	1309.0	1641.0	1402.0
		8	92765.0	56.9	15	1	1755.0	-	-
		9	273458.0	70.9	15	2	1887.0	1998.0	-
		10	454142.0	94.8	15	3	1259.0	1841.0	1232.0
		11	634785.0	85.9	15	3	1420.0	1798.0	1354.0
		12	70425.0	53.9	15	1	1621.0	_	_
		13	250832.0	92.1	15	3	1220.0	1882.0	1782.0
		14	433434.0	56.2	15	1	1624.0	_	-
		15	612808.0	89.9	15	3	1064.0	1396.0	1757.0

Type 5	Radar	Waveform __	_11
--------	-------	-----------------------	-----

Download	10	Type 5	13	0.9230769	12.0000000	5. 496000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	59095.0	79.1	11	2	1191.0	1808.0	-
		1	282310.0	73.4	11	2	1670.0	1111.0	-
		2	504873.0	84.1	11	3	1373.0	1137.0	1432.0
		3	728589.0	69.9	11	2	1600.0	1335.0	-
		4	31575.0	91.9	11	3	1493.0	1272.0	1200.0
		5	254757.0	79.2	11	2	1291.0	1704.0	-
		6	478624.0	62.5	11	1	1612.0	-	-
		7	700943.0	70.8	11	2	1677.0	1465.0	-
		8	4127.0	54.5	11	1	1763.0	-	-
		9	226848.0	93.0	11	3	1927.0	1772.0	1006.0
		10	450076.0	66.8	11	2	2000.0	1696.0	-
		11	673184.0	67.9	11	2	1844.0	1676.0	-
		12	898534.0	52.0	11	1	1131.0	-	-

ownload	11	Type 5	11	1.0909091	12.0000000	5.496000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	235728.0	89.8	9	3	1924.0	1576.0	1792.0
		1	499954.0	78. 1	9	2	1539.0	1729.0	-
		2	762237.0	93.9	9	3	1863.0	1744.0	1804.0
		3	1027622.0	67.9	9	2	1223.0	1947.0	-
		4	204025.0	50.3	9	1	1398.0	-	-
		5	468400.0	53.6	9	1	1084.0	-	-
		6	732545.0	53.5	9	1	1341.0	-	-
		7	994576.0	70.9	9	2	1946.0	1825.0	-
		8	171326.0	81.0	9	2	1138.0	1212.0	-
		9	434213.0	83.8	9	3	1747.0	1830.0	1582.0
		10	699193.0	77.8	9	2	1578.0	1010.0	-

Download	12	Type 5	9	1, 3333333	12.0000000	5.494000000			
		Burst ID	Burst Offset (us)	Pulse Fidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	1178471.0	51.4	6	1	1702.0	-	_
		1	169830.0	59.4	6	1	1478.0	-	-
		2	492139.0	73.2	6	2	1953.0	1438.0	-
		3	814434.0	84.5	6	3	1134.0	1074.0	1604.0
		4	1137416.0	72.0	6	2	1389.0	1802.0	-
		5	130052.0	61.1	6	1	1372.0	-	-
		6	451785.0	83.8	6	3	1855.0	1865.0	1503.0
		7	774299.0	94.6	6	3	1290.0	1853.0	1383.0
		8	1097519.0	75. 4	6	2	1955.0	1430.0	-

Type 5	Radar	Waveform	_14
--------	-------	----------	-----

Download	13	Type 5	13	0.9230769	12.0000000	5. 497000000			
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	62396.0	68.3	12	2	1076.0	1234.0	-
		1	285192.0	90.8	12	3	1538.0	1403.0	1042.0
		2	507806.0	98.0	12	3	1712.0	1040.0	1764.0
		3	733359.0	51.6	12	1	1030.0	-	-
		4	34936.0	62.1	12	1	1055.0	-	-
		5	258553.0	63.0	12	1	1063.0	-	-
		6	481921.0	61.5	12	1	1540.0	-	-
		7	705231.0	50.1	12	1	1790.0	-	-
		8	7362.0	89.6	12	3	1778.0	1611.0	1281.0
		9	230545.0	81.9	12	2	1715.0	1199.0	-
		10	453829.0	72.0	12	2	1627.0	1053.0	-
		11	677178.0	74.6	12	2	1251.0	1261.0	-
		12	899929.0	79.4	12	2	1861.0	1177.0	-

ownload	14	Type 5	15	0.8000000	12.0000000	5. 498000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	175699.0	93.8	14	3	1093.0	1319.0	1394.0
		1	369165.0	67.2	14	2	1552.0	1470.0	-
		2	561618.0	92.9	14	3	1029.0	1701.0	1480.0
		3	757569.0	50.8	14	1	1102.0	-	-
		4	151914.0	67.9	14	2	1957.0	1848.0	-
		5	346201.0	53.6	14	1	1072.0	_	-
		6	537383.0	88.4	14	3	1467.0	1734.0	1691.0
		7	733193.0	52.6	14	1	1657.0	-	-
		8	128245.0	68.9	14	2	1120.0	1958.0	-
		9	320814.0	98.1	14	3	1964.0	1449.0	1424.0
		10	513755.0	89.6	14	3	1888.0	1221.0	1590.0
		11	709361.0	56.2	14	1	1637.0	-	-
		12	104426.0	68.4	14	2	1934.0	1226.0	_
		13	297777.0	82.5	14	2	1487.0	1428.0	-
		14	491967.0	55.9	14	1	1500.0	_	-

Download	15	Type 5	12	1.0000000	12.0000000	5. 496000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	856423.0	78. 1	10	2	1382.0	1207.0	-
		1	100717.0	98.9	10	3	1984.0	1254.0	1298.0
		2	342076.0	93.4	10	3	1275.0	1629.0	1843.0
		3	585166.0	59.1	10	1	1832.0	-	-
		4	825909.0	72.2	10	2	1860.0	1594.0	-
		5	70976.0	92.6	10	3	1446.0	1736.0	1393.0
		6	312477.0	83.8	10	3	1494.0	1722.0	1107.0
		7	554177.0	99.0	10	3	1024.0	1080.0	1829.0
		8	796619.0	80.1	10	2	1451.0	1400.0	-
		9	41225.0	92.3	10	3	1589.0	1659.0	1638.0
		10	283567.0	55.8	10	1	1381.0	-	-
		11	523848.0	87.3	10	3	1528.0	1668.0	1823.0

Type	5 F	Radar	Waveform	17
.,,	•		**************************************	

Download	16	Type 5	10	1.2000000	12.0000000	5. 495000000			
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	919866.0	92.2	8	3	1236.0	1079.0	1534.0
		1	13852.0	53.4	8	1	1049.0	-	-
		2	304126.0	81.4	8	2	1153.0	1900.0	-
		3	593903.0	99.2	8	3	1169.0	1483.0	1448.0
		4	885770.0	61.8	8	1	1634.0	-	-
		5	1177032.0	53. 2	8	1	1001.0	-	-
		6	268500.0	72.0	8	2	1009.0	1456.0	-
		7	559235.0	65. 7	8	1	1834.0	-	-
		8	849914.0	56.0	8	1	1711.0	-	-
		9	1138314.0	91.6	8	3	1771.0	1181.0	1094.0

Download	17	Type 5	9	1.3333333	12.0000000	5. 495000000				
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MKz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
		0	258633.0	71.2	7	2	1130.0	1350.0	-	
		1	580389.0	93.3	7	3	1811.0	1359.0	1639.0	
		2	903565.0	80.2	7	2	1838.0	1548.0	-	
		3	1227449.0	56.2	7	1	1944.0	_	-	
		4	218743.0	72. 7	7	2	1287.0	1995.0	-	
		5	540776.0	99.4	7	3	1392.0	1280.0	1952.0	
		6	863452.0	92. 7	7	3	1184.0	1257.0	1533.0	
		7	1187852.0	58.3	7	1	1745.0	-	-	
		8	178915.0	95.4	7	3	1653.0	1070.0	1252.0	

Download	18	Type 5	11	1.0909091	12.0000000	5. 496000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	409428.0	93. 7	9	3	1892.0	1880.0	1463.0
		1	673651.0	80.6	9	2	1981.0	1781.0	-
		2	939687.0	55.5	9	1	1016.0	-	-
		3	113995.0	72.0	9	2	1087.0	1180.0	-
		4	377102.0	90.8	9	3	1921.0	1197.0	1807.0
		5	641104.0	88.6	9	3	1395.0	1217.0	1268.0
		6	906895.0	62.8	9	1	1295.0	-	-
		7	81494.0	52.4	9	1	1978.0	-	-
		8	344954.0	86.9	9	3	1439.0	1008.0	1549.0
		9	610023.0	59.9	9	1	1391.0	-	-
		10	873129.0	68.2	9	2	1429.0	1379.0	_

				Type 5 R	adar Wav	eform_20)			
Download	19	Type 5	10	1.2000000	12.0000000	5. 495000000				
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
		0	53875.0	62. 7	8	1	1819.0	-	-	
		1	344657.0	58.6	8	1	1178.0	-	-	
		2	635055.0	62.1	8	1	1845.0	-	-	
		3	925536.0	66.3	8	1	1987.0	-	-	
		4	18035.0	96.3	8	3	1739.0	1930.0	1159.0	
		5	307874.0	99.3	8	3	1872.0	1284.0	1780.0	
		6	598057.0	87.6	8	3	1421.0	1472.0	1358.0	
		7	888201.0	99.0	8	3	1738.0	1059.0	1270.0	
		8	1179310.0	77.8	8	2	1681.0	1313.0	-	
		9	272951.0	53.0	8	1	1516.0	-	_	

Download	20	Type 5	9	1, 3333333	12.0000000	5.526000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	624975.0	96.4	6	3	1524.0	1007.0	1856.0
		1	947630.0	66.8	6	2	1925.0	1980.0	-
		2	1270155.0	100.0	6	3	1333.0	1390.0	1081.0
		3	262925.0	86.5	6	3	1152.0	1866.0	1556.0
		4	585720.0	77. 7	6	2	1651.0	1723.0	-
		5	909745.0	50.1	6	1	1225.0	_	-
		6	1230941.0	79.0	6	2	1943.0	1316.0	-
		7	223692.0	66.0	6	1	1822.0	-	-
		8	546168.0	69.8	6	2	1224.0	1713.0	-

Download	21	Type 5	14	0.8571429	12.0000000	5.523000000				
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
		0	557376.0	84.4	12	3	1099.0	1397.0	1166.0	
		1	766016.0	56.2	12	1	1826.0	_	_	
		2	117947.0	71.7	12	2	1567.0	1654.0	_	
		3	324790.0	96.9	12	3	1586.0	1195.0	1125.0	
		4	533464.0	62.1	12	1	1117.0	_	_	
		5	740385.0	56. 7	12	1	1917.0	_	_	
		6	92257.0	86.6	12	3	1828.0	1753.0	1305.0	
		7	299487.0	81.4	12	2	1622.0	1750.0	_	
		8	506469.0	90.6	12	3	1264.0	1005.0	1245.0	
		9	714839.0	60.6	12	1	1913.0	_	_	
		10	66909.0	99.0	12	3	1044.0	1121.0	1288.0	
		11	274712.0	50. 7	12	1	1095.0	-	_	
		12	480082.0	85. 1	12	3	1976.0	1114.0	1996.0	
		13	689935.0	55. 7	12	1	1112.0	_	-	

Type	5	Radar	Waveform	_23
------	---	-------	----------	-----

Download	22	Type 5	14	0.8571429	12.0000000	5.523000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	41313.0	87.9	13	3	1831.0	1523.0	1990.0
		1	248743.0	78.9	13	2	1365.0	1089.0	-
		2	456429.0	62.5	13	1	1709.0	_	-
		3	662885.0	81.2	13	2	1343.0	1672.0	-
		4	15946.0	63.8	13	1	1068.0	-	-
		5	223398.0	59.9	13	1	1731.0	_	-
		6	430261.0	73.4	13	2	1649.0	1276.0	-
		7	638154.0	61.7	13	1	1963.0	-	-
		8	843056.0	93.8	13	3	1560.0	1919.0	1018.0
		9	197494.0	80.6	13	2	1720.0	1519.0	-
		10	403913.0	92.4	13	3	1323.0	1973.0	1378.0
		11	610696.0	97.4	13	3	1685.0	1809.0	1135.0
		12	820656.0	63.8	13	1	1293.0	-	-
		13	172243.0	55.6	13	1	1954.0	_	-

Download	23	Type 5	13	0.9230769	12.0000000	5.523000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	407779.0	85.6	12	3	1357.0	1632.0	1546.0
		1	632300.0	63.1	12	1	1992.0	-	-
		2	853157.0	88.4	12	3	1039.0	1907.0	1774.0
		3	157678.0	83.9	12	3	1116.0	1618.0	1126.0
		4	380299.0	86.5	12	3	1644.0	1019.0	1965.0
		5	604315.0	67.1	12	2	1377.0	1328.0	-
		6	826843.0	75.6	12	2	1896.0	1577.0	-
		7	130585.0	61.9	12	1	1263.0	-	-
		8	353233.0	91.0	12	3	1210.0	1435.0	1015.0
		9	577428.0	61.8	12	1	1733.0	-	-
		10	800917.0	50.0	12	1	1694.0	-	-
		11	103018.0	59.6	12	1	1518.0	-	-
		12	326704.0	59.6	12	1	1014.0	_	_

ownload	24	Type 5	14	0.8571429	12.0000000	5.523000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	509821.0	67.8	12	2	1904.0	1052.0	-
		1	715917.0	97.0	12	3	1664.0	1011.0	1558.0
		2	69878.0	88.4	12	3	1706.0	1017.0	1345.0
		3	277175.0	78.8	12	2	1218.0	1617.0	-
		4	485293.0	52.2	12	1	1209.0	-	-
		5	692620.0	61.2	12	1	1536.0	-	-
		6	44525.0	61.0	12	1	1527.0	-	-
		7	252025.0	62.1	12	1	1573.0	-	-
		8	459399.0	57.6	12	1	1812.0	-	-
		9	667344.0	65.1	12	1	1171.0	-	-
		10	18936.0	69.0	12	2	1344.0	1433.0	-
		11	226565.0	65.2	12	1	1198.0	-	_
·		12	434075.0	56.0	12	1	1361.0	-	_
		13	639057.0	96.5	12	3	1961.0	1460.0	1371.0

				Type 5 R	ladar Wa	veform_26	ò		
Download	25	Type 5	13	0. 9230769	12.0000000	5. 524000000			
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	913351.0	72. 7	11	2	1023.0	1606.0	-
		1	216296.0	62.5	11	1	1966.0	-	-
		2	438372.0	91.2	11	3	1652.0	1462.0	1623.0
	T	3	663528.0	54.4	11	1	1362.0	-	-
		4	887087.0	64. 7	11	1	1347.0	-	-
		5	188136.0	93.0	11	3	1491.0	1972.0	1636.0
		6	411793.0	81.0	11	2	1174.0	1650.0	-
		7	633849.0	95.9	11	3	1034.0	1499.0	1935.0
	T	8	857694.0	77.5	11	2	1501.0	1837.0	-
		9	161070.0	72.2	11	2	1854.0	1202.0	-
		10	384671.0	65. 1	11	1	1939.0		-
	T	11	608589.0	64.3	11	1	1161.0	-	-
		12	830640.0	68.0	11	2	1167.0	1703.0	-

Download	26	Type 5	8	1.5000000	12.0000000	5.526000000				
		Burst ID	Burst Offset (us)	Pulse Vidth (us)	Chirp Vidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
		0	217313.0	80.2	5	2	1967.0	1366.0	-	
		1	580603.0	75.9	5	2	1243.0	1312.0	-	
		2	942209.0	87.9	5	3	1994.0	1529.0	1526.0	
		3	1308298.0	50.6	5	1	1021.0	-	-	
		4	172552.0	81.1	5	2	1851.0	1903.0	-	
		5	536231.0	54.1	5	1	1541.0	-	-	
		6	899685.0	50.3	5	1	1490.0	-	-	
		7	1263269.0	55.6	5	1	1315.0	_	-	

27	Type 5	19	0.6315789	12.0000000	5.520000000				
	Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
	0	53856.0	64.7	19	1	1318.0	-	_	
	1	206549.0	55.4	19	1	1820.0	-	-	
	2	359348.0	51.7	19	1	1710.0	-	-	
	3	509704.0	90.2	19	3	1816.0	1479.0	1376.0	
	4	34878.0	86.1	19	3	1158.0	1338.0	1502.0	
	5	187733.0	52. 7	19	1	1827.0	_	-	
	6	338642.0	93.6	19	3	1565.0	1647.0	1993.0	
	7	492270.0	78.0	19	2	1300.0	1718.0	-	
	8	16120.0	98.0	19	3	1418.0	1835.0	1127.0	
	9	168566.0	69.3	19	2	1969.0	1176.0	-	
	10	321114.0	68.6	19	2	1815.0	1071.0	-	
	11	474141.0	80.5	19	2	1109.0	1048.0	-	
	12	625941.0	70.6	19	2	1201.0	1814.0	_	
	13	150164.0	52.8	19	1	1585.0	-	-	
	14	301778.0	99.5	19	3	1938.0	1002.0	1098.0	
	15	453788.0	99.9	19	3	1858.0	1163.0	1277.0	
	16	608485.0	57.3	19	1	1646.0	_	-	
	17	130728.0	85.3	19	3	1765.0	1407.0	1364.0	
	18	283572.0	66. 7	19	2	1450.0	1388.0	-	
	27	Burst ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Burst ID (Fiset (us)) 0 53856.0 1 206549.0 2 359348.0 3 509704.0 4 34878.0 5 187733.0 6 338642.0 7 492270.0 8 16120.0 9 168566.0 10 321114.0 11 474141.0 12 625941.0 13 150164.0 14 301778.0 15 453788.0 16 608485.0 17 130728.0	Burst ID (0ffset (us) (us) (us) (us) (us) (us) (us) (us)	Burst ID (0ffset (us) (11th (us)	Burst ID (0ffset (us)) (Thirp (us)) (Thirp (us)) (Us) (Us) (Us) (Us) (Us) (Us) (Us) (Burst ID Burst Offset (us) Pulse Tidth (us) Chirp Fulse width Pulses per Burst PRI-1 (us) 0 53856.0 64.7 19 1 1318.0 1 206549.0 55.4 19 1 1820.0 2 359348.0 51.7 19 1 1710.0 3 509704.0 90.2 19 3 1816.0 4 34878.0 86.1 19 3 1158.0 5 187733.0 52.7 19 1 1827.0 6 338642.0 93.6 19 3 1565.0 7 492270.0 78.0 19 2 1300.0 8 16120.0 98.0 19 3 1418.0 9 168566.0 69.3 19 2 1969.0 10 32114.0 68.6 19 2 1815.0 11 474141.0 80.5 19 2 1201.0 12 625941.0 <	Burst ID Burst Offset (us) Pulse (vis) Chirp tidth (us) Humber of Pulses per Burst PRI-1 (us) PRI-2 (us) 0 53856.0 64.7 19 1 1318.0 - 1 206549.0 55.4 19 1 1820.0 - 2 359348.0 51.7 19 1 1710.0 - 3 509704.0 90.2 19 3 1816.0 1479.0 4 34678.0 86.1 19 3 1158.0 1338.0 5 187733.0 52.7 19 1 1827.0 - 6 338642.0 93.6 19 3 1565.0 1647.0 7 492270.0 78.0 19 2 1300.0 1718.0 8 16120.0 98.0 19 3 1418.0 1835.0 9 16856.0 69.3 19 2 1969.0 1176.0 10 321114.0 68.6 19 <td>Burst ID Burst Offset Offset Us) Pulse Vidth (us) Humber of Pulses per Pulses pe</td>	Burst ID Burst Offset Offset Us) Pulse Vidth (us) Humber of Pulses per Pulses pe

Type	5 R	adar	Waveform	29
IYPC	U .	Luuui	TTU V CI OI III	

Download	28	Type 5	19	0.6315789	12.0000000	5.521000000			
		Burst ID	Burst Offset (us)	Pulse Tidth (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)
		0	435418.0	78. 7	18	2	1794.0	1971.0	-
		1	588720.0	72.0	18	2	1619.0	1038.0	-
		2	112292.0	69.5	18	2	1168.0	1708.0	-
		3	265410.0	66.1	18	1	1363.0	-	-
		4	418225.0	63. 7	18	1	1411.0	-	-
		5	568777.0	88.0	18	3	1032.0	1455.0	1444.0
		6	93308.0	93.2	18	3	1579.0	1003.0	1655.0
		7	245920.0	80.9	18	2	1922.0	1133.0	-
		8	398172.0	86.2	18	3	1020.0	1028.0	1299.0
		9	550733.0	69. 7	18	2	1719.0	1406.0	-
		10	74874.0	64.4	18	1	1645.0	-	_
		11	226721.0	87.9	18	3	1660.0	1442.0	1123.0
		12	380577.0	61.1	18	1	1405.0	_	-
		13	533307.0	55.6	18	1	1531.0	_	-
		14	55737.0	90.8	18	3	1801.0	1678.0	1743.0
		15	208942.0	57.9	18	1	1320.0	_	_
		16	361538.0	57.0	18	1	1776.0	_	-
		17	511959.0	89.4	18	3	1182.0	1609.0	1833.0
		18	37238.0	64.3	18	1	1615.0	_	_

Download	29	Type 5	11	1.0909091	12.0000000	5,524000000				
		Burst ID	Burst Offset (us)	Pulse Width (us)	Chirp Tidth (MHz)	Number of Pulses per Burst	PRI-1 (us)	PRI-2 (us)	PRI-3 (us)	
		0	327975.0	78. 7	9	2	1683.0	1931.0	-	
		1	591146.0	90.2	9	3	1908.0	1317.0	1368.0	
		2	854422.0	87.4	9	3	1571.0	1797.0	1466.0	
		3	31791.0	67.8	9	2	1970.0	1593.0	-	
		4	295411.0	79.5	9	2	1989.0	1928.0	-	
		5	560235.0	52.8	9	1	1595.0	-	-	
		6	822308.0	96.5	9	3	1495.0	1273.0	1628.0	
		7	1086072.0	83.9	9	3	1477.0	1155.0	1514.0	
		8	262774.0	97.5	9	3	1469.0	1240.0	1883.0	
		9	526932.0	77.3	9	2	1725.0	1440.0	-	
		10	791081.0	76.4	9	2	1013.0	1688.0	-	

Radar Type 6 - Radar Statistical Performance

Trail #	1=Detection 0=No Detection	Trail #	1=Detection 0=No Detection
4		40	
1	1	16	1
2	1	17	1
3	1	18	1
4	1	19	1
5	1	20	1
6	1	21	1
7	1	22	1
8	1	23	1
9	1	24	1
10	1	25	1
11	1	26	1
12	1	27	1
13	1	28	1
14	1	29	1
15	1	30	1
	Detection Percentage (%)		100%

		Тур	e 6 Radar W	/aveform_1			
Download 0	Type 6	1.0	333.3	9	0.3333	300.0000000 7	
	Frequency List (MHz)	o	1	2	3	4	
	0	5383	5597	5718	5424	5489	
	5	5580	5294	5547	5474	5460	
	10	5355	5336	5535	5569	5409	
	15	5275	5604	5521	5635	5638	
	20	5482	5583	5617	5653	5389	
	25	5309	5711	5410	5541	5469	
	30	5537	5481	5516	5334	5498	
	35	5436	5664	5314	5557	5377	
	40	5373	5682	5667	5312	5582	
	45	5347	5308	5425	5723	5522	
	50	5338	5490	5361	5351	5593	
	55	5350	5659	5691	5706	5256	
	60	5352	5270	5696	5642	5451	
	65	5636	5661	5287	5457	5328	
	70	5511	5456	5282	5333	5549	
	75	5614	5463	5471	5265	5393	
	80	5433	5621	5494	5665	5564	
	85	5477	5688	5493	5367	5404	
	90	5662	5318	5395	5478	5413	
	95	5397	5586	5412	5260	5704	

FCC ID: Q9DAPIN0615 Page Number: 90 of 186

		Туре	6 Radar V	Vaveform_2			
Download 1	Туре 6	1.0	333. 3	9	0.3333	300.0000000	14
	Frequency List (MHz)	0	1	2	3	4	
	0	5638	5361	5654	5585	5709	1
	5	5285	5602	5369	5613	5681	T
	10	5391	5619	5474	5255	5590	T
	15	5497	5402	5707	5566	5352	1
	20	5646	5648	5524	5706	5626	
	25	5277	5258	5342	5514	5575	T
	30	5511	5426	5438	5256	5583	
	35	5455	5637	5527	5460	5564	
	40	5568	5313	5456	5347	5447	
	45	5664	5716	5562	5430	5366	
	50	5381	5610	5398	5541	5337	Τ
	55	5659	5295	5684	5304	5510	
	60	5580	5385	5517	5690	5528	
	65	5468	5494	5600	5349	5606	
	70	5680	5442	5687	5383	5421	
	75	5259	5495	5444	5723	5278	
	80	5649	5537	5496	5618	5689	
	85	5503	5308	5458	5418	5652	
	90	5482	5483	5498	5415	5506	
	OF	F000	F000	F000	FFOO	F000	

Download	2	Туре 6	1.0	333.3	9	0.3333	300,0000000	8
		Frequency List (MHz)	o	1	2	3	4	
		0	5418	5697	5590	5271	5551	
		5	5327	5527	5444	5301	5413	
		10	5700	5505	5515	5450	5611	
		15	5585	5529	5335	5641	5654	
		20	5717	5562	5698	5599	5543	
		25	5545	5618	5609	5553	5412	
		30	5395	5374	5260	5275	5715	
		35	5353	5482	5627	5539	5285	
		40	5661	5548	5542	5513	5434	
		45	5400	5274	5690	5592	5426	
		50	5385	5617	5397	5258	5467	
		55	5329	5514	5682	5635	5360	
		60	5391	5440	5683	5534	5636	
		65	5619	5409	5277	5428	5358	
		70	5663	5342	5390	5379	5541	
		75	5425	5500	5388	5430	5604	
		80	5656	5615	5568	5345	5326	
		85	5372	5328	5680	5648	5504	
		90	5449	5555	5620	5380	5628	
		95	5565	5723	5606	5556	5263	

Download	3	Type 6	1.0	333.3	9	0.3333	300,0000000	11
		Frequency List (MHz)	0	1	2	3	4	
		0	5576	5461	5526	5432	5296	
		5	5369	5549	5519	5464	5717	
		10	5631	5294	5556	5548	5632	
		15	5656	5438	5559	5358	5565	
		20	5408	5503	5312	5572	5431	
		25	5534	5273	5722	5643	5692	
		30	5301	5352	5589	5509	5473	
		35	5440	5331	5624	5395	5396	
		40	5466	5622	5698	5355	5280	
		45	5477	5522	5596	5385	5487	
		50	5287	5625	5391	5515	5683	
		55	5561	5585	5687	5657	5546	
		60	5372	5677	5667	5386	5409	
		65	5483	5575	5539	5511	5446	
		70	5627	5682	5639	5262	5499	
		75	5684	5406	5655	5498	5686	
		80	5293	5719	5612	5604	5471	
		85	5284	5560	5595	5291	5423	
		90	5500	5338	5510	5437	5637	
		95	5364	5447	5351	5403	5258	

			Туре	e 6 Radar W	/aveform_5			
Download	4	Туре 6	1.0	333.3	9	0. 3333	300.0000000	12
		Frequency List (MHz)	0	1	2	3	4	
		0	5356	5700	5462	5593	5613	
		5	5508	5474	5594	5627	5449	
		10	5562	5558	5597	5268	5653	
		15	5664	5686	5541	5604	5550	
		20	5573	5477	5444	5304	5545	
		25	5697	5386	5476	5448	5677	
		30	5259	5665	5309	5329	5661	
		35	5293	5482	5422	5420	5645	
		40	5407	5305	5327	5539	5595	
		45	5277	5502	5679	5443	5540	
		50	5552	5404	5567	5694	5506	
		55	5408	5298	5641	5372	5345	
		60	5493	5675	5537	5622	5499	
		65	5615	5429	5707	5432	5611	
		70	5371	5306	5490	5518	5497	
		75	5630	5531	5638	5706	5619	
		80	5255	5484	5511	5467	5457	
		85	5307	5512	5324	5374	5601	
		90	5523	5312	5634	5377	5349	
		95	5698	5503	5516	5319	5261	

Download	5	Type 6	1.0	333.3	9	0.3333	300,0000000	6
		Frequency List (MHz)	o	1	2	3	4	
		0	5611	5464	5398	5657	5358	
		5	5550	5496	5669	5315	5656	
		10	5396	5347	5638	5463	5674	
		15	5277	5338	5547	5649	5267	
		20	5581	5643	5482	5393	5518	
		25	5585	5335	5679	5552	5711	
		30	5301	5651	5266	5544	5435	
		35	5491	5621	5513	5313	5323	
		40	5321	5619	5410	5477	5263	
		45	5274	5713	5287	5404	5593	
		50	5439	5280	5268	5270	5329	
		55	5352	5486	5595	5562	5639	
		60	5367	5702	5567	5428	5441	
		65	5375	5433	5381	5647	5673	
		70	5671	5687	5483	5255	5380	
		75	5591	5597	5578	5642	5465	
		80	5684	5723	5370	5509	5616	
		85	5374	5443	5504	5599	5331	
		90	5668	5357	5579	5293	5583	
		95	5429	5322	5308	5557	5324	

Type 6 Radar Waveform_7

Download	6	Type 6	1.0	333.3	9	0.3333	300.0000000	7
		Frequency List (MHz)	0	1	2	3	4	
		0	5391	5703	5334	5343	5675	
		5	5592	5421	5269	5381	5485	
		10	5327	5611	5679	5658	5695	
		15	5365	5465	5650	5694	5459	
		20	5492	5712	5423	5385	5491	
		25	5376	5662	5310	5656	5270	
		30	5540	5698	5587	5311	5285	
		35	5604	5584	5476	5710	5555	
		40	5493	5415	5503	5271	5642	
		45	5370	5462	5646	5704	5631	
		50	5444	5321	5404	5530	5674	
		55	5549	5277	5458	5338	5392	
		60	5512	5260	5267	5256	5330	
		65	5586	5413	5468	5474	5284	
		70	5469	5258	5607	5567	5556	
•		75	5547	5287	5541	5446	5461	
		80	5504	5688	5506	5336	5382	
		85	5546	5599	5467	5716	5358	
		90	5625	5638	5660	5619	5317	
		95	5454	5718	5455	5359	5603	

FCC ID: Q9DAPIN0615 Page Number: 92 of 186

Download	7	Type 6	1.0	333.3	9	0.3333	300.0000000	14
		Frequency List (MHz)	0	1	2	3	4	
		0 5	5646	5467	5270	5504	5420	
		10	5634 5258	5443 5497	5344 5720	5544 5378	5692 5716	+
		15	5356	5592	5278	5642	5651	
		20	5500	5403	5364	5474	5464	
		25	5264	5514	5513	5285	5304	
		30	5482	5429	5655	5402	5361	
		35 40	5509 5721	5327 5394	5695	5380 5353	5629	1
		45	5345	5453	5673 5520	5699	5268 5591	+
		50	5507	5620	5372	5493	5618	
		55	5387	5503	5309	5587	5557	
		60	5554	5567	5665	5267	5457	
		65	5279	5622	5623	5263	5277	
		70	5552	5358	5456	5446	5515	
		75	5419	5407	5427	5713	5269	
		80	5377	5593	5531	5316	5432	1
		85 90	5336 5491	5536 5693	5523 5494	5631 5644	5328 5288	1
	+	95	5342	5412	5666	5298	5595	1
				1				•
			Тур	e 6 Radar V	/aveform_9			
Download	8	Туре 6	1.0	333.3	9	0. 3333	300,0000000	11
		Frequency List (MHz)	o	1	2	3	4	
		0	5329	5706	5681	5665	5262	
		5	5298	5465	5419	5707	5424	
		10	5567	5286	5476	5444	5719	
		15	5381	5687	5368	5508	5472	
		20 25	5305	5466	5437	5627	5463	
		30	5716 5612	5486 5617	5338 5513	5524 5408	5415 5651	+
	+	35	5404	5635	5708	5281	5291	+
		40	5265	5403	5325	5536	5481	
	_	45	5655	5321	5423	5582	5478	
		50	5457	5560	5474	5280	5722	
		55	5499	5399	5491	5310	5658	
		60	5703	5455	5630	5555	5525	
		65	5538	5361	5422	5388	5527	
		70	5255	5490	5379	5541	5656	
		75 80	5500 5387	5251 5391	5569 5259	5411 5688	5300 5637	
		85	5362	5603	5503	5344	5273	+
	_	90	5588	5623	5540	5507	5519	
		95	5294	5275	5558	5579	5467	
		Type 6	Type	e 6 Radar W	aveform_1(0. 3333	300. 0000000	5
ownload	9					3	4	
ownload	9	Frequency	0	1	2	3	4	
ownload	9	Frequency List (MHz)	0 5584	1 5470	2 5617	5351	5482	
ownload	9							
ownload	9	0 5 10	5584	5470	5617	5351	5482	
Jownload	9	0 5 10 15	5584 5340 5498 5532	5470 5390 5550 5274	5617 5494 5424 5484	5351 5395 5671 5257	5482 5253 5283 5560	
ownload	9	0 5 10 15 20	5584 5340 5498 5532 5419	5470 5390 5550 5274 5638	5617 5494 5424 5484 5343	5351 5395 5671 5257 5555	5482 5253 5283 5560 5410	
ownload	9	0 5 10 15 20 25	5584 5340 5498 5532 5419	5470 5390 5550 5274 5638 5315	5617 5494 5424 5484 5343 5444	5351 5395 5671 5257 5555 5590	5482 5253 5283 5560 5410 5372	
ownload	9	0 5 10 15 20 25	5584 5340 5498 5532 5419 5418 5566	5470 5390 5650 5274 5638 5315 5304	5617 5494 5424 5484 5343 5444 5569	5351 5395 5671 5257 5565 5590 5357	5482 5253 5283 5560 5410 5372 5287	
ownload		0 5 10 15 20 25 30	5584 5340 5498 5532 5419 5418 5566 5624	5470 5390 5550 5274 5638 5315 5304 5605	5617 5494 5424 5484 5343 5444 5569 5499	5351 5395 5671 5257 5555 5590 5357 5544	5482 5253 5283 5560 5410 5372 5287 5667	
ownload		0 5 10 15 20 25 30 35	5584 5340 5498 5532 5419 5418 5566 5624 5549	5470 5390 5550 5274 5638 5315 5304 5605	5617 5494 5424 5484 5343 5444 5569 5499	5351 5395 5671 5257 5565 5590 5357 5544 5704	5482 5253 5283 5560 5410 5372 5287 5567	
ownload		0 5 10 15 20 25 30	5584 5340 5498 5532 5419 5418 5566 5624 5549 5359	5470 5390 5550 5274 5638 5315 5304 5605 5547 5710	5617 5494 5424 5484 5343 5444 5569 5499 5364 5305	5351 5395 5671 5257 5555 5590 5357 5544 5704 5619	5482 5253 5283 5560 5410 5372 5287 5557 5651 5639	
ownload		0 5 10 15 20 25 30 36 40	5584 5340 5498 5532 5419 5418 5566 5624 5549 5369 5708	5470 5390 5550 5274 5638 5315 5304 5605 5547 5710	5617 5494 5424 5484 5343 5444 5569 5499 5364 5305	5351 5395 5671 5257 5555 5590 5357 5544 5704 5619	5482 5253 5283 5560 5410 5372 5287 5557 5657 5651 5539 5474	
ownload		0 5 10 15 20 25 30 35 40 45	5584 5340 5498 5532 5419 5418 5566 5624 5549 5359	5470 5390 5550 5274 5638 5315 5304 5605 5547 5710	5617 5494 5424 5484 5343 5444 5569 5499 5364 5305	5351 5395 5671 5257 5555 5590 5357 5544 5704 5619	5482 5253 5283 5560 5410 5372 5287 5557 5651 5639	
ownload		0 5 10 15 20 25 30 35 40 45 50	5584 5340 5498 5532 5419 5418 5566 5624 5549 5359 5708 5293	5470 5390 5550 5274 5638 5315 5304 5805 5547 5710 5268 5409	5617 5494 5424 5484 5343 5444 5569 5499 5364 5305 5637 5666	5351 5395 5671 5257 5656 5590 5357 5544 5704 5619 5497 5314	5482 5253 5283 5560 5410 5372 5287 5557 5651 5659 5474 5275	
ownload		0 5 10 15 20 25 30 35 40 45 50	5584 5340 5498 5532 5419 5418 5566 5624 5549 5369 5708 5293 5629	5470 5390 5550 5274 5638 5315 5304 5605 5547 5710 5268 5409 5273	5617 5494 5424 5484 5343 5444 5569 5499 5364 5305 5637 5666 5412	5351 5395 5671 5257 5555 5590 5357 5544 5704 5619 5497 5314 5706	5482 5263 5283 5560 5410 5372 5287 5657 5651 5659 5474 5275 5317	
ownload		0 5 10 15 20 25 30 35 40 45 50 55 60 65 70	5584 5340 5498 5532 5419 5418 5566 5624 5549 5359 5708 5293 5629 5256	5470 5390 5550 5274 5638 5315 5304 5605 5547 5710 5268 5409 5273 5481 5694 5301	5617 5494 5424 5484 5343 5444 5569 5499 5364 5305 5637 5666 5412 5597	5351 5395 5671 5257 5565 5590 5357 5544 5704 5619 5497 5314 5706 5665	5482 5253 5283 5560 5410 5372 5287 5557 5651 56539 5474 5275 5317 5425 5398 5392	
ownload		0 5 10 15 20 25 30 35 40 45 50 55 60 65 70	5584 5340 5498 5532 5419 5418 5566 5624 5549 5359 5708 5293 5629 5266 5358 5433 5322	5470 5390 5550 5274 5638 5315 5304 5605 5547 5710 5268 5409 5273 5481 5694 5301 5705	5617 5494 5424 5484 5343 5444 5569 5499 5364 5305 5637 5666 5412 5597 5524 5389 5341	5351 5395 5671 5257 5556 5590 5357 5544 5704 5619 5497 5314 5706 5665 5461 5645 5400	5482 5253 5283 5560 5410 5372 5287 5657 5651 5659 5474 5275 5317 5425 5398 5392 5446	
ownload		0 5 10 15 20 25 30 35 40 45 50 55 60 65 70	5584 5340 5498 5532 5419 5418 5566 5624 5549 5369 5708 5293 5629 5256 5368 5433	5470 5390 5550 5274 5638 5315 5304 5605 5547 5710 5268 5409 5273 5481 5694 5301	5617 5494 5424 5484 5343 5444 5569 5364 5305 5637 5666 5412 5597 5524 5389	5351 5395 5671 5257 5555 5590 5357 5544 5704 5619 5497 5314 5706 5665 5461 5645	5482 5253 5283 5560 5410 5372 5287 5557 5651 56539 5474 5275 5317 5425 5398 5392	

Type 6 Radar Waveform_11 Download Frequency List (MHz) Type 6 Radar Waveform_12 Download Frequency List (MHz) Type 6 Radar Waveform_13 Download Frequency List (MHz) o

			Type 6	Radar Wav	eform_14			
Download	13	Type 6	1.0	333.3	9	0.3333	300.0000000	8
		Frequency List (MHz)	0	1	2	3	4	
		0	5557	5476	5361	5423	5606	
		5	5605	5284	5697	5475	5703	
		10	5503	5278	5588	5404	5367	
		15	5312	5307	5324	5340	5354	
		20	5633	5679	5717	5302	5251	
		25	5392	5684	5628	5508	5453	
		30	5529	5397	5645	5614	5660	
		35	5589	5485	5300	5316	5399	
		40	5318	5359	5564	5347	5329	
		45	5603	5674	5445	5572	5519	
		50	5678	5271	5619	5466	5468	
		55	5560	5422	5416	5314	5597	
		60	5321	5290	5612	5545	5644	
		65	5274	5604	5565	5570	5403	
		70	5680	5269	5514	5555	5410	
		75	5260	5493	5690	5388	5373	
		80	5267	5420	5578	5702	5406	
		85	5351	5584	5563	5289	5338	
		90	5294	5526	5548	5592	5553	
. —		95	5431	5299	5513	5586	5296	

Download	14	Type 6	1.0	333.3	9	0.3333	300.0000000	4
		Frequency List (MHz)	0	1	2	3	4	
		0	5337	5715	5297	5584	5448	
		5	5647	5306	5541	5435	5434	
		10	5542	5629	5599	5388	5400	
		15	5427	5288	5667	5362	5324	
		20	5620	5709	5275	5614	5719	
		25	5412	5257	5445	5495	5418	
		30	5354	5291	5383	5631	5576	
		35	5571	5566	5313	5314	5498	
		40	5329	5441	5636	5583	5559	
		45	5635	5401	5395	5254	5360	
		50	5345	5619	5387	5346	5287	
		55	5363	5535	5591	5558	5255	
		60	5494	5581	5544	5701	5298	
		65	5648	5670	5252	5656	5703	
		70	5386	5578	5347	5391	5370	
		75	5274	5381	5278	5665	5267	
		80	5359	5638	5419	5402	5357	
		85	5253	5392	5651	5488	5640	
	1	90	5603	5548	5681	5534	5497	
		95	5408	5250	5290	5302	5718	

Download	15	Type 6	1.0	333.3	9	0.3333	300.0000000	6
		Frequency List (MHz)	0	1	2	3	4	
		0	5592	5479	5708	5270	5668	
		5	5311	5706	5372	5704	5264	
		10	5365	5331	5670	5319	5409	
		15	5391	5464	5433	5333	5384	
		20	5273	5393	5658	5323	5723	
		25	5502	5615	5361	5537	5307	
		30	5503	5540	5678	5295	5667	
		35	5367	5719	5702	5250	5581	
		40	5710	5569	5438	5565	5563	
		45	5642	5693	5454	5724	5649	
		50	5603	5305	5449	5643	5257	
		55	5272	5513	5368	5358	5475	
		60	5452	5308	5514	5601	5456	
		65	5443	5619	5316	5436	5504	
		70	5370	5634	5673	5632	5662	
		75	5355	5698	5490	5635	5383	
•		80	5530	5545	5341	5285	5385	
•		85	5645	5676	5611	5617	5356	
		90	5605	5511	5418	5398	5309	
		95	5597	5657	5560	5446	5660	