

41039 Boyce Road Fremont, CA. 94538

EMC Test Report

Application for FCC Grant of Equipment Authorization Canada Certification Class III Permissive Change/Reassessment

Innovation, Science and Economic Development Canada RSS-Gen Issue 5 / RSS-247 Issue 2 FCC Part 15, Subpart E

Models: APIN0534 and APIN0535

IC CERTIFICATION #: FCC ID:	4675A-APIN0534535 Q9DAPIN0534535
APPLICANT:	Aruba, a Hewlett Packard Enterprise company 3333 Scott Blvd. Santa Clara, CA 95054
TEST SITE(S):	National Technical Systems 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-4 and 2845B-5
PROJECT NUMBER:	PR077654
REPORT DATE:	July 7, 2020
RE-ISSUED DATE:	July 24, 2020
FINAL TEST DATES:	October 3, 11, 12, 16, 19 and 25, 2018,
TOTAL NUMBER OF PAGES:	87

This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from NTS.

Project number PR077654 Report Date: July 7, 2020 Re-Issued Date: July 24, 2020

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

laus

Gary Izard Quality Assurance Representative

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	July 7, 2020	First release	
1	July 24, 2020	Corrected power on page 41	dwb

TABLE OF CONTENTS

COVER PAGE	1
VALIDATING SIGNATORIES	
REVISION HISTORY	
TABLE OF CONTENTS	
SCOPE	6
OBJECTIVE	6
STATEMENT OF COMPLIANCE	7
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	12
OTHER EUT DETAILS	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	13
EUT OPERATION	13
PROPOSED MODIFICATION DETAILS.	14
GENERAL	14
SOFTWARE	14
TEST SITE	15
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	16
FILTERS/ATTENUATORS	
ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN	23
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICES SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SPURIOUS EMISSIONS LIMITS –UNIT AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	28

APPENDIX B TEST DATA
END OF REPORT

SCOPE

An electromagnetic emissions test has been performed on the Aruba, a Hewlett Packard Enterprise company model APIN0534 and APIN0535, pursuant to the following rules: RSS-GEN Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15, Subpart E requirements for UNII Devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems test procedures:

```
ANSI C63.10-2013
```

FCC General UNII Test Procedures KDB789033

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

National Technical Systems is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Aruba, a Hewlett Packard Enterprise company model APIN0534 and APIN0535 complied with the requirements of the following regulations:

RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Aruba, a Hewlett Packard Enterprise company model APIN0534 and APIN0535 and therefore apply only to the tested sample. The sample was selected and prepared by Tian Wang-Mendez of Aruba, a Hewlett Packard Enterprise company.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

OPERATION IN THE 5.15 – 5.25 GHZ BAND – ACCESS POINTS

FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407 (a) (1) (i) or (ii)	Output Power	ax80+80: 25.6 mW	30 dBm EIRP <= 4W	Complies
15.407 (a) (1) (i), (ii) or (iii)	Power Spectral Density	ax80+80: 0.5mW/MHz	17 dBm/MHz	Complies
15.407(b) (1) / 15.209	Spurious Emissions above 1GHz	53.4 dBµV/m @ 5148.6 MHz (-0.6 dB)	Refer to the limits section (p23) for restricted bands, all others -27 dBm/MHz EIRP	Complies

OPERATION IN THE 5.15 - 5.25 GHZ BAND

RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
RSS-247 6.2.1	Indoor operation only	Refer to user's manual	N/A	Complies
RSS-247 6.2.1 (1)	99% Bandwidth	ax80+80: 154.34 MHz	N/A – limits output power if < 20MHz	N/A
RSS-247 6.2.1 (1)	EIRP Output Power	ax80+80: 40.7 mW	23 dBm (200 mW)	Complies
RSS-247 6.2.1 (1)	Power Spectral Density	ax80+80: 0.5 mW/MHz	10 dBm/MHz	Complies
RSS-247 6.2.1 (2)	Spurious Emissions above 1GHz	53.4 dBµV/m @ 5148.6 MHz (-0.6 dB)	Refer to the limits section (p23) for restricted bands, all others -27 dBm/MHz EIRP 26 dBc in 5.25-5.35 GHz band	Complies

OPERATION IN THE 5.25 – 5.35 GHZ BAND

Note: The device is restricted to indoor use only, therefore the spectral density of spurious emissions in the 5.15 - 5.25 GHz band were limited to the power spectral limits for intentional signals detailed in FCC 15.407(b)(2) and RSS 247 6.2.2 (2) i) b

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth		N/A – limits output power if < 20MHz	N/A
	RSS-247 6.2.2 (1)	99% Bandwidth	ax80+80: 154.34 MHz	N/A – limits EIRP if < 20MHz	N/A
15.407(a) (2)	RSS-247 6.2.1 (2)	Output Power	ax80+80: 22.8 mW	24 dBm (250 mW) EIRP <= 1W	Complies
15.407(a) (2)	RSS-247 6.2.2 (1)	Power Spectral Density	ax80+80: 0.5 mW/MHz	11 dBm/MHz	Complies
15.407(b) (2) / 15.209	RSS-247 6.2.2 (2)	Spurious Emissions above 1GHz	51.8 dBµV/m @ 5355.1 MHz (-2.2 dB)	Refer to the limits section (p23) for restricted bands, all others -27 dBm/MHz EIRP	Complies

OPERATION IN THE 5.47 – 5.725 GHZ BAND

	-			
FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)	26dB Bandwidth	> 20MHz for all modes	N/A – limits output power if < 20MHz	N/A
	99% Bandwidth	ax80+80: 154.24 MHz	N/A – limits EIRP if < 20MHz	N/A
15.407(a) (2)	Output Power	ax80+80: 91.2 mW	24 dBm (250 mW) EIRP <= 1W	Complies
15.407(a) (2)	Power Spectral Density	ax80+80: 1.9 mW/MHz	11 dBm/MHz	Complies
15.407(b) (3) / 15.209	Spurious Emissions above 1GHz	67.8 dBμV/m @ 5464.4 MHz (-0.5 dB)	Refer to the limits section (p23) for restricted bands, all others -27 dBm/MHz EIRP	Complies

REQUIREMENTS FOR ALL U-NII/LELAN BANDS						
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result	
15.407	RSS-247 6.1	Modulation	System uses OFDM techniques	Digital modulation is required	Complies	
15.407(b) (6) / 15.209	RSS-247 6.2.1 (2)	Spurious Emissions below 1GHz	No change from original filing	Refer to page 25	Complies	
15.31 (m)	RSS-247 6.4 (1) RSS-Gen 6.9	Channel Selection	Emissions tested at outermost and middle channels in each band	Device was tested on the top, bottom and center channels in each band	N/A	
15.407 (c)	RSS-247 6.4 (2)	Operation in the absence of information to transmit	No change from original filing	Device shall automatically discontinue operation in the absence of information to transmit	Complies	
15.407 (g)		Frequency Stability	No change from original filing	Signal shall remain within the allocated band	Complies	
15.407 (h1)	RSS-247 6.2.2 (1) 6.2.3 (1)	Transmit Power Control	No change from original filing	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies	
15.407 (h2)	RSS-247 6.3	Dynamic frequency Selection (device with radar detection)	Refer to separate test report, reference FR- 077654.25-FCCDFS	Threshold -62dBm (- 64dBm if eirp > 200mW) Channel Availability Check > 60s Channel closing transmission time < 260ms Channel move time < 10s Non occupancy period > 30minutes	Complies	
	RSS-247 6.4 (5)	User manual information	No change from original filing	Warning regarding Tilt angle for EIRP compliance, Indoor use for 5150-5250 MHz band and Radar are primary user of some bands	Complies	

Project number PR077654 Report Date: July 7, 2020 Re-Issued Date: July 24, 2020

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS					
FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	No change from original filing	Unique or integral antenna required	Complies
15.407 (b) (6)	RSS-Gen Table 4	AC Conducted Emissions	No change from original filing	Refer to page 23	Complies
15.247 (i) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSS-Gen 6.8	User Manual	No change from original filing	Statement for products with detachable antenna	Complies
-	RSS-Gen 8.4	User Manual	No change from original filing	Statement for all products	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Radiated enfission (neid strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Aruba, a Hewlett Packard Enterprise company models APIN0534 and APIN0535 are enterprise grade Wi-Fi access points with two radios (one for 5 GHz bands and a second for 2.4 GHz bands). In addition, it incorporates a Bluetooth Low Energy (BLE) and ZigBee radio. Since the EUT could be placed in any position during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 48 Volts DC, 0.75 Amps or POE (57 Volts DC, 0.95Amps).

The samples were received on August 15, 2018 and tested on October 3, 11, 12, 16, 19 and 25, 2018, The following samples were used for testing:

Company	Model	Description	Serial Number	FCC ID
Aruba	APIN0534	Wi-Fi Access Point	CNG6K9V019	
Aruba	APIN0535	Wi-Fi Access Point	CNG6K9W01F	
Aruba	APIN0534	Wi-Fi Access Point	CNG6K9V00M	Q9DAPIN0534535
Aruba	APIN0535	Wi-Fi Access Point	CNG6K9W00R	
Aruba	APIN0535	Wi-Fi Access Point	CNG6K9V00C	

OTHER EUT DETAILS

The following EUT details should be noted: Model APIN0534 uses external Wi-Fi antennas. Model APIN0535 uses internal Wi-Fi antennas. Both models use a separate internal BLE/ZigBee antenna. Maximum antenna gains for internal antennas (details in test results): 2.4GHz: 3.5dBi max 5GHz: 5.4dBi max BLE/ZigBee: 5.0 dBi (APIN0534), 3.1 dBi (APIN0535)

Maximum antenn	a gains for external antennas	

Widxinidin antenna gains for external antennas.				
Antenna Model #	Description	2.4 Gain / 5G Gain		
AP-ANT-1W	Whip/dipole antenna	3.8dBi/5.8dBi		
AP-ANT-20	Whip/dipole antenna	2dBi/2dBi		
AP-ANT-19	Whip/dipole antenna	3dBi/6dBi		
AP-ANT-13B	Patch antenna	2.3dBi/4dBi		
AP-ANT-40	Panel	4dBi/5dBi (4 element)		
AP-ANT-45	Panel	5.5dBi/4.5dBi (4 element)		
AP-ANT-48	Panel	8.5dBi/8.5dBi (4 element		

The 802.11ax mode does not support partial RU configurations.

ENCLOSURE

The EUT enclosure measures approximately 24.5 by 24.5 by 5 centimeters. It is primarily constructed of aluminum and uncoated plastic.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
CUI Inc	ATS048T-A480	AC Adapter	-	-

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
HP	840 G3	Laptop	5CG75124D0	-
Microsemi	PD-9001GR/AT/AC	POE adapter	None	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)			
1 OIL	Connected 10	Description	Shielded or Unshielded	Length(m)	
DC Input	AC Adapter	two wire	Unshielded	1.2	
Ethernet	POE Adatper	Cat 6	Unshielded	7.6	
USB	Not connected	-	-	-	
micro USB	Not connected	-	-	-	
AC Adapter	Mains	Two wire	Unshileded	1.3	
POE adapter	HP Laptop	Cat 6	Unshileded	1.5	
POE adapter	Mains	Three wire	Unshileded	1.3	

The micro USB and USB ports are for debug only.

EUT OPERATION

During testing, the EUT was was configured using the laptop to transmit continuously from all radios (2.4 GHz Wi-Fi, 5 GHz Wi-Fi and BLE/ZigBee) simultaneously on the selected channels and at the maximum power level. The BLE/ZigBee radio cannot transmit BLE and ZigBee simultaneously.

PROPOSED MODIFICATION DETAILS

GENERAL

This section details the modifications to the Aruba, a Hewlett Packard Enterprise company model APIN0534 and APIN0535 being proposed. All performance and construction deviations from the characteristics originally reported to the FCC are addressed

SOFTWARE

The operating software was modified to allow operation in 80+80 bandwidth mode.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 6.2 of RSS-GEN, NTS has been recognized as an accredited test laboratory by the Commission and Innovation, Science and Economic Development Canada. A description of the facilities employed for testing is maintained by NTS.

C:ta	Company / Registration Numbers		Location
Site	FCC	Canada	Location
Chamber 4		2845B	41039 Boyce Road
	US1031	(Wireless Test	Fremont,
Chamber 5		Lab #US0027)	CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for testing below 1 GHz and 1.5m for testing above 1 GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

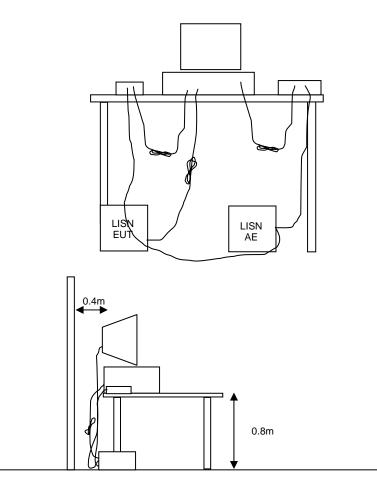
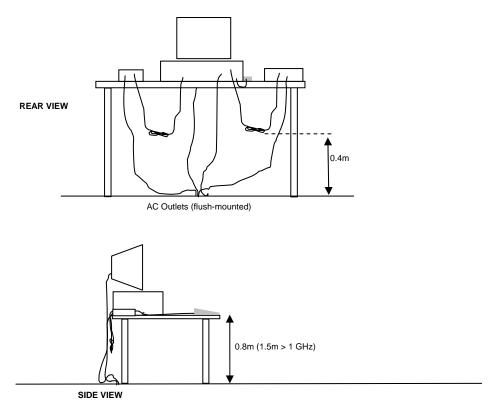


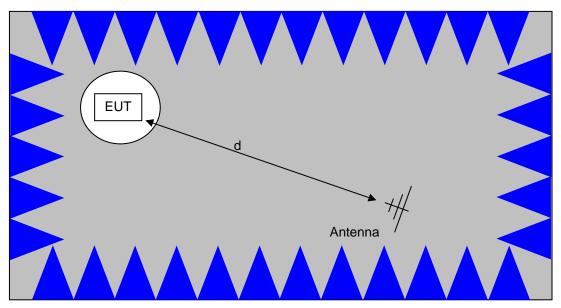
Figure 1 Typical Conducted Emissions Test Configuration

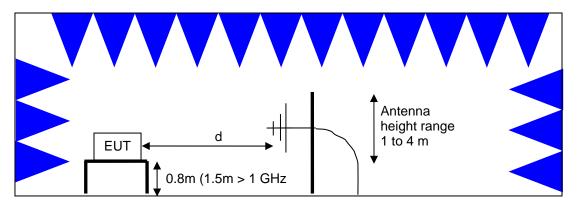
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

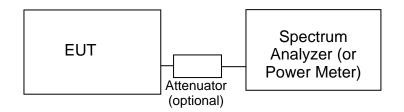
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.



<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 7

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. For the 5250-5350 and 5470-5725 MHz bands, where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 – 5250	1Watt (30 dBm)	17 dBm/MHz
5250–5350 and 5470-5725	250 mW (24 dBm)	11 dBm/MHz
5725–5850	1 Watt (30 dBm)	30 dBm/500kHz
5925–6425 and 6525–6875	1Watt (30 dBm)	17 dBm/MHz
6425-6525 and 6875-7125	250 mW (24 dBm)	11 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band may use antennas of any gain without this limitation.

OUTPUT POWER LIMITS –LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 247. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 – 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 – 5350 and 5470 - 5725	250 mW (24 dBm)2 1W (30dBm) eirp	11 dBm/MHz
5725 – 5850	1 Watt (30 dBm) 4W eirp	30 dBm/500kHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band may use antennas with any gain without this limitation.

² If EIRP exceeds 500mW the device must employ TPC

SPURIOUS EMISSIONS LIMITS –UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-Gen general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS-Gen general limits. All other signals have a limit of -27dBm/MHz, which is field strength of 68.3dBuV/m/MHz at a distance of 3m. For devices operating in the 5725-5850 MHz band under the LELAN/UNII rules, the limit within 5 MHz of the allocated band slopes from 27 dBm/MHz to 15.6 dBm/MHz, from 5 MHz to 25 MHz from the allocated band slopes from 15.6 dBm/MHz to 10 dBm/MHz, from 25 MHz to 75 MHz from the allocated band slopes from 10 dBm/MHz to -27 dBm/MHz and for more than 75 MHz from the allocated band is -27dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$ where: $R_r =$ Receiver Reading in dBuV S = Specification Limit in dBuV M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_{d} = 20*LOG_{10} (D_{m}/D_{s})$ where: $F_{d} = Distance Factor in dB$ $D_{m} = Measurement Distance in meters$ $D_{s} = Specification Distance in meters$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$\begin{array}{rcl} R_c &=& R_r \,+\, F_d \\ and \\ M &=& R_c \,-\, L_S \\ where: \\ R_r &=& Receiver Reading in dBuV/m \\ F_d &=& Distance Factor in dB \\ R_c &=& Corrected Reading in dBuV/m \\ L_S &=& Specification Limit in dBuV/m \end{array}$$

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer	<u>Description</u> , Bandedge, 05-Oct-18	<u>Model</u>	Asset #	Calibrated	<u>Cal Due</u>
EMCO Rohde & Schwarz	Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz- 7 GHz	3115 ESIB 7	1242 1756	4/11/2017 7/7/2018	4/19/2019 7/7/2019
Radiated Emissions National Technical Systems	, Bandedge UNII , 12-Oct-18 NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO Rohde & Schwarz	Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz- 7 GHz	3115 ESIB 7	1242 1756	4/11/2017 7/7/2018	4/19/2019 7/7/2019
Radiated Emissions	, 1000 - 40,000 MHz, 16-Oct-	-18			
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	9/5/2018	9/5/2019
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	9/18/2018	9/18/2020
HP / Miteq	SA40 R Head HF preAmplifier, 18-40 GHz (w/1148)	TTA1840-45-5P- HG-S	1145	9/8/2018	9/8/2019
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	9/27/2018	9/27/2019
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz High Pass filter, 8.2 GHz (Blu System)	3115 P/N 84300- 80039 (84125C)	1242 1392	4/11/2017 5/1/2018	4/19/2019 5/1/2019
A. H. Systems	Spare System Horn, 18- 40GHz	SAS-574, p/n: 2581	2162	8/4/2017	8/4/2019
Micro-Tronics	Band Reject Filter, 5150- 5350 MHz	BRC50703-02	2239	8/17/2018	8/17/2019
Micro-Tronics	Band Reject Filter, 2400- 2500 MHz	BRM50702-02	2249	5/1/2018	5/1/2019
Radiated Emissions	, 1000 - 40,000 MHz, 19-Oct-	·18			
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz		785	9/5/2018	9/5/2019
HP / Miteq	SA40 R Head HF preAmplifier, 18-40 GHz (w/1148)	TTA1840-45-5P- HG-S	1145	9/8/2018	9/8/2019
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	9/27/2018	9/27/2019
Hewlett Packard	High Pass filter, 8.2 GHz (Blu System)	P/N 84300- 80039 (84125C)	1392	5/1/2018	5/1/2019
A. H. Systems	Spare System Horn, 18- 40GHz	SAS-574, p/n: 2581	2162	8/4/2017	8/4/2019
Micro-Tronics	Band Reject Filter, 2400- 2500 MHz	BRM50702-02	2249	5/1/2018	5/1/2019
Micro-Tronics	Band Reject Filter, 5150- 5350 MHz	BRC50703-02	2239	8/17/2018	8/17/2019
EMCO	Antenna, Horn, 1-18 GHz	3115	1242	4/11/2017	4/19/2019

Project number PR077654 Re-Issued Date: July 24, 2020

	o julento	Report Date: July	v 7, 2020 Re-	Issued Date: Ju	
Manufacturer Radiated Emissions	Description , 1000 - 40,000 MHz, 25-Oct	<u>Model</u> -18	Asset #	Calibrated	<u>Cal Due</u>
Micro-Tronics	Band Reject Filter, 5725- 5875 MHz 12GHz	BRC50705-02	1728	3/23/2018	3/23/2019
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	9/5/2018	9/5/2019
HP / Miteq	SA40 R Head HF preAmplifier, 18-40 GHz (w/1148)	TTA1840-45-5P- HG-S	1145	9/8/2018	9/8/2019
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	9/27/2018	9/27/2019
Hewlett Packard	High Pass filter, 8.2 GHz (Blu System)	P/N 84300- 80039 (84125C)	1392	5/1/2018	5/1/2019
Micro-Tronics	Band Reject Filter, 5470- 5725 MHz 12GHz	BRC50704-02	1681	3/23/2018	3/23/2019
A. H. Systems	Spare System Horn, 18- 40GHz	SAS-574, p/n: 2581	2162	8/4/2017	8/4/2019
Micro-Tronics	Band Reject Filter, 2400- 2500 MHz	BRM50702-02	2249	5/1/2018	5/1/2019
EMCO	Antenna, Horn, 1-18 GHz	3115	1242	4/11/2017	4/19/2019

Appendix B Test Data

TL077654-RA-FCC Pages 31 – 86

EMC Test Data

Client: Aruba, a Hewlett Packard Enterprise company	PR Number:	PR077654
Product APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
System Configuration: -	Project Manager:	Christine Krebill
Contact: Mark Hill	Project Engineer:	David Bare
Emissions Standard(s): FCC §15.247 & 15.407	Class:	
Immunity Standard(s): -	Environment:	Radio

EMC Test Data

For The

Aruba, a Hewlett Packard Enterprise company

Product

APIN0534 and APIN0535

Date of Last Test: 6/20/2019

🎲 NTS

EMC Test Data

C			
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Madal	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
woder.	APINU554 and Apinu555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

RSS-247 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	ax80+80: 25.6 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	ax80+80: 0.5 mW/MHz
1	99% Bandwidth	RSS-247 (Information only)	N/A	ax80+80: 154.34 MHz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

Temperature:	22.6 °C
Rel. Humidity:	38 %

EMC Test Data

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Madal	Model: APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
wodel.		Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

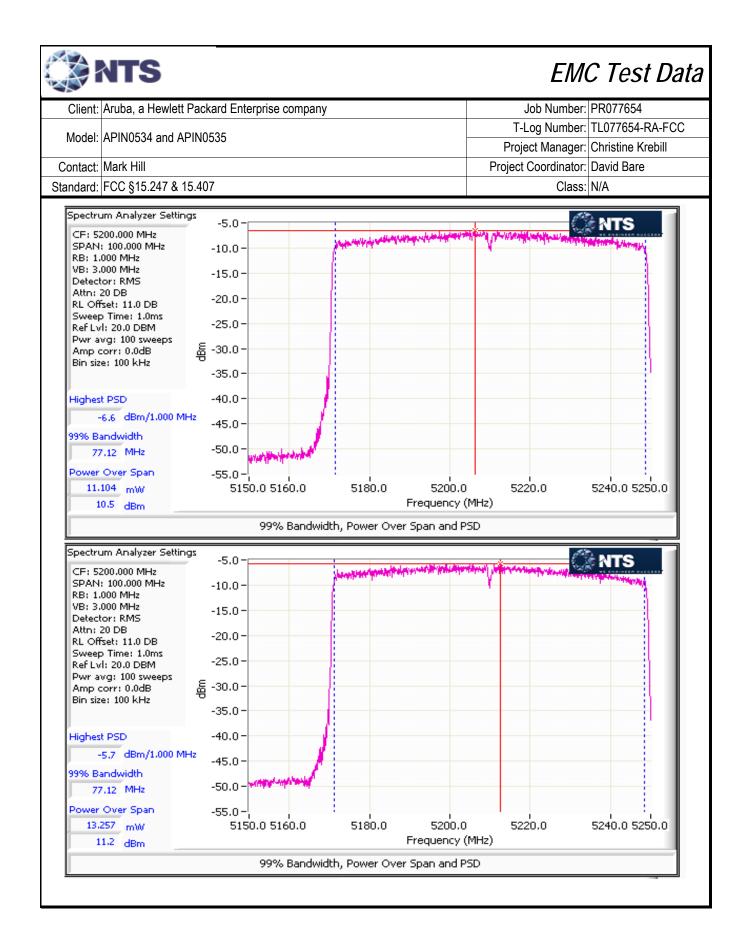
Deviations From The Standard

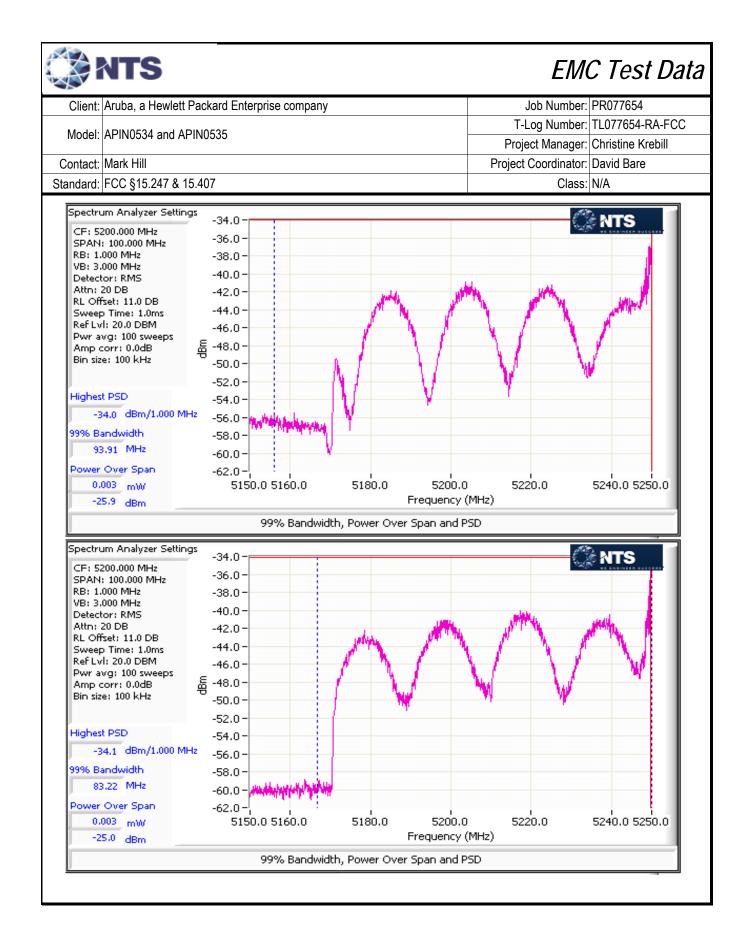
No deviations were made from the requirements of the standard.

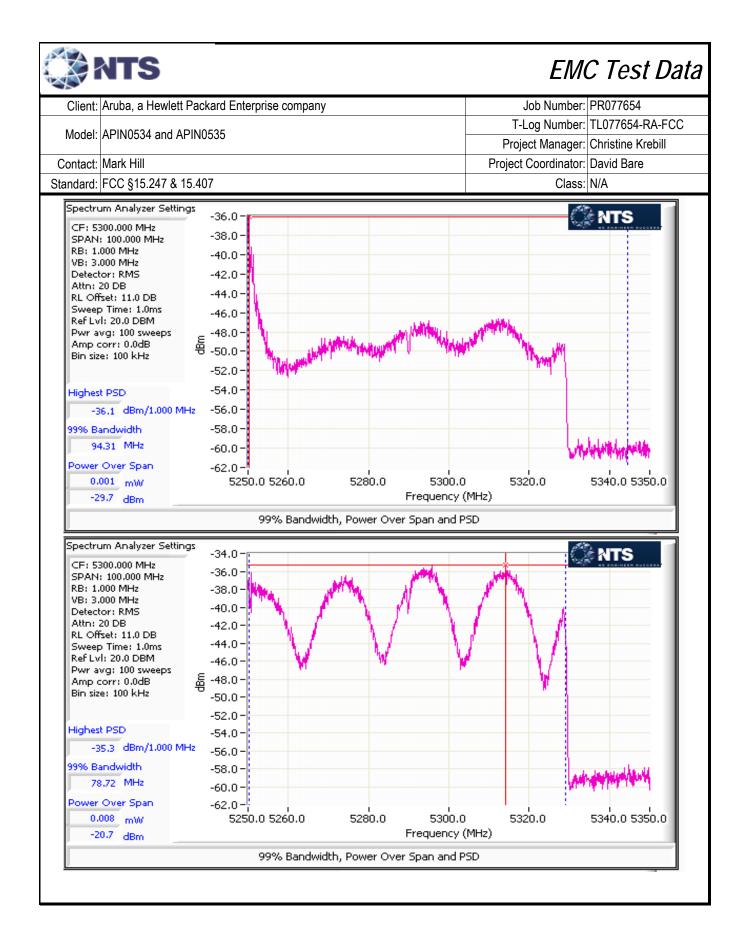
Procedure Comments:

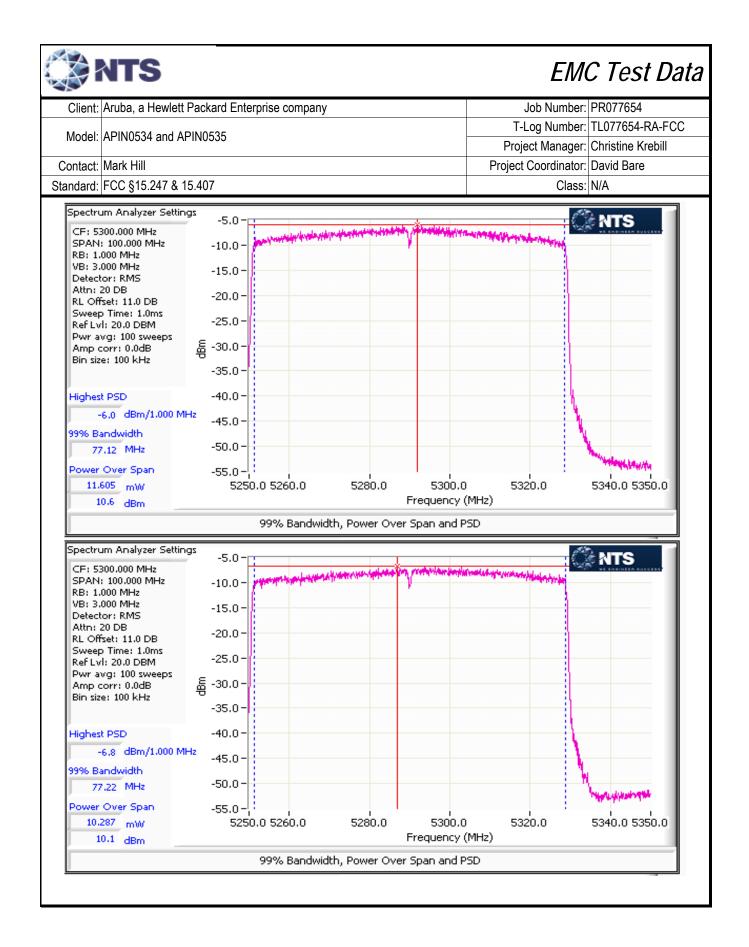
Measurements performed in accordance with FCC KDB 789033 D01

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11ax80+80	MCS0	95.3%	Yes	4.8	0.2	0.4	210
11ac80+80	MCS0	96.5%	Yes	5.4	0.2	0.3	184


Sample Notes


Sample S/N: CNG6K9V00M Driver: P2 WNC 0.4.3a


	NTS							EM	C Test	[•] Data	
Client:	Aruba, a He	wlett Packard	d Enterprise	company				Job Number:	er: PR077654		
Model [.]	APIN0534 a	nd APIN053	5					Log Number:			
							-	ect Manager:		ebill	
	Mark Hill	7 0 45 407					Project	Coordinator:			
Standard:	FCC §15.24	/ & 15.40/						Class:	N/A		
C Te: Te	Date of Test: est Engineer: est Location: Constant Du	11/7/2018 Rafael Varel FT Lab #4b ity Cycle < 98	as / Roy Zho	eng power meas	Co sured using a	D Systems Config. Used onfig Change EUT Voltage spectrum ar ple detector,	None POE & 120 alyzer (see p	olots below). I			
Note 1:	increase th	e number to	get true av	verage), pow	ver averaging	y on and pow where x is th	er integration	over the OB	W. Tthe mea	asurements	
					d for output p						
Note 3: Note 4:	10dBm/MHz PSD (calcula the measure 99% Bandw times OBW.	z. The limits a ated from the ad value exce idth measure	ere also corre measured p eds the ave d in accorda	ected for ins power divide erage by mor ance with C6	tances where ed by the mea re than 3dB. 53.10 - RB be	s for the anter e the highest asured 99% b etween 1-5 % calculated from	measured va pandwidth) by of OBW and	alue of the PS whore than 3 VB \ge 3*RB,	D exceeds to dB by the an Span betwee	he average nount that n 1.5 and	
Note 5:	(in linear ter mode of the the limits is chain. If the	ms). The an MIMO devic the highest g	tenna gain u e. If the sigr ain of the inc coherent the	used to deten nals on the r dividual chai en the effecti	rmine the EIF non-coherent ins and the E ive antenna g	RP and limits between the IRP is the su gain is the su	for PSD/Outp transmit cha m of the proc	out power dep ins then the lucts of gain	pends on the gain used to and power or	operating determine n each	
Antenna Ga	ain Informati	ion									
Freq					in (dBi) / Cha				Dir G	Dir G	
-	1	2	3	4	5	6	7	8	(PWR)	(PSD)	
5150-5250	2.0	2.0	2.0	2.0					2.0	8.0	


	NTS				EM	C Test Data
Client	Aruba, a Hewlett Packard	Enterprise co	ompany		Job Number:	PR077654
		· · ·			T-Log Number:	TL077654-RA-FCC
Model	APIN0534 and APIN0535				Project Manager:	Christine Krebill
Contact	Mark Hill				Project Coordinator:	
Standard	FCC §15.247 & 15.407				Class:	
	s that support CDD mode Min # of spatial streams: Max # of spatial streams:	es 1 4				
Notes:	CDD = Cyclic Delay Diver cross polarized.	rsity (or Cyclic	Shift Diversity	modes supported,	data rates supported for mu Sectorized / Xpol = antenn (PSD) = total gain for PSD	as are sectorized or
Notes:					value for power could be dif	
Notes:	Array gain for power/psd For systems with Beamfo					
Notes:	calculated based on bear Option 2: Antennas are p	nforming crite baired for bea n beamformin	ria. mforming, and t	he pairs are config	ted from cyclic delay table o ured to use the cyclic delay nray gain associated with C	diversity of 802.11; the
FCC UNII-1		Pwr	PSD			
	Outdoor AP Indoor AP	30 30	17 17			
v		30	17			
Х		24	11			
X	Station (e.g. Client) Outdoor AP (>30° Elv.)	24 21	11 -			

Client: Aruba, a Hewlett Packard Enterprise company Job Number: PR077654 Model: APIN0534 and APIN0535 T-Log Number: TL077654-RA- Ordel: APIN0534 and APIN0535 Project Manager: Christine Krebi Contact: Mark Hill Project Coordinator: David Bare Standard: FCC §15.247.8.15.407 Class: N/A MIMO Device - 5150-5250 MHz and 5250-5350 MHz Bands - FCC Max EIRP (mW): 40.6 Frequency Chain Software Duty Cycle Power Total Power ¹ FCC Limit Max Power (MHz) 0 10.5 11.2 25.6 14.1 30.0 0.026 5250 1 13 95.3 -26.0 Max EIRP (mW): 36.1 5250 1 13 95.3 -20.7 22.8 13.6 30.0 0.0228	<u> </u>
Model: APIN0534 and APIN0535 Project Manager: Christine Krebi Contact: Mark Hill Project Coordinator: David Bare Standard: FCC §15.247 & 15.407 Class: N/A MIMO Device - 5150-5250 MHz and 5250-5350 MHz Bands - FCC Max EIRP (mW): 40.6 Frequency (MHz) Chain Software Setting Duty Cycle Power dBm Total Power ¹ mW FCC Limit dBm Max Power (W) 5250 1 13 95.3 11.2 -25.9 25.6 14.1 30.0 0.026 Portion within 5250-5350 MHz band (UNII-2A) Max EIRP (mW): 36.1 0 -29.7 -20.7 22.8 13.6 30.0 0.0228	
Operation Project Manager: Christine Krebit Contact: Mark Hill Project Coordinator: David Bare Standard: FCC §15.247 & 15.407 Class: N/A MIMO Device - 5150-5250 MHz and 5250-5350 MHz Bands - FCC Max EIRP (mW): 40.6 Frequency (MHz) Chain Software Setting Duty Cycle Power Total Power ¹ FCC Limit Max Power (W) Max Power 0 1 13 95.3 10.5 14.1 30.0 0.026 Portion within 5250-5350 MHz band (UNII-2A) Max EIRP (mW): 36.1 0 -29.7 -20.7 22.8 13.6 30.0 0.0228	
Standard: FCC §15.247 & 15.407 Class: N/A MIMO Device - 5150-5250 MHz and 5250-5350 MHz Bands - FCC Max EIRP (mW): 40.6 Mode: ax80 + 80 Max EIRP (mW): 40.6 Frequency (MHz) Chain Software Setting Duty Cycle % Power dBm Total Power ¹ FCC Limit Max Power (W) Max Power 5250 1 0 13 95.3 11.2 25.6 14.1 30.0 0.026 Portion within 5250-5350 MHz band (UNII-2A) Max EIRP (mW): 36.1 0 -25.0 Max EIRP (mW): 36.1 0 -29.7 -20.7 22.8 13.6 30.0 0.0228	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Decult
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Result
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3 -25.0 Portion within 5250-5350 MHz band (UNII-2A) Max EIRP (mW): 36.1 0 -29.7 -20.7 22.8 13.6 30.0 0.0228	Pass
Portion within 5250-5350 MHz band (UNII-2A) Max EIRP (mW): 36.1 0 -29.7 -20.7 -20.7 5250 1 13 95.3 -20.7 10.6 20.0 0.0228	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5250 1 13 95.3 -20.7 22.8 13.6 30.0 0.0228	
<u>5250</u> <u>2</u> 13 <u>95.3</u> <u>10.6</u> <u>22.8</u> 13.0 <u>50.0</u> <u>0.0228</u>	
	Pass

	NTS							EM	C Test	Data
Client:	Aruba, a He	wlett Packard	d Enterprise	company			Job Number: PR077654			
Model [.]	APIN0534 a	nd APIN053	5				T-Log Number: TL077654-RA-FCC			
			, 				Project Manager: Christine Krebill			
	Mark Hill						Project Coordinator: David Bare			
Standard: FCC §15.247 & 15.407								Class:	N/A	
	ce - 5150-51! ax80 + 80	50 MHz Ban	d - ISEDC				Мах	EIRP (mW):	40.7	
Frequency	Jency Software 99% BW Duty Cycle Dewar ¹ Total 6							IC limit	Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	dBm	dBm (eirp)		(W)	Result
5250	0	13	77.12	95.3	10.5 11.2	14.1	16.1	23.0	0.026	Pass
	2				-25.9 -25.0					
Portion wit	Portion within 5250-5350 MHz band (UNII-2A) Max EIRP (mW): 36.3									
5250	0 1 2 3	13	77.22	95.3	-29.7 -20.7 10.6 10.1	13.6	15.6	30.0	0.023	Pass
Frequency	ax80 + 80 Chain	Software		Duty Cycle	PSD	Total	-		Limit	Result
(MHz)		Setting		%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	rtooun
5250	0 1 2 3	13		95.3	-6.6 -5.7 -34.0 -34.1	0.5	-3.0	15.0		Pass
Dortion wit	hin 5250-535	0 MUz band			01.1					
	0	DU IVITIZ DALIU	I (UNII-ZA)		-36.1					
5250	1 2	13		95.3	-35.3 -6.0	0.5	-3.0	30	0.0	Pass
5250		13		95.3		0.5	-3.0	30	0.0	Pas

(MHz) Setting % dBm/MHz mW/MHz dBm/MHz dBm/Mz dBm/MHz fe dBm/MHz fe dBm/MHz fe dBm/MHz fe dBm/MHz dBm/Mz fe dBm/MHz fe dBm/MHz dBm/MHz fe dBm/MHz fe dBm/MHz fe dBm/MHz fe	ata
$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CC
Standard: FCC § 15.247 & 15.407 Class: N/A Standard: FCC § 15.247 & 15.407 Mode: av80 + 80 Frequency (MHz) Chain Software Setting Duty Cycle % PSD Total PSD ¹ IC Limit dBm/MHz dBm/MHz 0 - 6.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lesult
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	esuit
3 -34.1 Portion within 5250-5350 MHz band (UNII-2A) 0 -36.1 5250 1 1 13 95.3 -36.1 -35.3 0.5 -3.0 30.0 2 -30 3 -6.0 -6.8 -6.8 5150-5250 PSD - FCC ac80+80 mode tested to demonstrate PSD is same as for ax80+80 mode 5150-5250 PSD - FCC ac80+80 mode tested to demonstrate PSD is same as for ax80+80 mode Frequency (MHz) Chain Software Setting Duty Cycle PSD Total PSD ¹ FCC Limit 6 -6.4 -5.8 0.5 -3.0 15.0 5250 1 13 96.5 -5.8 0.5 -3.0 15.0	Dass
Portion within 5250-5350 MHz band (UNII-2A) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3230 2 13 95.3 -6.0 0.5 -3.0 30.0 5150-5250 PSD - FCC ac80+80 mode tested to demonstrate PSD is same as for ax80+80 mode 5150-5250 PSD - FCC ac80+80 mode tested to demonstrate PSD is same as for ax80+80 mode Frequency (MHz) Chain Software Setting Duty Cycle % PSD Total PSD ¹ FCC Limit dBm/MHz F 0 -6.4 -6.4 -6.4 -6.4 -5.8 0.5 -3.0 15.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dass
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lesult
	Dass
Portion within 5250-5350 MHz band (UNII-2A)	
$5250 \frac{0}{2} \\ 3 13 96.5 \frac{-36.1}{-35.3} \\ -5.9 \\ -6.4 0.5 -3.0 30.0 30.0$	Dass

	NTS							EM	C Test	^b Data
Client:	Aruba, a He	wlett Packard	d Enterprise	company			J	ob Number:	PR077654	
Model.	APIN0534 a	nd APIN053	5				T-Log Number: TL077			
							Project Manager: Christine Krebill Project Coordinator: David Bare			
	Mark Hill FCC §15.24	7 & 15 407					Project	Class:		
	PSD - ISEDC ac80 + 80	Software		Duty Cycle	PSD	Total	PSD ¹	IC L	imit	
(MHz)	Chain	Setting		%	dBm/MHz	mW/MHz	dBm/MHz		/MHz	Resul
5250	0 1 2 3	13		96.5	-6.4 -5.8 -35.7 -34.5	0.5	-3.0	2	.0	Pass
ortion with 5250	hin 5250-535 0 1 2 3	50 MHz band 13	I (UNII-2A)	96.5	-36.1 -35.3 -5.9 -6.4	0.5	-3.0	30.0	0.0005	Pass

🎲 NTS

EMC Test Data

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Madal	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
woder.	Arinossa and Arinosso		Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

RSS-247 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5470 - 5725MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	ax80+80: 91.2 mW
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	ax80+80: 1.9 mW/MHz
1	Max EIRP 5470 - 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold	Pass	EIRP = 23.3 dBm (213 mW)
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

🎲 NTS

EMC Test Data

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Model	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
Model.		Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

Ambient Conditions:

Temperature:	22.6 °C
Rel. Humidity:	38 %

Modifications Made During Testing

No modifications were made to the EUT during testing

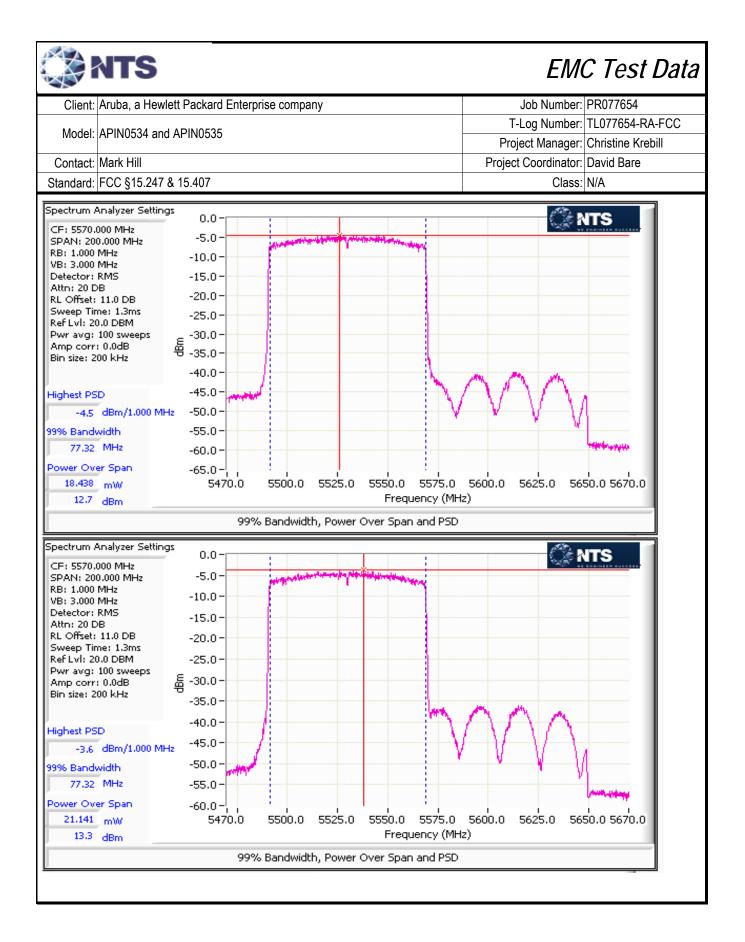
Deviations From The Standard

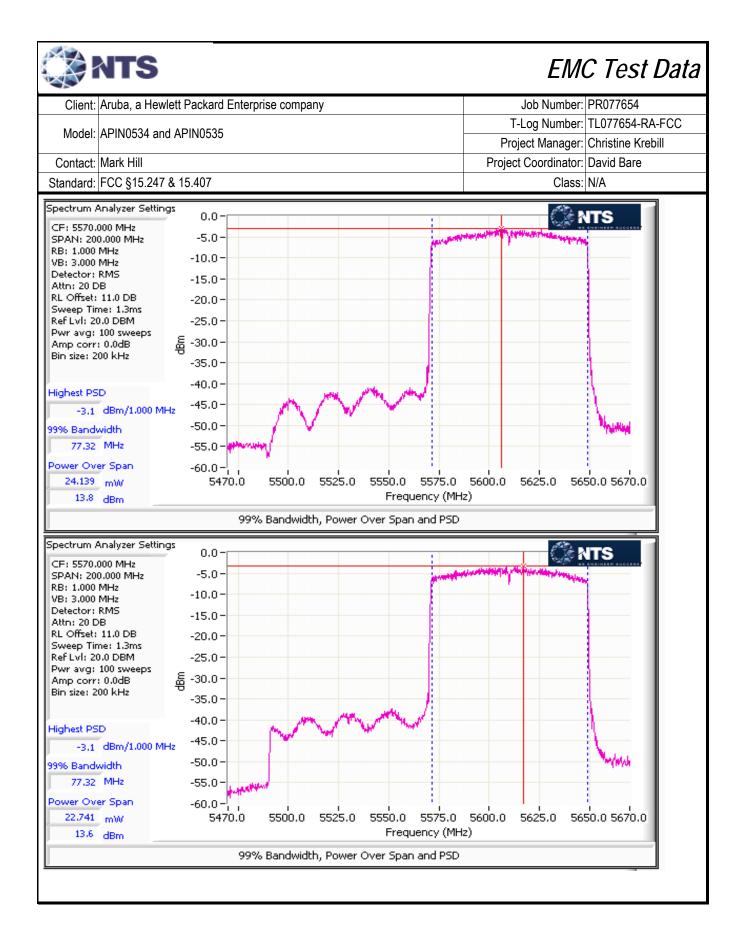
No deviations were made from the requirements of the standard.

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033 D01

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11a	MCS0	92.3%	Yes	1.4	0.3	0.7	698
11ax20	MCS0	95.6%	Yes	5.4	0.2	0.4	184
11ax40	MCS0	95.9%	Yes	5.4	0.2	0.4	184
11ax80	MCS0	94.9%	Yes	5.4	0.2	0.5	185
11ax80+80	MCS0	95.3%	Yes	4.8	0.2	0.4	210


Sample Notes

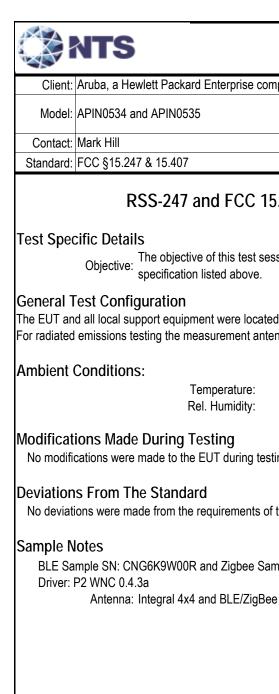

Sample S/N: CNG6K9V00M Driver: P2 WNC 0.4.3a

RA-FCC
ebill
VB=3 MF
) traces, asuremen 63.10)
en 1.5 and Jal chains
n each n chain ar
Dir G
(PSD)
8.0
r

Unorn.	Aruba, a Hewlett Packard Enterprise company	Job Number: PR077654					
Madalı	ADINI0524 and ADINI0525	T-Log Number: TL077654-RA-FCC					
wodel:	APIN0534 and APIN0535	Project Manager: Christine Krebill					
Contact:	Mark Hill	Project Coordinator: David Bare					
Standard:	FCC §15.247 & 15.407	Class: N/A					
	cross polarized.						
	BF = beamforming mode supported, Multichain Legacy = 802.1	1 legacy data rates supported for multichain transmission					
Notes:	CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes s	supported, Sectorized / Xpoi = antennas are sectorized of					
	Dir G (PWR) = total gain (Gant + Array Gain) for power calculat	tions: GA (PSD) = total gain for PSD calculations based (
Notes:		KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the PSD					
	value.						
Notes:	value. Array gain for power/psd calculated per KDB 662911 D01.						
Notes:	value. Array gain for power/psd calculated per KDB 662911 D01. For systems with Beamforming and CDD, choose one the follow						
Notes:	value. Array gain for power/psd calculated per KDB 662911 D01. For systems with Beamforming and CDD, choose one the follow Option 1: Delays are optimized for beamforming, rather than be						
	value. Array gain for power/psd calculated per KDB 662911 D01. For systems with Beamforming and CDD, choose one the follow						
Notes:	value. Array gain for power/psd calculated per KDB 662911 D01. For systems with Beamforming and CDD, choose one the follow Option 1: Delays are optimized for beamforming, rather than be	eing selected from cyclic delay table of 802.11; Array gai					
	value. Array gain for power/psd calculated per KDB 662911 D01. For systems with Beamforming and CDD, choose one the follow Option 1: Delays are optimized for beamforming, rather than be calculated based on beamforming criteria.	eing selected from cyclic delay table of 802.11; Array gai are configured to use the cyclic delay diversity of 802.11;					
	value. Array gain for power/psd calculated per KDB 662911 D01. For systems with Beamforming and CDD, choose one the follow Option 1: Delays are optimized for beamforming, rather than be calculated based on beamforming criteria. Option 2: Antennas are paired for beamforming, and the pairs	eing selected from cyclic delay table of 802.11; Array gai are configured to use the cyclic delay diversity of 802.11; , and the array gain associated with CDD with two antenr					

Mode:	ax80+80						Max	EIRP (mW):	144.5	
Frequency Chain		Software	26dB BW	Duty Cycle	Power ¹	Total I	Power	FCC Limit	Max Power	Result
(MHz)	Ondin	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	rtooun
	0	10	160.06	95.3	12.7	91.2	19.6	24.0	0.001	Dooo
5570	1				13.3					
5570	2 16	160.96	95.5	13.8	91.2	19.0	24.0 0.091	0.091	Pass	
	3				13.6					

🎲 NTS


EMC Test Data

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Madal	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
MOUEI.	AFIN0554 and AFIN0555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

5470-5725 PSD - FCC Only

Mode: ax80+80

Frequency	Chain	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit		Result
(MHz)	Onain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	Result
	0				-4.5					
5570	1	16		95.3	-3.6	1.9	2.8 9.0		Pass	
5570	2	10		30.0	-3.1	1.5	2.0	9.0		1 035
	3				-3.1					

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Model:	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
	Arinossa and Arinosso	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

RSS-247 and FCC 15.407 (UNII) Radiated Spurious Emissions

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Temperature:	23.7 °C
Rel. Humidity:	39 %

Modifications Made During Testing

No modifications were made to the EUT during testing

No deviations were made from the requirements of the standard.

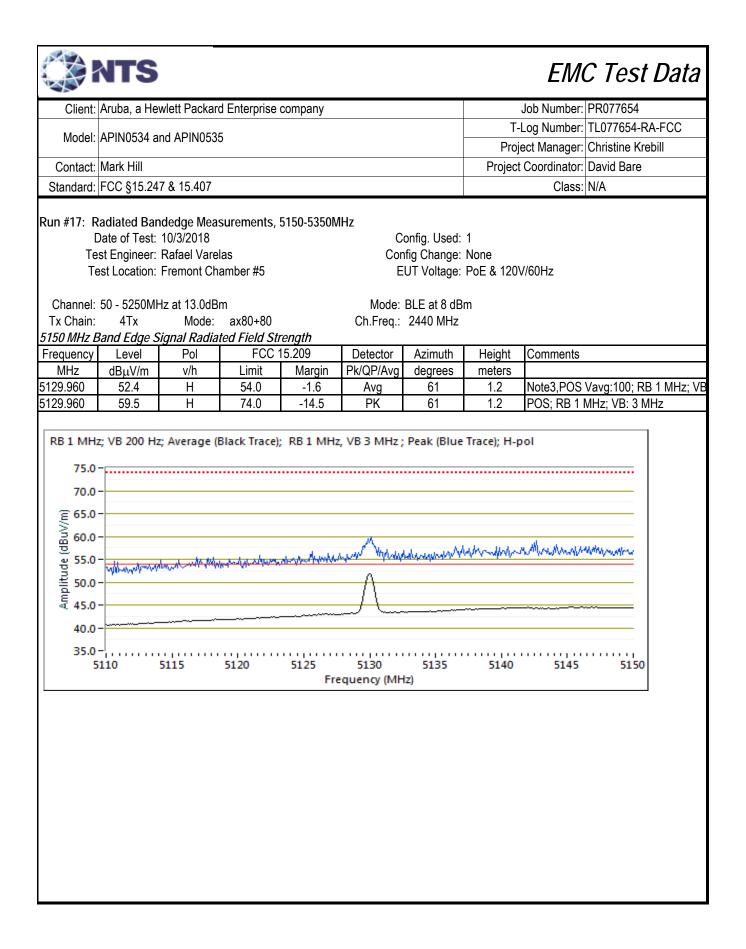
BLE Sample SN: CNG6K9W00R and Zigbee Sample SN: CNG6K9W01F

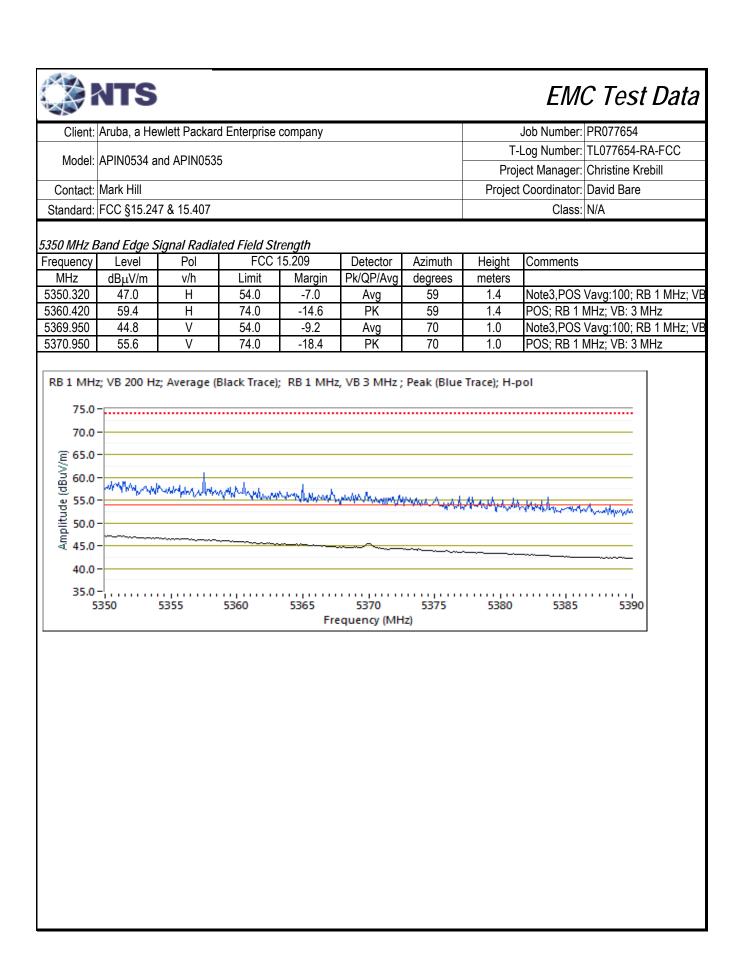
FR-077654.26-NARFNII Rev 0

42			
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Model:	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
	AFIN0554 and AFIN0555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

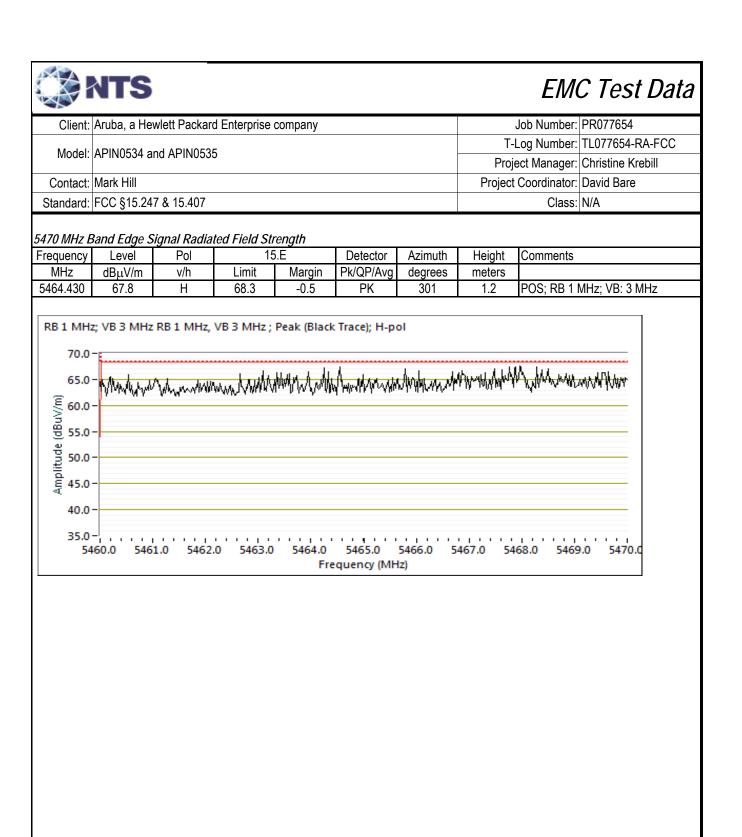
Summary of Results

Summary	U NESUI								
Run #	Mode	Channel	Target Setting	Final Setting	Test Performed	Limit	Result / Margin		
80+80MHz	9+80MHz Bandwith Modes								
		50 -	17.5	13	Restricted Band Edge		52.4 dBµV/m @ 5130.0		
17	- ax80+80	5250MHz	17.5	10	at 5150 MHz	15.209	MHz (-1.6 dB)		
17		50 -	17.5	13	Restricted Band Edge		47.0 dBµV/m @ 5350.3		
		5250MHz	17.5		at 5350 MHz		MHz (-7.0 dB)		
	ax60+60	114 -	47 5	47	Restricted Band Edge		52.6 dBµV/m @ 5450.1		
18		5570MHz	17.5	17	at 5460 MHz		MHz (-1.4 dB)		
10		114 -	17 5	17	Band Edge 5460 - 5470	15E	67.8 dBµV/m @ 5464.4		
		5570MHz	17.5	17	MHz	10E	MHz (-0.5 dB)		


Procedure Comments:


Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)


Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11a	MCS0	92.3%	Yes	1.4	0.3	0.7	698
11ax20	MCS0	95.6%	Yes	5.4	0.2	0.4	184
11ax40	MCS0	95.9%	Yes	5.4	0.2	0.4	184
11ax80	MCS0	94.9%	Yes	5.4	0.2	0.5	185
11ac80+80	MCS0	96.5%	Yes	5.4	0.2	0.3	184

	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 1:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
	demonstrated by meeting the average and peak limits of 15.209, as an alternative.
Nata 2.	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 3:	peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)
	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
Note 5:	measurements.
	·

		<u></u>	<u></u>					EMC Test Data	
Client:	Aruba, a Hev	vlett Packard	d Enterprise	company			Job Number: PR077654		
Model:	APIN0534 ar	nd APIN053	5					Log Number: TL077654-RA-FCC	
Contact	Mark Hill							ect Manager: Christine Krebill Coordinator: David Bare	
	FCC §15.24	7 8 15 107					Filipeci	Class: N/A	
Stanuaru.	FGG 915.24	1 & 15.407						Class. IN/A	
C Te	adiated Ban Date of Test: st Engineer: est Location:	10/3/2018 Rafael Varel	las	5470-5725N	Con Con	onfig. Used: ifig Change: UT Voltage:	None	//60Hz	
Tx Chain: Mode:	114 - 5570M 4Tx ax160 Band Edge S		ted Field St	renath	Note: Chann	el 114 not us	sed in Cana	da	
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5450.050	52.6	Н	54.0	-1.4	Avg	301	1.2	Note3,POS Vavg:100; RB 1 MHz; V	
5457.900	66.4	Н	74.0	-7.6	PK	301	1.2	POS; RB 1 MHz; VB: 3 MHz	
75.0 - 70.0 - (0 65.0 - 9 55.0 - 11 50.0 - 12 50.0 -								when me all was the way to	
P	¥ii 50.0						~~		
pntild ₩ 45.0 40.0									
₹ 45.0 40.0 35.0	-	5425	5430	5435	5440 equency (MH	5445	5450	5455 5460	
₹ 45.0 40.0 35.0	-	5425	5430	5435	5440	5445			
₹ 45.0 40.0 35.0	-	5425	5430	5435	5440	5445			
₹ 45.0 40.0 35.0	-	5425	5430	5435	5440	5445			
₹ 45.0 40.0 35.0	-	5425	5430	5435	5440	5445			
₹ 45.0 40.0 35.0	-	5425	5430	5435	5440	5445			
₹ 45.0 40.0 35.0	-	5425	5430	5435	5440	5445			
₹ 45.0 40.0 35.0	-	5425	5430	5435	5440	5445			

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Model:	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
	Arinossa and Arinosso	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

RSS-247 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	24.5 °C
Rel. Humidity:	41 %

Summary of Results

I	Run #	Mode	Channel	Power Setting	Final Setting	Test Performed	Limit	Result / Margin
	17	- ax80+80	50 - 5250MHz	17.5	10.0	Restricted Band Edge at 5150 MHz		53.1 dBµV/m @ 5130.0 MHz (-0.9 dB)
			50 - 5250MHz	17.5	10.0	Restricted Band Edge at 5350 MHz	15.209	46.2 dBµV/m @ 5351.6 MHz (-7.8 dB)
	10	axou+ou	114 - 5570MHz	17.5	14.0	Restricted Band Edge at 5460 MHz		51.4 dBµV/m @ 5450.1 MHz (-2.6 dB)
	18		114 - 5570MHz	17.5	14.0	Band Edge 5460 - 5470 MHz	15E	66.5 dBµV/m @ 5465.2 MHz (-1.8 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

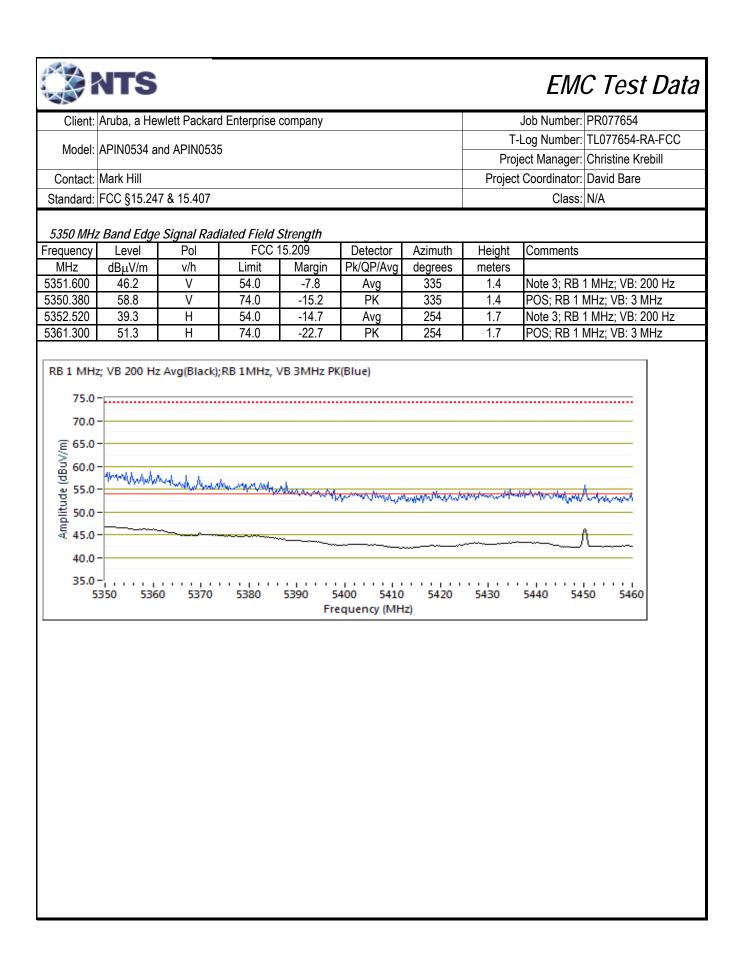
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Madal	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
wouer.	AFIN0004 and AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

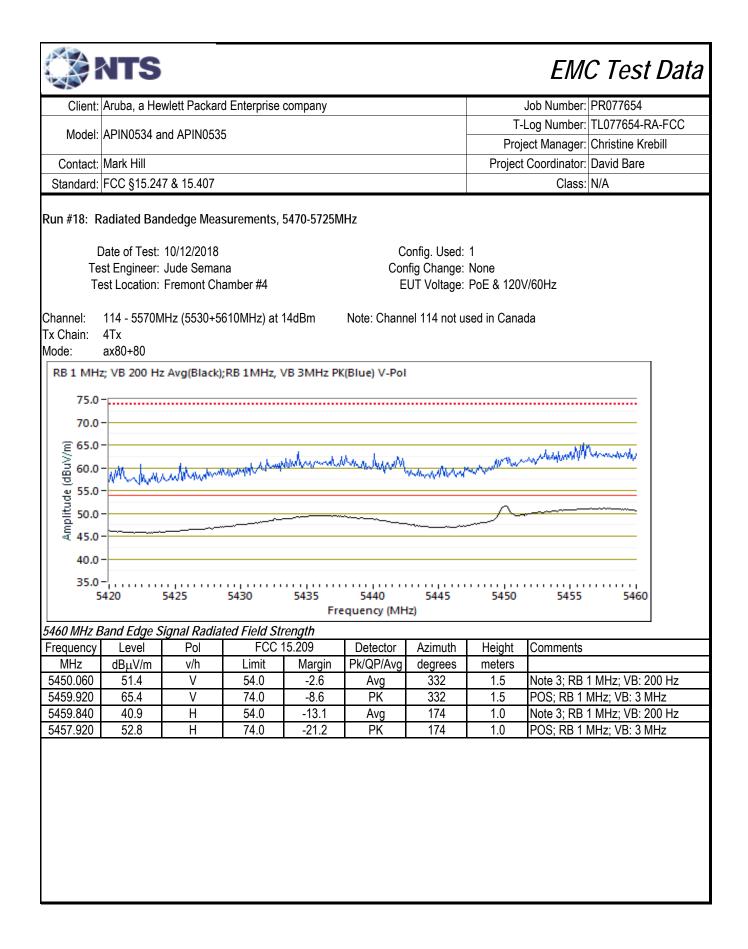
Procedure Comments:

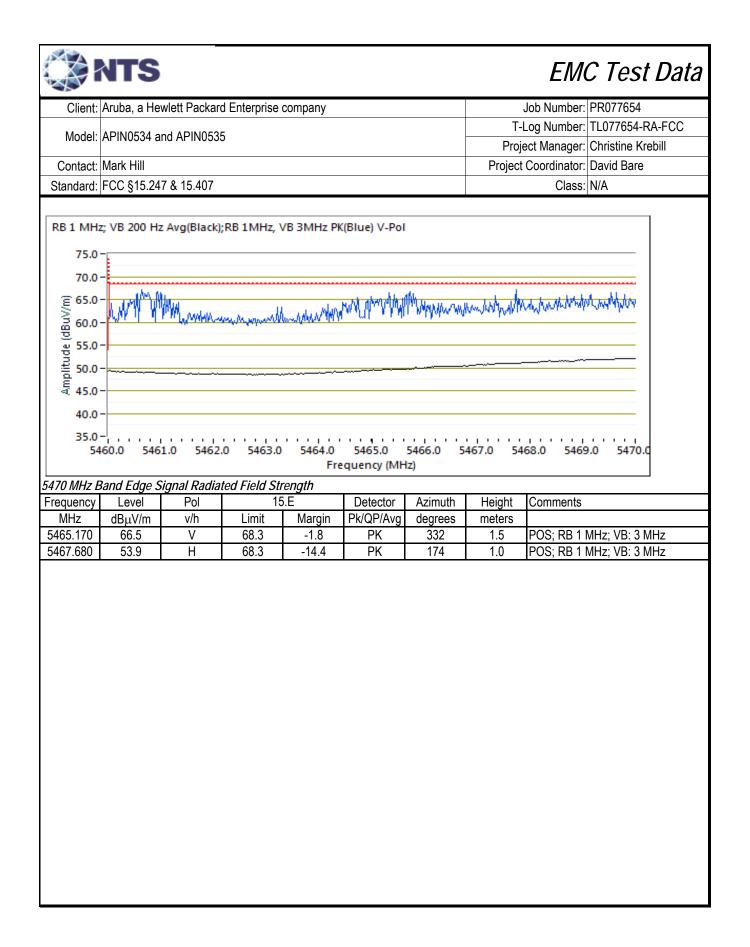
Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)


Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11a	6 MB/s	0.93	Yes	1.438	0.3	0.6	695
ax20	MCS0	0.96	Yes	5.444	0.2	0.4	184
11ax40	MCS0	0.96	Yes	5.444	0.2	0.4	184
11ax80	MCS0	0.95	Yes	5.408	0.2	0.5	185
11ax160	MCS0	0.96	Yes	5.444	0.2	0.3	184


Sample Notes


BLE Sample SN: CNG6K9V019 and Zigbee Sample SN: CNG6K9V00C Driver: P2 WNC 0.4.3a Antenna: AP-ANT-19 Wi-Fi and Integral BLE/ZigBee

Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
NOLE T.	demonstrated by meeting the average and peak limits of 15.209, as an alternative.
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
	peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)
Note 5:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
Note 0.	measurements.

Client: A Model: A Contact: M	Aruba, a Hev	vlett Packaro						EMC Test Data
			d Enterprise	company				Job Number: PR077654
							T-	Log Number: TL077654-RA-FCC
Contact: M	APIN0534 ar	10 APIN0535)				Proj	ect Manager: Christine Krebill
	Mark Hill						Project	Coordinator: David Bare
Standard: F	-CC §15.247	7 & 15.407						Class: N/A
Test Tes	ate of Test: t Engineer: st Location:		as amber #4	5150-5350N	Ci Con E	onfig. Used: fig Change: UT Voltage: Mode:	None	
Tx Chain:	4Tx	12 at 10.000		ax80+80		Ch.Freq.:	2440 MHz	
		Signal Rad	iated Field			0	2 1 1 V 1011 IZ	
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5130.030	53.1	V	54.0	-0.9	Avg	26	1.3	Note 3; RB 1 MHz; VB: 200 Hz
5129.590	61.6	V	74.0	-12.4	PK	26	1.3	POS; RB 1 MHz; VB: 3 MHz
5129.970	42.9	Н	54.0	-11.1	Avg	71	1.3	Note 3; RB 1 MHz; VB: 200 Hz
5130.290	52.3	Н	74.0	-21.7	PK	71	1.3	POS; RB 1 MHz; VB: 3 MHz
75.0 - 0 70.0 - (@ 65.0 - @ @ 0.0 - apn116 50.0 - 40.0 - 35.0 -	ym www.A	A.h.h.m.M.			A.Mar. 1944	5110		1 1 1 1 1 1 1 1 1 1 1 1 1 1

12			
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Model	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
wouer.	AFIN0004 and AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

RSS-247 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	24.1 °C
Rel. Humidity:	39 %

Summary of Results

ł								
	Run #	Mode	Channel	Power Setting	Final Setting	Test Performed	Limit	Result / Margin
	17		50 - 5250MHz	17.5	13.0	Restricted Band Edge at 5150 MHz		53.4 dBµV/m @ 5148.6 MHz (-0.6 dB)
	17	ax80+80	50 - 5250MHz	17.5	13.0	Restricted Band Edge at 5350 MHz	15.209	51.8 dBµV/m @ 5355.1 MHz (-2.2 dB)
	18	axou+ou	114 - 5570MHz	17.5	16.0	Restricted Band Edge at 5460 MHz		53.6 dBµV/m @ 5458.3 MHz (-0.7 dB)
	10		114 - 5570MHz	17.5	16.0	Band Edge 5460 - 5470 MHz	15E	67.7 dBµV/m @ 5467.5 MHz (-0.6 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

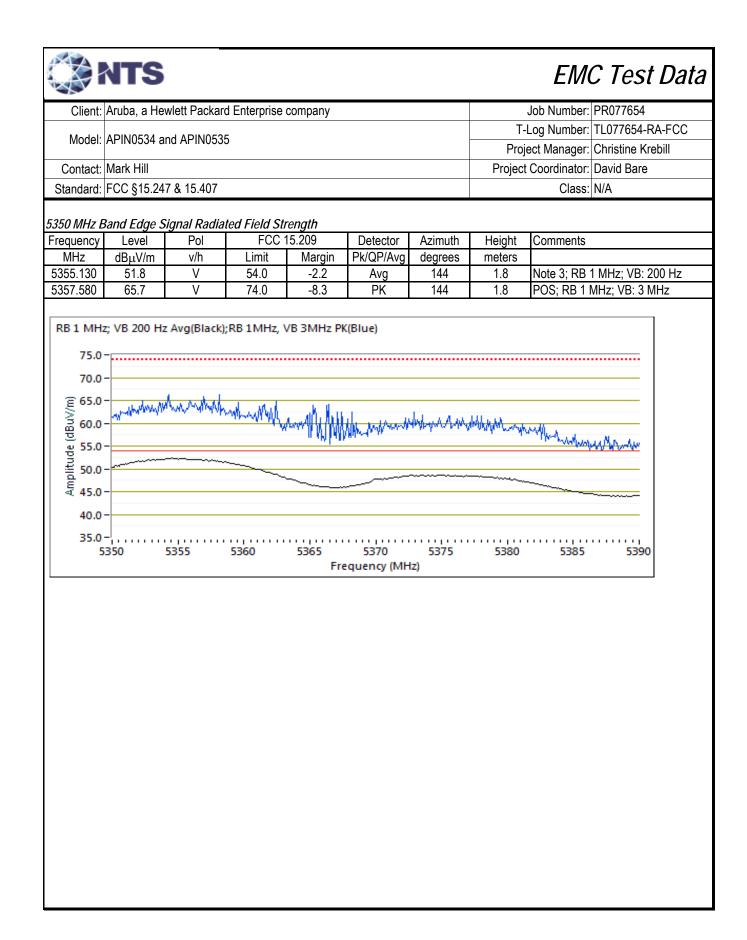
No deviations were made from the requirements of the standard.

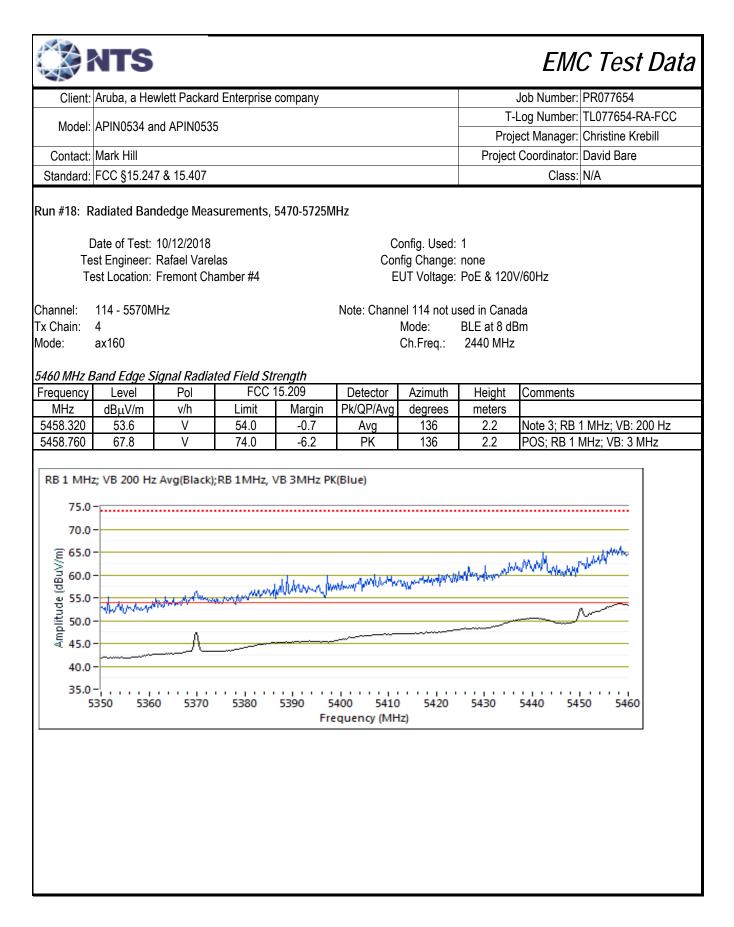
C
(

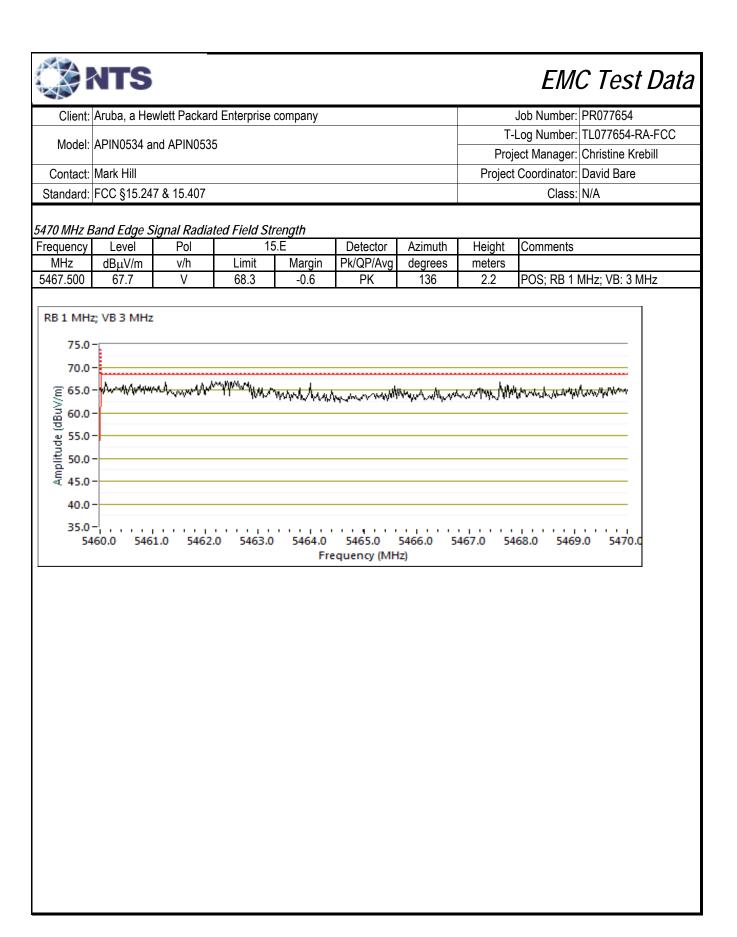
Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)


Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11a	6 MB/s	0.93	Yes	1.438	0.3	0.6	695
ax20	MCS0	0.96	Yes	5.444	0.2	0.4	184
11ax40	MCS0	0.96	Yes	5.444	0.2	0.4	184
11ax80	MCS0	0.95	Yes	5.408	0.2	0.5	185
11ax160	MCS0	0.96	Yes	5.444	0.2	0.3	184


Sample Notes


BLE Sample SN: CNG6K9V019 and Zigbee Sample SN: CNG6K9V00C Driver: P2 WNC 0.4.3a Antenna: AP-ANT-20 Wi-Fi and Integral BLE/ZigBee

Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
NOLE T.	demonstrated by meeting the average and peak limits of 15.209, as an alternative.
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
	peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)
Note 5:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
Note 0.	measurements.

	NTS							EM	C Test L	Data
Client:	Aruba, a He	wlett Packar	d Enterprise	company				Job Number:	PR077654	
Model:	APIN0534 a	nd APIN053	5					-	TL077654-RA-F	
									Christine Krebill	
Contact:		7 0 45 407					Project	Coordinator:		
Standard:	FCC §15.24	7 & 15.407						Class:	N/A	
Run #17: R	adiated Ban	dedge Mea	surements,	5150-5350N	lHz					
Г	Date of Test:	10/12/2018			C	onfig. Used:	· 1			
	st Engineer:		las			ifig Change:				
	est Location:						PoE & 120	//60Hz		
Channel:	50 - 5250MH	1-				Mode:	BLE at 8 dE)m		
	4Tx	12				Ch.Freq.:	2440 MHz			
Mode:	ax160					onn roqn	2110 1112			
5150 MHz E Frequency	<i>Band Edge S</i> Level	<i>ignal Radia</i> Pol		r <i>ength</i> 15.209	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments		
5148.620	53.4	V	54.0	-0.6	Avg	133	1.1	Note 3; RB	1 MHz; VB: 200	Hz
5147.780	67.2	V	74.0	-6.8	PK	133	1.1		MHz; VB: 3 MHz	
5140.350	43.3	H	54.0	-10.7	Avg	227	1.0		1 MHz; VB: 200	
5140.290	56.0	Н	74.0	-18.0	PK	227	1.0	POS; RB 1	MHz; VB: 3 MHz	
DB 1 MH	7 VB 200 Hz	Avg(Black)		/B 3MH7 D	(Blue) V-Pol					
KD I WIL	2, 10 200 112	. Avg(black)	, KD 110112, 1	0 510112 F1						
75.0										
70.0	-									
€ 65.0	_					1		ا بي مار	Anna	
(ш 65.0 /∕ng 60.0	_				httertaller pro-	Munthalit	metur	Mannan Mar	w	
ap 9 55.0 ⊎mpiito 50.0 45.0	A	Archard	Margan Market	man appropriate the	the contraction of the	With the second s	a confidence .			
itud	whitehat	an a cuba	11					\sim		
	0						~	\sim		
40.0										
35.0	040 505	0 5060	5070	5080 5	090 5100	5110	5120	5130 51	40 5150	
	040 505	0 5060	5070		equency (MH		5120	5150 51	40 5150	

Client:	Aruba, a He	wlett Packard	d Enterprise	company		Job Number:	PR077654
Madal			•			T-Log Number:	TL077654-RA-FCC
wodel:	APIN0534 a	nd APIN0538)			Project Manager:	Christine Krebill
Contact:	Mark Hill					Project Coordinator:	David Bare
Standard:	FCC §15.24	7 & 15.407				Class:	N/A
General ^{The EUT} a	ecific Deta Objective: Test Conf nd all local s	ils The objectiv specification iguration upport equipt	e of this test listed above nent were lo	session is to e. cated on the	o perform final qualificati e turntable for radiated sp	Spurious Emission on testing of the EUT with purious emissions testing the EUT, unless otherwis	n respect to the
Ambient	Conditior	IS:		emperature: el. Humidity:			
	Condition			•			
		lts Channel		•	40 % Test Performed	Limit	Result / Margin
Summar Run #	y of Resu	ts Channel 50 - 5250MHz	R Target	el. Humidity: Final	40 % Test Performed Restricted Band Edge at 5150 MHz	Limit	52.0 dBµV/m @ 5050 MHz (-2.0 dB)
Summar	y of Resu Mode	Its Channel 50 -	R Target Setting	el. Humidity: Final Setting	40 % Test Performed Restricted Band Edge	Limit 15.209	52.0 dBµV/m @ 5050 MHz (-2.0 dB) 48.2 dBµV/m @ 5350 MHz (-5.8 dB)
Summar Run #	y of Resu	ts Channel 50 - 5250MHz 50 -	R Target Setting 17.5	el. Humidity: Final Setting 16.5	40 % Test Performed Restricted Band Edge at 5150 MHz Restricted Band Edge		52.0 dBµV/m @ 5050 MHz (-2.0 dB) 48.2 dBµV/m @ 5350

Modifications Made During Testing

No modifications were made to the EUT during testing

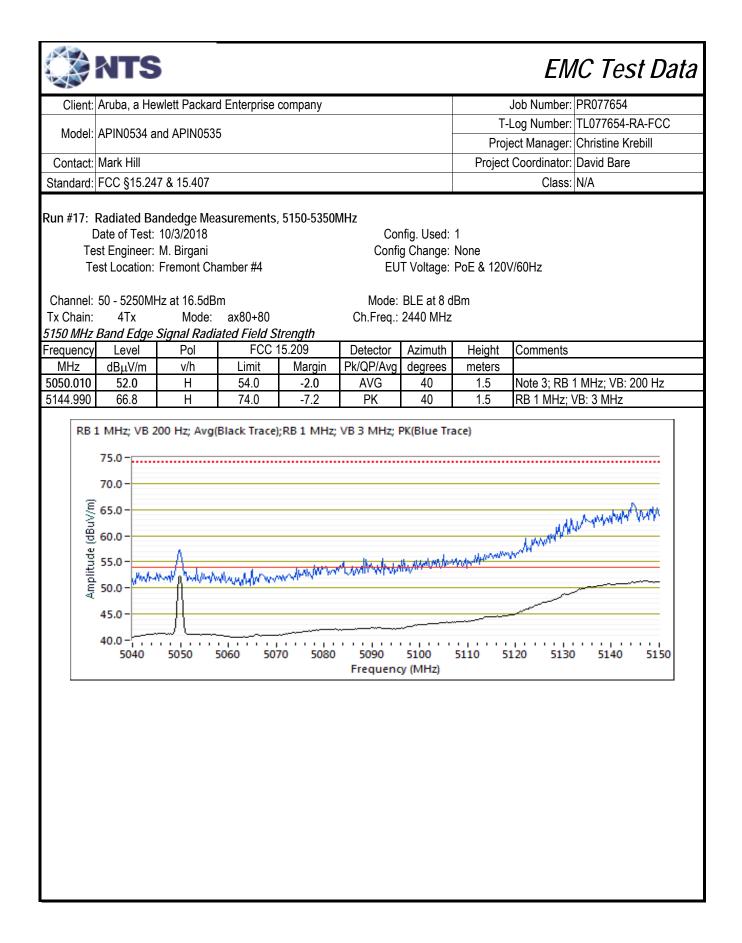
Deviations From The Standard

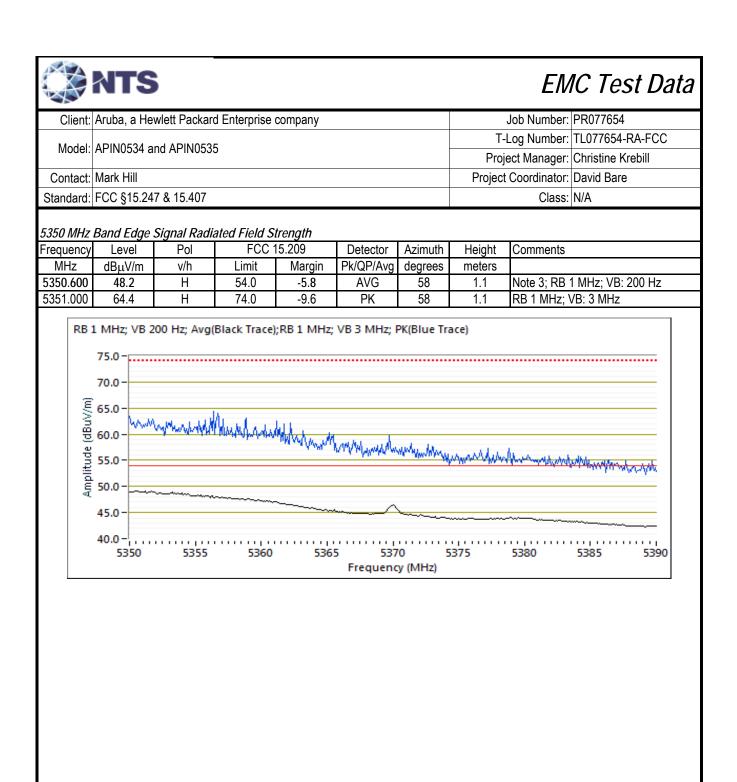
No deviations were made from the requirements of the standard.

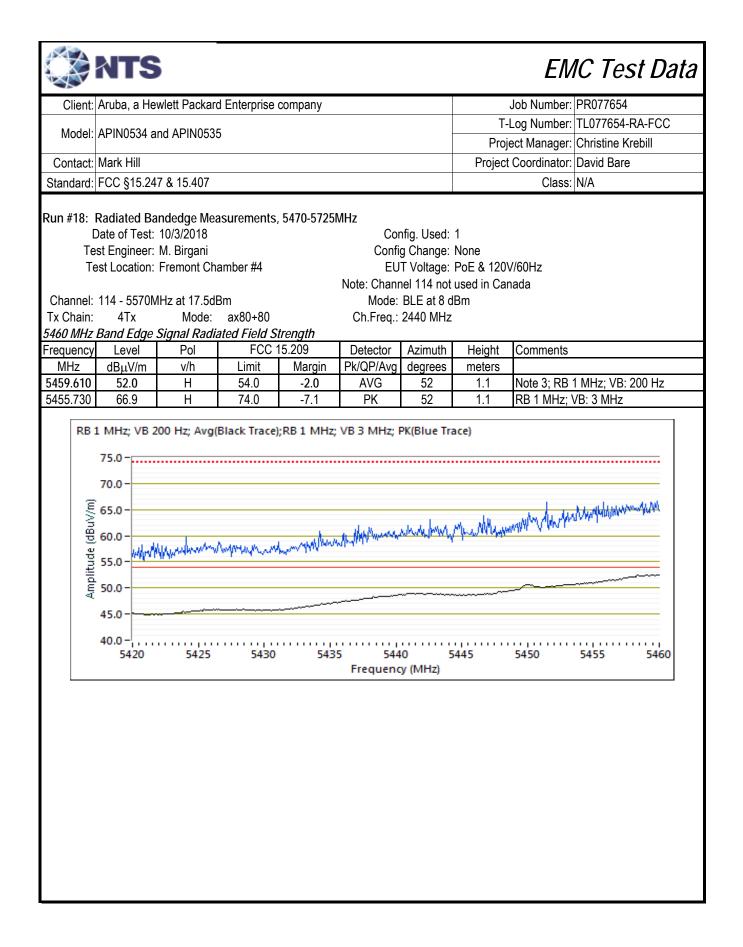
Sample Notes

BLE Sample SN: CNG6K9V019 and Zigbee Sample SN: CNG6K9V00C Driver: P2 WNC 0.4.3a Antenna: AP-ANT-48 Wi-Fi and Integral BLE/ZigBee

Client [.]	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Olicint.	Traba, a newear advara Enterprise company		
Model:	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
	AFIN0554 and AFIN0555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A


Procedure Comments:


Measurements performed in accordance with FCC KDB 789033


Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11a	MCS0	92.3%	Yes	1.4	0.3	0.7	698
11ax20	MCS0	95.6%	Yes	5.4	0.2	0.4	184
11ax40	MCS0	95.9%	Yes	5.4	0.2	0.4	184
11ax80	MCS0	94.9%	Yes	5.4	0.2	0.5	185
11ac80+80	MCS0	96.5%	Yes	5.4	0.2	0.3	184

Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
	demonstrated by meeting the average and peak limits of 15.209, as an alternative.
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz, peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)
	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
	measurements.

	NTS	•						EMC Test Data		
Client:	Client: Aruba, a Hewlett Packard Enterprise company Job Number: PR077654 T-L og Number: TL 077654-RA-FCC									
Madal		nd APIN0535	-	T-	Log Number: TL077654-RA-FCC					
woder.	AFIN0004 a)	Proj	ect Manager: Christine Krebill					
Contact:	Mark Hill						Project	Coordinator: David Bare		
Standard:	Standard: FCC §15.247 & 15.407 Class: N/A									
Note: Channel 114 not used in Canada Channel: 114 - 5570MHz at 17.0dBm Mode: BLE at 8 dBm Tx Chain: 4Tx Mode: ax80+80 Ch.Freq.: 2440 MHz 5470 MHz Band Edge Signal Radiated Field Strength Frequency Level Pol 15.E Detector Azimuth Height Comments										
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5466.850	67.2	Н	68.3	-1.1	PK	52	1.1	POS; RB 1 MHz; VB: 3 MHz		
Amplitude (dBuV/m)	67.5 - 65.0 - 62.5 - 60.0 - 57.5 - 55.0 - 52.5 - 50.0 - 5460.0 5461.0 5462.0 5463.0 5464.0 5465.0 5466.0 5467.0 5468.0 5469.0 5470.0 Frequency (MHz)									

🎲 NTS

EMC Test Data

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Model:	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
	Ar 1140004 and Ar 1140000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

RSS-247, FCC 15.247 and FCC 15.407 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:	Temperature:	20-24 °C
	Rel. Humidity:	38-42 %

Summary of Results

Run #	Mode	Channel	Power Settings		Test Performed	Limit	Result / Margin
1	ax80+80 / b	6 & 50	20	20	Radiated Emissions, 1 - 40 GHz	FCC 15.209/ 15.247 / 15 E	46.7 dBµV/m @ 9747.97 MHz (-7.3 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

🎲 NTS

EMC Test Data

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
		T-Log Number:	TL077654-RA-FCC
	APIN0534 and APIN0535	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

Procedure Comments:

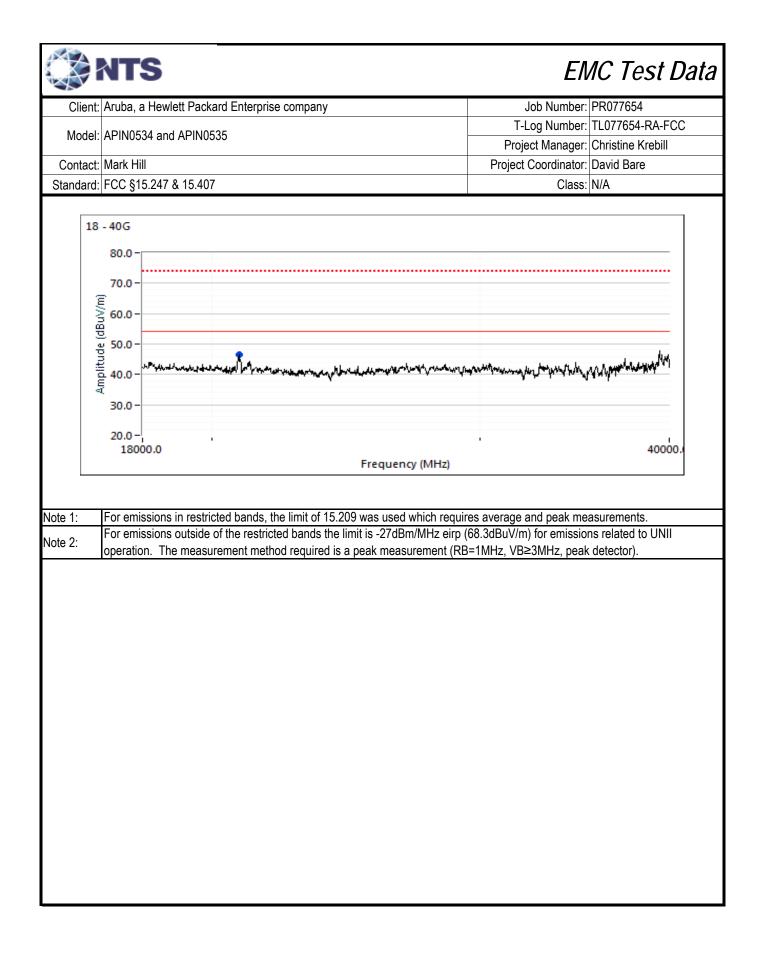
Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
ZigBee	250 kb/s	0.43	Yes	0.863	3.7	7.4	1159
BLE	1 Mb/s	0.72	Yes	0.586	1.4	2.9	1706
11b	1 Mb/s	0.78	Yes	0.669	1.1	2.1	1495
11a	MCS0	92.3%	Yes	1.4	0.3	0.7	698
11ax20	MCS0	95.6%	Yes	5.4	0.2	0.4	184
11ax40	MCS0	95.9%	Yes	5.4	0.2	0.4	184
11ax80	MCS0	94.9%	Yes	5.4	0.2	0.5	185
11ac80+80	MCS0	96.5%	Yes	5.4	0.2	0.3	184

Sample Notes


BLE Sample SN: CNG6K9W00R and Zigbee Sample SN: CNG6K9W01F Driver: P2 WNC 0.4.4

Antenna: Integral. 4 antennas for 5 GHz radio and 4 antennas for 2.4 GHz radio (5GHz radio may also use 2 antennas but with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously). Tests performed with 4 antennas at the 2 antenna power levels. Tests performed with 4 antennas at the target power.

Measurement Specific Notes:

Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 1.	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 3:	peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)
Note 5:	Digital device emission, class A limit extrapolated to 3m applied, peak reading vs peak or average limit.

Client: Aruba, a Hewlett Packard Enterprise company								Job Number: PR077654		
Model:	APIN0534	and APIN0535	5					-Log Number: TL077654-RA-FCC		
							-	ject Manager: Christine Krebill		
	Mark Hill						Projec	t Coordinator: David Bare		
Standard:	FCC §15.2	47 & 15.407						Class: N/A		
C Te	Date of Tes est Enginee	rious Emissic t: 10/25/2018 r: Roy Zheng	ons, 1,000 -	40,000 MHz	C Cor	onfig. Used: ifig Change:	Internal none	Band		
Te	est Locatior	: Chamber 5			E	UT Voltage:	PoE			
	6 & 50 Wi- 4 (5GHz),	Fi 4 (2.4 GHz)		Mode: Data Rate:	ax80+80 / b MCS0					
Frequency	Level	Pol	15.20	9 / 15E	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1500.000	36.7	V	60.0	-23.3	Peak	201	1.3	Note 5		
1866.670	36.4	Н	60.0	-23.6	Peak	196	1.0	Note 5		
2000.000	53.4	V	60.0	-6.6	Peak	83	1.0	Note 5		
4899.960	46.3	V	54.0	-7.7	VAVG	108	1.4	RB 1 MHz;VB 300 Hz;Note 3		
4900.010 9747.970	56.6 46.7	V	74.0 54.0	-17.4 -7.3	PK VAVG	108 175	1.4 1.2	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 300 Hz;Note 3		
9747.970 9748.180	40.7 55.5	V	74.0	-7.5	PK	175	1.2	RB 1 MHz;VB 3 MHz;Peak		
20834.510	46.2	V	54.0	-7.8	VAVG	214	1.5	RB 1 MHz;VB 300 Hz;Note 3		
20834.590	61.1	V	74.0	-12.9	PK	214	1.5	RB 1 MHz;VB 3 MHz;Peak		
1 - (W//MBP) aprilliand	18G 80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 1000		un the state	1	Frequen			10000 18000		

🎲 NTS

EMC Test Data

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Model:	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
		Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

RSS-247, FCC 15.247 and FCC 15.407 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	23.4 °C
Rel. Humidity:	40 %

Summary of Results

Run #	Mode	Channel	Power Settings		Test Performed	Limit	Result / Margin
1	ax80+80 / b	6 & 50 Wi- Fi	20	20	Radiated Emissions, 1 - 40 GHz	FCC 15.209/ 15.247 / 15 E	53.3 dBµV/m @ 4890.0 MHz (-0.7 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
	· · · · · ·	TLagNumber	
	APIN0534 and APIN0535	I-Log Number.	TL077654-RA-FCC
		Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
ZigBee	250 kb/s	0.43	Yes	0.863	3.7	7.4	1159
BLE	1 Mb/s	0.72	Yes	0.586	1.4	2.9	1706
11b	1 Mb/s	0.78	Yes	0.669	1.1	2.1	1495
11a	MCS0	0.92	Yes	1.4	0.3	0.7	698
11ax20	MCS0	0.96	Yes	5.4	0.2	0.4	184
11ax40	MCS0	0.96	Yes	5.4	0.2	0.4	184
11ax80	MCS0	0.95	Yes	5.4	0.2	0.5	185
11ac80+80	MCS0	0.96	Yes	5.4	0.2	0.3	184

Sample Notes

BLE Sample SN: CNG6K9V019 and Zigbee Sample SN: CNG6K9V00C Driver: P2 WNC 0.4.4

Antenna: AP-ANT-19 Wi-Fi, Integral BLE/ZigBee. 4 antennas for 5 GHz radio and 4 antennas for 2.4 GHz radio (5GHz radio may also use 2 antennas but with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously). Tests performed with 4 antennas at the 2 antenna power levels. Tests performed with 4 antennas at the target power.

Measurement Specific Notes:

operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,	Note 1:	
	note 1.	
	Note 2	
peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)		
Note 5: Digital device emission, class A limit extrapolated to 3m applied, peak reading vs peak or average limit.	Note 5:	

	Aruba, a Hev		•	Job Number: PR077654 T-Log Number: TL077654-RA-FCC				
Wodel:	APIN0534 ar	10 APIN053)				Proj	ect Manager: Christine Krebill
Contact:	Mark Hill						Project	Coordinator: David Bare
Standard:	FCC §15.247	7 & 15.407						Class: N/A
un #1, Rad	diated Spurio	ous Emissio	ons, 1,000 -	40,000 MHz	. Operation i	n the 5150-5	350 MHz B	and
[Date of Test:	10/16/2018	00:00		С	onfig. Used:	Ant 19	
	st Engineer:					fig Change:		
Te	est Location:	Chamber #5			E	UT Voltage:	PoE & 120	V/60Hz
un #10, C	enter Chann							
	enter Chann 6 & 50 Wi-Fi			Mode.	ax80+80 / g			
	4 (5GHz), 4 (Data Rate:	-			
Frequency	Level	Pol	15.20	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1500.000	36.7	V	60.0	-23.3	Peak	35	0.9	Note 5
2000.000	50.0	V V	60.0 54.0	-10.0	Peak	42 174	1.2 1.3	Note 5
7058.330 14628.330	43.6 44.8	V	<u>54.0</u> 54.0	-10.4 -9.2	Peak Peak	210	1.3	
4890.020	53.3	V	54.0	-0.7	VAVG	230	1.8	RB 1 MHz;VB 300 Hz;Note 3
4890.090	60.1	V	74.0	-13.9	PK	230	1.8	RB 1 MHz;VB 3 MHz;Peak
9747.910	44.9	V	54.0	-9.1	VAVG	201	1.8	RB 1 MHz;VB 300 Hz;Note 3
9747.710	54.8	V	74.0	-19.2	PK	201	1.8	RB 1 MHz;VB 3 MHz;Peak
Amontifunda (dBu(V/m)	18G 80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 30.0 - 1000	www.l		1 1	usigenidenter (black			10000 13000
	1000				Frequen	ry (MHz)		10000 10000

	Aruba, a	a Hewlett Packard	Enterprise comp	any			Job Number:	PR077654	
1					T-Log Number:		RA-FC		
iodel:	APIN0534 and APIN0535						Project Manager:	Christine Ki	rebill
ntact:	Mark Hi	ll				F	Project Coordinator:	David Bare	
idard:	FCC §1	5.247 & 15.407					Class:	N/A	
10	- 40G								
10	- 40G								
	80.0-								
	70.0-								
1	Ē								
	60.0-								
1 4	2. y 50.0 -								
Amplifude (dRu//m)	40.0 -	water and the second of the second	where have an	www.	Although	MAN AND MADE	man man and	margalety	NY NY
Amy	40.0-			ν γ				իզուտը, հ	
	30.0-								
	20.0-								
	180								40000.
				Fr	equency (MH	łz)			
1.	For emi							asurements.	
:	operatio					eirp (68.3d	BuV/m) for emissio Iz, VB≥3MHz, peal	ons related to	
:	operatio					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatio					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatio					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatio					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatio					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatio					eirp (68.3d	BuV/m) for emissio	ons related to	
:	operatic					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatic					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatic					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatic					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatic					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatic					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatic					eirp (68.3d	BuV/m) for emissio	ons related to	
	operatic					eirp (68.3d	BuV/m) for emissio	ons related to	

EMC Test Data

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Model:	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
	AFIN0554 and AFIN0555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

RSS-247, FCC 15.247 and FCC 15.407 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:	Temperature:	23-24 °C
	Rel. Humidity:	37-39 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Summary of Results

Run #	Mode	Channel	Power Settings		Test Performed	Limit	Result / Margin	
1	b	6	20	16	Radiated Emissions,	FCC 15.209/ 15.247 /	42.4 dBµV/m @	
I	ax80+80	50	20	20	1 - 40 GHz	15 E	14621.8MHz (-11.6dB)	

EMC Test Data

42			
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR077654
Model:	APIN0534 and APIN0535	T-Log Number:	TL077654-RA-FCC
wouer.	AFIN0004 and AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & 15.407	Class:	N/A

Procedure Comments:

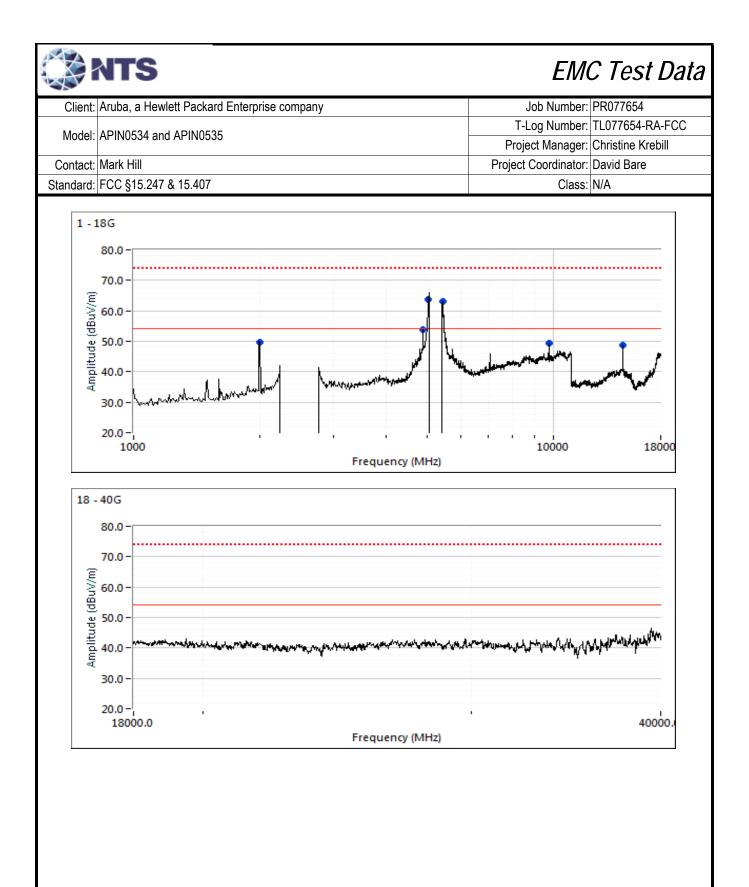
Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
ZigBee	250 kb/s	42.7%	Yes	0.9	3.7	7.4	1159
BLE	1 Mb/s	72.0%	Yes	0.6	1.4	2.9	1706
11b	1 Mb/s	78.4%	Yes	0.7	1.1	2.1	1495
11a	MCS0	92.3%	Yes	1.4	0.3	0.7	698
11ax20	MCS0	95.6%	Yes	5.4	0.2	0.4	184
11ax40	MCS0	95.9%	Yes	5.4	0.2	0.4	184
11ax80	MCS0	94.9%	Yes	5.4	0.2	0.5	185
11ac80+80	MCS0	96.5%	Yes	5.4	0.2	0.3	184

Sample Notes


BLE Sample SN: CNG6K9V019 and Zigbee Sample SN: CNG6K9V00C Driver: P2 WNC 0.4.3a


Antenna: AP-ANT-48 Wi-Fi, Integral BLE/ZigBee. 5GHz radio may also use 2 elements but with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously. Tests performed with at the 2 elements power levels. Tests performed with 4 antennas at the target power.

Measurement Specific Notes:

Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
	peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)
Note 5:	Digital device emission, class A limit extrapolated to 3m applied, peak reading vs peak or average limit.

	NTS	-						EM	C Test Data		
Client:	Aruba, a He	wlett Packard	d Enterprise	Job Number: F		PR077654					
Madalı	APIN0534 a		-	T-	Log Number:	TL077654-RA-FCC					
woder.	APIN0554 a	IU APINU55)	Proj	ect Manager:	Christine Krebill					
Contact:	Mark Hill				Project	Coordinator:	David Bare				
Standard:	Standard: FCC §15.247 & 15.407 Class: N/A										
E Te Te	diated Spuri Date of Test: est Engineer: est Location: Center Chanr	10/19/18 Roy Zheng / Chamber #4	R. Varelas	40,000 MHz.	Con	the 5150-53 onfig. Used: fig Change: UT Voltage:	Panel anter none	nna			
	6 & 50 Wi-Fi			Mode	: b & ac80+80						
Tx Chain:					: 1Mbps & MC						
				0/455	1						
Frequency	Level	Pol		9 / 15E	Detector	Azimuth	Height	Comments			
MHz 14621.790	dBµV/m 42.4	v/h V	Limit 54.0	Margin -11.6	Pk/QP/Avg VAVG	degrees 162	meters 1.9		/B 300 Hz;Note 3		
14621.990	42.4 52.4	V	74.0	-11.0	PK	162	1.9		/B 3 MHz;Peak		
5050.000	53.0	Ĥ	-	-	PK	162	2.1		BE measurment		
5437.570	57.7	V	-	-	PK	169	1.1		BE measurment		
Note 1:	For emissior	is in restricte	d bands, the	limit of 15.2	09 was used v	/hich require	s average a	ind peak mea	surements.		
Note 2:					limit is -27dBm eak detector).	/MHz eirp (6	8.3dBuV/m)). The measu	rement method required		

End of Report

This page is intentionally blank and marks the last page of this test report.