

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Web: www.mrt-cert.com Report No.: 2003TW003-U2Report Version:V01Issue Date:05-23-2020

MEASUREMENT REPORT

FCC PART 15 Subpart C ZigBee 802.15.4

FCC ID: Q9DAPIN0518

APPLICANT: Hewlett Packard Enterprise Company

- Application Type: Certification
- Product: ACCESS POINT
- Model No.: APIN0518

Brand Name:

FCC Classification: Digital Transmission System (DTS)

UDO

Hewlett Packard

- FCC Rule Part(s): Part15 Subpart C (Section 15.247)
- Test Procedure(s): ANSI C63.10-2013
- **Test Date:** December 25, 2019 ~ May 18, 2020

Reviewed By:

Approved By:

Paddy Chen Paddy Chen) (Chenz Ker)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2003TW0003-U2	Rev. 01	Initial report	05-23-2020	Valid

CONTENTS

Des	scriptio	n P	age
Ger	neral In	formation	5
1.	INTRO	DDUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	DUCT INFORMATION	7
	2.1.	Feature of Equipment under Test	7
	2.2.	Product Specification Subjective to this Report	7
	2.3.	Working Frequencies for this report	7
	2.4.	Description of Available Antennas	8
	2.5.	Description of Antenna RF Port	9
	2.6.	Duty Cycle	10
	2.7.	Description of Test Software	10
	2.8.	EMI Suppression Device(s)/Modifications	10
	2.9.	Labeling Requirements	10
3.	DESC	RIPTION of TEST	11
	3.1.	Evaluation Procedure	11
	3.2.	AC Line Conducted Emissions	11
	3.3.	Radiated Emissions	12
4.	ANTE	NNA REQUIREMENTS	13
5.	TEST	EQUIPMENT CALIBRATION DATE	14
6.	MEAS	SUREMENT UNCERTAINTY	15
7.	TEST	RESULT	16
	7.1.	Summary	16
	7.2.	6dB Bandwidth Measurement	17
	7.2.1.	Test Limit	17
	7.2.2.	Test Procedure used	17
	7.2.3.	Test Setting	17
	7.2.4.	Test Setup	17
	7.2.5.	Test Result	18
	7.3.	Output Power Measurement	19
	7.3.1.	Test Limit	19
	7.3.2.	Test Procedure Used	19
	7.3.3.	Test Setting	19

	7.3.4.	Test Setup	20	
	7.3.5.	Test Result of Output Power	21	
	7.4.	Power Spectral Density Measurement	22	
	7.4.1.	Test Limit	22	
	7.4.2.	Test Procedure Used	22	
	7.4.3.	Test Setting	22	
	7.4.4.	Test Setup	22	
	7.4.5.	Test Result	23	
	7.5.	Conducted Band Edge and Out-of-Band Emissions	24	
	7.5.1.	Test Limit	24	
	7.5.2.	Test Procedure Used	24	
	7.5.3.	Test Settitng	24	
	7.5.4.	Test Setup	25	
	7.5.5.	Test Result	26	
	7.6.	Radiated Spurious Emission Measurement	28	
	7.6.1.	Test Limit	28	
	7.6.2.	Test Procedure Used	28	
	7.6.3.	Test Setting	28	
	7.6.4.	Test Setup	30	
	7.6.5.	Test Result	31	
	7.7.	Radiated Restricted Band Edge Measurement	38	
	7.7.1.	Test Limit	38	
	7.7.2.	Test Procedure Used	39	
	7.7.3.	Test Setting	39	
	7.7.4.	Test Setup	40	
	7.7.5.	Test Result	41	
	7.8.	AC Conducted Emissions Measurement	49	
	7.8.1.	Test Limit	49	
	7.8.2.	Test Setup	49	
	7.8.3.	Test Result	50	
8.	CONC	LUSION	.52	
Appendix A - Test Setup Photograph53				
Арр	endix E	3 - EUT Photograph	.54	

General Information

Applicant: Hewlett Packard Enterprise Company			
Applicant Address: 3333 Scott Blvd, Santa Clara, CA 95054, USA			
Manufacturer: Hewlett Packard Enterprise Company			
Manufacturer Address:	3333 Scott Blvd, Santa Clara, CA 95054, USA		
Test Site:	MRT Technology (Taiwan) Co., Ltd		
Test Site Address:	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333,		
	Taiwan (R.O.C)		
Tast Davias Sarial No.	Radiated sample S/N: DE29AO0006,		
Test Device Serial No.:	Conducted sample S/N: DE29AO0006		

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Fuxing Rd., Taoyuan, Taiwan (R.O.C)

- MRT facility is a FCC registered (Reg. No. 291082 and 153292) test facility with the site description report on file and is designated by the FCC as an Accredited Test Film.
- MRT facility is an IC registered (MRT Reg. No. 21723-1) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (TAF) under the American Association for Laboratory Accreditation Program (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC, Industry Taiwan, EU and TELEC Rules.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name:	ACCESS POINT
Model No.:	APIN0518
Wi-Fi Specification:	802.11a/b/g/n/ac/ax
Bluetooth Specification:	v5.0 single mode
Zigbee Specification:	802.15.4
Software Version:	V1.00
Operating Temperature:	-40 ~ 65 °C
Power Type:	PoE input
Operating Environment:	Indoor Use

2.2. Product Specification Subjective to this Report

Frequency Range:	2405 ~ 2480 MHz
Channel Number:	16
Type of Modulation:	O-QPSK

Note: For other features of this EUT, test report will be issued separately.

2.3. Working Frequencies for this report

Channel	Frequency	Channel	Frequency	Channel	Frequency
11	2405 MHz	12	2410 MHz	13	2415 MHz
14	2420 MHz	15	2425 MHz	16	2430 MHz
17	2435 MHz	18	2440 MHz	19	2445 MHz
20	2450 MHz	21	2455 MHz	22	2460 MHz
23	2465 MHz	24	2470 MHz	25	2475 MHz
26	2480 MHz				

2.4. Description of Available Antennas

Antenna No.	Antenna	Frequency	Model No.	Max Peak	BF Dir	CDD Dir Gain			
	Туре	Band		Gain	Gain	(dB	i)		
		(GHz)		(dBi)	(dBi)	For Power	For PSD		
Wi-Fi Externa	Wi-Fi External Antenna List (2.4GHz 2*2 MIMO, 5GHz 4*4 MIMO)								
	Omni	2.4		4.0	7.01	4.0	7.01		
1	Omni	5	AP-AN1-40	5.0	11.02	5.0	Jir Gain IBi) For PSD 7.01 11.02 6.01 12.02 6.81 11.82 5.31 10.02 5.01 8.02 5.01 8.02 5.01 8.51 8.51 8.51 8.51 11.51 14.0 14.51 5.0 8.01 7.5 10.51		
	Omni	2.4		3.0	6.01	3.0	6.01		
2	Omni	5	AP-ANT-19	6.0	12.02	6.0	ir Gain 3) For PSD 7.01 11.02 6.01 12.02 6.81 11.82 5.31 10.02 5.01 8.02 5.01 10.02 6.91 10.72 4.5 8.51 10.72 4.5 8.51 10.72 4.5 8.51 11.51 14.0 17.01 14.51 5.0 8.01 7.5 10.51		
-	Omni	2.4		3.8	6.81	3.8	6.81		
3	Omni	5	AP-ANT-1W	5.8	11.82	5.8	ir Gain 3i) For PSD 7.01 11.02 6.01 12.02 6.81 11.82 5.31 10.02 5.01 8.02 5.01 10.02 6.91 10.72 4.5 8.51 10.72 4.5 8.51 10.72 4.5 8.51 11.51 14.0 17.01 14.51 5.0 8.01 7.5 10.51		
		2.4		2.3	5.31	2.3	5.31		
4	Omni	5	AP-ANT-13B	4.0	10.02	4.0	10.02		
	Omni	2.4		2.0	5.01	2.0	5.01		
5	Umni	5	AP-ANI-2000	2.0	8.02	2.0	Dir Gain JBi) r For PSD 7.01 11.02 6.01 12.02 6.81 11.82 5.31 10.02 5.01 8.02 5.01 10.02 6.91 10.72 4.5 8.51 10.72 4.5 8.51 10.72 4.5 8.51 10.72 4.5 8.51 11.51 14.51 5.0 14.51 5.0 14.51 5.0 10.51		
	Omni	2.4		2.0	5.01	2.0	5.01		
б	Omni	5	AP-ANT-22	4.0	10.02	4.0	r Gain si) For PSD 7.01 11.02 6.01 12.02 6.81 11.82 5.31 10.02 5.01 8.02 5.01 10.02 6.91 10.72 4.5 8.51 8.51 8.51 8.51 11.51 14.0 17.01 14.51 5.0 8.01 7.5 10.51		
	Omni	2.4		3.9	6.91	3.9	Bi) For PSD 7.01 11.02 6.01 12.02 6.81 11.82 5.31 10.02 5.01 8.02 5.01 10.02 6.91 10.72 4.5 8.51 10.72 4.5 8.51 10.72 4.5 8.51 10.72 4.5 8.51 11.51 14.0 17.01 14.51 5.0 8.01 7.5 10.51		
1	Omni	5	AP-AN1-10	4.7	10.72	4.7			
9 (Nato 2)	Directional	2.4		4.5	4.5	4.5	4.5		
	Directional	5	AP-AN1-40	5.5	8.51	5.5	8.51		
0 (Nata 2)	Directional	2.4		8.5	8.5	8.5	8.5		
9 (NOLE 3)	Directional	5	AP-AN1-40	8.5	11.51	8.5	11.51		
10 (Note 3)	Directional	2.4	ANT-2x2-2314	14.0	14.0	14.0	14.0		
11 (Note 3)	Directional	5	ANT-4x4-5314	14.0	17.01	14.0	17.01		
12 (Note 3)	Directional	5	ANT-3x3-5712	11.5	14.51	11.5	14.51		
12 (Noto 2)	Directional	2.4		5.0	5.0	5.0	5.0		
	Directional	5	AF-ANT-20	5.0	8.01	5.0	8.01		
14 (Noto 2)	Directional	2.4		7.5	7.5	7.5	7.5		
14 (NOLE 3)	Directional	5	AP-ANT-20	7.5	10.51	7.5	10.51		
Bluetooth / Ziç	gBee Internal A	Intenna							
PC	ЗВ		2.4		4	.2			

Note:

1. The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.

For CDD transmissions, directional gain is calculated as follows, $N_{ANT} = 2$, $N_{SS} = 1$.

If all antennas have the same gain, G_{ANT}, Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

- For power spectral density (PSD) measurements on all devices, Array Gain = 10 log (N_{ANT}/ N_{SS}) dB = 3.01;
- For power measurements on IEEE 802.11 devices, Array Gain = 0 dB for N_{ANT} ≤ 4;
- The EUT also supports Beam Forming mode, and the Beam Forming support 802.11n/ac/ax, not include 802.11a/b/g. Directional gain = G_{ANT} + BF Gain, BF Gain was declared by the applicant.
- 3. These antennas have Cross-Polarized design, only each two outputs driving a pair of antennas that are cross-polarized, the detail see the antenna specification.

Antenna RF Port 2.4GHz RF Port 5GHz RF Port Software Control Port Ant 0 Ant 1 Ant 0 Ant 1 Ant 2 Ant 3 5G Wi-Fi ANTO Port 5G Wi-Fi ANT1 Port 2.4G Wi-Fi ANTO Portaruba 2.4G Wi-Fi ANT1 Port 5G Wi-Fi ANT2 Port 5G Wi-Fi ANT3 Port BLE/ZigBee Port

2.5. Description of Antenna RF Port

2.6. Duty Cycle

The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	T (Transmission Duration)	Duty Cycle
802.15.4	3.405ms	96.60%
Section An KEVSIGH RESULT Sector Sector Control Sector Sec	Participant Impedia 2.50 cm After 20 dB PHO Field Mag Types Voltage Impedia 2.50 cm Mater 20 dB PHO Field Impedia 2.50 cm Mater 20 dB Impedia 2.50 cm Mater 20 dB PHI N N N N Mater 20 dB Mater 20 dB Mater 20 dB PHI N N N N Mater 20 dB Mater 20 dB <td< td=""><td>Marker • Exercise are</td></td<>	Marker • Exercise are

2.7. Description of Test Software

The test utility software used during testing was "telnet.exe" Detail power setting refer to operation description.

2.8. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.9. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedure described in the document titled "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices" (ANSI C63.10-2013) was used in the measurement.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

Conclusion:

The product is defined as the professional installation of equipment by the manufacturer, there is no necessary to comply with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Two-Line V-Network	R&S	ENV 216	MRTTWA00019	1 year	2021/3/26
Two-Line V-Network	R&S	ENV 216	MRTTWA00020	1 year	2021/4/24
8-Wire ISN (T8)	R&S	ENY81	MRTTWA00018	1 year	2020/5/23
EMI Test Receiver	R&S	ESR3	MRTTWA00045	1 year	2020/5/29
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2020/5/30

Radiated Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Acitve Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	1 year	2021/4/27
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00001	1 year	2020/6/4
Broadband Horn antenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2021/4/24
Breitband Horn antenna	SCHWARZBECK	BBHA 9170	MRTTWA00004	1 year	2021/4/24
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	1 year	2021/4/24
Broadband Amplifier	SCHWARZBECK	BBV 9721	MRTTWA00006	1 year	2021/4/24
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2021/3/24
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2021/3/25
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2020/10/2
Antenna Cable	HUBERSUHNER	SF106	MRTTWE00010	1 year	2021/6/16
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00032	1 year	2020/5/30

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
X-Series USB Peak and	KEVOLOUT			1	2024/4/24
Average Power Sensor	KEYSIGHI	02021XA	MRTTWA00014	1 year	2021/4/24
Wideband Radio		ON 114/ 500		4	0004/4/7
Communication Taster	R&S		MR11WA00041	1 year	2021/1/7
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2020/10/2
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2020/7/11
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2021/3/24
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2020/5/30

Software	Version	Function
e3	9.160520a	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

7. TEST RESULT

7.1. Summary

FCC Section(s)	Test	Test Limit	Test	Test Result	Reference
	Description		Condition		
15.247(a)(2)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.2
15.247(b)(3)	Output Power	≤ 30dBm		Pass	Section 7.3
15 047(0)	Power Spectral	< 9dBm/2kHz		Page	Section 7.4
15.247(e)	Density		Conducted	Fass	Section 7.4
	Band Edge /				
15.247(d)	Out-of-Band	≥ 20dBc (Peak)		Pass	Section 7.5
	Emissions				
	General Field				
	Strength Limits	Emissions in			
15 205	(Restricted	restricted bands		Pass	Section 7.6 & 7.7
15.205	Bands and	must meet the	Radiated		
15.209	Radiated	radiated limits			
	Emission	detailed in 15.209			
	Limits)				
45.007	AC Conducted				
	Emissions	< FCC 15.207	Line	Daga	Section 7.9
13.207	150kHz -	limits	Conducted	Pass	Section 7.8
	30MHz				

Notes:

 The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

2) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.

7.2. 6dB Bandwidth Measurement

7.2.1.Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

7.2.2.Test Procedure used

ANSI C63.10-2013 Section 11.8

7.2.3.Test Setting

1. The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB

bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth

measurement was not influenced by any intermediate power nulls in the fundamental emission.

- 2. Set RBW = 100 kHz
- 3. VBW \ge 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

7.2.4.Test Setup

7.2.5.Test Result

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2020/01/14
Model No.	APIN0518	Test Item	6dB Bandwidth

Test Mode	Modulation	Channel No.	Frequency	6dB Bandwidth	Limit	Result
	Mode		(MHz)	(MHz)	(MHz)	
802.15.4	O-QPSK	11	2405	1.142	≥ 0.5	Pass
802.15.4	O-QPSK	18	2440	1.137	≥ 0.5	Pass
802.15.4	O-QPSK	26	2480	1.141	≥ 0.5	Pass

7.3. Output Power Measurement

7.3.1.Test Limit

The maximum output power shall be less 1 Watt (30dBm).

The conducted output power limit specified in paragraph FCC Part 15.247(b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs FCC Part 15.247(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.3.2.Test Procedure Used

ANSI C63.10 Section 11.9.1.3

ANSI C63.10 Section 11.9.2.3

7.3.3.Test Setting

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Average Power Measurement

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

7.3.4.Test Setup

7.3.5.Test Result of Output Power

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2020/01/18
Model No.	APIN0518	Test Item	Output Power

Test Result of Peak Output Power

Test Mode	Modulation	Channel	Freq.	Peak Power	Limit	Result
	Mode	No.	(MHz)	(dBm)	(dBm)	
802.15.4	O-QPSK	11	2405	7.38	≤ 30.00	Pass
802.15.4	O-QPSK	18	2440	7.63	≤ 30.00	Pass
802.15.4	O-QPSK	26	2480	7.20	≤ 30.00	Pass

Note: E.I.R.P (dBm) = Max Peak Power (dBm) + Antenna Gain (dBi) = 7.63 dBm + 4.20 dBi = 11.83 dBm.

Test Result of Average Output Power (Reporting Only)

Test Mode	Modulation	Channel	Freq.	Average Power	Limit	Result
	Mode	No.	(MHz)	(dBm)	(dBm)	
802.15.4	O-QPSK	11	2405	7.29	≤ 30.00	Pass
802.15.4	O-QPSK	18	2440	7.54	≤ 30.00	Pass
802.15.4	O-QPSK	26	2480	7.11	≤ 30.00	Pass

Note: E.I.R.P (dBm) = Max Average Power (dBm) + Antenna Gain (dBi) = 7.54 dBm + 4.20 dBi = 11.74 dBm.

7.4. Power Spectral Density Measurement

7.4.1.Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

The same method of determining the conducted output power shall be used to determine the power

spectral density.

7.4.2.Test Procedure Used

ANSI C63.10 Section 11.10.2

7.4.3.Test Setting

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 10kHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

7.4.4.Test Setup

Spectrum Analyzer

7.4.5.Test Result

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2020/01/14
Model No.	APIN0518	Test Item	Power Spectral Density

Test Mode	Modulation	Channel	Frequency	PK PSD	Limit	Result
	Mode	No.	(MHz)	(dBm / 3kHz)	(dBm / 3kHz)	
802.15.4	O-QPSK	11	2405	-3.96	≤ 8.00	Pass
802.15.4	O-QPSK	18	2440	-3.95	≤ 8.00	Pass
802.15.4	O-QPSK	26	2480	-5.27	≤ 8.00	Pass

7.5. Conducted Band Edge and Out-of-Band Emissions

7.5.1.Test Limit

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental

emission level, as determined from the in-band power measurement of the DTS channel performed

in a 100 kHz bandwidth per the PSD procedure.

7.5.2.Test Procedure Used

ANSI C63.10 Section 11.11

7.5.3.Test Settitng

Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW \geq 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize

Emission level measurement

1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two

plots per channel)

- 2. RBW = 1.3MHz
- 3. VBW = 4MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Notes

1. RBW was set to 1.3MHz rather than 100kHz in order to increase the measurement speed.

2. The display line shown in the following plots denotes the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1.3MHz RBW, the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1.3MHz bandwidth.

3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

7.5.4.Test Setup

7.5.5.Test Result

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2020/01/14
		Test litere	Conducted Band Edge and
WODEI NO.	APINU518	lest item	Out-of-Band Emissions

Test Mode	Data Rate	Channel No.	Frequency	Limit	Result
	/ MCS		(MHz)		
802.15.4	O-QPSK	11	2405	20dBc	Pass
802.15.4	O-QPSK	18	2440	20dBc	Pass
802.15.4	O-QPSK	26	2480	20dBc	Pass

Channel 18	(2440MHz)
100kHz PSD Reference Level	Spurious Emission
Spectrum Analyzer 1 Spectrum Analyzer 1 MELYSIGHT mod. 67 NEYSIGHT mod. 67 New Page Nation (S) Prov. Ration (S) Pr	Spectrum Analyzer 1 Image: 2500 Atten: 20 dB PRIO 1 failed PRIO 1 fail
Note: The Value of the Display Line is -12.51dBm	
Channel 26	(2480MHz)
100kHz PSD Reference Level	High Band Edge
Severe 24.4 Water Period Berlin Content Parks Berli	Sector System Control
Spurious Emission	
Security Analyzer 1 Image: Residence of the security o	Note: The Value of the Display Line is -12.45dBm

7.6. Radiated Spurious Emission Measurement

7.6.1.Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47

CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209							
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meters]					
0.009 - 0.490	2400/F (kHz)	300					
0.490 - 1.705	24000/F (kHz)	30					
1.705 - 30	30	30					
30 - 88	100	3					
88 - 216	150	3					
216 - 960	200	3					
Above 960	500	3					

7.6.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.4 (Standard test method below 30MHz)

ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.6.3.Test Setting

Table 1 - RBW as a function of frequency

Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as specified in Table 1
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle \ge 98%, set VBW = 10 Hz.
- If the EUT duty cycle is < 98%, set VBW \geq 1/T. T is the minimum transmission duration.
- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

7.6.4.Test Setup

Below 1GHz Test Setup:

7.6.5.Test Result

Product	ACCESS POINT	Temperature	26°C			
Test Engineer	Kevin Ker	Relative Humidity	56%			
Test Site	AC1	Test Date	2020/03/05			
Model No.	APIN0518	Test Channel	11			
Remark	1. Average measurement was not performed if peak level lower than average					
	limit. So the margin was calculated using the average limit for emissions fall					
	within the restricted bands.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	in the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	3941.0	42.0	-0.1	41.9	54.0	-12.1	Peak	Horizontal
	4961.0	41.5	3.5	45.0	54.0	-9.0	Peak	Horizontal
*	5573.0	41.9	4.2	46.1	78.5	-32.4	Peak	Horizontal
*	6907.5	38.5	10.1	48.6	78.5	-29.9	Peak	Horizontal
	4060.0	41.9	0.4	42.3	54.0	-11.7	Peak	Vertical
	4927.0	40.2	3.4	43.6	54.0	-10.4	Peak	Vertical
*	6338.0	39.0	7.1	46.1	78.5	-32.4	Peak	Vertical
*	6941.5	37.7	10.3	48.0	78.5	-30.5	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (98.5dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Product	ACCESS POINT	Temperature	26°C			
Test Engineer	Kevin Ker	Relative Humidity	56%			
Test Site	AC1	Test Date	2020/03/05			
Model No.	APIN0518	Test Channel	18			
Remark	1. Average measurement was not performed if peak level lower than average					
	limit. So the margin was calculated using the average limit for emissions fall					
	within the restricted bands.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	in the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	4230.0	42.0	1.2	43.2	54.0	-10.8	Peak	Horizontal
	4961.0	41.4	3.5	44.9	54.0	-9.1	Peak	Horizontal
*	5819.5	40.1	5.1	45.2	77.3	-32.1	Peak	Horizontal
*	6525.0	37.6	7.8	45.4	77.3	-31.9	Peak	Horizontal
	4060.0	43.0	0.4	43.4	54.0	-10.6	Peak	Vertical
	4969.5	41.8	3.5	45.3	54.0	-8.7	Peak	Vertical
*	5870.5	39.6	5.3	44.9	77.3	-32.4	Peak	Vertical
*	6593.0	39.6	8.2	47.8	77.3	-29.5	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (97.3dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Product	ACCESS POINT	Temperature	26°C			
Test Engineer	Kevin Ker	Relative Humidity	56%			
Test Site	AC1	Test Date	2020/03/05			
Model No.	APIN0518	Test Channel	26			
Remark	1. Average measurement was not performed if peak level lower than average					
	limit. So the margin was calculated using the average limit for emissions fall					
	within the restricted bands.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	in the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	4247.0	42.4	1.3	43.7	54.0	-10.3	Peak	Horizontal
	4757.0	40.6	3.1	43.7	54.0	-10.3	Peak	Horizontal
*	5751.5	40.7	4.8	45.5	76.9	-31.4	Peak	Horizontal
*	6941.5	38.1	10.3	48.4	76.9	-28.5	Peak	Horizontal
	4196.0	42.5	1.0	43.5	54.0	-10.5	Peak	Vertical
	5020.5	41.6	3.6	45.2	54.0	-8.8	Peak	Vertical
*	5768.5	41.0	4.9	45.9	76.9	-31.0	Peak	Vertical
*	7018.0	38.2	10.6	48.8	76.9	-28.1	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (96.9dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

The Worst Case of Radiated Emission below 1GHz:

Site: AC1	Time: 2020/05/10 - 14:53
Limit: FCC_Part15.209_RSE(3m)	Engineer: Kevin Ker
Probe: VULB 9162 30MHz-8GHz	Polarity: Horizontal
EUT: ACCESS POINT	Power: By PoE Injector

Test Mode: There is the worst case within frequency range 30MHz~1GHz.

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			79.955	19.124	4.962	-20.876	40.000	14.162	QP
2			154.160	26.071	10.154	-17.429	43.500	15.917	QP
3		*	200.235	37.813	18.879	-5.687	43.500	18.934	QP
4			261.345	24.309	3.719	-21.691	46.000	20.590	QP
5			301.600	24.877	3.413	-21.123	46.000	21.464	QP
6			341.855	22.396	-0.703	-23.604	46.000	23.099	QP

Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 2: The amplitude of spurious emissions (frequency range 9kHz ~ 30MHz, 18GHz ~ 40GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

Site: AC1	Time: 2020/05/10 - 14:57
Limit: FCC_Part15.209_RSE(3m)	Engineer: Kevin Ker
Probe: VULB 9162 30MHz-8GHz	Polarity: Vertical
EUT: ACCESS POINT	Power: By PoE Injector

Test Mode: There is the worst case within frequency range 30MHz~1GHz.

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			35.820	25.963	6.674	-14.037	40.000	19.289	QP
2			43.095	25.987	4.869	-14.013	40.000	21.118	QP
3			79.955	25.723	11.561	-14.277	40.000	14.162	QP
4			147.855	28.741	13.041	-14.759	43.500	15.701	QP
5		*	198.780	33.773	14.851	-9.727	43.500	18.922	QP
6			469.410	22.671	-2.581	-23.329	46.000	25.252	QP

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 2: The amplitude of spurious emissions (frequency range 9kHz ~ 30MHz, 18GHz ~ 40GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

The Worst Case of Radiated Emission above 1GHz:

Site: AC1	Time: 2020/03/05 - 02:06
Limit: FCC_Part15.209_RSE(3m)	Engineer: Kevin Ker
Probe: BBHA 9120D_1-18GHz	Polarity: Horizontal
EUT: ACCESS POINT	Power: By POE

Test Mode: Transmit by Zigbee at Channel 2440MHz

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			4230.000	43.213	41.997	-30.787	74.000	1.216	PK
2			4961.000	44.866	41.394	-29.134	74.000	3.472	PK
3			5819.500	45.210	40.113	-22.990	68.200	5.098	PK
4			6525.000	45.446	37.606	-22.754	68.200	7.840	PK
5			18000.000	63.455	31.985	-10.545	74.000	31.470	PK
6		*	18000.000	47.680	16.210	-6.320	54.000	31.470	AV

Note 1: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The amplitude of spurious emissions (frequency range 9kHz ~ 30MHz, 18GHz ~ 25GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

Site: AC1	Time: 2020/03/05 - 02:06		
Limit: FCC_Part15.209_RSE(3m)	Engineer: Kevin Ker		
Probe: BBHA 9120D_1-18GHz	Polarity: Vertical		
EUT: ACCESS POINT	Power: By POE		

Test Mode: Transmit by Zigbee at Channel 2440MHz

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			4060.000	43.366	42.990	-30.634	74.000	0.376	PK
2			4969.500	45.273	41.784	-28.727	74.000	3.489	PK
3			5870.500	44.880	39.587	-23.320	68.200	5.293	PK
4			6593.000	47.884	39.649	-20.316	68.200	8.235	PK
5			18000.000	64.008	32.538	-9.992	74.000	31.470	PK
6		*	18000.000	47.490	16.020	-6.510	54.000	31.470	AV

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The amplitude of spurious emissions (frequency range 9kHz ~ 30MHz, 18GHz ~ 25GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

7.7. Radiated Restricted Band Edge Measurement

7.7.1.Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency	Frequency	Frequency	Frequency
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.25 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209										
Frequency	Field Strength	Measured Distance								
[MHz]	[uV/m]	[Meters]								
0.009 - 0.490	2400/F (kHz)	300								
0.490 - 1.705	24000/F (kHz)	30								
1.705 - 30	30	30								
30 - 88	100	3								
88 - 216	150	3								
216 - 960	200	3								
Above 960	500	3								

7.7.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.7.3.Test Setting

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ 1/T
- 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
- 5. Detector = Peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Allow max hold to run for at least 50 times (1/duty cycle) traces

7.7.4.Test Setup

7.7.5.Test Result

Site	: AC1					Time: 2020/03/05 - 00:22				
Limi	t: FCC	_Part15	.209_RSE(3r	n)		Engineer: Kevin Ker				
Prob	be: BBH	HA 9120)D_1-18GHz			Polarity: Horiz	ontal			
EUT	: ACCE	ESS PO	INT			Power: By Po	E Injector			
Test	Mode:	Transn	nit by 802.15.	4 at Channel						
130 130 130 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1									3	
2	2310	J 2.	320 2330	2340	2350 Freq	uency(MHz)	J 2380	2390 2	2400 2410	
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1	1 2369.650 59.394 27.213		-14.606 74.000		32.181	РК				
2			2390.000	57.420	25.146	-16.580	74.000	32.274	РК	
3		*	2404.400	93.910	61.570	N/A	N/A	32.340	PK	

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Site	: AC1					Time: 2020/03/05 - 00:52				
Limi	t: FCC	_Part15	.209_RSE(3r	n)		Engineer: Kevin Ker				
Prot	be: BBI	HA 9120)D_1-18GHz			Polarity: Horiz	ontal			
EUT	: ACCE	ESS PO	INT			Power: By Pol	E Injector			
Test	Mode:	Transn	nit by 802.15.	4 at Channel	2480MHz					
I avial(ABrit)//m)	130 80 70 60 40 30 247	5 24	77.5 2480	23	3 5 6 2485 Erecu	2487.5 2490) 2492.5	2495 24	497.5 2500	
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1		*	2479.962	91.174	58.486	N/A	N/A	32.688	PK	
2			2483.500	61.542	28.838	-12.458	74.000	32.704	PK	
3			2483.812	61.955	29.249	-12.045	74.000	32.706	PK	

Site	Site: AC1						Time: 2020/03/05 - 00:55			
Limi	it: FCC	_Part15	.209_RSE(3r	n)		Engineer: Kevin Ker				
Prol	oe: BBł	HA 9120)D_1-18GHz			Polarity: Horiz	ontal			
EUT	T: ACCE	ESS PO	INT			Power: By Pol	E Injector			
Test	Mode:	Transn	nit by 802.15.	4 at Channel	2480MHz					
I evel(dRinV/m)	130 80 70 60 50 40 30		1	2						
13	2473	> 24	77.5 2480	2482.5	2485 2 Freque	ency(MHz)	2492.5	2495 24	197.5 2500	
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1		*	2480.000	87.870	55.182	N/A	N/A	32.688	AV	
2			2483.500	49.792	17.088	-4.208	54.000	32.704	AV	

Site	Site: AC1						Time: 2020/03/05 - 00:52			
Limi	t: FCC	_Part15	.209_RSE(3r	n)		Engineer: Kevin Ker				
Prob	be: BBH	HA 9120)D_1-18GHz			Polarity: Vertic	al			
EUT	EUT: ACCESS POINT						E Injector			
Test	Mode:	Transn	nit by 802.15.	4 at Channel	2480MHz					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1									
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Type	
	' iag	man	(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	1,90	
			((dBuV/m)	(dBuV)					
1		*	2479.900	96.938	64.250	N/A	N/A	32.688	РК	
2			2483.500	64.854	32.150	-9.146	74.000	32.704	РК	
3			2483.637	65.043	32.338	-8.957	74.000	32.706	РК	

Site	Site: AC1						Time: 2020/03/05 - 00:51			
Limi	it: FCC	_Part15	.209_RSE(3r	n)		Engineer: Kevin Ker				
Prol	be: BBI	HA 9120)D_1-18GHz			Polarity: Vertic	al			
EUT	T: ACCE	ESS PO	INT		Power: By Pol	E Injector				
Test	t Mode:	Transn	nit by 802.15.	4 at Channel	2480MHz					
130 130 1 1 1 1 1 1 1 1 1 1 1 1 1									7.5 2500	
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)		
				(dBuV/m)	(dBuV)					
1		*	2479.975	93.538	60.850	N/A	N/A	32.688	AV	
2			2483.500	53.538	20.834	-0.462	54.000	32.704	AV	

7.8. AC Conducted Emissions Measurement

7.8.1.Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits					
Frequency (MHz)	QP (dBuV)	AV (dBuV)			
0.15 - 0.50	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30	60	50			

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to

0.5MHz.

7.8.2.Test Setup

Vertical ground reference plane

7.8.3.Test Result

Site: SR2	Time: 2020/05/18 - 14:07
Limit: FCC_Part15.207_CE_AC Power	Engineer: Liz Yuan
Probe: ENV216_101683_Filter On	Polarity: Line
EUT: ACCESS POINT	Power: AC 120V/60Hz
Test Made 4	

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1			0.154	49.100	39.455	-16.682	65.781	9.645	QP
2			0.154	36.280	26.635	-19.502	55.781	9.645	AV
3			0.202	41.537	31.876	-21.991	63.528	9.661	QP
4			0.202	27.873	18.211	-25.655	53.528	9.661	AV
5			0.230	38.428	28.764	-24.022	62.450	9.663	QP
6			0.230	26.268	16.604	-26.182	52.450	9.663	AV
7			0.418	37.677	27.958	-19.811	57.488	9.720	QP
8			0.418	30.614	20.895	-16.874	47.488	9.720	AV
9			15.642	40.031	29.728	-19.969	60.000	10.304	QP
10		*	15.642	34.184	23.880	-15.816	50.000	10.304	AV
11			29.930	34.786	24.216	-25.214	60.000	10.569	QP
12			29.930	28.970	18.401	-21.030	50.000	10.569	AV

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB).

Site: SR2	Time: 2020/05/18 - 14:15
Limit: FCC_Part15.207_CE_AC Power	Engineer: Liz Yuan
Probe: ENV216_101683_Filter On	Polarity: Neutral
EUT: ACCESS POINT	Power: AC 120V/60Hz

Test Mode 1

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1			0.158	48.238	38.631	-17.331	65.568	9.606	QP
2			0.158	34.470	24.863	-21.099	55.568	9.606	AV
3			0.178	44.588	34.973	-19.991	64.578	9.615	QP
4			0.178	32.663	23.048	-21.916	54.578	9.615	AV
5			0.262	35.035	25.402	-26.332	61.368	9.634	QP
6			0.262	23.013	13.380	-28.354	51.368	9.634	AV
7			0.414	38.760	29.121	-18.808	57.568	9.639	QP
8		*	0.414	32.128	22.489	-15.440	47.568	9.639	AV
9			16.250	40.361	30.154	-19.639	60.000	10.207	QP
10			16.250	34.417	24.210	-15.583	50.000	10.207	AV
11			29.814	35.060	24.492	-24.940	60.000	10.568	QP
12			29.814	29.296	18.729	-20.704	50.000	10.568	AV

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB).

8. CONCLUSION

The data collected relate only the item(s) tested and show that the unit is compliance with Part 15C

of the FCC Rules.

The End

_

Appendix A - Test Setup Photograph

Refer to "2003TW0003-UT" file.

Appendix B - EUT Photograph

Refer to "2003TW0003-UE" file.