

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Web: www.mrt-cert.com Report No.:1906TW0102-U2Report Version:V03Issue Date:10-03-2019

MEASUREMENT REPORT

FCC PART 15 Subpart C ZigBee 802.15.4

- FCC ID: Q9DAPIN0504505
- **APPLICANT:** Hewlett Packard Enterprise Company
- Application Type: Certification
- Product: ACCESS POINT
- Model No.: APIN0504, APIN0505
- Brand Name:
 - Enterprise company
- FCC Classification: Digital Transmission System (DTS)

UDQ

- FCC Rule Part(s): Part15 Subpart C (Section 15.247)
- **Test Procedure(s):** ANSI C63.10-2013, KDB 558074 D01v05r02

Hewlett Packard

Test Date: June 03 ~ July 14, 2019

Reviewed By:

Approved By:

Paddy Chen (Paddy Chen) (Chenz Ker)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version Description		Issue Date	Note
1906TW0102-U2	Rev. 01	Initial report	07-15-2019	Invalid
1906TW0102-U2	Rev. 02	Update antenna port plot	10-01-2019	Invalid
1906TW0102-U2	Rev. 03	Update PSD test setting	10-03-2019	Valid

CONTENTS

Des	scriptio	n	Page
§2. 1	1033 Ge	eneral Information	5
1.	INTRO	ODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	DUCT INFORMATION	7
	2.1.	Feature of Equipment under Test	7
	2.2.	Product Specification Subjective to this Report	
	2.3.	Working Frequencies for this report	
	2.4.	Description of Available Antennas	
	2.5.	Description of Antenna RF Port	
	2.6.	Test Mode	10
	2.7.	Description of Test Software	10
	2.8.	Device Capabilities	11
	2.9.	EMI Suppression Device(s)/Modifications	12
	2.10.	Labeling Requirements	12
3.	DESC	RIPTION of TEST	13
	3.1.	Evaluation Procedure	13
	3.2.	AC Line Conducted Emissions	13
	3.3.	Radiated Emissions	14
4.	ANTE	INNA REQUIREMENTS	15
5.	TEST	EQUIPMENT CALIBRATION DATE	16
6.	MEAS	SUREMENT UNCERTAINTY	17
7.	TEST	RESULT	18
	7.1.	Summary	18
	7.2.	6dB Bandwidth Measurement	
	7.2.1.	Test Limit	
	7.2.2.	Test Procedure used	
	7.2.3.	Test Setting	
	7.2.4.	Test Setup	
	7.2.5.	Test Result	
	7.3.	Output Power Measurement	22
	7.3.1.	Test Limit	22
	7.3.2.	Test Procedure Used	22

	7.3.3.	Test Setting	22
	7.3.4.	Test Setup	23
	7.3.5.	Test Result of Output Power	24
	7.4.	Power Spectral Density Measurement	26
	7.4.1.	Test Limit	26
	7.4.2.	Test Procedure Used	26
	7.4.3.	Test Setting	26
	7.4.4.	Test Setup	26
	7.4.5.	Test Result	27
	7.5.	Conducted Band Edge and Out-of-Band Emissions	29
	7.5.1.	Test Limit	29
	7.5.2.	Test Procedure Used	29
	7.5.3.	Test Settitng	29
	7.5.4.	Test Setup	30
	7.5.5.	Test Result	31
	7.6.	Radiated Spurious Emission Measurement	35
	7.6.1.	Test Limit	35
	7.6.2.	Test Procedure Used	35
	7.6.3.	Test Setting	35
	7.6.4.	Test Setup	37
	7.6.5.	Test Result	38
	7.7.	Radiated Restricted Band Edge Measurement	48
	7.7.1.	Test Limit	48
	7.7.2.	Test Procedure Used	49
	7.7.3.	Test Setting	49
	7.7.4.	Test Setup	50
	7.7.5.	Test Result	51
	7.8.	AC Conducted Emissions Measurement	59
	7.8.1.	Test Limit	59
	7.8.2.	Test Setup	59
	7.8.3.	Test Result	60
8.	CONC		.64
Apr		A - Test Setup Photograph	
мрр		B - EUT Photograph	.00

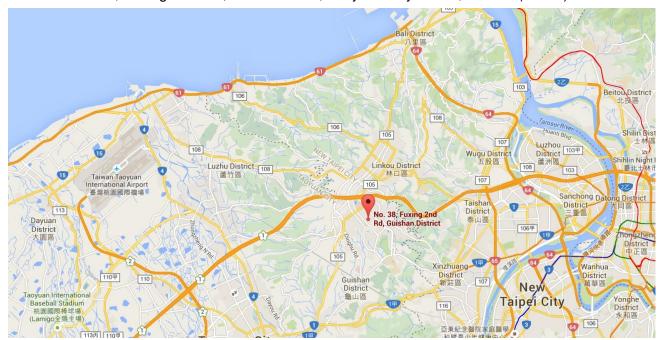
Applicant:	Hewlett Packard Enterprise Company		
Applicant Address:	3333 Scott Blvd, Santa Clara, CA 94089, USA		
Manufacturer: Hewlett Packard Enterprise Company			
Manufacturer Address:	3333 Scott Blvd, Santa Clara, CA 94089, USA		
Test Site:	MRT Technology (Taiwan) Co., Ltd		
Test Site Address:	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333,		
	Taiwan (R.O.C)		
Test Device Serial No.:	APIN0504 S/N: DB19590006		
Test Device Serial No.:	APIN0505 S/N: DB19590053		

§2.1033 General Information

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Fuxing Rd., Taoyuan, Taiwan (R.O.C)

- MRT facility is a FCC registered (Reg. No. 291082 and 153292) test facility with the site description report on file and is designated by the FCC as an Accredited Test Film.
- MRT facility is an IC registered (MRT Reg. No. 21723-1) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (TAF) under the American Association for Laboratory Accreditation Program (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC, Industry Taiwan, EU and TELEC Rules.


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name:	ACCESS POINT			
Model No.:	APIN0504, APIN0505			
Brand Name:	a Hewlett Packard Enterprise company			
Wi-Fi Specification:	802.11a/b/g/n/ac/ax			
Bluetooth Specification:	v4.2 single mode			
Zigbee Specification:	802.15.4			
Software Version:	F.1.00			
Operating Temperature:	0 ~ 50 °C			
Power Type:	AC Adapter or POE input			
Operating Environment:	Indoor Use			

Note: The difference between models is that EUT use different antenna and appearance, APIN0504 use some external antennas, but APIN0505 use internal antenna, other hardware and software are the same. Besides, each model has its own power parameter value.

2.2. Product Specification Subjective to this Report

Frequency Range:	2405 ~ 2480 MHz
Channel Number:	16
Type of Modulation:	O-QPSK

Note: For other features of this EUT, test report will be issued separately.

2.3. Working Frequencies for this report

Channel	Frequency	Channel	Frequency	Channel	Frequency
11	2405 MHz	12	2410 MHz	13	2415 MHz
14	2420 MHz	15	2425 MHz	16	2430 MHz
17	2435 MHz	18	2440 MHz	19	2445 MHz
20	2450 MHz	21	2455 MHz	22	2460 MHz
23	2465 MHz	24	2470 MHz	25	2475 MHz
26	2480 MHz				

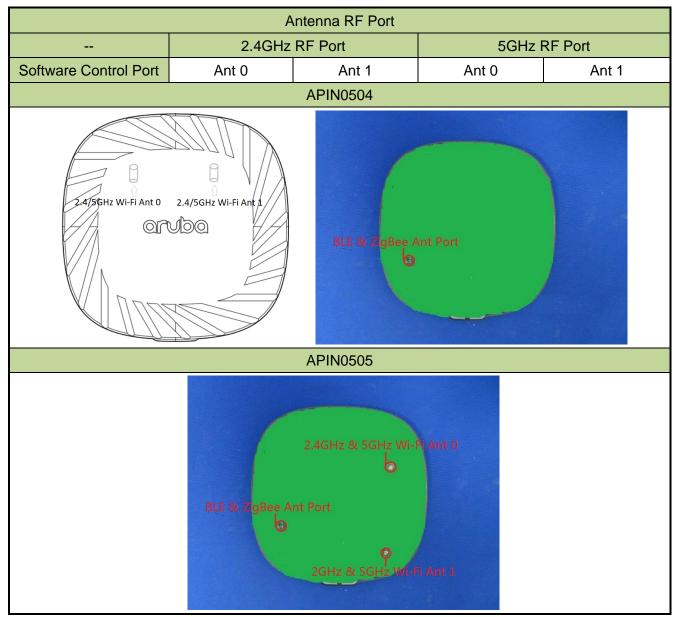
2.4. Description of Available Antennas

<u>APIN0504</u>

Antenna No.	Directionality	Frequency Band	Model No.	Max Peak Gain	BF Dir Gain	CDD Dir Gain (dBi)		
		(GHz)		(dBi)	(dBi)	For Power	For PSD	
Wi-Fi External Antenna List (2.4GHz 2*2 MIMO, 5GHz 2*2 MIMO)								
1	Omni	2.4	AP-ANT-1W	3.8	6.81	3.8	6.81	
I	Omn	5	AP-ANT-TW	5.8	8.81	5.8	8.81	
2	Omni	2.4	AP-ANT-13B	2.3	5.31	2.3	5.31	
2	Omni	5	AP-ANT-TSD	4.0	7.01	4.0	7.01	
3	Omni	2.4	AP-ANT-19	3.0	6.01	3.0	6.01	
3		5		6.0	9.01	6.0	9.01	
4	Omni	2.4	AP-ANT-20W	2.0	5.01	2.0	5.01	
4		5		2.0	5.01	2.0	5.01	
Г	Omni	2.4		4.0	7.01	4.0	7.01	
5		5	AP-ANT-40	5.0	8.01	5.0	8.01	
C(Nata 2)	Directional	2.4	AP-ANT-25A	5.0	5.0	5.0	8.01	
6 (Note 3)	Directional	5		5.0	5.0	5.0	8.01	
7 (Nata 2)	Directions	2.4		7.5	7.5	7.5	10.51	
7 (Note 3)	Directional	5	AP-ANT-28	7.5	7.5	7.5	10.51	
Bluetooth &	ZigBee Internal	Antenna						
F	РСВ		2.4			3.3		

APIN0505

Directionality	Frequency Band (GHz)	Max Peak Gain	BF Dir Gain (dBi)	CDD Dir Gain (dBi)		
		(dBi)		For Power	For PSD	
Wi-Fi Internal Antenna List (2.4GHz 2*2 MIMO, 5GHz 4*4 MIMO)						
Omni	2.4	4.29	7.08	4.29	7.08	
Omni	5	5.63	8.64	5.63	8.64	
Bluetooth & ZigBee Internal Antenna						
PCB	2.4	3.3				



Note:

- The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.
 For CDD transmissions, directional gain is calculated as follows, N_{ANT} = 2, N_{SS} = 1.
 If all antennas have the same gain, G_{ANT}, Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.
 - For power spectral density (PSD) measurements on all devices, Array Gain = 10 log (N_{ANT}/ N_{SS}) dB = 3.01;
 - For power measurements on IEEE 802.11 devices, Array Gain = 0 dB for N_{ANT} ≤ 4;
- 2. The EUT also supports Beam Forming mode, and the Beam Forming support 802.11n/ac/ax, not include 802.11a/b/g. Directional gain = G_{ANT} + Array Gain, BF Gain was declared by the applicant.
- 3. Two type antennas are cross polarized, the detail refer to antenna specification.
- 4. For APIN0504, low gain antenna AP-ANT-20W was selected to perform all RF testing that can got maximum power setting. High gain Omni antenna AP-ANT-19 & AP-ANT-40 and directional antenna AP-ANT-28 were selected to perform radiated spurious emission and band edge testing. High gain antenna power setting will be reduced according to difference value of antenna gain declared by applicant.
- 5. For APIN0505, its directional gain was declared by the applicant, the detail refers to antenna specification.

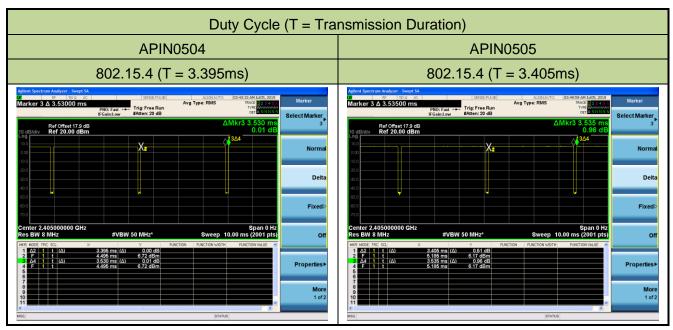
2.5. Description of Antenna RF Port

2.6. Test Mode

Test Mode	Mode 1: Transmit by ZigBee
-----------	----------------------------

2.7. Description of Test Software

The test utility software used during testing was "telnet.exe" Detail power setting refer to operation description.


2.8. Device Capabilities

This device contains the following capabilities:

802.11a/b/g/n/ac/ax Wi-Fi, Bluetooth v4.2 single mode and Zigbee devices.

Note: 2.4GHz Zigbee (DTS) operation is possible in 5MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Model No.	Test Mode	Duty Cycle
APIN0504	ZigBee	96.18%
APIN0505	ZigBee	96.32%

Note 1: This duty cycle was only suitable for continuous transmission of signals via commands. Note 2: The manufacturer, declared that the ZigBee operation, when implemented, will be limited to a duty cycle of 10% or less in any 100ms period. So -20dB correction factor was used during peak and average band edge testing.

2.9. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.10. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 558074 D01v05r02 were used in the measurement.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

For APIN0505

- The antenna of the unit is permanently attached.
- There are no provisions for connection to an external antenna.

For APIN0504

• The antenna of the unit uses a reversed SMA connector.

Conclusion:

The unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Two-Line V-Network	R&S	ENV 216	MRTTWA00019	1 year	2020/03/25
Two-Line V-Network	R&S	ENV 216	MRTTWA00020	1 year	2020/04/25
8-Wire ISN (T8)	R&S	ENY81	MRTTWA00018	1 year	2020/04/23
EMI Test Receiver	R&S	ESR3	MRTTWA00045	1 year	2020/05/29
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2020/05/30

Radiated Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Acitve Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	1 year	2020/04/29
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00001	1 year	2020/06/04
Broadband Horn antenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2020/04/22
Breitband Horn antenna	SCHWARZBECK	BBHA 9170	MRTTWA00004	1 year	2020/04/23
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	1 year	2020/04/24
Broadband Amplifier	SCHWARZBECK	BBV 9721	MRTTWA00006	1 year	2020/04/24
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2020/03/26
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2020/03/25
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2019/10/30
Antenna Cable	HUBERSUHNER	SF106	MRTTWE00010	1 year	2020/04/22
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00032	1 year	2020/05/30

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
X-Series USB Peak and	KEYSIGHT	U2021XA		1	2020/04/22
Average Power Sensor	KE I SIGHT	020217A	MRTTWA00014	1 year	2020/04/22
Wideband Radio				4	0000/01/00
Communication Taster	R&S	CMW 500	MRTTWA00041	1 year	2020/01/28
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2019/10/30
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2020/07/11
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2020/03/26
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2020/05/30

Software	Version	Function
e3	9.160520a	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement	
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):	
150kHz~30MHz: 2.53dB	
Radiated Emission Measurement	
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):	
9kHz ~ 1GHz: 4.25dB	
1GHz ~ 40GHz: 4.45dB	

7. TEST RESULT

7.1. Summary

FCC Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference	
15.247(a)(2)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.2	
15.247(b)(3)	Output Power	≤ 30dBm		Pass	Section 7.3	
15.247(e)	Power Spectral	≤ 8dBm/3kHz		Pass	Section 7.4	
10.247(0)	Density		Conducted	1 455	00010117.4	
	Band Edge /					
15.247(d)	Out-of-Band	≥ 20dBc (Peak)		Pass	Section 7.5	
	Emissions					
	General Field					
	Strength Limits	Emissions in	Radiated			
15.205	(Restricted	restricted bands		Pass	Section 7.6 & 7.7	
15.209	Bands and	must meet the				
13.209	Radiated	radiated limits			7.0 & 7.7	
	Emission	detailed in 15.209				
	Limits)					
	AC Conducted					
15.207	Emissions	< FCC 15.207	Line	Pass	Section 7.8	
15.207	150kHz -	limits	Conducted	F 855		
	30MHz					

Notes:

 The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

2) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.

7.2. 6dB Bandwidth Measurement

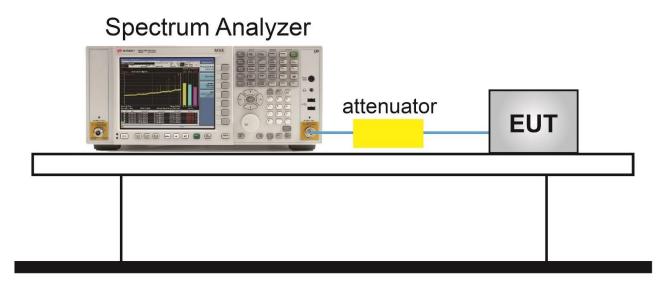
7.2.1.Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

7.2.2.Test Procedure used

ANSI C63.10-2013 Section 11.8

7.2.3.Test Setting


1. The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB

bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth

measurement was not influenced by any intermediate power nulls in the fundamental emission.

- 2. Set RBW = 100 kHz
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

7.2.4.Test Setup

7.2.5.Test Result

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2019/06/29
Model No.	APIN0504	Test Item	6dB Bandwidth

Test Mode	Modulation	Channel No.	Frequency	6dB Bandwidth	Limit	Result
	Mode		(MHz)	(MHz)	(MHz)	
802.15.4	O-QPSK	11	2405	1.15	≥ 0.5	Pass
802.15.4	O-QPSK	18	2440	1.15	≥ 0.5	Pass
802.15.4	O-QPSK	26	2480	1.15	≥ 0.5	Pass

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2019/06/29
Model No.	APIN0505	Test Item	6dB Bandwidth

Test Mode	Modulation	Channel No.	Frequency	6dB Bandwidth	Limit	Result
	Mode		(MHz)	(MHz)	(MHz)	
802.15.4	O-QPSK	11	2405	1.15	≥ 0.5	Pass
802.15.4	O-QPSK	18	2440	1.14	≥ 0.5	Pass
802.15.4	O-QPSK	26	2480	1.15	≥ 0.5	Pass

7.3. Output Power Measurement

7.3.1.Test Limit

The maximum output power shall be less 1 Watt (30dBm).

The conducted output power limit specified in paragraph FCC Part 15.247(b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs FCC Part 15.247(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

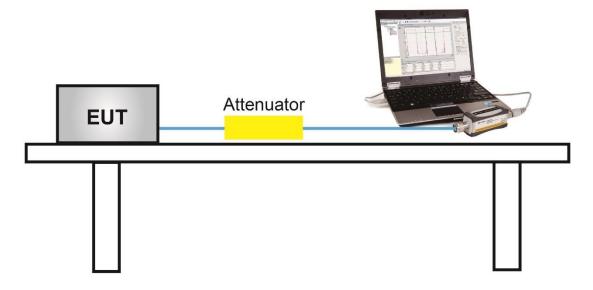
7.3.2.Test Procedure Used

ANSI C63.10 Section 11.9.1.3

ANSI C63.10 Section 11.9.2.3

7.3.3.Test Setting

Method PKPM1 (Peak Power Measurement)


Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Average Power Measurement

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

7.3.4.Test Setup

7.3.5.Test Result of Output Power

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2019/06/29
Model No.	APIN0504	Test Item	Output Power

Test Result of Peak Output Power

Test Mode	Modulation	Channel	Freq.	Peak Power	Limit	Result
	Mode	No.	(MHz)	(dBm)	(dBm)	
802.15.4	O-QPSK	11	2405	7.83	≤ 30.00	Pass
802.15.4	O-QPSK	18	2440	7.68	≤ 30.00	Pass
802.15.4	O-QPSK	26	2480	7.21	≤ 30.00	Pass

Note: E.I.R.P (dBm) = Max Peak Power (dBm) + Antenna Gain (dBi) = 7.83 dBm + 3.30 dBi = 11.13 dBm.

Test Result of Average Output Power (Reporting Only)

Test Mode	Modulation	Channel	Freq.	Average Power	Limit	Result
	Mode	No.	(MHz)	(dBm)	(dBm)	
802.15.4	O-QPSK	11	2405	7.56	≤ 30.00	Pass
802.15.4	O-QPSK	18	2440	7.47	≤ 30.00	Pass
802.15.4	O-QPSK	26	2480	6.97	≤ 30.00	Pass

Note: E.I.R.P (dBm) = Max Average Power (dBm) + Antenna Gain (dBi) = 7.56 dBm + 3.30 dBi = 10.86 dBm.

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2019/06/29
Model No.	APIN0505	Test Item	Output Power

Test Result of Peak Output Power

Test Mode	Modulation	Channel	Freq.	Peak Power	Limit	Result
	Mode	No.	(MHz)	(dBm)	(dBm)	
802.15.4	O-QPSK	11	2405	8.07	≤ 30.00	Pass
802.15.4	O-QPSK	18	2440	8.03	≤ 30.00	Pass
802.15.4	O-QPSK	26	2480	7.77	≤ 30.00	Pass

Note: E.I.R.P (dBm) = Max Peak Power (dBm) + Antenna Gain (dBi) = 8.07 dBm + 3.30 dBi = 11.37 dBm.

Test Result of Average Output Power (Reporting Only)

Test Mode	Modulation	Channel	Freq.	Average Power	Limit	Result
	Mode	No.	(MHz)	(dBm)	(dBm)	
802.15.4	O-QPSK	11	2405	7.88	≤ 30.00	Pass
802.15.4	O-QPSK	18	2440	7.81	≤ 30.00	Pass
802.15.4	O-QPSK	26	2480	7.54	≤ 30.00	Pass

Note: E.I.R.P (dBm) = Max Average Power (dBm) + Antenna Gain (dBi) = 7.88 dBm + 3.30 dBi = 11.18 dBm.

7.4. Power Spectral Density Measurement

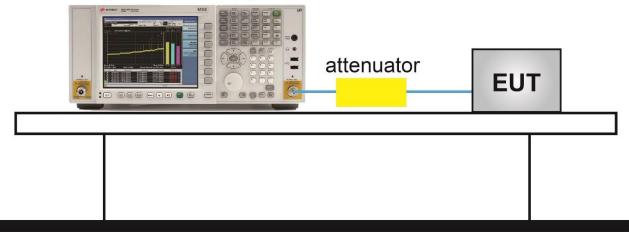
7.4.1.Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

The same method of determining the conducted output power shall be used to determine the power

spectral density.

7.4.2.Test Procedure Used


ANSI C63.10 Section 11.10.2

7.4.3.Test Setting

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 10kHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

7.4.4.Test Setup

Spectrum Analyzer

7.4.5.Test Result

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2019/06/29
Model No.	APIN0504	Test Item	Power Spectral Density

Test Mode	Modulation	Channel	Frequency	PK PSD	Limit	Result
	Mode	No.	(MHz)	(dBm / 3kHz)	(dBm / 3kHz)	
802.15.4	O-QPSK	11	2405	-4.06	≤ 8.00	Pass
802.15.4	O-QPSK	18	2440	-4.27	≤ 8.00	Pass
802.15.4	O-QPSK	26	2480	-4.68	≤ 8.00	Pass

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2019/06/29
Model No.	APIN0505	Test Item	Power Spectral Density

Test Mode	Modulation	Channel	Frequency	PK PSD	Limit	Result
	Mode	No.	(MHz)	(dBm / 3kHz)	(dBm / 3kHz)	
802.15.4	O-QPSK	11	2405	-3.82	≤ 8.00	Pass
802.15.4	O-QPSK	18	2440	-3.66	≤ 8.00	Pass
802.15.4	O-QPSK	26	2480	-4.01	≤ 8.00	Pass

7.5. Conducted Band Edge and Out-of-Band Emissions

7.5.1.Test Limit

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental

emission level, as determined from the in-band power measurement of the DTS channel performed

in a 100 kHz bandwidth per the PSD procedure.

7.5.2.Test Procedure Used

ANSI C63.10 Section 11.11

7.5.3.Test Settitng

Reference level measurement

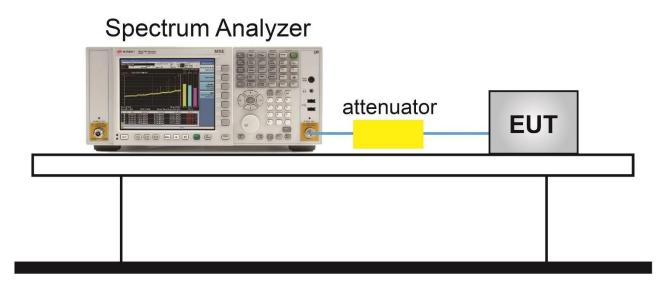
- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW \geq 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize

Emission level measurement

1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two

plots per channel)

- 2. RBW = 1.3MHz
- 3. VBW = 4MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

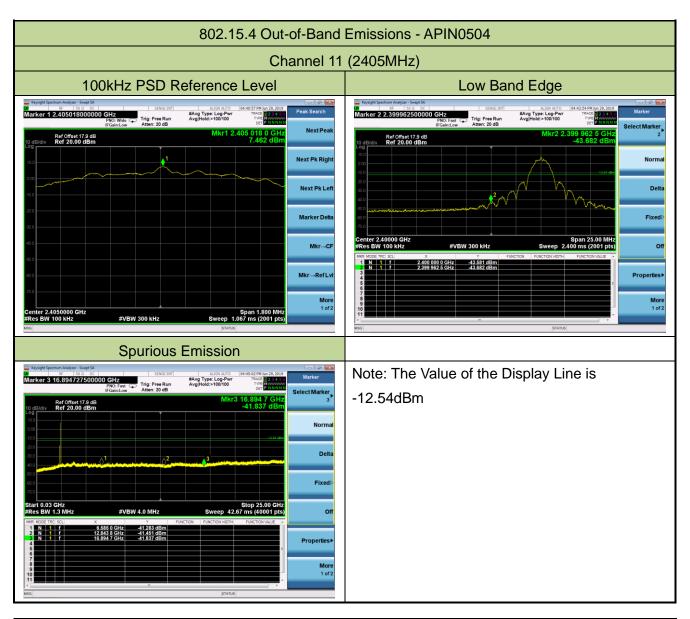

Test Notes

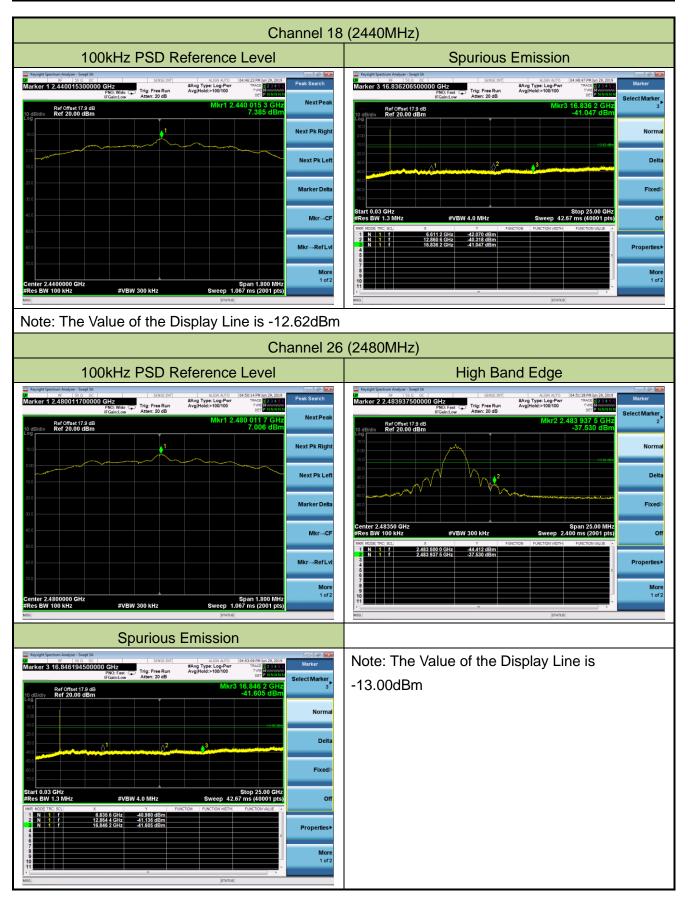
1. RBW was set to 1.3MHz rather than 100kHz in order to increase the measurement speed.

2. The display line shown in the following plots denotes the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1.3MHz RBW, the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1.3MHz bandwidth.

3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

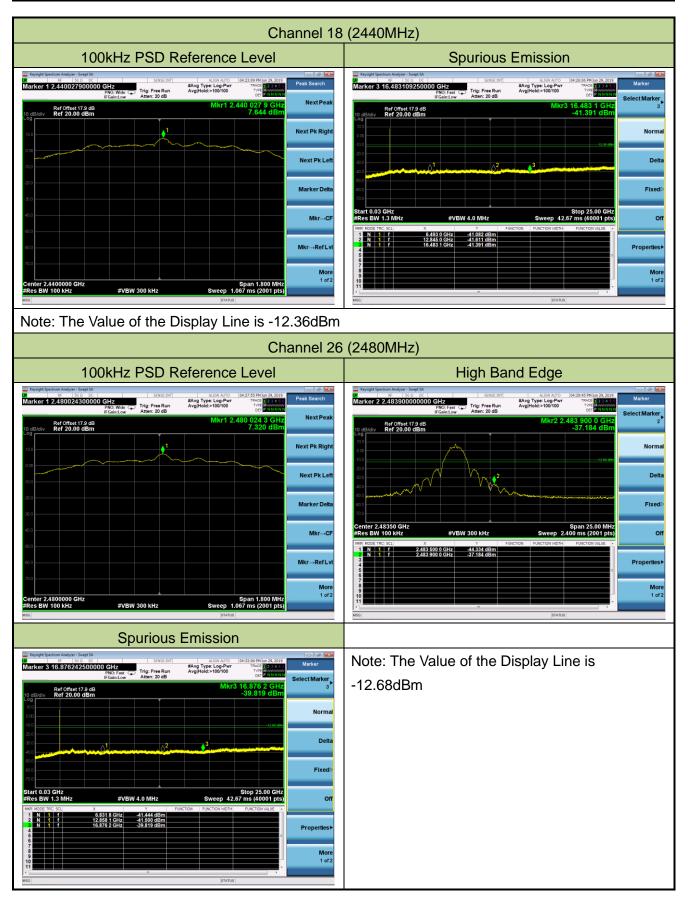
7.5.4.Test Setup




7.5.5.Test Result

Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2019/06/29
			Conducted Band Edge and
Model No.	APIN0504	Test Item	Out-of-Band Emissions

Test Mode	Data Rate / MCS	Channel No.	Frequency (MHz)	Limit	Result
802.15.4	O-QPSK	11	2405	20dBc	Pass
802.15.4	O-QPSK	18	2440	20dBc	Pass
802.15.4	O-QPSK	26	2480	20dBc	Pass



Product	ACCESS POINT	Temperature	25°C
Test Engineer	Kevin Ker	Relative Humidity	54%
Test Site	SR2	Test Date	2019/06/29
		To a Cilliana	Conducted Band Edge and
Model No.	APIN0505	Test Item	Out-of-Band Emissions

Test Mode	Data Rate / MCS	Channel No.	Frequency (MHz)	Limit	Result
802.15.4	O-QPSK	11	2405	20dBc	Pass
802.15.4	O-QPSK	18	2440	20dBc	Pass
802.15.4	O-QPSK	26	2480	20dBc	Pass

7.6. Radiated Spurious Emission Measurement

7.6.1.Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47

CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209				
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meters]		
0.009 - 0.490	2400/F (kHz)	300		
0.490 - 1.705	24000/F (kHz)	30		
1.705 - 30	30	30		
30 - 88	100	3		
88 - 216	150	3		
216 - 960	200	3		
Above 960	500	3		

7.6.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.4 (Standard test method below 30MHz)

ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.6.3.Test Setting

Table 1 - RBW as a function of frequency

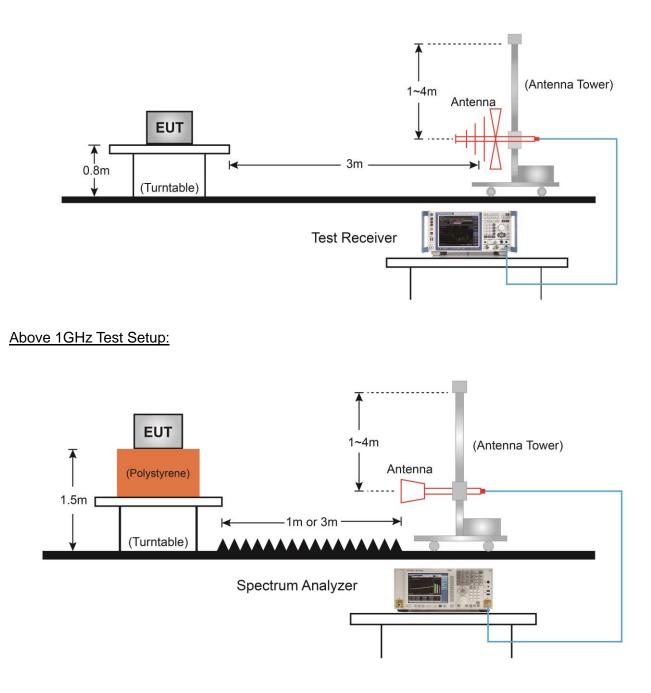
Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as specified in Table 1
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize


Average Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle \ge 98%, set VBW = 10 Hz.
- If the EUT duty cycle is < 98%, set VBW \geq 1/T. T is the minimum transmission duration.
- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

7.6.4.Test Setup

Below 1GHz Test Setup:

Note: This item was performed with the ZigBee antenna connected.

7.6.5.Test Result

Product	ACCESS POINT	Temperature	26°C					
Test Engineer	Kevin Ker	Relative Humidity	56%					
Test Site	AC1	Test Date	2019/07/13					
Model No.	APIN0504	Test Channel	11					
Remark	1. Average measurement was	not performed if peak l	evel lower than average					
	limit. So the margin was calc	culated using the avera	age limit for emissions fall					
	within the restricted bands.							
	2. Other frequency was 20dB b	. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency (MHz)	Reading Level	Factor (dB)	Measure Level	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
		(dBµV)		(dBµV/m)				
*	6244.5	37.3	7.3	44.6	81.9	-37.3	Peak	Horizontal
*	7009.5	36.0	11.3	47.3	81.9	-34.6	Peak	Horizontal
	7468.5	34.5	12.6	47.1	54.0	-6.9	Peak	Horizontal
	8199.5	35.7	13.0	48.7	54.0	-5.3	Peak	Horizontal
*	6023.5	37.7	6.2	43.9	81.9	-38.0	Peak	Vertical
*	6346.5	36.7	7.8	44.5	81.9	-37.4	Peak	Vertical
	7596.0	35.9	12.8	48.7	54.0	-5.3	Peak	Vertical
	8259.0	35.3	13.0	48.3	54.0	-5.7	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (101.9dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C
Test Engineer	Kevin Ker	Relative Humidity	56%
Test Site	AC1	Test Date	2019/07/13
Model No.	APIN0504	Test Channel	18
Remark	1. Average measurement was	not performed if peak l	evel lower than average
	limit. So the margin was cald	culated using the avera	age limit for emissions fall
	within the restricted bands.		
	2. Other frequency was 20dB b	elow limit line within 1	-18GHz, there is not show
	in the report.		

Mark	Frequency (MHz)	Reading Level	Factor (dB)	Measure Level	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
		(dBµV)		(dBµV/m)				
*	6057.5	36.5	6.4	42.9	81.9	-39.0	Peak	Horizontal
*	6610.0	36.2	9.1	45.3	81.9	-36.6	Peak	Horizontal
	7400.5	34.4	12.4	46.8	54.0	-7.2	Peak	Horizontal
	8250.5	34.9	13.0	47.9	54.0	-6.1	Peak	Horizontal
*	5777.0	37.0	5.2	42.2	81.9	-39.7	Peak	Vertical
*	6542.0	36.8	8.7	45.5	81.9	-36.4	Peak	Vertical
	7647.0	34.7	12.8	47.5	54.0	-6.5	Peak	Vertical
	8208.0	35.2	13.0	48.2	54.0	-5.8	Peak	Vertical

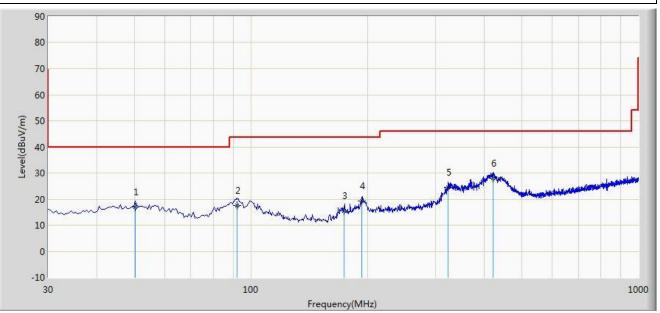
Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (101.9dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C
Test Engineer	Kevin Ker	Relative Humidity	56%
Test Site	AC1	Test Date	2019/07/13
Model No.	APIN0504	Test Channel	26
Remark	1. Average measurement was	not performed if peak l	evel lower than average
	limit. So the margin was cald	culated using the avera	age limit for emissions fall
	within the restricted bands.		
	2. Other frequency was 20dB b	elow limit line within 1	-18GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	5743.0	38.2	5.1	43.3	81.2	-37.9	Peak	Horizontal
*	6508.0	37.6	8.5	46.1	81.2	-35.1	Peak	Horizontal
	7511.0	35.5	12.7	48.2	54.0	-5.8	Peak	Horizontal
	8165.5	35.9	13.0	48.9	54.0	-5.1	Peak	Horizontal
*	5828.0	38.2	5.4	43.6	81.2	-37.6	Peak	Vertical
*	6576.0	37.1	8.9	46.0	81.2	-35.2	Peak	Vertical
	7528.0	36.0	12.7	48.7	54.0	-5.3	Peak	Vertical
	8369.5	35.6	13.1	48.7	54.0	-5.3	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (101.2dBµV/m) or 15.209 which is higher.


Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

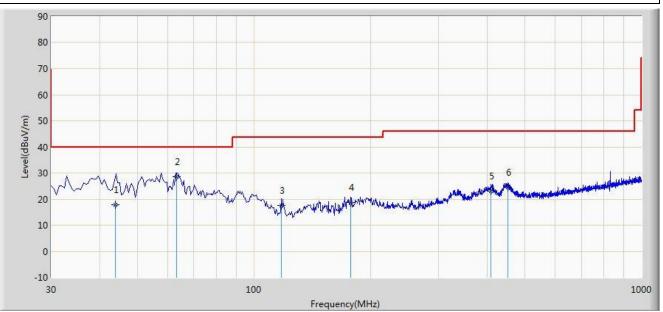
The Worst Case of Radiated Emission below 1GHz:

Site: AC1	Time: 2019/07/13 - 12:24
Limit: FCC_Part15.209_RSE(3m)	Engineer: Kevin Ker
Probe: VULB9162_0.03GHz_8GHz	Polarity: Horizontal
EUT: ACCESS POINT	Power: AC 120V/60Hz

Test Mode: There is the worst case within frequency range 30MHz~1GHz.

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			50.350	17.095	-4.683	-22.905	40.000	21.778	QP
2			92.000	17.629	0.206	-25.871	43.500	17.423	QP
3			174.150	15.430	-1.240	-28.070	43.500	16.669	QP
4			193.590	19.294	0.487	-24.206	43.500	18.807	QP
5		*	323.156	24.389	2.095	-21.611	46.000	22.294	QP
6			420.980	27.978	3.796	-18.022	46.000	24.182	QP

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)


Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report. Besides, there is a comparison data of both open-field test site and alternative test site semi-Anechoic chamber according to KDB 414788 D01 radiated test site v01r01, this comparison result was very similar.

Site: AC1	Time: 2019/07/13 - 12:25
Limit: FCC_Part15.209_RSE(3m)	Engineer: Kevin Ker
Probe: VULB9162_0.03GHz_8GHz	Polarity: Vertical
EUT: ACCESS POINT	Power: AC 120V/60Hz

Test Mode: There is the worst case within frequency range 30MHz~1GHz.

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	44.000	17.793	-3.720	-22.207	40.000	21.513	QP
2			63.150	28.529	9.816	-11.471	40.000	18.714	QP
3			117.720	17.632	-0.602	-25.868	43.500	18.234	QP
4			177.598	18.717	1.864	-24.783	43.500	16.853	QP
5			409.598	23.068	-0.993	-22.932	46.000	24.062	QP
6			451.598	24.615	0.076	-21.385	46.000	24.539	QP

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report. Besides, there is a comparison data of both open-field test site and alternative test site semi-Anechoic chamber according to KDB 414788 D01 radiated test site v01r01, this comparison result was very similar.

Product	ACCESS POINT	Temperature	26°C
Test Engineer	Kevin Ker	Relative Humidity	56%
Test Site	AC1	Test Date	2019/07/13
Model No.	APIN0505	Test Channel	11
Remark	1. Average measurement was	not performed if peak l	evel lower than average
	limit. So the margin was cald	culated using the avera	age limit for emissions fall
	within the restricted bands.		
	2. Other frequency was 20dB b	elow limit line within 1	-18GHz, there is not show
	in the report.		

Mark	Frequency (MHz)	Reading Level	Factor (dB)	Measure Level	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
		(dBµV)		(dBµV/m)				
*	5777.0	37.2	5.2	42.4	80.3	-37.9	Peak	Horizontal
*	6627.0	35.2	9.2	44.4	80.3	-35.9	Peak	Horizontal
	7536.5	33.7	12.7	46.4	54.0	-7.6	Peak	Horizontal
	8216.5	34.3	13.0	47.3	54.0	-6.7	Peak	Horizontal
*	5989.5	37.7	6.0	43.7	80.3	-36.6	Peak	Vertical
*	6491.0	35.6	8.5	44.1	80.3	-36.2	Peak	Vertical
	7511.0	34.4	12.7	47.1	54.0	-6.9	Peak	Vertical
	8250.5	35.5	13.0	48.5	54.0	-5.5	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (100.3dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C
Test Engineer	Kevin Ker	Relative Humidity	56%
Test Site	AC1	Test Date	2019/07/13
Model No.	APIN0505	Test Channel	18
Remark	1. Average measurement was	not performed if peak l	evel lower than average
	limit. So the margin was cald	culated using the avera	age limit for emissions fall
	within the restricted bands.		
	2. Other frequency was 20dB b	elow limit line within 1	-18GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
*	6066.0	36.6	6.4	43.0	80.5	-37.5	Peak	Horizontal
*	7103.0	33.7	11.6	45.3	80.5	-35.2	Peak	Horizontal
	7434.5	33.7	12.5	46.2	54.0	-7.8	Peak	Horizontal
	8318.5	33.3	13.1	46.4	54.0	-7.6	Peak	Horizontal
*	5989.5	37.5	6.0	43.5	80.5	-37.0	Peak	Vertical
*	6338.0	36.9	7.7	44.6	80.5	-35.9	Peak	Vertical
	7451.5	35.1	12.6	47.7	54.0	-6.3	Peak	Vertical
	8259.0	34.9	13.0	47.9	54.0	-6.1	Peak	Vertical

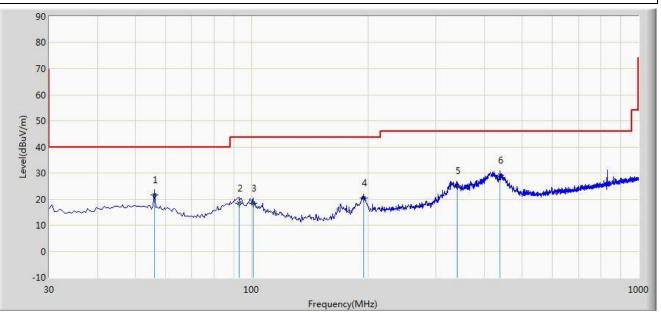
Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (100.5dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C
Test Engineer	Kevin Ker	Relative Humidity	56%
Test Site	AC1	Test Date	2019/07/13
Model No.	APIN0505	Test Channel	26
Remark	1. Average measurement was	not performed if peak l	evel lower than average
	limit. So the margin was cald	culated using the avera	age limit for emissions fall
	within the restricted bands.		
	2. Other frequency was 20dB b	elow limit line within 1	-18GHz, there is not show
	in the report.		

Mark	Frequency (MHz)	Reading Level	Factor (dB)	Measure Level	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
		(dBµV)	(dD)	(dBµV/m)	(dDµV/III)	(UD)		
*	5734.5	36.6	5.1	41.7	80.6	-38.9	Peak	Horizontal
*	6244.5	35.7	7.3	43.0	80.6	-37.6	Peak	Horizontal
	7417.5	34.5	12.5	47.0	54.0	-7.0	Peak	Horizontal
	8199.5	34.5	13.0	47.5	54.0	-6.5	Peak	Horizontal
*	5802.5	37.8	5.3	43.1	80.6	-37.5	Peak	Vertical
*	6576.0	36.7	8.9	45.6	80.6	-35.0	Peak	Vertical
	7519.5	34.9	12.7	47.6	54.0	-6.4	Peak	Vertical
	8276.0	33.7	13.1	46.8	54.0	-7.2	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (100.6dBµV/m) or 15.209 which is higher.


Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

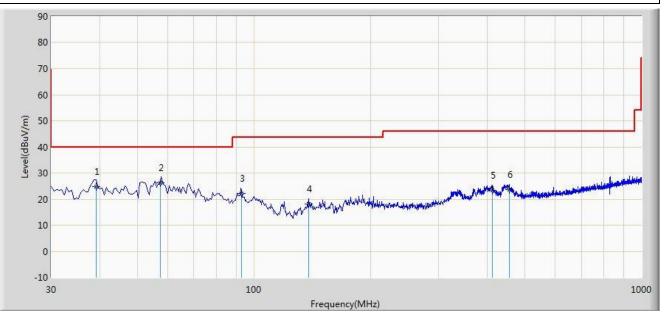
The Worst Case of Radiated Emission below 1GHz:

Site: AC1	Time: 2019/07/13 - 12:31
Limit: FCC_Part15.209_RSE(3m)	Engineer: Kevin Ker
Probe: VULB9162_0.03GHz_8GHz	Polarity: Horizontal
EUT: ACCESS POINT	Power: AC 120V/60Hz

Test Mode: There is the worst case within frequency range 30MHz~1GHz.

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	56.060	21.478	0.682	-18.522	40.000	20.796	QP
2			93.000	18.348	0.710	-25.152	43.500	17.639	QP
3			100.810	18.443	-0.715	-25.057	43.500	19.158	QP
4			195.359	20.504	1.603	-22.996	43.500	18.902	QP
5			339.490	24.971	2.047	-21.029	46.000	22.923	QP
6			438.120	29.060	4.696	-16.940	46.000	24.364	QP

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)


Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report. Besides, there is a comparison data of both open-field test site and alternative test site semi-Anechoic chamber according to KDB 414788 D01 radiated test site v01r01, this comparison result was very similar.

Site: AC1	Time: 2019/07/13 - 12:31
Limit: FCC_Part15.209_RSE(3m)	Engineer: Kevin Ker
Probe: VULB9162_0.03GHz_8GHz	Polarity: Vertical
EUT: ACCESS POINT	Power: AC 120V/60Hz

Test Mode: There is the worst case within frequency range 30MHz~1GHz.

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	39.258	24.920	4.433	-15.080	40.000	20.487	QP
2			57.310	26.270	5.691	-13.730	40.000	20.579	QP
3			92.970	22.130	4.498	-21.370	43.500	17.632	QP
4			138.640	17.986	2.253	-25.514	43.500	15.733	QP
5			412.050	23.385	-0.702	-22.615	46.000	24.087	QP
6			456.890	23.689	-1.012	-22.311	46.000	24.701	QP

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report. Besides, there is a comparison data of both open-field test site and alternative test site semi-Anechoic chamber according to KDB 414788 D01 radiated test site v01r01, this comparison result was very similar.

7.7. Radiated Restricted Band Edge Measurement

7.7.1.Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

		•	
Frequency	Frequency	Frequency	Frequency
(MHz)	(MHz)	(MHz)	(GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.25 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209.

FCC F	Part 15 Subpart C Paragraph	15.209
Frequency	Field Strength	Measured Distance
[MHz]	[uV/m]	[Meters]
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

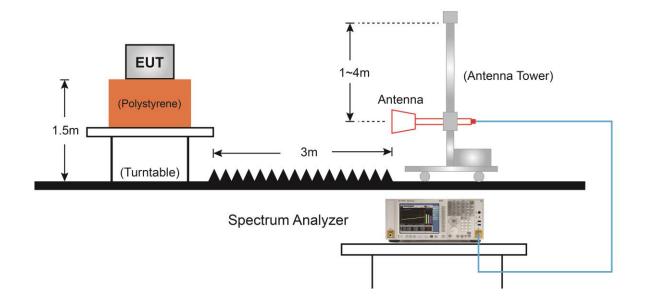
7.7.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.7.3.Test Setting

Peak Field Strength Measurements

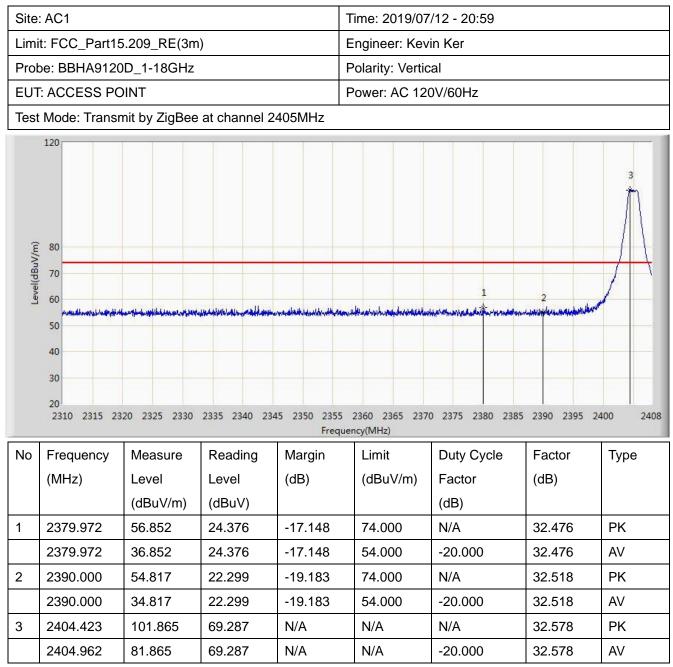

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Measurements above 1GHz (Method VB)

Using the peak field strength minus duty cycle factor.

7.7.4.Test Setup

Note: This item was performed with the ZigBee antenna connected.


7.7.5.Test Result

For APIN0504

101				n				
Site	: AC1			1	īme: 2019/07	/12 - 20:56		
Limi	t: FCC_Part18	5.209_RE(3m)	E	Engineer: Kev	in Ker		
Prob	be: BBHA9120)D_1-18GHz		F	Polarity: Horiz	ontal		
EUT	ACCESS PC	DINT		F	Power: AC 12	0V/60Hz		
Test	Mode: Transr	nit by ZigBee	at channel 2	405MHz				
	120			0				
Level(dBuV/m)	80 70 60 50 40 30 20 2310 2315 23		1014 Juli 101 Juli 10	15 2350 2355	2360 2365 2374			3
No	Frequency	Measure	Reading	Margin	Limit	Duty Cycle	Factor	Туре
	(MHz)	Level	Level	(dB)	(dBuV/m)	Factor	(dB)	
		(dBuV/m)	(dBuV)			(dB)		
1	2383.745	57.061	24.569	-16.939	74.000	N/A	32.491	PK
	2383.745	37.061	24.569	-16.939	54.000	-20.000	32.491	AV
	-			1				
2	2390.000	55.274	22.756	-18.726	74.000	N/A	32.518	PK
2		55.274 35.274	22.756 22.756	-18.726 -18.726	74.000 54.000	N/A -20.000	32.518 32.518	PK AV
2 3	2390.000							

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Site	: AC1				Time: 2019/07	7/13 - 06:25			
Limi	t: FCC_Part15	5.209 RE(3m)		Engineer: Kev	vin Ker			
	De: BBHA9120		/		Polarity: Horiz				
	ACCESS PC				Power: AC 12				
	Mode: Transr		at channel 2						
Level(dBuV/m)	120		8		Aldrid and security in the security of the sec		Magina Layon Layon Angelon	berji darme dipese il in su su de	
	50 40 30 20								
	40	2480 2482	2484	2486 24 Frequ	88 2490 ency(MHz)	2492 2494	2496	2498 2	2500
No	40 30 20	2480 2482 Measure	2 2484 Reading			2492 2494 Duty Cycle	2496 Factor	2498 2 Type	2500
No	40 30 20 2477 2478			Frequ	ency(MHz)				2500
No 1	40 30 20 2477 2478 Frequency	Measure Level	Reading Level	Frequ Margin	ency(MHz)	Duty Cycle Factor	Factor		2500
	40 30 20 2477 2478 Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Frequ Margin (dB)	Limit (dBuV/m)	Duty Cycle Factor (dB)	Factor (dB)	Туре	2500
	40 30 20 2477 2478 Frequency (MHz) 2479.564	Measure Level (dBuV/m) 98.756	Reading Level (dBuV) 65.862	Frequ Margin (dB) N/A	Limit (dBuV/m)	Duty Cycle Factor (dB) N/A	Factor (dB) 32.895	Type PK	2500
1	40 30 20 2477 2478 Frequency (MHz) 2479.564 2479.564	Measure Level (dBuV/m) 98.756 78.756	Reading Level (dBuV) 65.862 65.862	Frequ Margin (dB) N/A N/A	ency(MHz) Limit (dBuV/m) N/A N/A	Duty Cycle Factor (dB) N/A -20.000	Factor (dB) 32.895 32.895	PK AV	2500
1	40 30 2477 2478 Frequency (MHz) 2479.564 2479.564 2483.500	Measure Level (dBuV/m) 98.756 78.756 64.993	Reading Level (dBuV) 65.862 65.862 32.082	Frequ Margin (dB) N/A N/A -9.007	Limit (dBuV/m) N/A N/A 74.000	Duty Cycle Factor (dB) N/A -20.000 N/A	Factor (dB) 32.895 32.895 32.911	Type PK AV PK	2500

				I				
Site	: AC1				Time: 2019/07/13 - 06:25			
Limi	Limit: FCC_Part15.209_RE(3m)				Engineer: Kev	vin Ker		
Prob	be: BBHA9120)D_1-18GHz			Polarity: Vertic	cal		
EUT	: ACCESS PC	DINT			Power: AC 12	0V/60Hz		
Test	Mode: Transr	mit by ZigBee	at channel 2	2480MHz				
Level(dBuV/m)	120 80 70 60 50 40 30 20 2477 2478	1	2484		188 2490 uency(MHz)	2492 2494	*/**/*********** *********************	New minute states
No	Frequency	Measure	Reading	Margin	Limit	Duty Cycle	Factor	Туре
	(MHz)	Level (dBuV/m)	Level (dBuV)	(dB)	(dBuV/m)	Factor (dB)	(dB)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	2480.036	101.232	68.336	N/A	N/A	N/A	32.896	PK
	2480.036	81.232	68.336	N/A	N/A	-20.000	32.896	AV
2	2483.500	67.462	34.551	-6.538	74.000	N/A	32.911	PK
	2483.500	47.462	34.551	-6.538	54.000	-20.000	32.911	AV
3	2483.578	67.564	34.653	-6.436	74.000	N/A	32.911	PK
	2483.578	47.564	34.653	-6.436	54.000	-20.000	32.911	AV
<u> </u>		1	L	1	1		1	

For APIN0505

				I					
Site:	AC1			1	Time: 2019/07/12 - 20:12 Engineer: Kevin Ker				
Limi	t: FCC_Part15	5.209_RE(3m)	E					
Prob	e: BBHA 9120	DD_1-18GHz		F	Polarity: Horiz	ontal			
EUT	ACCESS PC	DINT		F	Power: AC 120	0V/60Hz			
Test	Mode: Transr	nit by ZigBee	at channel 24	405MHz					
Level(dBuV/m)	120 80 70 60 70 60 70 40 30 20 2310 2315 23	20 2325 2330	u ⁴⁴ 4 • • • • • • • • • • • • • • • • • •		2360 2365 2370		2	3	
3				Freque	ncy(MHz)				
No	Frequency	Measure	Reading	Margin	Limit	Duty Cycle	Factor	Туре	
	(MHz)	Level	Level	(dB)	(dBuV/m)	Factor	(dB)		
		(dBuV/m)	(dBuV)			(dB)			
1	2371.152	58.197	25.758	-15.803	74.000	N/A	32.438	PK	
	2371.152	38.197	25.758	-15.803	54.000	-20.000	32.438	AV	
2	2390.000	55.557	23.039	-18.443	74.000	N/A	32.518	РК	
	2390.000	35.557	23.039	-18.443	54.000	-20.000	32.518	AV	
3	2404.472	99.434	66.855	N/A	N/A	N/A	32.578	PK	
		1		i			1	1	

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

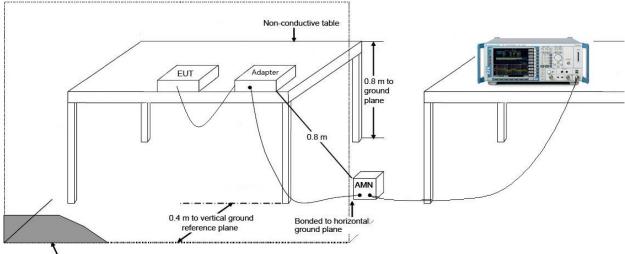
Site	: AC1			1	Time: 2019/07	7/12 - 19:58			
Limi	t: FCC_Part15	5.209_RE(3m)	E	Engineer: Kevin Ker				
Prot	be: BBHA 912	e: BBHA 9120D_1-18GHz				cal			
EUT	ACCESS PC	DINT		F	Power: AC 12	0V/60Hz			
Test	Mode: Transr	nit by ZigBee	at channel 2	405MHz					
Level(dBuV/m)	120 80 70 60 40 30 20 2310 2315 23	20 2325 2330	2335 2340 234	15 2350 2355	1 	achteure subbre state st	2 2 2 2 2 390 2395 2	3	
Na	Frequencia	Maggiurg	Deeding			Duty Quele	- Contor	Turne	
No	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Duty Cycle Factor (dB)	Factor (dB)	Туре	
1	2366.644	57.523	25.103	-16.477	74.000	N/A	32.420	PK	
	2366.644	37.523	25.103	-16.477	54.000	-20.000	32.420	AV	
		54.677	22.159	-19.323	74.000	N/A	32.518	PK	
2	2390.000	54.077	22.100						
2	2390.000 2390.000	34.677	22.159	-19.323	54.000	-20.000	32.518	AV	
2 3				-19.323 N/A	54.000 N/A	-20.000 N/A	32.518 32.578		

	: AC1				Time: 2019/07	7/13 - 02:02			
	it: FCC_Part15	5 209 RE(3m)		Engineer: Kevin Ker				
	be: BBHA 912	,			Polarity: Horiz				
	C ACCESS PC				Power: AC 12				
	Mode: Transr		at channel '	2480MHz	1 0001.710 12				
1030	120								
Level(dBuV/m)	80 70 60 50	1	3	handela an an air the area at	Horischermansensteigheitjoh	urgentlisterprontellinger skal	hannah di si se ber han	Charles of some strategic and the source of	
	40 30 20 2477 2478	2480 2482	2 2484	2486 24	188 2490	2492 2494	2496	2498 2500	
	30	2480 2482	2484		188 2490 uency(MHz)	2492 2494	2496	2498 2500	
No	30	2480 2482 Measure	2 2484 Reading			2492 2494 Duty Cycle	2496 Factor	2498 2500 Type	
No	30 20 2477 2478			Frequ	uency(MHz)				
No 1	30 20 2477 2478 Frequency	Measure Level	Reading Level	Frequ Margin	Limit	Duty Cycle Factor	Factor		
	30 20 2477 2478 Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Frequ Margin (dB)	Limit (dBuV/m)	Duty Cycle Factor (dB)	Factor (dB)	Туре	
	30 20 2477 2478 Frequency (MHz) 2480.600	Measure Level (dBuV/m) 97.873	Reading Level (dBuV) 64.974	Frequ Margin (dB) N/A	Limit (dBuV/m)	Duty Cycle Factor (dB) N/A	Factor (dB) 32.899	Type PK	
1	30 20 2477 2478 Frequency (MHz) 2480.600 2480.600	Measure Level (dBuV/m) 97.873 77.873	Reading Level (dBuV) 64.974 64.974	Frequ Margin (dB) N/A N/A	Limit (dBuV/m) N/A N/A	Duty Cycle Factor (dB) N/A -20.000	Factor (dB) 32.899 32.899	Type PK AV	
1	30 20 2477 2478 Frequency (MHz) 2480.600 2480.600 2483.500	Measure Level (dBuV/m) 97.873 77.873 64.794	Reading Level (dBuV) 64.974 64.974 31.883	Frequ Margin (dB) N/A N/A -9.206	Limit (dBuV/m) N/A N/A 74.000	Duty Cycle Factor (dB) N/A -20.000 N/A	Factor (dB) 32.899 32.899 32.911	Type PK AV PK	

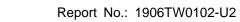
Site: AC1					Time: 2019/07/13 - 01:54			
Limi	Limit: FCC_Part15.209_RE(3m)				Engineer: Kev	vin Ker		
Prob	be: BBHA 912	0D_1-18GHz			Polarity: Verti	cal		
EUT	ACCESS PC	DINT			Power: AC 12	0V/60Hz		
Test	Mode: Transr	mit by ZigBee	at channel 2	2480MHz				
Level(dBuV/m)	120 80 70 60 50 40 30 20 2477 2478	2480 2482	23	2486 24 Frequ		2492 2494	40 ¹⁰ - 40	2498 2500
No	Frequency	Measure	Reading	Margin	Limit	Duty Cycle	Factor	Туре
	(MHz)	Level (dBuV/m)	Level (dBuV)	(dB)	(dBuV/m)	Factor (dB)	(dB)	
1	2480.600	100.599	67.700	N/A	N/A	N/A	32.899	PK
	2480.600	80.599	67.700	N/A	N/A	-20.000	32.899	AV
2	2483.500	66.737	33.826	-7.263	74.000	N/A	32.911	PK
	2483.500	46.737	33.826	-7.263	54.000	-20.000	32.911	AV
3	2483.681	67.072	34.160	-6.928	74.000	N/A	32.912	PK
	2483.681	47.072	34.160	-6.928	54.000	-20.000	32.912	AV
		1	1	1		1	1	I

7.8. AC Conducted Emissions Measurement

7.8.1.Test Limit


FCC Part 15 Subpart C Paragraph 15.207 Limits								
Frequency (MHz)	QP (dBuV)	AV (dBuV)						
0.15 - 0.50	66 - 56	56 - 46						
0.50 - 5.0	56	46						
5.0 - 30	60	50						

Note 1: The lower limit shall apply at the transition frequencies.


Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to

0.5MHz.

7.8.2.Test Setup

Vertical ground reference plane

7.8.3.Test Result

For APIN0504

Site: SR2	Time: 2019/07/10 - 11:07			
Limit: FCC_Part15.207_CE_AC Power	Engineer: Kevin Ker			
Probe: ENV216_101683_Filter On	Polarity: Line			
EUT: ACCESS POINT	Power: AC 120V/60H	2		
Test Mode 1				
80 70 60 50 40 30 20 10 0 -10 -20 0.15 1				
	equency(MHz)			
No Flag Mark Frequency Measure Readin		Factor Type		
(MHz) Level Level	(dB) (dBu∿	(dB)		
(dBuV) (dBuV)				
1 * 0.154 45.355 34.616	-20.426 65.78	1 10.740 QP		
	-24.133 55.78	1 10.740 AV		
2 0.154 31.649 20.909	24.100 00.70			
2 0.154 31.649 20.909 3 0.186 40.590 30.552				

Note: Measure Level ($dB\mu V$) = Reading Level ($dB\mu V$) + Factor (dB)

35.220

26.677

28.573

14.936

27.542

14.640

26.284

21.026

25.178

16.636

18.709

5.072

17.666

4.764

16.121

10.863

-23.838

-22.381

-27.427

-31.064

-28.458

-31.360

-33.716

-28.974

59.058

49.058

56.000

46.000

56.000

46.000

60.000

50.000

10.041

10.041

9.864

9.864

9.876

9.876

10.163

10.163

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

0.346

0.346

3.010

3.010

3.238

3.238

22.186

22.186

5

6

7

8

9

10

11

12

QP

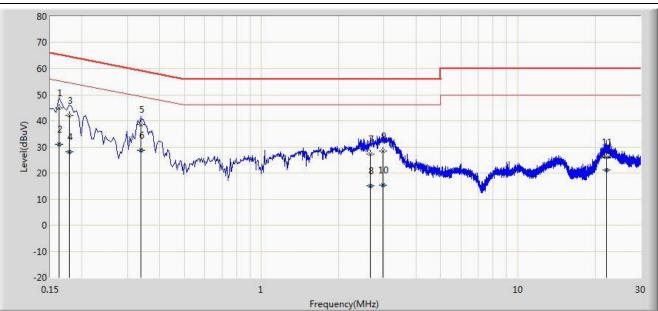
AV

QP

AV

QP

AV


QP

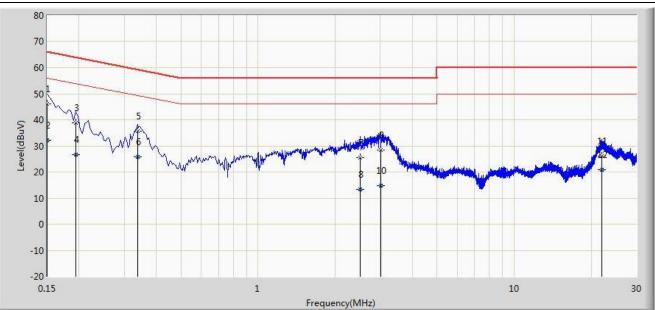
AV

Time: 2019/07/10 - 11:16
Engineer: Kevin Ker
Polarity: Neutral
Power: AC 120V/60Hz

Test Mode 1

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1		*	0.162	44.893	34.814	-20.468	65.361	10.078	QP
2			0.162	31.124	21.046	-24.236	55.361	10.078	AV
3			0.178	42.145	32.096	-22.433	64.578	10.049	QP
4			0.178	28.199	18.149	-26.380	54.578	10.049	AV
5			0.338	38.458	28.392	-20.795	59.252	10.066	QP
6			0.338	28.780	18.715	-20.472	49.252	10.066	AV
7			2.654	27.252	17.396	-28.748	56.000	9.856	QP
8			2.654	15.061	5.205	-30.939	46.000	9.856	AV
9			2.982	28.500	18.635	-27.500	56.000	9.866	QP
10			2.982	15.435	5.569	-30.565	46.000	9.866	AV
11			22.174	26.209	15.990	-33.791	60.000	10.219	QP
12			22.174	21.138	10.919	-28.862	50.000	10.219	AV

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

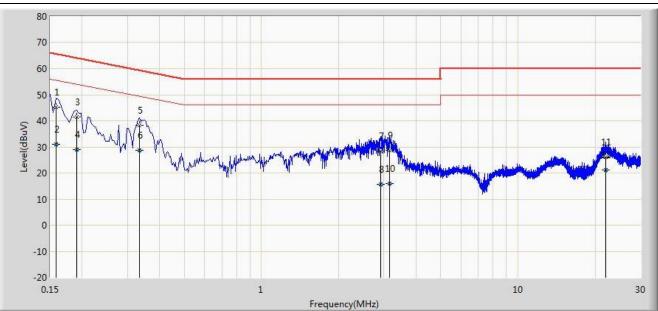

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

For APIN0505

Site: SR2	Time: 2019/07/10 - 11:21
Limit: FCC_Part15.207_CE_AC Power	Engineer: Kevin Ker
Probe: ENV216_101683_Filter On	Polarity: Line
EUT: ACCESS POINT	Power: AC 120V/60Hz

Test Mode 1

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1		*	0.150	45.956	34.788	-20.044	66.000	11.168	QP
2			0.150	32.101	20.933	-23.899	56.000	11.168	AV
3			0.194	38.900	28.883	-24.963	63.864	10.017	QP
4			0.194	26.554	16.538	-27.309	53.864	10.017	AV
5			0.338	35.587	25.552	-23.666	59.252	10.034	QP
6			0.338	25.825	15.790	-23.427	49.252	10.034	AV
7			2.506	25.424	15.567	-30.576	56.000	9.857	QP
8			2.506	13.362	3.506	-32.638	46.000	9.857	AV
9			3.014	28.461	18.598	-27.539	56.000	9.864	QP
10			3.014	14.874	5.010	-31.126	46.000	9.864	AV
11			21.966	26.209	16.038	-33.791	60.000	10.172	QP
12			21.966	20.952	10.781	-29.048	50.000	10.172	AV


Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

Site: SR2	Time: 2019/07/10 - 11:31	
Limit: FCC_Part15.207_CE_AC Power	Engineer: Kevin Ker	
Probe: ENV216_101683_Filter On	Polarity: Neutral	
EUT: ACCESS POINT	Power: AC 120V/60Hz	

Test Mode 1

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1		*	0.158	45.177	34.887	-20.391	65.568	10.290	QP
2			0.158	31.098	20.808	-24.471	55.568	10.290	AV
3			0.190	41.348	31.320	-22.689	64.037	10.028	QP
4			0.190	28.924	18.897	-25.112	54.037	10.028	AV
5			0.334	38.342	28.279	-21.009	59.351	10.063	QP
6			0.334	28.596	18.533	-20.756	49.351	10.063	AV
7			2.910	28.546	18.690	-27.454	56.000	9.856	QP
8			2.910	15.590	5.734	-30.410	46.000	9.856	AV
9			3.150	28.616	18.753	-27.384	56.000	9.862	QP
10			3.150	15.931	6.068	-30.069	46.000	9.862	AV
11			21.990	26.197	15.975	-33.803	60.000	10.222	QP
12			21.990	21.085	10.863	-28.915	50.000	10.222	AV

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

8. CONCLUSION

The data collected relate only the item(s) tested and show that the unit is in compliance with Part

15C of the FCC Rules.

— The End

Appendix A - Test Setup Photograph

Refer to "1906TW0102-UT" file.

Appendix B - EUT Photograph

Refer to "1906TW0102-UE" file.