

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388

Web: www.mrt-cert.com

Report No.: 1906TW0102-U8 Report Version: V02 Issue Date: 11-12-2019

MEASUREMENT REPORT

FCC PART 15.407 WLAN 802.11a/n/ac/ax

FCC ID: Q9DAPIN0504505

APPLICANT: Hewlett Packard Enterprise Company

Application Type: Class III Permissive Change

Product: ACCESS POINT

Model No.: APIN0504, APIN0505

Brand Name: Qrubo

Hewlett Packard Enterprise

FCC Classification: Unlicensed National Information Infrastructure (UNII)

FCC Rule Part(s): Part15 Subpart E (Section 15.407)

Test Procedure(s): ANSI C63.10-2013, KDB 789033 D02v02r01,

KDB 662911 D01v02r01

Test Date: June 03 ~ September 14, 2019

Reviewed By: Faddy

(Paddy Chen)

Approved By: Cany her

(Chenz Ker)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

FCC ID: Q9DAPIN0504505 Page Number: 1 of 556

Revision History

Report No.	Version	Description	Issue Date	Note
1906TW0102-U8	Rev. 01	Initial Report	09-25-2019	Invalid
1906TW0102-U8	Rev. 02	Revised PSD test setting	11-12-2019	Valid

CONTENTS

De	scriptio	on	Page
§2.	1033Ge	eneral Information	6
1.	INTR	ODUCTION	7
	1.1.	Scope	7
	1.2.	MRT Test Location	
2.	PROI	DUCT INFORMATION	8
	2.1.	Equipment Description	8
	2.2.	Product Specification Subjective to this Report	8
	2.3.	Working Frequencies for this Report	
	2.4.	Description of Available Antennas	10
	2.5.	Test Mode	11
	2.6.	Description of Antenna RF Port	12
	2.7.	Description of Test Software	13
	2.8.	Device Capabilities	13
	2.9.	EMI Suppression Device(s)/Modifications	17
	2.10.	Labeling Requirements	
3.	DESC	CRIPTION OF TEST	18
	3.1.	Evaluation Procedure	18
	3.2.	AC Line Conducted Emissions	18
	3.3.	Radiated Emissions	19
4.	ANTE	ENNA REQUIREMENTS	20
5.	TEST	EQUIPMENT CALIBRATION DATE	21
6.	MEAS	SUREMENT UNCERTAINTY	22
7.	TEST	「RESULT	23
	7.1.	Summary	23
	7.2.	26dB Bandwidth Measurement	
	7.2.1.		
	7.2.2.		
	7.2.3.		
	7.2.4.	-	
	7.2.5.	·	
	7.3.	Output Power Measurement	
	7.3.1.	·	
		Test Procedure Used	

7.3.3.	Test Setting	37
7.3.4.	Test Setup	37
7.3.5.	Test Result	38
7.4.	Transmit Power Control	43
7.4.1.	Test Limit	43
7.4.2.	Test Procedure Used	43
7.4.3.	Test Setting	43
7.4.4.	Test Setup	43
7.4.5.	TestResult	43
7.5.	Power Spectral Density Measurement	44
7.5.1.	TestLimit	44
7.5.2.	Test Procedure Used	44
7.5.3.	Test Setting	44
7.5.4.	Test Setup	45
7.5.5.	Test Result	46
7.6.	Frequency Stability Measurement	90
7.6.1.	Test Limit	90
7.6.2.	Test Procedure Used	90
7.6.3.	Test Setup	91
7.6.4.	Test Result	92
7.7.	Radiated Spurious Emission Measurement	93
7.7.1.	Test Limit	93
7.7.2.	Test Procedure Used	93
7.7.3.	Test Setting	93
7.7.4.	Test Setup	95
7.7.5.	Test Result	96
7.8.	Radiated Restricted Band Edge Measurement	. 269
7.8.1.	Test Limit	. 269
7.8.2.	Test Procedure Used	. 270
7.8.3.	Test Setting	. 270
7.8.4.	Test Setup	. 271
7.8.5.	Test Result	. 272
7.9.	AC Conducted Emissions Measurement	. 548
7.9.1.	TestLimit	. 548
7.9.2.	Test Procedure	. 548
7.9.3.	Test Setup	. 549
7.9.4.	Test Result	550
CONC	CI USION	554

Appendix A - Test Setup Photograph	
Appendix B-EUT Photograph	. 556

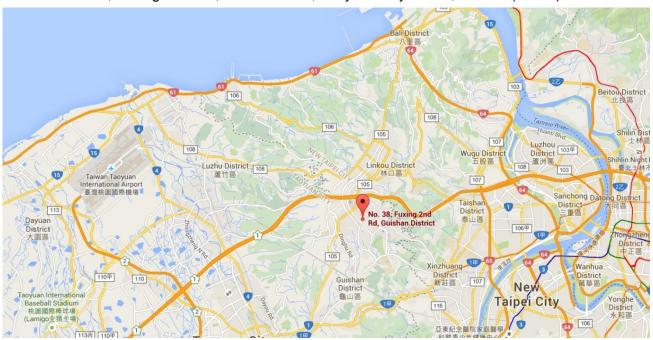
§2.1033General Information

Applicant:	Hewlett Packard Enterprise Company		
Applicant Address:	3333 Scott Blvd, Santa Clara, CA 94089, USA		
Manufacturer:	Hewlett Packard Enterprise Company		
Manufacturer Address:	3333 Scott Blvd, Santa Clara, CA 94089, USA		
Test Site:	MRT Technology (Taiwan) Co., Ltd		
Test Site Address:	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan		
	(R.O.C)		
FCC Registration No.:	291082		
	APIN0504: Conducted Sample S/N: DB196B0112		
Test Device Serial No.:	Radiated Sample S/N: DB196B0122		
	APIN0505: Conducted Sample S/N: DB195B013F		
	Radiated Sample S/N: DB196B0029		

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Fuxing Rd., Taoyuan, Taiwan (R.O.C)

- •MRT facility is a FCC registered (Reg. No. 153292 and 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- MRT facility is an IC registered (MRT Reg. No. 21723-1) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory
 Accreditation (TAF) under the American Association for Laboratory Accreditation Program
 (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC, Industry
 Taiwan, EU and TELEC Rules.


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	ACCESS POINT	
Model No.	APIN0504, APIN0505	
Brand Name:	a Hewlett Packard Enterprise company ,	
Wi-Fi Specification:	802.11a/b/g/n/ac/ax	
Bluetooth Specification:	v4.2 single mode	
ZigBee Specification:	802.15.4	
Software Version:	6.2.1A1 bring up F.100	
Operating Temperature:	0 ~ 50 °C	
Power Type:	AC Adapter or POE input	
Operating Environment:	Indoor Use	

Note: The difference between models is that EUT use different antenna and appearance, APIN0504 use some external antennas, but APIN0505 use internal antenna, other hardware and software are the same. Besides, each model has its own power parameter value.

2.2. Product Specification Subjective to this Report

Frequency Range	For 802.11a/n-HT20/ac-VHT20/ax-HE20:
	5260~5320MHz, 5500~5720MHz
	For 802.11n-HT40/ac-VHT40/ax-HE40:
	5270~5310MHz, 5510~5710MHz
	For 802.11ac-VHT80/ax-HE80:
	5290MHz, 5530MHz, 5610 MHz, 5690 MHz
Type of Modulation	802.11a/n/ac: OFDM
	802.11ax: OFDMA
Data Rate	802.11a: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 300Mbps
	802.11ac: up to 866.6Mbps
	802.11ax: up to 1201Mbps

Note: For other features of this EUT, test report will be issued separately.

2.3. Working Frequencies for this Report

802.11a/n-HT20/ac-VHT20/ax-HE20

Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260 MHz	56	5280 MHz	60	5300 MHz
64	5320 MHz	100	5500 MHz	104	5520 MHz
108	5540 MHz	112	5560 MHz	116	5580 MHz
120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz
144	5720 MHz				

802.11n-HT40/ac-VHT40/ax-HE40

Channel	Frequency	Channel	Frequency	Channel	Frequency
54	5270 MHz	62	5310 MHz	102	5510 MHz
110	5550 MHz	118	5590 MHz	126	5630 MHz
134	5670 MHz	142	5710 MHz		

802.11ac-VHT80/ax-HE80

Channel	Frequency	Channel	Frequency	Channel	Frequency
58	5290 MHz	106	5530 MHz	122	5610 MHz
138	5690 MHz				

2.4. Description of Available Antennas

<u>APIN0504</u>

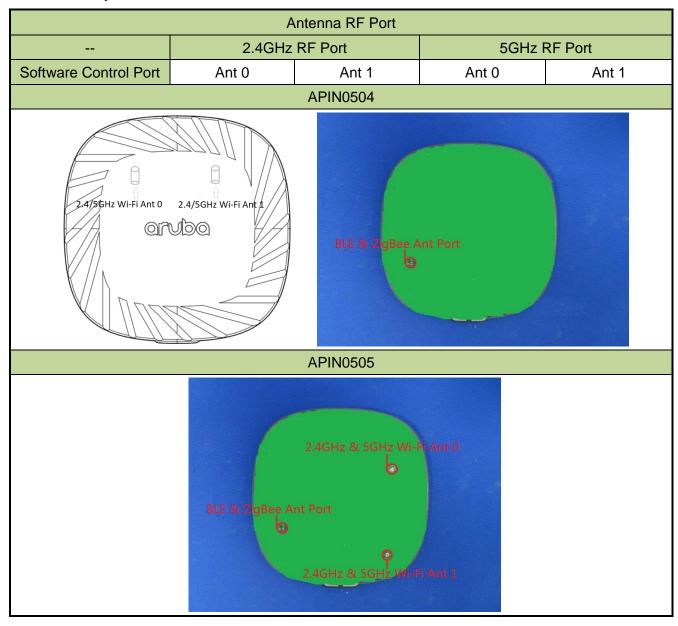
Antenna	Directionality	Frequency	Model No.	Max Peak	BF Dir	CDD Di	r Gain		
No.		Band		Gain	Gain	(dBi)			
		(GHz)		(dBi)	(dBi)	For Power	For PSD		
Wi-Fi Extern	Wi-Fi External Antenna List (2.4GHz 2*2 MIMO, 5GHz 2*2 MIMO)								
1	Omni	2.4	AP-ANT-1W	3.8	6.81	3.8	6.81		
'	Omm	5	AP-ANI-IVV	5.8	8.81	5.8	8.81		
2	Omni	2.4	AP-ANT-13B	2.3	5.31	2.3	5.31		
2	Omni	5		4.0	7.01	4.0	7.01		
3	Omni	2.4	AP-ANT-19	3.0	6.01	3.0	6.01		
3	Omni	5		6.0	9.01	6.0	9.01		
4	Omni	2.4	AP-ANT-20W	2.0	5.01	2.0	5.01		
4	Omni	5	AP-ANT-2000	2.0	5.01	2.0	5.01		
5	Omni	2.4	AP-ANT-40	4.0	7.01	4.0	7.01		
5	Omm	5	AP-ANT-40	5.0	8.01	5.0	8.01		
C (Note 2)	Directional	2.4	AP-ANT-25A	5.0	5.0	5.0	8.01		
6 (Note 3)	Directional	5	AP-ANT-20A	5.0	5.0	5.0	8.01		
7 (Note 2)	Directional	2.4	AP-ANT-28	7.5	7.5	7.5	10.51		
7 (Note 3)	וופטווטוומו	5	AP-AN 1-28	7.5	7.5	7.5	10.51		
Bluetooth &	Bluetooth & ZigBee Internal Antenna								
F	РСВ		2.4		;	3.3			

APIN0505

Directionality	Frequency Band	Max	BF Dir Gain	CDD Dir Gain			
	(GHz)	Peak Gain	(dBi)	(di	Bi)		
		(dBi)		For Power	For PSD		
Wi-Fi Internal Anter	Wi-Fi Internal Antenna List (2.4GHz 2*2 MIMO, 5GHz 4*4 MIMO)						
Omni	2.4	4.29	7.08	4.29	7.08		
Omni	5	5.63	8.64	5.63	8.64		
Bluetooth & ZigBee Internal Antenna							
PCB	2.4	3.3					

Note:

- The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.
 For CDD transmissions, directional gain is calculated as follows, N_{ANT} = 2, N_{SS} = 1.
 If all antennas have the same gain, G_{ANT}, Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.
 - For power spectral density (PSD) measurements on all devices,
 Array Gain = 10 log (Nant/ Nss) dB = 3.01;
 - For power measurements on IEEE 802.11 devices,
 Array Gain = 0 dB for N_{ANT} ≤ 4;
- 2. The EUT also supports Beam Forming mode, and the Beam Forming support 802.11n/ac/ax, not include 802.11a/b/g. Directional gain = G_{ANT} + Array Gain, BF Gain was declared by the applicant.
- 3. Two type antennas are cross polarized, the detail refer to antenna specification.
- 4. For APIN0504, low gain antenna AP-ANT-20W was selected to perform all RF testing that can got maximum power setting. High gain Omni antenna AP-ANT-19 & AP-ANT-40 and directional antenna AP-ANT-28 were selected to perform radiated spurious emission and band edge testing. High gain antenna power setting will be reduced according to difference value of antenna gain declared by applicant.
- 5. For APIN0505, its directional gain was declared by the applicant, the detail refers to antenna specification.


2.5. Test Mode

Test Mode	Mode 1: Transmit by 802.11a (6Mbps)			
	Mode 2: Transmit by 802.11ac-VHT20 (MCS0)			
	Mode 3: Transmit by 802.11ac-VHT40 (MCS0)			
	Mode 4: Transmit by 802.11ac-VHT80 (MCS0)			
	Mode 5: Transmit by 802.11ax-HE20 (MCS0)			
	Mode 6: Transmit by 802.11ax-HE40 (MCS0)			
	Mode 7: Transmit by 802.11ax-HE80 (MCS0)			

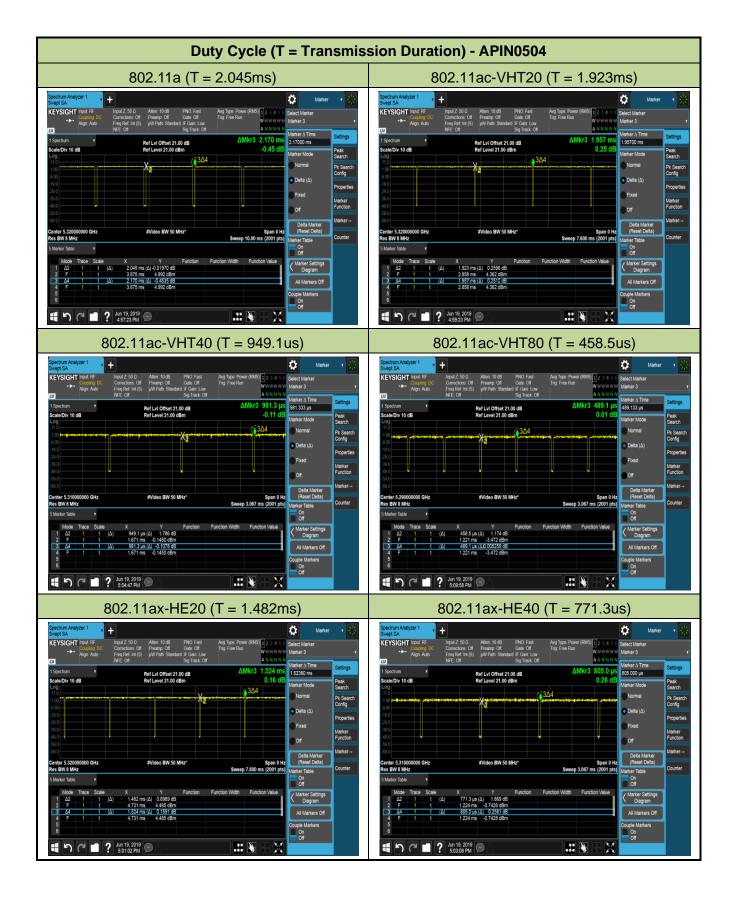
Note: Due to 802.11n and 802.11ac has same modulation type and power setting, we only show802.11ac test mode in the report.

2.6. Description of Antenna RF Port

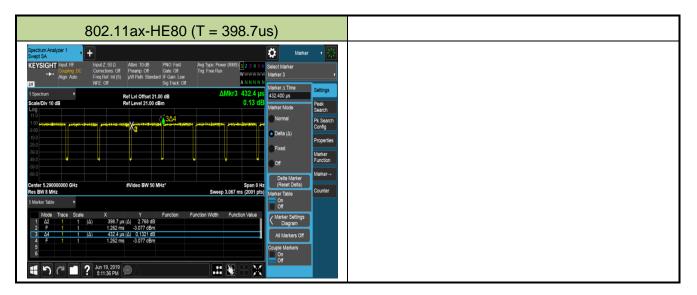
2.7. Description of Test Software

The test utility software used during testing was "accessMTool", and the version was "v3.0.0.7".

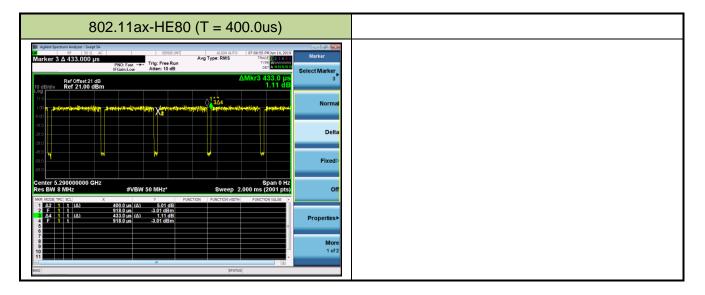
2.8. Device Capabilities


This device contains the following capabilities:

802.11a/b/g/n/ac/ax Wi-Fi & BT v4.2 single mode & Zigbee devices


Note: 5GHz (NII) operation is possible in 20MHz, 40MHz and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz per the guidance of Section B)2)b) of KDB 789033 D02v02r01. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Model No.	Test Mode	Duty Cycle
	802.11a	94.24%
	802.11ac-VHT20	98.26%
	802.11ac-VHT40	96.72%
APIN0504	802.11ac-VHT80	93.74%
	802.11ax-HE20	97.24%
	802.11ax-HE40	95.81%
	802.11ax-HE80	92.21%
	802.11a	94.48%
	802.11ac-VHT20	98.26%
	802.11ac-VHT40	96.57%
APIN0505	802.11ac-VHT80	93.67%
	802.11ax-HE20	97.24%
	802.11ax-HE40	95.61%
	802.11ax-HE80	92.38%



2.9. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.10. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphletsupplied to the user and be readily visible to the purchaser at the time of purchase. However, when the deviceis so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label andlabel location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed WirelessDevices (ANSI C63.10-2013), and the guidance provided in KDB 789033 D02v02r01 were used in themeasurement.

Deviation from measurement procedure......None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50uH$ Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remotecontrolled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated tomaximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by theresponsible party can be used with the device. The use of a permanently attached antenna or of an antennathat uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

For APIN0505

- The antenna of the unit is permanently attached.
- There are no provisions for connection to an external antenna.

For APIN0504

The antenna of the unit uses a reversed SMA connector.

Conclusion:

The unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Two-Line V-Network	R&S	ENV 216	MRTTWA00019	1 year	2020/03/25
Two-Line V-Network	R&S	ENV 216	MRTTWA00020	1 year	2020/04/25
8-Wire ISN (T8)	R&S	ENY81	MRTTWA00018	1 year	2020/04/23
EMI Test Receiver	R&S	ESR3	MRTTWA00045	1 year	2020/05/29
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2020/05/30

Radiated Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Acitve Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	1 year	2020/04/29
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00001	1 year	2020/06/04
Broadband Horn antenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2020/04/22
Breitband Horn antenna	SCHWARZBECK	BBHA 9170	MRTTWA00004	1 year	2020/04/23
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	1 year	2020/04/24
Broadband Amplifier	SCHWARZBECK	BBV 9721	MRTTWA00006	1 year	2020/04/24
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2020/03/26
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2020/03/25
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2019/10/30
Antenna Cable	HUBERSUHNER	SF106	MRTTWE00010	1 year	2020/04/22
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00032	1 year	2020/05/30

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
X-Series USB Peak and	KEVOLOUT	LIOOOAVA	MARTINA	4	0000/04/00
Average Power Sensor	KEYSIGHT U2021XA		MRTTWA00014	1 year	2020/04/22
Wideband Radio		CMM FOO	MDTT\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4	2020/04/20
Communication Taster	R&S	CMW 500	MRTTWA00041	1 year	2020/01/28
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2019/10/30
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2020/07/11
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2020/03/26
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2020/05/30

Software	Version	Function
e3	9.160520a	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement- SR1

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

150kHz~30MHz: 2.53dB

Radiated Emission Measurement - AC1

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz ~ 1GHz: 4.25dB 1GHz ~ 40GHz: 4.45dB

7. TEST RESULT

7.1. Summary

FCC	Test Description	Test Limit	Test	Test	Reference
Section(s)			Condition	Result	
15.407(a)	26dB Bandwidth	N/A		Pass	Section7.2
15.407(a)(2)	Maximum Conducted	≤ 24 dBm		Pass	Section 7.3
13.407 (a)(2)	Output Power	3 24 QDIII		1 033	Section 7.5
15.407(h)(1)	Transmit Power Control	≤ 24 dBm	Conducted	N/A	Section 7.4
15.407(a)(2),	Peak Power Spectral	≤ 11dBm/MHz		Door	Continu 7.5
(5)	Density	≥ I IUDIII/IVI⊓Z		Pass	Section 7.5
15.407(g)	Frequency Stability	± 20 ppm		Pass	Section 7.6
15.407(b)(2),	Undesirable Emissions	≤ -27dBm/MHz EIRP		Pass	
(3), (5)	Officestrable Efficiency	S-2/UDIII/IVIAZ EIRP		Pass	
15 205 15 200	General Field Strength	Emissions in	Radiated		Section 7.7& 7.8
15.205, 15.209	Limits(Restricted Bands	restrictedbands must	Naulaleu	Pass	
15.407(b)(5),	andRadiated Emission	meet theradiated limits		F 455	
(6), (7)	Limits)	detailed in15.209			
	AC Conducted		Line		
15.207	Emissions	< FCC 15.207 limits	Conducted	Pass	Section 7.9
	150kHz - 30MHz		Conducted		

Notes:

- The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer.
 The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 2) Test Item "26dB Bandwidth" has been assessed MIMO transmission, and showed the worst test data in this report.

7.2. 26dB Bandwidth Measurement

7.2.1.Test Limit

N/A

7.2.2.Test Procedure Used

ANSI C63-2013 - Section 12.4.1

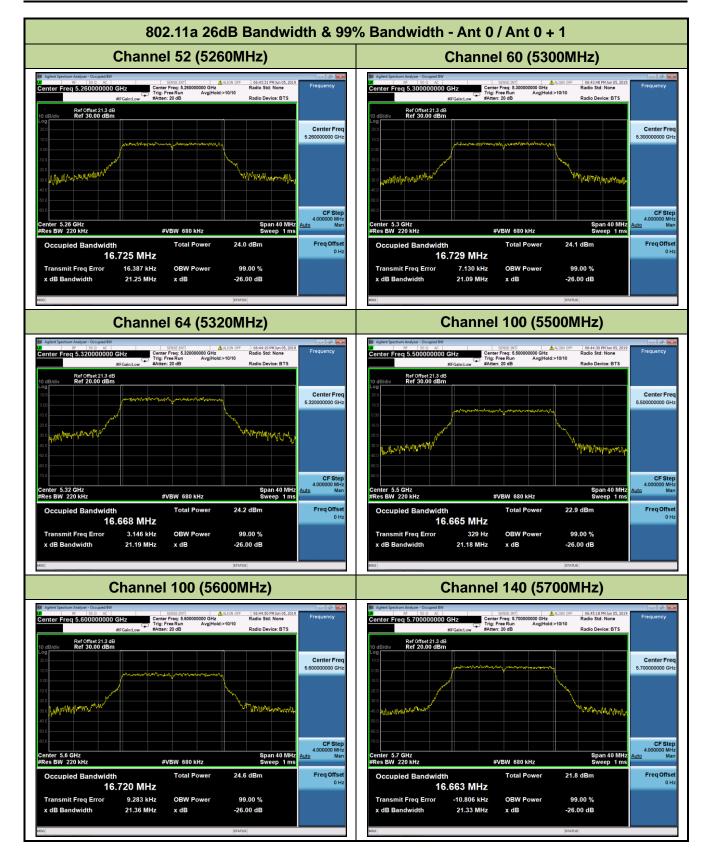
7.2.3.Test Setting

- 1. The analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth.
- 3. VBW ≥ 3×RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.

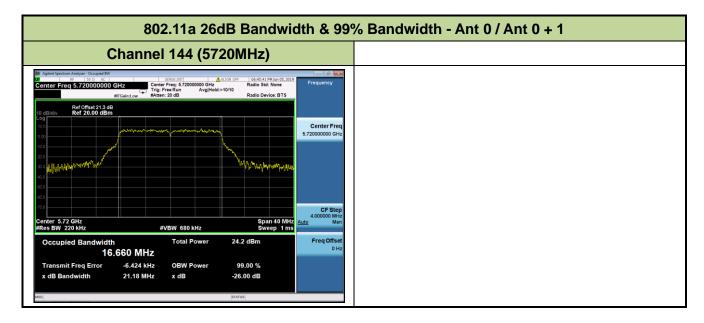
7.2.4.Test Setup

Spectrum Analyzer attenuator EUT

7.2.5.Test Result


Product	ACCESS POINT	Temperature	24°C
Test Engineer	Kevin Ker	Relative Humidity	59%
Test Site	SR1	Test Date	2019/06/05
Antenna Type	Omni Antenna (AP-ANT-20W)	Model	APIN0504

Test Mode	Data Rate/ MCS	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
Ant 0 / Ant 0 + 1					
802.11a	6Mbps	52	5260	21.25	16.73
802.11a	6Mbps	60	5300	21.09	16.73
802.11a	6Mbps	64	5320	21.19	16.67
802.11a	6Mbps	100	5500	21.18	16.67
802.11a	6Mbps	120	5600	21.36	16.72
802.11a	6Mbps	140	5700	21.33	16.66
802.11a	6Mbps	144	5720	21.18	16.66
802.11ac-VHT20	MCS0	52	5260	21.45	17.83
802.11ac-VHT20	MCS0	60	5300	21.46	17.82
802.11ac-VHT20	MCS0	64	5320	21.66	17.85
802.11ac-VHT20	MCS0	100	5500	21.90	17.80
802.11ac-VHT20	MCS0	120	5600	21.57	17.85
802.11ac-VHT20	MCS0	140	5700	21.52	17.82
802.11ac-VHT20	MCS0	144	5720	21.34	17.79
802.11ac-VHT40	MCS0	54	5270	39.90	36.33
802.11ac-VHT40	MCS0	62	5310	39.15	36.30
802.11ac-VHT40	MCS0	102	5510	39.75	36.29
802.11ac-VHT40	MCS0	118	5590	39.59	36.29
802.11ac-VHT40	MCS0	134	5670	39.33	36.32
802.11ac-VHT40	MCS0	142	5710	39.58	36.28
802.11ac-VHT80	MCS0	58	5290	80.67	75.72
802.11ac-VHT80	MCS0	106	5530	80.58	75.74
802.11ac-VHT80	MCS0	122	5610	80.50	75.71
802.11ac-VHT80	MCS0	138	5690	81.10	75.76



Test Mode	Data Rate/ MCS	Channel No.	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
802.11ax-HE20	MCS0	52	5260	21.33	19.05
802.11ax-HE20	MCS0	60	5300	21.23	19.05
802.11ax-HE20	MCS0	64	5320	21.51	19.08
802.11ax-HE20	MCS0	100	5500	21.31	19.05
802.11ax-HE20	MCS0	120	5600	21.41	19.13
802.11ax-HE20	MCS0	140	5700	21.29	19.01
802.11ax-HE20	MCS0	144	5720	21.49	19.10
802.11ax-HE40	MCS0	54	5270	39.75	37.54
802.11ax-HE40	MCS0	62	5310	39.65	37.55
802.11ax-HE40	MCS0	102	5510	39.72	37.63
802.11ax-HE40	MCS0	118	5590	39.71	37.65
802.11ax-HE40	MCS0	134	5670	39.74	37.60
802.11ax-HE40	MCS0	142	5710	39.82	37.61
802.11ax-HE80	MCS0	58	5290	80.97	76.86
802.11ax-HE80	MCS0	106	5530	81.17	77.08
802.11ax-HE80	MCS0	122	5610	80.53	76.88
802.11ax-HE80	MCS0	138	5690	80.77	77.02

