

RF Exposure Evaluation Declaration

FCC ID: Q9DAPIN0303

APPLICANT: Hewlett Packard Enterprise Company

Application Type:	Certification		
Product:	ACCESS POINT		
Model No.:	APIN0303		
Trademark:	a Hewlett Packard Enterprise company		
FCC Classification:	Digital Transmission System (DTS)		
	Unlicensed National Information Infrastructure (UNII)		

Reviewed By

: Paddy Chen (Paddy Chen) : Amy ker

Approved By

(Chenz Ker)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1711TW0103-U9	Rev. 01	Initial report	11-18-2017	Valid

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	ACCESS POINT			
Model No.	APIN0303			
Brand Name:	a Hewlett Packard Enterprise company			
Wi-Fi Specification:	302.11a/b/g/n/ac			
Bluetooth Specification:	v4.0 single mode			
Software Version:	v1.02			
Operating Temperature:	0 ~ 40 °C			
Power Type:	POE input or AC adapter input			
Operating Environment:	Indoor Use			
Components				
Adapter	Part No.: SDI30-12-U-P209-C1			
	Model No.: SDI30-12-U			
	Input Power: 100 - 240V ~ 50/60Hz, 1.0A			
	Output Power: 12VDC/2.5A			

Note: The applicant provide one POE adapter (Manufacturer: MICROSEMI & Model:

PD-9001GR/AT/AC) for approval testing, it is not for sale.

1.2. Antenna Description

Antenna Type	Frequency Band	TX Paths	Max Peak Gain	Beam-Forming Directional	CDD Dire Gain(
	(GHz)		(dBi)	Gain(dBi)	For Power	For PSD
Wi-Fi Internal Antenna						
PCB	2.4	2	2.1	3.01	2.1	5.11
	5	2	5.7	3.01	5.7	8.71
Bluetooth Internal Antenna						
PCB	2.4	1	4.5			

Note:

The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.
For CDD transmissions, directional gain is calculated as follows, N_{ANT} = 2, N_{SS} = 1.

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

• For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log (N_{ANT}/ N_{SS}) dB = 3.01;

• For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB for $N_{ANT} \le 4$;

2. The EUT also supports Beam Forming mode, and the Beam Forming support 802.11n/ac, not include 802.11a/b/g.

2. **RF Exposure Evaluation**

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)	
(A) Limits for Occupational/ Control Exposures					
300-1500			f/300	6	
1500-100,000			5	6	
(B) Limits for General Population/ Uncontrolled Exposures					
300-1500			f/1500	6	
1500-100,000			1	30	

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

f= Frequency in MHz

Calculation Formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2. Test Result of RF Exposure Evaluation

Product	ACCESS POINT
Test Item	RF Exposure Evaluation

Antenna Gain: Refer to clause 1.2.

Test Mode	Frequency Band (MHz)	Maximum EIRP (dBm)	Power Density at R = 20 cm (mW/cm ²)	Limit (mW/cm ²)
BLE	2402 ~ 2480	9.53	0.0018	1
802.11b/g/n	2412 ~ 2462	27.08	0.1013	1
802.11a/n/ac	5180 ~ 5240 5260 ~ 5320 5500 ~ 5720 5745 ~ 5825	30.41	0.2186	1

CONCULISON:

Both of the WLAN 2.4GHz Band, WLAN 5GHz Band and BLE Band can transmit simultaneously. The max Power Density at R (20 cm) = 0.0018mW/cm² + 0.1013mW/cm² + 0.2186mW/cm² = 0.3217mW/cm² < 1mW/cm²

Therefore, the Min Safety Distance is 20cm.