Test of APIN0114, APIN0115 802.11a/b/g/n

To: FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: ARUB149-U4 Rev A

Test of APIN0114, APIN0115 802.11a/b/g/n

to

To FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: ARUB149-U4 Rev A

<u>Note:</u> this report contains data with regard to the 5,250 - 5,350 and 5,470 - 5,7250MHz (DFS) bands for Aruba Networks, APIN0114 and APIN0115 Wireless Access Point. 5,150 - 5,250 MHz (non-DFS) bands are reported in MiCOM Labs report ARUB148-U4 and 2.4 and 5.8 GHz test data are reported in MiCOM Labs test report ARUB148-U4

This report supersedes None

Applicant: Aruba Networks 1344 Crossman Avenue Sunnyvale, California 94089 USA

Product Function: Wireless Access Point

Copy No: pdf Issue Date: 5th August 2013

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

TEST CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 3 of 257

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 4 of 257

TABLE OF CONTENTS

AC	CRE	DITATIC	ON, LISTINGS & RECOGNITION	5
	TES	TING AC	CREDITATION	5
	REC	OGNITI	ON	6
	PRO	DUCT C	ERTIFICATION	7
1.	TES	T RESU	JLT CERTIFICATE	9
2.	REF	ERENC	ES AND MEASUREMENT UNCERTAINTY	
	2.1.	Normat	ive References	10
	2.2.	Test an	d Uncertainty Procedures	11
3.	PRC	DUCT	DETAILS AND TEST CONFIGURATIONS	12
	3.1.	Technic	cal Details	12
	3.2.	Scope	of Test Program	13
	3.3.	Equipm	ent Model(s) and Serial Number(s)	16
	3.4.	Antenn	a Details	
	3.5.	Cabling	and I/O Ports	
	3.6.	Test Co	Dnfigurations	
	3.7.	Equipri	ient Modifications	
	3.0. 3.0	Subcon	ons normalized Test Standard	
4	TES			20
т.	1 1		and RE Emission Test Set up	20
	4.1.	Radiate	ad Sourious Emission Test Set-up	20
	4.3	Digital I	Emissions Test Set-up ($0.03 - 1.$ GHz)	
	4.4.	ac Wire	eline Emission Test Set-up	
5.	TES	T SUM	MARY	24
6.	TES	T RESU	JLTS	27
	6.1.	Device	Characteristics	
	••••	6.1.1.	Conducted Testing	
		6.1.2.	Radiated Emission Testing	53
		6.1.3.	AC Wireline Conducted Emissions (150 kHz - 30 MHz)	106
7.	PHC)TOGR/	APHS	143
	7.1.	Test Se	etup - Digital Emissions below 1 GHz	143
	7.2.	Radiate	ed Emissions Test Setup >1 GHz – ANT-19	145
8.	TES	T EQUI	PMENT DETAILS	147
AP	PEN	DIX		
Α.	SUF	PORTI	NG INFORMATION	
	A.1.	CONDU	JCTED TEST PLOTS	148
	-	A.1.1.	26 dB & 99% Bandwidth	
		A.1.2.	Peak Power Spectral Density	200
		A.1.3.	Peak Excursion Ratio	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Page: 5 of 257

Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. is MiCOM Labs test schedule available the following URL: at http://www.a2la.org/scopepdf/2381-01.pdf

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 6 of 257

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 7 of 257

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

USA Telecommunication Certification Body (TCB) - TCB Identifier - US0159

Industry Canada Certification Body - CAB Identifier - US0159

European Notified Body - Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB) - RCB Identifier - 210

DOCUMENT HISTORY

Document History				
Revision Date		Comments		
Draft				
Rev A	5 th August 2013	Initial release		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 9 of 257

1. TEST RESULT CERTIFICATE

Applicant:	Aruba Networks 1344 Crossman Avenue Sunnyvale, California 94089 USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton
EUT:	Wireless LAN Access point	Tel:	+1 925 462 0304
Model:	APIN0114 & APIN0115	Fax:	+1 925 462 0306
S/N:	Engineering Sample		
Test Date(s):	10th - 31st July 2013	Website:	www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC 47 CFR Part 15.407 & IC RSS-210

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set Test results indicate that the equipment tested is capable of forth in the above standards. demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

TESTING CERTIFICATE #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.

ACCREDITED

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 10 of 257

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.407	2012	Code of Federal Regulations
(ii)	FCC 06-96	June 2006	Memorandum Opinion and Order
(iii)	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
(iv)	Industry Canada RSS-210	2010	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands): Category 1 Equipment
(v)	Industry Canada RSS-Gen	2010	General Requirements and Information for the Certification of Radiocommunication Equipment
(vi)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(vii)	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(viii)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(ix)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(x)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(xi)	A2LA	July 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy
(xii)	FCC Public Notice – DA 02-2138	2002	Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 11 of 257

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 12 of 257

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details	
Details	Description
Purpose:	Test of the APIN0114, APIN0115 802.11a/b/g/n in the frequency range 5,250 – 5,350 and 5,470 - 5725 MHz to FCC Part 15.407 and Industry Canada RSS-210 regulations.
Applicant:	Aruba Networks 1344 Crossman Avenue Sunnyvale, California 94089, USA
Manufacturer:	As applicant
Laboratory performing the tests:	MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, California 94566 USA
Test report reference number:	ARUB149-U4 Rev A
Date EUT received:	10 th April 2013
Standard(s) applied:	FCC 47 CFR Part 15.407 & IC RSS-210
Dates of test (from - to):	10th - 31st July 2013
No of Units Tested:	One
Type of Equipment:	802.11a/b/g/n Wireless Access Point 3x3 Spatial Multiplexing MIMO configuration
Applicants Trade Name:	Wireless Access Point
Model(s):	APIN0114 & APIN0115
Location for use:	Indoor only
Declared Frequency Range(s):	5250 – 5,350 and 5,470 – 5,725 MHz
Hardware Rev	P2
Software Rev	AOS 6.3.0.0
Type of Modulation:	Per 802.11 – OFDM
EUT Modes of Operation:	Legacy 802.11a, 802.11n HT-20, HT-40
Declared Nominal Output Power: (Average Power)	802.11a: Legacy +18 dBm 802.11n: HT-20 +18 dBm 802.11n: HT-40 +18 dBm
Transmit/Receive Operation:	Time Division Duplex
System Beam Forming:	APIN0114 & APIN0115 has no capability for antenna beam forming
Rated Input Voltage and Current:	POE 56 Vdc Ac/dc adapter: 12 Vdc, 1.25 A
Operating Temperature Range:	Declared range 0° to +50°C
ITU Emission Designator:	802.11a17M8D1D802.11n HT-2018M9D1D802.11n HT-4038M1D1D
Equipment Dimensions:	170mm (W) x 170mm (H) x 645mm (D)
Weight:	2 lbs
Primary function of equipment:	Wireless Access Point for transmitting data and voice.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.2. Scope of Test Program

Aruba Networks APIN0114, APIN0115 Access Point RF Testing

The scope of the test program was to test the Aruba Networks APIN0114, APIN0115 Wireless LAN Access Point, 3X3 Spatial Multiplexing MIMO configurations in the frequency range 5,250 – 5,350 and 5,470 – 5,725 MHz for compliance against FCC 47 CFR Part 15.407 and Industry Canada RSS-210 specifications.

FCC OET KDB Implementation

This test program implements the following FCC KDB – 662911 4/4/2011; Emissions Testing of Transmitters with Multiple Outputs in the Same Band

The KDB document provides guidance for measurements of conducted output emissions of devices that employ a single transmitter with multiple outputs in the same band, with the outputs occupying the same or overlapping frequency ranges. It applies to EMC compliance measurements on devices that transmit on multiple antennas simultaneously in the same or overlapping frequency ranges through a coordinated process. Examples include, but are not limited to, devices employing beam forming or multiple-input and multiple-output (MIMO.) This guidance applies to both licensed and unlicensed devices wherever the FCC rules call for conducted output measurements. Guidance is provided for in-band, out-of-band and spurious emission measurements.

This guidance does not apply to the multiple transmitters included in a composite device, such as a device that combines an 802.11 modem with a cell phone in one enclosure with each driving its own antenna.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 14 of 257

Aruba Networks Inc APIN0114 External Antenna 802.11 a/b/g/n/ac Wireless Access Point

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 15 of 257

Aruba Networks Inc APIN0114, APIN0115 802.11 a/b/g/n/ac Wireless Access Point (Rear)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 16 of 257

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Wireless LAN Access Point	Aruba Networks	APIN0114	Engineering Sample
EUT	Wireless LAN Access Point (Integral Antenna)	Aruba Networks	APIN0115	Engineering Sample
Support	Laptop PC	IBM	Thinkpad	None

3.4. Antenna Details

Model	Туре	Gain	Freq. Band	Noto
Woder		dBi	MHz	Note
		3.8	2400 - 2500	(2y por unit)
AF-ANT-ID	Onnin	5.8	4900 - 5875	(2x per unit)
AP-ANT-	Omni	4.4	2400 - 2500	(2x per unit)
13B	Omni	3.3	4900 - 5900	(2x per unit)
	Omni	3.9	2400 - 2500	(1x per unit) 3x3 MIMO
AF-ANT-10		4.7	4900 - 5900	
AD ANT 17	Directional 120degr.	6.0	2400 - 2500	(1x per unit)
AF-ANT-17		5.0	4900 - 5875	3x3 MIMO
AD ANT 19	Directional	7.5	2400 - 2500	(1x per unit)
AP-ANT-10	60degr.	7.5	5150 - 5875	3x3 MIMO
	Omni	3.0	2400 - 2500	(2 x por upit)
	Omni	6.0	5150 - 5875	(z x per unit)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 17 of 257

APIN0115 Integrated Antennas

Model	Туре	Gain	Freq. Band	Noto
Woder		dBi	MHz	Note
metal	Omni	4.0	2400 - 2500	(3x per band, per
sheet	Unini	5.0	4900 - 5875	unit)

3.5. Cabling and I/O Ports

Number and type of I/O ports

- 1. 2 x 10/100/1000 Ethernet ENET0, ENET1
- 2. Console Serial maintenance terminal
- 3. 12 Vdc, supply connector
- 4. RF Antenna Connectors (x3) Reverse SMA (APIN0114 Only)
- 5. USB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 18 of 257

3.6. <u>Test Configurations</u>

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Matrix of test configurations

Operational Mode(s) (802.11)	Variant	Data Rates with Highest Power	Frequencies (MHz)
	802.11a	6 MBit/s	5260,5280,5300,5320 5500,5580,5700
5250-5350	802.11n HT-20	6.5 MBit/s	
5470-5725	802.11n HT-40	13.5 MBit/s	5270,5310 5510,5550,5670

Spurious Emission and Band-Edge Test Strategy

Bands 5,250 – 5,350

11a	11n HT-20	11n HT-40
SE 5260	SE 5260	SE 5270
SE 5300	SE 5300	
SE 5320	SE 5320	SE 5310
BE 5350	BE 5350	BE 5350

KEY:-

SE – Spurious Emissions

BE - Band-Edge

Band 5,470 – 5,725

11a	11n HT-20	11n HT-40
SE 5500	SE 5500	SE 5510
SE 5580	SE 5580	SE 5550
SE 5700	SE 5700	SE 5670
BE 5470	BE 5470	BE 5470

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 20 of 257

4. TESTING EQUIPMENT CONFIGURATION(S)

4.1. Conducted RF Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Section 6.1.1.1. 26 dB and 99% Bandwidth
- 2. Section 6.1.1.2. Maximum Conducted Output Power
- 3. Section 6.1.1.3. Peak Power Spectral Density
- 4. Section 6.1.1.4. Peak Excursion Ratio

Conducted Test Set-Up Pictorial Representation

4.2. Radiated Spurious Emission Test Set-up > 1 GHz

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.2.1 through 12

Radiated Emission Measurement Setup – Above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 22 of 257

4.3. Digital Emissions Test Set-up (0.03 – 1 GHz)

The following tests were performed using the conducted test set-up shown in the diagram below.

2. Section 6.1.2.13

Digital Emission Measurement Setup – Below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.4. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.3 ac Wireline Conducted Emissions

Conducted Test Set-Up Pictorial Representation

Measurement set up for ac Wireline Conducted Emissions Test

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 24 of 257

5. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210.and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(a) A9.2(2) 4.4	26dB and 99% Emission BW	Emission bandwidth measurement	Conducted	Complies	6.1.1.1 A.1.1
15.407(a) A9.2(2) 4.6	Maximum Conducted Output Power	Power Measurement	Conducted	Complies	6.1.1.2
15.407(a) A9.2(2)	Peak Power Spectral Density	PPSD	Conducted	Complies	6.1.1.3 A.1.2
15.407(a)(6)	Peak Excursion Ratio	<13dB in any 1MHz bandwidth	Conducted	Complies	6.1.1.4 A.1.3
15.407(g) 15.31 2.1 4.5	Frequency Stability	Limits: contained within band of operation at all times.	Applicant declaration	Complies	6.1.1.5
15.407(f) 5.5	Radio Frequency Radiation Exposure	Exposure to radio frequency energy levels, Maximum Permissible Exposure (MPE)	Conducted	See included MPE exhibit	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 25 of 257

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(b)(2) 15.205(a) 15.209(a) 2.2 2.6 A9.3(2) 4.7	Radiated Emissions		Radiated		6.1.2
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	6.1.2.1 6.1.2.2 6.1.2.3
	Radiated Band Edge	Band edge results		Complies	6.1.2.1 6.1.2.2 6.1.2.3
15.407(b)(6) 15.205(a) 15.209(a) 2.2	Radiated Emissions	Emissions <1 GHz (30M-1 GHz)		Complies	6.1.2.4
15.407(b)(6) 15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	Complies ac/dc adaptor only, POE not marketed with equipment	6.1.3

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

List of Measurements (cont'd)

Dynamic Frequency Selection (DFS)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407(h)(2) and FCC Memorandum Opinion and Order FCC 06-96 (Compliance Measurement procedures for Unlicensed National Information Infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection).

Section Test Items Description Condition Result Test Report Section DFS Conducted 6.1.4 Dynamic Frequency Selection 7.8.1 Detection UNII Detection Bandwidth Conducted Complies Bandwidth 7.8.2.1 Performance Initial Channel Availability Conducted Complies Check Time Requirements Check 7.8.2.2 Radar Burst at the Beginning Conducted Complies of the Channel Availability Check Time Conducted 7.8.2.3 Radar Burst at the End of Complies the Channel Availability Check Time 7.8.3 In-Service In-Service Monitoring for Conducted Complies Channel Move Time, Monitoring Channel Closing Transmission Time and Non-Occupancy Period 7.8.4 Radar Statistical Performance Conducted Complies Detection Check

Tests performed on Master Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 27 of 257

6. TEST RESULTS

6.1. Device Characteristics

6.1.1. Conducted Testing

6.1.1.1. 26 dB and 99 % Bandwidth

Conducted Test Conditions for 26 dB and 99% Bandwidth							
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	26 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.407 (a)	Pressure (mBars):					
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01						

Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. KDB 789033 Section 5.1 Emission Bandwidth was used in order to prove compliance. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	802.11a	Duty Cycle (%):	100				
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable						
Engineering Test Notes:							

Test Measurement Results								
Toot Fragmanay	Measured 26 dB Bandwidth (MHz)					abwidth (MLL=)		
Test Frequency		Por	t(s)		26 dB Bandwidth (MHZ)			
MHz	а	b	С	d	Highest	Lowest		
5260.0	25.752	22.445	22.946		25.752	22.445		
5300.0	25.651	22.645	22.345		25.651	22.345		
5320.0	28.156	22.545	22.445		28.156	22.445		

Test Frequency	Measured 99% Bandwidth (MHz)		99% Bandwidth (MHz)				
reatirequency	Port(s)				55 /0 Banuwiutii (MHZ)		
MHz	а	b	с	d	Highest	Lowest	
5260.0	16.934	16.733	16.733		16.934	16.733	
5300.0	16.934	16.733	16.633		16.934	16.633	
5320.0	17.034	16.733	16.633		17.034	16.633	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 29 of 257

Equipment Configuration for 26 dB & 99% Occupied Bandwidth								
Variant:	802.11a	Duty Cycle (%):	100					
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Not Applicable							
Engineering Test Notes:								

Test Measurement R	esults						
Toot Fromuonov	Meas	ured 26 dB	Bandwidth	(MHz)	26 dB Box	aduriate (MLL=)	
rest Frequency		Port(s)				iawiath (IVIHZ)	
MHz	а	b	С	d	Highest	Lowest	
5500.0	37.876	23.948	22.545		37.876	22.545	
5580.0	33.567	23.447	22.745		33.567	22.745	
5700.0	32.265	28.557	22.645		32.265	22.645	
Toot Frequency	Measured 99% Bandwidth (MHz)				00% Dendwidth (MU=)		
rest riequency		Po	rt(s)		99% Dali		
MHz	а	b	С	d	Highest	Lowest	
5500.0	17.836	16.633	16.733		17.836	16.633	
5580.0	17.335	16.733	16.633		17.335	16.633	
5700.0	17.435	16.834	16.633		17.435	16.633	
							1

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 30 of 257

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	802.11n HT-20	Duty Cycle (%):	100				
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable						
Engineering Test Notes:							

Test Measurement R	esults						
Toot Frequency	Meas	ured 26 dB	Bandwidth	(MHz)	DC dB Box	aduriatela (MLL=)	
rest Frequency		Рог	rt(s)		20 06 Bar	iawiath (MHZ)	
MHz	а	b	С	d	Highest	Lowest	
5260.0	26.453	23.246	23.246		26.453	23.246	
5300.0	27.856	22.946	23.948		27.856	22.946	
5320.0	28.758	23.547	23.447		28.758	23.447	
	Measured 99% Bandwidth (MHz)				00% Dendwidth (MU-)		
rest riequency		Poi	rt(s)		99% Dali		
MHz	а	b	С	d	Highest	Lowest	
5260.0	18.036	17.836	17.735		18.036	17.735	
5300.0	18.036	17.735	17.735		18.036	17.735	
5320.0	18.036	17.936	17.735		18.036	17.735	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 31 of 257

Equipment Configuration for 26 dB & 99% Occupied Bandwidth					
Variant:	802.11n HT-20	Duty Cycle (%):	100		
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable				
Engineering Test Notes:					

Test Measurement Results								
Toot Frequency	Meas	ured 26 dB	Bandwidth	(MHz)	26 dB Box			
rest Frequency		Рог	rt(s)		20 0D Dai	iawiath (MHZ)		
MHz	а	b	с	d	Highest	Lowest		
5500.0	36.774	23.547	23.246		36.774	23.246		
5580.0	35.371	25.551	23.647		35.371	23.647		
5700.0	37.976	26.653	23.647		37.976	23.647		
Tost Froquency	Meas	sured 99% E	Bandwidth (MHz)	99% Randwidth (MHz)			
rest riequency		Port(s)			99% Dali			
MHz	а	b	С	d	Highest	Lowest		
5500.0	18.938	17.836	17.836		18.938	17.836		
5580.0	18.637	17.836	17.836		18.637	17.836		
5700.0	19.238	17.936	17.836		19.238	17.836		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5270.0

5310.0

36.473

36.673

36.273

36.273

36.473

36.273

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 32 of 257

Equipment Configuration for 26 dB & 99% Occupied Bandwidth					
Variant:	802.11n HT-40	Duty Cycle (%):	100		
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable				
Engineering Test Notes:					

Test Measurement Results								
Toot Fraguanay	Meas	ured 26 dB	Bandwidth	(MHz)	26 dB Boy	adwidth (MUz)		
rest riequency		Por	rt(s)		20 UD Dai	idwidth (MHZ)		
MHz	а	b	С	d	Highest	Lowest		
5270.0	54.910	43.888	46.092		54.910	43.888		
5310.0	71.944	44.489	46.894		71.944	44.489		
Tost Frequency	Measured 99% Bandwidth (MHz)			MHz)	00% Ban	dwidth (MHz)		
rest Frequency		Port(s)			99 /6 Dali			
MHz	а	b	С	d	Highest	Lowest		

			•				
Traceability to Industry Recognized Test Methodologies							
Work Instruction:	WI-03 MEA	SURING R	F SPECTRL	JM MASK			
Measurement Uncertainty:	+2.81 dB						

36.473

36.673

36.273

36.273

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 33 of 257

Equipment Configuration for 26 dB & 99% Occupied Bandwidth					
Variant:	802.11n HT-40	Duty Cycle (%):	100		
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable				
Engineering Test Notes:					

Test Measurement Results								
Toot Frequency	Meas	ured 26 dB	Bandwidth	(MHz)	26 dB Bor			
rest Frequency		Poi	rt(s)		20 UD Dai			
MHz	а	b	С	d	Highest	Lowest		
5510.0	80.160	44.489	45.491		80.160	44.489		
5550.0	45.291	45.291	45.291		45.291	22.645		
5670.0	76.353	48.096	44.088		76.353	44.088		
Toot Frequency	Meas	sured 99% E	Bandwidth (MHz)	00% Bon	00% Randwidth (MHz)		
rest riequency		Port(s)			99% Dali			
MHz	а	b	С	d	Highest	Lowest		
5510.0	38.076	36.273	36.273		38.076	36.273		
5550.0	37.074	36.273	36.273		37.074	36.273		
5670.0	36.874	36.273	36.273		36.874	36.273		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 34 of 257

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 35 of 257

6.1.1.2. Maximum Conducted Output Power

Conducted Test Conditions for Maximum Conducted Output Power						
Standard:	FCC CFR 47:15.407	Ambient Temp. (ºC):	24.0 - 27.5			
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001			
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01					

Test Procedure for Maximum Conducted Output Power Measurement

<u>Method PM (Measurement using an RF average power meter)</u>. Section C) 4) of KDB 789033 defines a methodology using an average wideband power meter. Measurements were made while the EUT was operating in a continuous transmission mode (100% duty cycle) at the appropriate center frequency. All cable losses and offsets were taken into consideration in the measured result. All operational modes and frequency bands were measured independently and the resultant calculated. For multiple outputs, the measurements were made simultaneously on each output port and summed in a linear fashion. This technique was used in order to prove compliance.

Antenna Beam and Non-Beam Forming Power Levels

15. 407 (a)(1), (a) (2) Operation with directional antenna gains greater than 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Further FCC KDB 662911 D01 Multiple Transmitter Output v01 requires that the gain of antennas transmitting the same data (legacy 802.11a mode) must be increased by 10 * Log (N) when N is the number of antenna elements.

The APIN0114 and APIN0115 does not implement beam-forming

Maximum Transmit (Conducted) Power, FCC Limits and Industry Canada Limits FCC Limits Bands 5250 – 5350

Mode	Frequency Range (MHz)	Maximum 26 dB Bandwidth (MHz)	11 + 10 Log (B) (dBm)	Limit (dBm)
а		22.345	24.492	+24.0
HT-20	5250 - 5350	22.946	24.607	+24.0
HT-40	5470 - 5725	46.092	27.636	+24.0

Limit lesser of: 250 mW or 11 dBm + 10 log (B) dBm.

Industry Canada Limits

Bands 5250 - 5350

Limit lesser of: 250 mW or 11 dBm + 10 log (B) dBm.

Mode	Frequency Range (MHz)	99% Bandwidth (MHz)	11 + 10 Log (B) (dBm)	Limit (dBm)
а	5250 – 5350 5470 – 5725	16.633	23.210	+23.2
HT-20		17.735	23.488	+23.5
HT-40		36.273	26.596	+24.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

FCC Limits

Bands 5470 – 5725 MHz

Limit lesser of: 250 mW or 11 dBm + 10 log (B) dBm.

Mode	Frequency Range (MHz)	Maximum 26 dB Bandwidth (MHz)	11 + 10 Log (B) (dBm)	Limit (dBm)
а		22.645	24.551	+24.0
HT-20	5250 - 5350	23.246	24.663	+24.0
HT-40	5470 - 5725	44.088	27.443	+24.0

Industry Canada Limits

Bands 5470 – 5725 MHz

Limit lesser of: 250 mW or 11 dBm + 10 log (B) dBm.

Mode	Frequency Range (MHz)	99% Bandwidth (MHz)	11 + 10 Log (B) (dBm)	Limit (dBm)
а		16.633	23.210	+23.2
HT-20	5250 - 5350	17.836	23.513	+23.5
HT-40	5470 - 5725	36.273	26.569	+24.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 38 of 257

Equipment Configuration for Peak Transmit Power							
Variant:	802.11a	Duty Cycle (%):	100				
Data Rate:	6 MBit/s	Antenna Gain (dBi):	3.30				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable						
Engineering Test Notes:							

Test Measurement Results									
Test	Test Measured Conducted Output Power (dBm) C		Calculated	Minimum					
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5260.0	16.55	16.95	18.30		22.10	22.445	24.00	-1.90	15.00
5300.0	16.66	16.53	17.20		21.58	22.345	24.00	-2.42	15.00
5320.0	16.81	16.95	17.29		21.79	22.445	24.00	-2.21	15.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for Peak Transmit Power

Variant:	802.11a	Duty Cycle (%):	100
Data Rate:	6 MBit/s	Antenna Gain (dBi):	3.30
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable		
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	26 dB Limit Bandwidth		EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5500.0	17.11	17.36	17.27		22.02	22.545	24.00	-1.98	17.00
5580.0	15.81	17.36	17.06		21.56	22.745	24.00	-2.44	15.50
5700.0	16.00	17.61	17.14		21.74	22.645	24.00	-2.26	15.50

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 39 of 257

Equipment Configuration for Peak Transmit Power							
Variant:	802.11n HT-20	Duty Cycle (%):	100				
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	3.30				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable						
Engineering Test Notes:							

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	26 dB Limit Bandwidth		EUT Power
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5260.0	16.09	16.27	17.70		21.52	23.246	24.00	-2.48	13.50
5300.0	16.58	16.26	16.89		21.36	22.946	24.00	-2.64	14.00
5320.0	16.72	16.65	16.95		21.55	23.447	24.00	-2.45	14.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-20	Duty Cycle (%):	100
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	3.30
Modulation:	OFDM	Beam Forming Gain (Y):	N/A
TPC:	N/A		
Engineering Test Notes:			

Test Measurement Results									
Test	Measured Conducted Output Power (dBm)			Calculated Minimu	Minimum				
Frequency		Por	t(s)		Total Power	26 dB Limit Bandwidth		Margin	EUT Power
MHz	а	b	c	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5500.0	16.90	17.30	17.29		21.94	23.246	24.00	-2.06	17.50
5580.0	16.00	17.91	17.73		22.07	23.647	24.00	-1.93	16.50
5700.0	16.52	18.39	18.00		22.48	23.647	24.00	-1.52	15.50

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 40 of 257

Equipment Configuration for Peak Transmit Power							
Variant:	802.11n HT-40	Duty Cycle (%):	100				
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	3.30				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable						
Engineering Test Notes:							

Test Measurement Results											
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated Minim	Minimum					
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit Margin		ک dB Limit Margin EUT dwidth		EUT Power
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting		
5270.0	16.86	17.63	18.89		22.65	43.888	24.00	-1.35	15.00		
5310.0	18.26	18.40	18.96		23.32	44.489	24.00	-0.68	16.00		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-40	Duty Cycle (%):	100
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	3.30
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable		
Engineering Test Notes:			

Test Measurement Results									
Test	Measured Conducted Output Power (dBm)			Calculated	Minimum				
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	c	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5510.0	17.39	18.16	18.18		22.70	44.489	24.00	-1.30	18.50
5550.0	16.73	18.37	17.88		22.48	22.645	24.00	-1.52	17.50
5670.0	16.57	18.35	17.89		22.44	44.088	24.00	-1.56	16.50

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 41 of 257

Measurement Results for Maximum Conducted Output Power

Specification Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 and 5470-5725 MHz GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 §A9.2(2)

For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the band 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 42 of 257

6.1.1.3. Peak Power Spectral Density

Conducted Test Conditions for Power Spectral Density								
Standard:	FCC CFR 47:15.407	Ambient Temp. (ºC):	24.0 - 27.5					
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45					
Standard Section(s):	15.247 (a) Pressure (mBars): 99		999 - 1001					
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01							
Test Procedure for Power Spectral De	Test Procedure for Power Spectral Density							
The In-Band power spectral density was Transmitter Output v01.)	The In-Band power spectral density was measured using the measure and sum approach per FCC KDB 662911 (D01 Multiple Transmitter Output v01.)							
Transmitter Output v01.) <u>Measure and sum the spectra across the outputs</u> . With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with N transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were calculated on a computer, and the results read back into the spectrum analyzer as a data file to produce a representative plot of total spectral power density. <u>NOTE:</u> It may be observed that spectrum in some plots break the limit line however this in itself does NOT constitute a failure. In this case a summation plot for all spectrum plots is provided to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.								
Supporting Information								
Calculated Power = A + 10 log (1/x) dBn	n							
A = Total Power Spectral Density [10 Lo	g10 (10a/10 + 10 b/10 + 10c/10 + 10	0d/10)]						
x = Duty Cycle								

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 43 of 257

Equipment Configuration for Peak Power Spectral Density				
Variant: 802 11a	Duty Cycle (%): 100			

Variant.	002.11a	Duty Cycle (76).	100
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable		
Engineering Test Notes:			

Test Measurement Results									
Test Frequency	Measured Power Spectral Density (dBm) Port(s)			d Power Spectral Density (dBm) Port(s)		Limit	Margin		
MHz	а	b	С	d	Σ Port(s)	dBm	dB		
5260.0	5.835	6.087	6.707		10.997	≤ 11.00	0.00		
5300.0	5.819	5.415	6.229		10.605	≤ 11.00	-0.40		
5320.0	5.800	5.711	6.212		10.684	≤ 11.00	-0.32		

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Equipment Configuration for Peak Power Spectral Density							
Variant:	802.11a	Duty Cycle (%):	100				
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable						
Engineering Test Notes:							

Test Measurement Results									
Test	Measured Power Spectral Density (dBm)				Calculated				
Frequency	Port(s)			I otal Power Spectral Density (dBm)	Limit	Margin			
MHz	а	b	С	d	Σ Port(s)	dBm	dB		
5500.0	6.173	6.148	6.238		10.958	≤ 11.00	-0.04		
5580.0	4.987	6.611	6.392		10.825	≤ 11.00	-0.17		
5700.0	5.445	6.922	6.130		10.979	≤ 11.00	-0.02		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 44 of 257

Equipment Configuration for Peak Power Spectral Density

Variant:	802.11n HT-20	Duty Cycle (%):	100
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable		
Engineering Test Notes:			

Test Measurement Results								
_	Measured Power Spectral Density (dBm)				Calculated			
Test Frequency	Port(s)			Total Power Spectral Density (dBm)	Limit	Margin		
MHz	а	b	С	d	Σ Port(s)	dBm	dB	
5260.0	5.565	5.901	7.010		10.975	≤ 11.00	-0.03	
5300.0	5.837	5.434	6.264		10.629	≤ 11.00	-0.37	
5320.0	5.740	5.538	6.062		10.557	≤ 11.00	-0.44	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Equipment Configuration for Peak Power Spectral Density							
Variant:	802.11n HT-20	Duty Cycle (%):	100				
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable						
Engineering Test Notes:							

Test Measurement Results								
	Measured Power Spectral Density (dBm)				Calculated			
Test Frequency	Port(s)			Total Power Spectral Density (dBm)	Limit	Margin		
MHz	а	b	С	d	Σ Port(s)	dBm	dB	
5500.0	5.612	5.973	6.396		10.777	≤ 11.00	-0.22	
5580.0	4.984	6.529	6.806		10.948	≤ 11.00	-0.05	
5700.0	5.056	7.002	6.201		10.930	≤ 11.00	-0.07	

Traceability to Industry Recognized Test Methodologies

_	_	
	Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
	Measurement Uncertainty:	±2.81 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 45 of 257

Equipment Configuration for Peak Power Spectral Density							
Variant:	802.11n HT-40	Duty Cycle (%):	100				
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable						
Engineering Test Notes:							

Test Measurement Results									
Test Frequency	Mea	Measured Power Spectral Density (dBm) Port(s)			Calculated Total Power Spectral Density (dBm)	Limit	Margin		
MHz	а	a b c d				dBm	dB		
5270.0	3.342	3.990	5.058		8.960	≤ 11.00	-2.04		
5310.0	4.253	4.326	4.787		9.233	≤ 11.00	-1.77		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for Peak Power Spectral Density						

Variant:	802.11n HT-40	Duty Cycle (%):	100
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable		
Engineering Test Notes:			

Test Measurement Results							
_	Measured Power Spectral Density (dBm)						
Test Frequency	Port(s)				Total Power Spectral Density (dBm)	Limit	Margin
MHz	а	b	С	d	Σ Port(s)	dBm	dB
5510.0	2.909	3.612	4.103		8.340	≤ 11.00	-2.66
5550.0	2.669	4.380	4.129		8.560	≤ 11.00	-2.44
5670.0	2.507	4.394	3.930		8.453	≤ 11.00	-2.55

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 46 of 257

Specification

FCC, Part 15 §15.407 (a)(1), (a)(2)
5150 – 5250 MHz
(a)(1) The peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.
5250 – 5350 MHz & 5470 – 5725 MHz
(a)(2) The peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 § A9.2(1), A9.2(2) 5150 – 5250 MHz § A9.2(1) The eirp spectral density shall not exceed +10 dBm in any 1 MHz band

5250 - 5350 MHz & 5470 - 5725 MHz

§ A9.2(2) The power spectral density shall not exceed +11 dBm in any 1 MHz band

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 47 of 257

6.1.1.4. Peak Excursion Ratio

Conducted Test Conditions for Peak Excursion Ratio					
Standard:	FCC CFR 47:15.407	Ambient Temp. (ºC):	24.0 - 27.5		
Test Heading:	Peak Excursion Ratio	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.407 (a)(6)	999 - 1001			
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01				

Test Procedure for Peak Excursion Ratio

Compliance with the peak excursion requirement is demonstrated by confirming the ratio of the maximum of the peak-hold spectrum to the maximum of the average spectrum during continuous transmission. Section F) of KDB 789033 was used in order to prove compliance. This is a conducted measurement using a spectrum analyzer using dual traces. Peak Excursion Ratio is the difference in amplitude (dB) between both traces; The following identifies two spectrum traces on the same plot. <u>Trace 1</u> is the max hold Peak detector, and <u>Trace 2</u> is the recalled trace data from Peak Power Spectral Density measurements. Each frequency and operational mode is recalled in order to prove compliance.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 48 of 257

Equipment Configuration for Peak Excursion Ratio					
Variant:	802.11a	Duty Cycle (%):	100		
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable				
Engineering Test Notes:					

Test Measurement Results								
Test Frequency Measured Peak Excursion (dB)			Patia (dR)		Limit	Lowest		
rest riequency		Por	rt(s)				Linin	Margin
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5260.0	8.66				8.66	8.66	13.0	-4.34

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for Peak Excursion Ratio					
Variant:	802.11a	Duty Cycle (%):	100		
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable				
Engineering Test Notes:					

Test Measurement Results								
Test Frequency	Measured Peak Excursion (dB)			Patio (dB)		Limit	Lowest	
restriequency		Por	rt(s)				Linin	Margin
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5500.0	9.00				9.00	9.00	13.0	-4.00
5500.0	9.00				9.00	9.00	13.0	-4.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: APIN0114, APIN0115 802.11a/b/g/n To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: ARUB149-U4 Rev A Issue Date: 5th August 2013 Page: 49 of 257

Equipment Configuration for Peak Excursion Ratio							
Variant:	802.11n HT-20	Duty Cycle (%):	100				
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable						
Engineering Test Notes:							

Test Measurement Re	sults							
Test Frequency	Measured Peak Excursion (dB)				Patio (dB)		Limit	Lowest
restriequency		Por	t(s)		Kallo (dB)			
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5260.0	8.47				8.47	8.47	13.0	-4.53

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Fauinment	Configuration	for P	oak Eve	ursion	Ratio
Equipment	Configuration	101.1	Car Lro	1010	Natio

	-		
Variant:	802.11n HT-20	Duty Cycle (%):	100
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable		
Engineering Test Notes:			

Test Measurement Results								
Test Frequency	Measured Peak Excursion (dB)				Potio (dP)		Limit	Lowest
rest riequency		Por	rt(s)		Katio	Katio (dB)		Margin
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5500.0	9.12				9.12	9.12	13.0	-3.88

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 50 of 257

Equipment Configuration for Peak Excursion Ratio							
Variant:	802.11n HT-40	Duty Cycle (%):	100				
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable						
Engineering Test Notes:							

Test Measurement Results								
Test Frequency Measur		sured Peak	Excursion	(dB)	Batio (dB)		Limit	Lowest
restriequency		Por	rt(s)					
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5270.0	9.44				9.44	9.44	13.0	-3.56

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Equipment Configuration for Peak Excursion Ratio

	1		
Variant:	802.11n HT-40	Duty Cycle (%):	100
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable		
Engineering Test Notes:			

Test Measurement Results								
Test Frequency Measured Peak Excursion (dB)				Potio (dP)		Limit	Lowest	
rest Frequency		Por	rt(s)		Ratio (dB)			
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5510.0	9.85				9.85	9.85	13.0	-3.15

Traceability to Industry Recognized Test Methodologies	Traceability to Industry Recognized Test Methodologies										
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK										
Measurement Uncertainty:	±2.81 dB										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 51 of 257

Specification

Limits

§15.407 (a)(6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified in this paragraph) shall not exceed 13dB across any 1MHz bandwidth or the emission bandwidth whichever is less

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 52 of 257

6.1.1.5. Frequency Stability

FCC, Part 15 Subpart C §15.407(g) Industry Canada RSS-210 §2.1

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ±20ppm stability. This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency

variation across temperature, and crystal ageing.

 \pm 20ppm at 5.250 GHz translates to a maximum frequency shift of \pm 105 KHz. As the edge of the channels is at least one MHz from either of the band edges, \pm 105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

§15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2. Radiated Emission Testing

FCC, Part 15 Subpart C §15.407(b)(2), §15.205(a)/15.209(a) Industry Canada RSS-210 §A9.3(2); §2.2; §2.6; RSS-Gen §4.7

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode. Depending on the frequency band spanned a notch filter and/or waveguide filter was used to remove the fundamental frequency.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 54 of 257

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength ($dB\mu V/m$);

Note: The data in this Section identifies that the EUT is in compliance with the -27dBm/MHz EIRP limit (68.23 dB μ V/m) for out of band emissions. All out of band emissions are less than 68.23 dB μ V/m.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 55 of 257

Specification

Radiated Spurious Emissions

15.407 (b)(2). All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of - 27dBm/MHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §A9.3(2) For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

RSS-Gen §4.7 The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

RSS-Gen §6 Receiver Spurious Emission Standard

If a radiated measurement is made, all spurious emissions shall comply with the limits of the following Table. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz and 1.0 MHz for measurements above 1.0 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Table 1: FCC 15.209 Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Traceability:

Test Equipment Used	
0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 57 of 257

6.1.2.1. Integral Antenna – Spurious Emissions

Tes	st Freq.	5260 MH	z						Engineer	SB			
,	Variant	802.11a;	6 Mbs					Т	emp (ºC)	24	24		
Freq.	Range	1000 MH	z - 1800	0 MHz				Rel.	Hum.(%)	30			
Power	Setting	18				Press. (mBars) 1010							
А	ntenna	integral				Duty Cycle (%) 100							
Test N	Notes 1					1							
Test N	Notes 2												
With the second													
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5258.517	74.1	4.8	-9.7	69.2	Peak [Scan]	н	150	0				FUND	
						•	·						
Legend:	TX = 1	ransmitter	Emissio	ons; DIG =	Digital Emissions	; FUN	D = Fui	ndamer	ntal; WB =	Wideband	Emissic	n	
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits p	per 15.205			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 58 of 257

Test Freq.	5300 MHz	Engineer	SB
Variant	802.11a; 6 Mbs	Temp (°C)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30
Power Setting	18	Press. (mBars)	1010
Antenna	integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			
0			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 59 of 257

Test Freq.	5320 MHz	Engineer	SB
Variant	802.11a; 6 Mbs	Temp (ºC)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30
Power Setting	18	Press. (mBars)	1010
Antenna	integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 60 of 257

Test Freq.	5500 MHz	Engineer	SB
Variant	802.11a; 6 Mbs	Temp (ºC)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30
Power Setting	18	Press. (mBars)	1010
Antenna	integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 61 of 257

						ſ				r			
Test F	req.	5580 MH	Z						Engineer	SB			
Var	riant	802.11a;	6 Mbs					Т	emp (ºC)	24			
Freq. Ra	ange	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30			
Power Set	tting	18						Press	. (mBars)	1010			
Ante	enna	integral						Duty (Cycle (%)	100			
Test Not	tes 1												
Test Not	tes 2												
Buv/m Vasona by EMiSoft 17 Apr 13 14:10 Radiated Emissions Template: FCC RE 1-18GHz Filename: k:/program/anuba/anub148 - apin0114, apin0116 foc non-dfs/toc 16.247/data/se/raw da													
Frequency F MHz d	Raw IBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5565.130 6	66.9	4.9	-9.7	62.2	Peak [Scan]	Н	150	0				FUND	
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fur	ndamer	ntal; WB =	Wideband	Emissio	n	
1	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits p	per 15.205			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 62 of 257

						r				r		
Tes	t Freq.	5700 MH	z						Engineer	SB		
١	Variant	802.11a;	6 Mbs					٦	ſemp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	18						Press	. (mBars)	1010		
Ai	ntenna	integral						Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
But the second s												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5701.403	70.5	5.0	-9.6	65.9	Peak [Scan]	Н	150	0				FUND
	-						•					
Legend:	TX = 1	ransmitter	Emissi	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndamei	ntal; WB =	Wideband	Emissio	n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits p	per 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 63 of 257

6.1.2.2. ANT-1B – Spurious Emissions

Test Freq.	5260 MHz	Engineer	SB
Variant	802.11a; 6 Mbs	Temp (⁰C)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30
Power Setting	15.0	Press. (mBars)	1010
Antenna	AP-ANT-1B	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 64 of 257

						•				r		
Tes	st Freq.	5300 MH	z						Engineer	SB		
١	Variant	802.11a;	6 Mbs					٦	ſemp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	15.0						Press	. (mBars)	1010		
A	ntenna	AP-ANT-	1B					Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
dBuV/m Vasona by EMISoft 02 May 13 15:17 dBuV/m Vasona by EMISoft 02 May 13 15:17 Buy Horizonta Debug Meas Uist 3m Spee Dist 3m Spee Dist 3m Frequency : MHz Badiated Emissions Frequency : MHz Frequency : MHz Frequency : MHz Frequency : MHz Frequency : MHz Horizonta Badiated Emissions Template: FCC RE 1-180Hz Frequency : MHz Frequency : MHz Frequency : MHz Horizonta Badiated Emissions Deaks												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5292.585	74.0	4.8	-9.6	69.2	Peak [Scan]	V	100	0				FUND
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fui	ndamei	ntal; WB =	Wideband	Emissio	n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits j	per 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 65 of 257

						1				r			
Tes	st Freq.	5320 MH	Z						Engineer	SB			
١	Variant	802.11a;	6 Mbs					٦	ſemp (⁰C)	24			
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30			
Power S	Setting	15.0						Press	ss. (mBars) 1010				
A	ntenna	AP-ANT-	1B					Duty	Cycle (%)	100			
Test N	lotes 1									-			
Test N	lotes 2												
Vasona by EMiSoft 02 May 13 15:37 11 Horizonta Perski lumit Average la Debug Meas Dist 3m Spec Dist 3m Spec Dist 3m Spec Dist 3m Radiated Emissions Radiated Emissions Filename: k:/program/aruba/arub148 - apin0114, apin0116 foc non-dfs/toc 15.247/data/se/ap-ant													
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5326.653	84.9	4.9	-9.5	80.3	Peak [Scan]	V	100	0				FUND	
Legend:	TX = 1	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fui	ndame	ntal; WB =	Wideband	Emissio	n	
	NRB =	Non-Rest	= Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 66 of 257

						•				,			
Tes	st Freq.	5500 MH	z						Engineer	SB			
١	Variant	802.11a;	6 Mbs				Temp (ºC)				24		
Freq.	Range	1000 MH	z - 1800	00 MHz		Rel. Hum.(%)				30			
Power S	Setting	17.0				Press. (mBars)				1010			
A	ntenna	AP-ANT-	1B			Duty Cycle (%)				100			
Test N	lotes 1												
Test N	lotes 2												
dBu V/m Vasona by EMiSoft 02 May 13 14:58 Bu Verical Verical Peak lumit Debug Meas Dist 3m Spec Dist 3m Sp													
MHz	dBuV	Loss	dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments	
5496.994	83.7	5.0	-9.6	79.1	Peak [Scan]	V	100	0				FUND	
						_							
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fui	ndamei	ntal; WB =	Wideband	Emissic	n	
	NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205												

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 67 of 257

						-				r		
Tes	t Freq.	5580 MH	z						Engineer	SB		
١	Variant	802.11a;	6 Mbs					Т	⁻ emp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz		Rel. Hum.(%)				30		
Power S	Setting	17.5				Press. (mBars)				1010		
Ai	ntenna	AP-ANT-	1B			Duty Cycle (%)				100		
Test N	lotes 1									-		
Test N	lotes 2											
dBuV/m Vasona by EMiSoft 02 May 13 15:05 (1) Horizonta (1) Meas Dist 3m (1) Spec Dist 3m (1) Spec Dist 3m (1) Spec Dist 3m (1) Spec Dist 3m (1) Horizonta (1) Meas Dist 3m (1) Spec Dist 3m (1) Horizonta (1) Meas Dist 3m (1) Horizonta (1) Horizonta (1) Meas Dist 3m (1) Spec Dist 3m (1) Meas Dist 3m (1) M												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5565.130	85.0	4.9	-9.7	80.3	Peak [Scan]	V	100	0				FUND
Legend:	TX = 1	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndamer	ntal; WB =	Wideband	Emissio	n
	NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 68 of 257

						-				,		
Tes	st Freq.	5700 MH	z						Engineer	SB		
,	Variant	802.11a;	6 Mbs					٦	⁻emp (ºC)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz		Rel. Hum.(%)				30		
Power	Setting	18.5				Press. (mBars)				1010		
Α	ntenna	AP-ANT-	1B			Duty Cycle (%) 100						
Test N	lotes 1											
Test N	lotes 2											
WILCENVILLOS												
Hrequency MHz	dBuV	Loss	dB	dBuV/m	Type	Pol	cm	Deg	dBuV/m	dB	Pass /Fail	Comments
5701.403	85.1	5.0	-9.6	80.5	Peak [Scan]	н	100	0				FUND
			Euri i	E C						\A/:-1-1 ·	Euri i	
Legend:		ransmitter		ons; DIG =		S; FUN		ndame	ntal; WB =	vvideband	Emissio	'n
	NKB =	NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 69 of 257

6.1.2.3. ANT-13B – Spurious Emissions

Test Freq.	5260 MHz	Engineer	JMH
Variant	802.11a; 6 Mbs	Temp (ºC)	29
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	32
Power Setting	15.0	Press. (mBars)	1002
Antenna	AP-ANT-13B	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 70 of 257

Test	t Freq.	5300 MH	Z						Engineer	JMH			
v	/ariant	802.11a;	6 Mbs					Т	emp (⁰C)	29			
Freq. I	Range	1000 MH	z - 1800	00 MHz		Rel. Hum.(%)				32			
Power S	Setting	15.0					Press. (mBars)				1002		
An	ntenna	AP-ANT-	13B			Duty Cycle (%) 100							
Test N	otes 1												
Test N	otes 2												
Formally m	With Vasona by EMiSoft 00 00 00 00 00 00 00 00 00 0										zorit: ical mit e Lt m m Hz Hz		
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5292.585	67.0	4.8	-9.6	62.2	Peak [Scan]	Н						FUND	
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissic	n	
	NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205												

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 71 of 257

										1				
Tes	t Freq.	5320 MH	Z						Engineer	JMH				
١	Variant	802.11a;	6 Mbs					Т	emp (⁰C)	29				
Freq.	Range	1000 MH	z - 1800	00 MHz		Rel. Hum.(%) 32								
Power \$	Setting	15.0				Press. (mBars) 1002								
A	ntenna	AP-ANT-	13B					Duty (Cycle (%)	%) 100				
Test N	lotes 1													
Test N	lotes 2													
Formally r	neasu	dBu√/m 50.0 50.0 50.0 50.0 40.0 30.0 20.0 10.0 10.0 Radia Filena	nted Emis Ime: k:\y Ision	ssions program \arub Deaks	Vasona by EMi	Soft	Hgt	10000.0 RE 1-1: c dfs\10	13 Pk i Au Pk i Au Pk i Fre 18000 SGHz 5.407/data\se	May 13 17: - [1] Hori, - [2] Vert II - Peak II - Pe	14 cont: coal mit 2 Lt m m Hz b/vau	2		
MHz	dBuV	Loss	dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments		
5326.653	75.1	4.9	-9.5	70.4	Peak [Scan]	V						FUND		
Logond	TY _ 7	ronomittor	Emioci		Digital Emission			ndama	atal: M/P	Widobood	Emissis	n		
								11						
	NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205													

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 72 of 257

		-												
Tes	t Freq.	5500 MH	Z						Engineer	JMH				
١	/ariant	802.11a;	6 Mbs					Т	emp (⁰C)	29				
Freq.	Range	1000 MH	z - 1800	00 MHz		Rel. Hum.(%) 32								
Power S	Setting	17.0				Press. (mBars) 1002								
Aı	ntenna	AP-ANT-	13B					Duty (Cycle (%)	100				
Test N	lotes 1													
Test N	lotes 2													
WICE HISSIONS Radiated Emissions Radiated Em										May 13 17: [1] Hori, [2] Verti Peak Lii Peak Lii Peak Lii Peok Lii Pe	23 ical mit ≥ Lt m m Hz			
			-											
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments		
5496.994	82.3	5.0	-9.6	77.7	Peak [Scan]	V						FUND		
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndamei	ntal; WB =	Wideband	Emissio	on		
	NRB =	RB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205												

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 73 of 257

Tes	t Freq.	5580 MH	z						Engineer	JMH		
<u> </u>	/ariant	802.11a;	6 Mbs					1	ſemp (⁰C)	29		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	32		
Power S	Setting	17.5						Press	. (mBars)	1002		
Ai	ntenna	AP-ANT-	13B					Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally	neasui	dBu\//m 50.0 50.		ssions program\arub	Vasona by EMi	Soft	re: FCC 0115 fo	10000.0 : RE 1-1 c dfs\1	13 Pk i i Au Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk i i Pk Pk Pk i Pk Pk Pk Pk Pk Pk Pk Pk Pk Pk Pk Pk Pk	May 13 17: [1] Hori: [2] Verti Peak Li Average Meas Dist 3 Spec Dist 3 Spec Dist 3 equency: M 0 evap-ant-13 Margin	29 cont: ical mit e Lt m m Hz Hz	
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5565.130	85.4	4.9	-9.7	80.7	Peak [Scan]	V						FUND
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissic	n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Ba	nd. Limits p	per 15.205	5	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 74 of 257

Tes	t Freq.	5700 MH	Z						Engineer	JMH		
<u> </u>	/ariant	802.11a;	6 Mbs					Т	emp (ºC)	29		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	32		
Power S	Setting	18.5						Press	. (mBars)	1002		
Ai	ntenna	AP-ANT-	13B					Duty (Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally	neasu	dBuV/m 80.0 70.0 50.0 50.0 30.0 20.0 10.0 10.0 Radia Filence	rted Emi ame: k:/p	ssions peaks	Vasona by EMi	Soft	te: FCC 0115 fc	10000.0 RE 1-1 c dfs\12	13 Pk Au Au Au Fre 12000 8.6Hz 5.407Vdata\se	May 13 17: 	:36 ical mit e Lt m m Hz Hz	
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5701.403	80.1	5.0	-9.6	75.5	Peak [Scan]	V						FUND
Legend:	TX = T	ransmitter	Emissi	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissic	n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits	per 15.205	5	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 75 of 257

6.1.2.4. ANT-16 – Spurious Emissions

	_											
Tes	st Freq.	5260 MH	Z						Engineer	SB		
	Variant	802.11a;	6 Mbs					Т	emp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power	Setting	15.0						Press	. (mBars)	1010		
A	ntenna	AP-ANT-	16					Duty (Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
MiC®MLa	DS	dBu√/m 800 ⁻ dBu√ 700 800 800 800 800 800 800 800 800 800	m 100 Ladiated ilename:	Emissions	Vasona by EMi Vasona by E Angel Sana angel Sana ang	Soft EMiSo	nplate: F apin011	1000 CC RE 5 foc df	08	May 13 15: 08 May 13 PK Pea Meas Di Au Spec Di: P Frequency 20000	36 15:36 Horizonta vertical k Limit k Limit rage Lt ug st 3m st 3m st 3m -t 3m -t 3m	
Formally m	neasur	ed emis	sion	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5258.517	73.3	4.8	-9.7	68.3	Peak [Scan]	V	100	0				FUND
Legend:	TX = 1	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndamer	ntal; WB =	Wideband	Emissic	n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits	per 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 76 of 257

						•						
Tes	t Freq.	5300 MH	z						Engineer	SB		
١	Variant	802.11a;	6 Mbs					Т	⁻emp (ºC)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	15.0						Press	. (mBars)	1010		
Aı	ntenna	AP-ANT-	16					Duty (Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally	neasu	dBuV/m and and and and and and and and and and	tted Emis ame: ktyp ssion p	ssions program \arub	Vasona by EMi	Soft	re: FCC 0115 fo	100000 RE 1-11 c dfs/10	D8 Pk f f Au Pk f f Fre 18000 8 G Hz 5.407/vdata\se	May 13 15: 11 Hori: 21 Verti Peak Lii Debug Meas Dist 3 Spec Dist 3 spec Dist 3 equency: M 10 e\ap-ant-16	40 conta ical mit ± Lt m m Hz Hz Yaw	
⊢requency MHz	dBuV	Loss	AF dB	dBuV/m	Type	Pol	Hgt cm	Azt Deg	dBuV/m	dB	Pass /Fail	Comments
5292.585	78.6	4.8	-9.6	73.8	Peak [Scan]	Н	100	0				FUND
	[
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fui	ndamer	ntal; WB =	Wideband	Emissio	n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits p	per 15.205	5	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 77 of 257

Tes	t Freq.	5320 MH	Z						Engineer	SB		
v	/ariant	802.11a;	6 Mbs					ſ	ſemp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	15.0						Press	. (mBars)	1010		
Ar	ntenna	AP-ANT-	16					Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally n	neasui	abuv/m abu abu abu abu abu abu abu abu abu abu	ted Emil ame: k:tr	ssions program\anub Deaks	Vasona by EMi alarub149 - apin01 Measurement	Templat 14, apin	te: FCC 0115 fe	Azt	Bo Pk Au Pk Au Fre 13000 86Hz 5.407/data\se	(1] Hori [2] Verti Peak Li Peak Li	roort: cal mit ⊧Lt m m n Hz raw	Comments
MHz	dBuV	Loss	dB	dBuV/m	Туре	FUI	cm	Deg	dBuV/m	dB	/Fail	comments
5326.653	80.1	4.9	-9.5	75.5	Peak [Scan]	Н	100	0				FUND
l egend.	TX = 7	ransmitter	Emissi	ons: DIG -	Digital Emissions	: FUN	D = Fu	ndame	ntal: WB -	Wideband	Emissio	n
Logona.	NRR -	Non-Reet	ricted R	and Limit	- 68 23 dRu\//m·		Restric	ted Rar	nd Limite	ner 15 205		
		- Non-Real			– 55.25 ubu V/III,	10 -	1.000110			501 10.200		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 78 of 257

						-						
Tes	t Freq.	5500 MH	z						Engineer	SB		
١	/ariant	802.11a;	6 Mbs					Т	emp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	17.0						Press	. (mBars)	1010		
Аг	ntenna	AP-ANT-	16					Duty (Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally m	neasur	dBuV/m ROD ROD SOD SOD SOD SOD SOD SOD SOD S		ssions program\arub	/asona by EMi	Templat 14. apin	re: FCC 0115 fc	100000 RE 1-11 c dfs\10	08 PK Pk Pu Pu Pau Pau Pau Pau Pau Pau Pau Pau P	May 13 15: [1] Hori: Peak Lii Average Meas Dist 3: Spec Dist 3: equency: M D evap-ant-161	46 cont: coal mit ⊧lt m m Hz Hz Faw	
MHz	dBuV	Loss	dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments
5496.994	79.9	5.0	-9.6	75.3	Peak [Scan]	н	100	0				FUND
		- •		510								
Legend:	I X = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fui	ndamer	ntal; WB =	Wideband	Emissic	'n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits p	per 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 79 of 257

Tes	t Freq.	5580 MH	z						Engineer	SB		
١	/ariant	802.11a;	6 Mbs					Г	⁻emp (ºC)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	17.5						Press	. (mBars)	1010		
A	ntenna	AP-ANT-	16					Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally n	neasu	dBuV/m 200 200 500 400 300 200 100 Radia Filen: red emis	nted Emis ame: k:\p ssion	ssions program \arub Deaks	/asona by EMi a\arub149 - apin01 Measurement	Templat 14, apin	re: FCC Di 16 fo	Azt	B Pk Pk Pk Pk Pk Pk Pk Pk Pk Pk Pk Pk Pk	May 13 15: (1) Hon; (2) Venti Peak Lin Average Average Meas Dist 3 Spec Dist 3 Spec Dist 3 equency: M (0) evap-ant-16 Margin	20nt: cal ⇒Lr m Tr Hz raw	
MHz	dBuV	Loss	dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments
5565.130	77.5	4.9	-9.7	72.7	Peak [Scan]	н	100	0				FUND
Legend	TY – T	ransmitter	Emissi	ons: DIG -	Digital Emission		D – Eur	ndamo	ntal: W/R –	Wideband	Emissio	n
Leyend.		Non Post		and Limit	- 68 23 dBuil//~				d Limite	or 15 205	L1113310	11
		- NOII-INESI	ncieu D		– 00.25 ubu V/III,	ND =	1.62010	eu Dal		561 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 80 of 257

Tes	st Freq.	5700 MH	Z						Engineer	SB		
١	Variant	802.11a;	6 Mbs					٦	⁻ emp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power	Setting	18.5						Press	. (mBars)	1010		
A	ntenna	AP-ANT-	16					Duty	Cycle (%)	100		
Test N	Notes 1											
Test N	lotes 2											
Formally r	neasu	dBuV/m RDD RDD SDD SDD SDD SDD SDD SDD	tted Emiliarme: k:ly sision	ssions program\anub Deaks	Vasona by EMi	Soft	te: FCC 0115 fc	Azt	08 Pk Au Pk Au Fre 13000 8GHz 5,407Vdata\se	May 13 15: [1] Hori; [2] Verti — Average Meas Dist 3 Spec Dist 3 squency: M 10 e\ap-ant-16 Margin	51 contr ical mit b Lt m m Hz raw Pass /Eail	Comments
MHZ		Loss	aB	dBuV/m	I ype	Ц	cm	Deg	dBuV/m	dB	/Fail	FUND
5701.405	70.0	5.0	-9.0	/ 1.4	reak [Scall]		100	U				FUND
Legend:	TX = 1	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fui	ndamei	ntal; WB =	Wideband	Emissio	n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits p	per 15.205	;	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 81 of 257

6.1.2.5. ANT-18 – Spurious Emissions

Tes	t Freq.	5260 MH	z						Engineer	SB		
١	Variant	802.11a;	6 Mbs					Т	emp (ºC)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	15.0						Press	. (mBars)	1010		
Ai	ntenna	AP-ANT-	19					Duty (Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally m	neasur	dBuV/m RDD RDD SDD SDD SDD SDD SDD SDD SDD SDD	tted Emis ame: k:\y	ssions program \arub	/asona by EMi	Soft	re: FCC 0115 fo	10000.0 RE 1-1: e dfs\16	D3 Pk Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu	May 13 15: [1] Hori, [2] Verti Peak Lir Average deas Dist 3 Spec Dist 3 spec Dist 3 equency: M 2 equency: M	07 cal mit ≥ Lt m m Hz	
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5258.517	63.1	4.8	-9.7	58.2	Peak [Scan]	V	150	0				FUND
	-					•						
Legend:	TX = 1	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fui	ndamer	ntal; WB =	Wideband	Emissic	n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits p	per 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 82 of 257

Tes	t Freq.	5300 MH	Z						Engineer	SB		
v	/ariant	802.11a;	6 Mbs					Г	⁻emp (ºC)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	15.0						Press	. (mBars)	1010		
Ar	ntenna	AP-ANT-	19					Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally n	neasu	TOD TOD TOD TOD TOD TOD TOD TOD TOD TOD	tted Emit ame: k:ty ssion	ssions program \arub Deaks	vasona by EMI a\arub149 - apin01 Measurement	Templar 14, apin	re: FCC 0115 fo	Azt	PK PK PK PK PK PK PK PK PK PK	(1) Hori: (2) Verti Peak Lin Debug Meas Dist 3 Spec Dist 3 Spec Dist 3 spec Dist 3 equency: M DB evap-ant-18 Margin	raw Pass	
MHz	dBuV	Loss	dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments
5292.585	64.0	4.8	-9.6	59.2	Peak [Scan]	V	150	0				FUND
Legend:	TX = 1	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fui	ndamei	ntal; WB =	Wideband	Emissio	n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits (per 15.205	;	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 83 of 257

Test	Freq.	5320 MH	Z						Engineer	SB		
v	ariant	802.11a;	6 Mbs					٦	⁻ emp (⁰C)	24		
Freq. F	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	etting	15.0						Press	. (mBars)	1010		
An	itenna	AP-ANT-	19					Duty	Cycle (%)	100		
Test N	otes 1											
Test No	otes 2											
Formally m	neasur Raw	dBuV/m ann fon son son ann ann ann filena cable	ted Emis ame: k:tp	ssions rogram\anub Deaks	/asona by EMi a\arub149 - apin01 Measurement	Soft	te: FCC 0116 fe	Azt	D3 Pk Au Pk Au Pk Frc 13000 8GHz 5.407Vdata\s4	May 13 15: (1) Hori: (2) Verti (2) Verti	22 cal mit ± Lt m m Hz Hz raw	Comments
5326 652	64.2	LOSS	-0.5	авиv/m	Peak [Scop]	V	cm	Deg	abuv/m	aB	/raii	ELIND
0020.000	04.2	4.9	-9.0	59.5	FEAR [SUAII]	v	150	0				
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	; FUN	D = Fur	ndamei	ntal; WB =	Wideband	Emissio	n
-	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits (per 15.205	;	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 84 of 257

						r				r		
Tes	t Freq.	5500 MH	Z						Engineer	SB		
v	/ariant	802.11a;	6 Mbs					Т	ſemp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	17.0						Press	. (mBars)	1010		
Ar	ntenna	AP-ANT-	19					Duty (Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally m	Peasur	dBuV/m 200 200 200 200 200 100 Radia Filen: ed emis	rted Emis ame: k:y	ssions program \arub peaks	Vasona by EMi a\arub149 - apin01 Measurement	Soft	re: FCC D115 fo	100000 RE 1-11 c dfs/10	D3 Pk Ma Pa Pa R Fre 18000 SGHz 1.407/data\se	May 13 15: 	20nta cal ⇒Lt m m Hz Faw Pass	2
MHz	dBuV	Loss	dB	dBuV/m	Туре	-01	cm	Deg	dBuV/m	dB	/Fail	Comments
5496.994	64.5	5.0	-9.6	59.9	Peak [Scan]	V	100	0				FUND
l eaend.	TX – T	ransmitter	Emissi	ons: DIG -	Digital Emissions	: FUN	D – F	ndamer	ntal: W/R –	Widehand	Emissio	מו
Leyenu.	NPR -			and $\lim_{\to \infty} \frac{1}{1}$	- 68 23 dBu\//m	, - UN			$\frac{1}{1}$			···
			notou D		– 55.25 ubu v/m,	10 -	i courte	Jou Dai		551 15.205	•	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 85 of 257

Tes	t Freq.	5580 MH	Z						Engineer	SB		
v	/ariant	802.11a;	6 Mbs					٦	⁻ emp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	17.5						Press	. (mBars)	1010		
Ar	ntenna	AP-ANT-	19					Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally n	neasu	dBuV/m ann ann ann ann ann ann ann ann ann an	tted Emis ame: k:\y sion	ssions program \arub Deaks	Vasona by EMi	Templat 14. apin	e: FCC Di 15 fe	Azt	PK PK PW PW PW PW PW PW PW PW PW PW PW PW PW	May 13 15: [1] Hori; [2] Verti Peak Li Peak Li Pebug Meas Dist Spec Dist 3 spec Dist 3 equency: M 10 evap-ant-18	41 cont: cal mit b LT m Th Hz Hz raw	2
MHz	dBuV	Loss	dB	dBuV/m	Туре	101	cm	Deg	dBuV/m	dB	/Fail	comments
5565.130	67.0	4.9	-9.7	62.3	Peak [Scan]	V	150	0				FUND
l egend.	TX = 7	ransmitter	Emissi	ons: DIG -	Digital Emissions	: FUN		ndame	ntal: WB –	Wideband	Emissio	n
Logona.	NRR -	Non-Rest	ricted R	and Limit	- 68 23 dBu\//m·		Restrict	ted Bar		ner 15 205		
		NKB = Non-Restricted Band. Limit = 68.23 dBuV/m; KB = Restricted Band. Limits per 15.205										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 86 of 257

Tes	t Freq.	5700 MH	Z						Engineer	SB		
١	/ariant	802.11a;	6 Mbs					Г	ſemp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	18.5						Press	. (mBars)	1010		
Ar	ntenna	AP-ANT-	19					Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally n	neasu	red emis	ted Emi sme: k:ty	ssions program\arub Deaks	Vasona by EMi a\arub149 - apin01 Measurement	Templat 14, apin	te: FCC 0116 fe	Azt	PK PK PK PK PK PK PK PK PK PK PK PK PK P	inay is is [1] Horiti 2] Verti Peak Lin Peak Lin Pe	Pass	2
MHz	dBuV	Loss	dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments
5701.403	56.8	5.0	-9.6	52.2	Peak [Scan]	V	100	0				FUND
Logond	TY _ 7	ransmitter	Emioci		Digital Emission			adama		Widobord	Emissis	<u>n</u>
Legend.			riotod P	and $\lim_{\to\infty}$					$\frac{1}{2}$:	11
		NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 87 of 257

6.1.2.6. ANT-19 – Spurious Emissions

-		5000 14							F	0.0		
Tes	t Freq.	5260 MH	Z						Engineer	SB		
· · ·	Variant	802.11a;	6 Mbs					Т	emp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30	30	
Power S	Setting	15.0						Press	. (mBars)	1010		
A	ntenna	AP-ANT-	19					Duty (Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally m	neasur	dBuV/m RDD RDD RDD RDD RDD RDD RDD RD	A	ssions peaks	/asona by EMi a\arub149 - apin01	Soft	re: FCC 0115 fc	100000 RE 1-11 e dfs\110	30 Pk Fre Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu	Apr 13 15:3 (1) Hori (2) Verti (2) Verti	17 cal mit > Lt m m T	
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5258.517	69.8	4.8	-9.7	64.9	Peak [Scan]	V	100	0				FUND
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndamer	ntal; WB =	Wideband	Emissic	n
	NRB =	NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 88 of 257

										r		
Tes	t Freq.	5300 MH	z						Engineer	SB		
v	/ariant	802.11a;	6 Mbs					Т	emp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	15.0						Press.	. (mBars)	1010		
Ar	ntenna	AP-ANT-	19					Duty (Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally n	neasui	ann ann ann ann ann ann ann ann ann ann	rted Emis arme: k:\p ssion p	vinanam ssions program varub Deaks Level	a\arub149 - apin01 Measurement	Templar 14, apin	re: FCC 0115 fc	100000 RE 1-11 e dfs\115	PK Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu	equency: M avap-ant-19 Margin	zont: ical mit ≥ Lt m m Hz Hz raw	Comments
MHz	dBuV	Loss	dB	dBuV/m	Type		cm	Deg	dBuV/m	dB	/Fail	FUND
5292.585	74.0	4.8	-9.6	69.2	Peak [Scan]	V	100	U				FUND
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndamer	ntal; WB =	Wideband	Emissio	n
Ŭ	NRB =	NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 89 of 257

										-		
Test	Freq.	5320 MH	Z						Engineer	SB		
v	ariant	802.11a;	6 Mbs					Т	⁻ emp (⁰C)	24		
Freq. F	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	etting	15.0						Press	. (mBars)	1010		
An	itenna	AP-ANT-	19					Duty (Cycle (%)	100		
Test No	otes 1											
Test No	otes 2											
Formally m	neasur Raw dBuV	dBuV/m ann ann ann ann ann ann ann ann ann an	ted Emis ime: k:/p sion p	ssions program \arub peaks	/asona by EMi a\arub149 - apin01 Measurement Type	Soft Templat 14, apin	e: FCC Di 15 fc	Azt Deg	30 PK Au Pk Au Pk Fre 13000 SGHz 5,407\data\se	Apr 13 16:6 (1) Hori: (2) Verti Peak Li Peak Li Peak Li Peak Li Peak Ji Pebug Peas Dist 3 Spec Dist 3 spec Dist 3 equency: M (1) evap-ant-19 Margin dB	ig cont: cal mit ≥ L m m Hz Hz raw	Comments
5326.653	76.7	4.9	-9.5	72.1	Peak [Scan]	V	100	0				FUND
						I						
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fur	ndamer	ntal; WB =	Wideband	Emissio	n
	NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 90 of 257

						4				r		
Tes	t Freq.	5500 MH	z						Engineer	SB		
١	Variant	802.11a;	6 Mbs					٦	ſemp (⁰C)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	17.0						Press	. (mBars)	1010		
Ai	ntenna	AP-ANT-	19					Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally m	neasur	dBu\//m TOD EOD SOD 300 200 100 Filens		ssions program \arub	Vasona by EMi	Soft	re: FCC 0115 fe	100000 RE 1-1 c dfs\11	30 PK M M Fre 18000 86 Hz 5.407\data\se	Apr 13 16:0 (1) Verti (2) Verti	17 conta coal mit s Lt m m Hz	
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5496.994	82.2	5.0	-9.6	77.6	Peak [Scan]	V	100	0				FUND
	-											
Legend:	TX = 1	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissio	n
	NRB =	= Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 91 of 257

						-				•		
Test	Freq.	5580 MH	z						Engineer	SB		
v	ariant	802.11a;	6 Mbs					Т	⁻emp (ºC)	24		
Freq. F	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	etting	17.5						Press	. (mBars)	1010		
An	itenna	AP-ANT-	19					Duty (Cycle (%)	100		
Test No	otes 1											
Test No	otes 2											
Formally m	neasur	dBuV/m 200 200 500 300 200 100 Radia Filen: red emis Cable		ssions program \arub	Vasona by EMi a'arub149 - apin01 Measurement	Soft	te: FCC 0115 fe	Azt	SU PK Au Au Fre SGHz S.407\data\se	(1) Hori (1) Hori Vertai Peak Li Peak Peak Li Peak L	Pass	Comments
MHz	dBuV	Loss	dB	dBuV/m	Type		cm	Deg	dBuV/m	dB	/Fail	FUND
0000.130	02.0	4.9	-9.7	11.3	reak [Scan]		150	U				FUND
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fui	ndamer	ntal; WB =	Wideband	Emissio	n
-	NRB =	NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 92 of 257

										_		
Tes	t Freq.	5700 MH	Z						Engineer	SB		
١	/ariant	802.11a;	6 Mbs					Г	⁻emp (ºC)	24		
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	30		
Power S	Setting	18.5						Press	. (mBars)	1010		
Ar	ntenna	AP-ANT-	19					Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
Formally n	neasu	dBuV/m 200 700 500 500 500 300 200 200 Radia Filen: red emis	tted Emis ame: k:\p	ssions program \arub Deaks	Vasona by EMi alarub149 - apin01 Measurement	Templat 14, apin	te: FCC 0115 fe	Azt	SU PK Au PK Au Frv 13000 8 GHz 5,407\data\se	Margin	Pass	Comments
5701 403	ави у 75.9	Loss	ав -9.6	авиv/m	Peak [Scan]	н	cm	0	dBuv/m	ав	/Fail	FUND
0701.400	13.3	0.0	5.0	71.5			100	0				
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fui	ndamei	ntal; WB =	Wideband	Emissio	n
	NRB =	= Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2.7. Radiated Band-Edge - Integral Antenna

Peak Limit 74.0 dBµV, Peak Limit 54.0 dBµV

		5350 M	Hz
	dB	βµV	Power
Operational Mode	Peak	Average	Setting
а	69.44	48.73	15.0
n HT-20	72.16	50.97	15.0
n HT-40	73.13	52.16	15.5

		5460 MHz									
Operational Mode	Peak	Average	Power Setting								
а	63.41	46.0	17.0								
n HT-20	62.0	45.60	17.5								
n HT-40	66.58	47.67	17.5								

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2.8. ANT1B - Radiated Band-Edge

Peak Limit 74.0 dBµV, Peak Limit 54.0 dBµV

		5350 M	Hz
	dE	βµV	Power
Operational Mode	Peak	Average	Setting
а	71.31	49.61	15.0
n HT-20	61.27	4.99	14.0
n HT-40	72.86	48.96	14.5

		5460 MHz									
Operational Mode	Peak	Average	Power Setting								
а	64.82	48.29	17.0								
n HT-20	62.26	49.38	17.5								
n HT-40	73.59	52.75	17.5								

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2.9. ANT13B - Radiated Band-Edge

Peak Limit 74.0 dBµV, Peak Limit 54.0 dBµV

	5350 MHz						
	dE	βµV	Power				
Operational Mode	Peak	Average	Setting				
а	67.02	46.01	17.5				
n HT-20	70.06	47.42	17.5				
n HT-40	70.94	48.86	16.0				

	5460 MHz						
Operational Mode	Peak	Power Setting					
а	57.14	42.13	17.0				
n HT-20	60.24	41.92	17.5				
n HT-40	63.48	43.68	17.5				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2.10.ANT16 - Radiated Band-Edge

Peak Limit 74.0 dBµV, Peak Limit 54.0 dBµV

	5350 MHz						
	dE	βµV	Power				
Operational Mode	Peak	Average	Setting				
а	56.26	37.82	15.0				
n HT-20	56.83	37.49	15.0				
n HT-40	64.74	42.42	16.0				

	5460 MHz						
Operational Mode	Peak	Power Setting					
а	50.66	38.20	17.0				
n HT-20	56.55	37.88	17.5				
n HT-40	64.57	42.79	18.5				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2.11.ANT18 - Radiated Band-Edge

Peak Limit 74.0 dBµV, Peak Limit 54.0 dBµV

	5350 MHz						
	dB	βµV	Power				
Operational Mode	Peak	Average	Setting				
а	60.61	44.55	15.0				
n HT-20	54.72	44.40	13.5				
n HT-40	67.76	46.86	16.0				

	5460 MHz						
Operational Mode	Peak	Power Setting					
а	56.58	39.76	17.0				
n HT-20	55.66	39.88	17.5				
n HT-40	66.83	45.97	18.5				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2.12.ANT19 - Radiated Band-Edge

Peak Limit 74.0 dBµV, Peak Limit 54.0 dBµV

	5350 MHz						
	dB	βµV	Power				
Operational Mode	Peak	Average	Setting				
а	71.42	48.39	15.0				
n HT-20	65.40	45.34	14.0				
n HT-40	71.45	51.86	15.0				

	5460 MHz						
Operational Mode	Peak	Average	Power Setting				
а	60.24	46.76	17.0				
n HT-20	65.05	46.70	17.5				
n HT-40	71.24	51.57	18.5				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2.13. Digital Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

where:

FS = R + AF + CORR

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable LossAG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB\mu V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 100 of 257

Test Freq.	2437 MHz	Engineer				
Variant	Digital Emissions	Temp (ºC)	24.5			
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	30			
Power Setting	18 Press. (mBars)		1005			
Antenna	integrak					
Test Notes 1	EUT Position Vertical; POE Powered					
Test Notes 2	POE Injector in the control room with ferrite clamp on Ethernet cables;					

Formally measured emission peaks												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
46.665	54.6	3.7	-21.7	36.6	Quasi Max	V	99	202	40	-3.4	Pass	
68.084	51.1	3.9	-23.3	31.7	Quasi Max	V	177	331	40	-8.3	Pass	
373.833	37.1	5.4	-15.3	27.1	Peak [Scan]	V	177	331	46	-18.9	Pass	
199.074	36.3	4.6	-18.4	22.6	Peak [Scan]	V	177	331	43.5	-20.9	Pass	
107.369	42.7	4.1	-19.4	27.5	Peak [Scan]	V	177	331	43.5	-16.0	Pass	
117.157	35.0	4.2	-17.7	21.5	Peak [Scan]	V	177	331	43.5	-22.0	Pass	
Legend:	Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency											
	NRB = Non-Restricted Band Limit is 20 dB below Fundamental: BB = Restricted Band											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 101 of 257

2437 MHz Engin		SB			
Digital Emissions	Temp (⁰C)	24.5			
30 MHz - 1000 MHz	Rel. Hum.(%)	30			
18	Press. (mBars)	1005			
integral					
EUT Position Horizontal; POE Powered					
POE Injector in the control room with ferrite clamp on Ethernet cables;					
2 [;	2437 MHz Digital Emissions 30 MHz - 1000 MHz 18 ntegral EUT Position Horizontal; POE Powered POE Injector in the control room with ferrite cl	2437 MHz Engineer Digital Emissions Temp (°C) 30 MHz - 1000 MHz Rel. Hum.(%) 18 Press. (mBars) ntegral EUT Position Horizontal; POE Powered POE Injector in the control room with ferrite clamp on Ethernet cables;			

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
46.682	53.3	3.7	-21.7	35.3	Quasi Max	V	119	-2	40.0	-4.7	Pass	
37.940	41.4	3.6	-16.0	29.0	Quasi Max	V	152	37	40.0	-11.0	Pass	
67.182	53.3	3.8	-23.3	33.8	Quasi Max	V	117	361	40.0	-6.2	Pass	
374.190	41.1	5.4	-15.3	31.1	Peak [Scan]	Н	117	361	46.0	-14.9	Pass	
169.759	39.6	4.5	-19.4	24.8	Peak [Scan]	Н	117	361	43.5	-18.7	Pass	
107.126	46.8	4.1	-19.4	31.5	Peak [Scan]	V	117	361	43.5	-12.0	Pass	
Legend:	DIG =	DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency										
	NRB =	NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 102 of 257

Test Freq.	2437 MHz	Engineer	SB		
Variant	Digital Emissions	Temp (ºC)	24.5		
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	30		
Power Setting	18	Press. (mBars)	1005		
Antenna	integral				
Test Notes 1	EUT Position Horizontal; AC/DC Powered				
Test Notes 2	AC/DC adapter on table near EUT;				

Formally	measured emission	peaks
----------	-------------------	-------

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
33.888	49.0	3.6	-13.7	38.9	Quasi Max	V	103	208	40.0	-1.1	Pass	
97.839	49.9	4.1	-21.9	32.1	Peak [Scan]	V	103	320	43.5	-11.4	Pass	
200.600	36.0	4.6	-18.4	22.3	Peak [Scan]	V	103	327	43.5	-21.3	Pass	
300.511	34.2	5.1	-17.2	22.1	Peak [Scan]	V	103	352	46.0	-23.9	Pass	
372.309	34.3	5.4	-15.3	24.4	Peak [Scan]	V	103	357	46.0	-21.6	Pass	
486.686	33.0	5.8	-12.8	25.9	Peak [Scan]	V	103	365	46.0	-20.1	Pass	
Legend:	DIG =	DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency										
	NRB =	NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 103 of 257

2437 MHz	Engineer	SB		
Digital Emissions	Temp (ºC)	24.5		
30 MHz - 1000 MHz	Rel. Hum.(%)	30		
18	Press. (mBars)	1005		
integral				
EUT Position Vertical; AC/DC Powered				
AC/DC adapter on table near EUT;				
	2437 MHz Digital Emissions 30 MHz - 1000 MHz 18 integral EUT Position Vertical; AC/DC Powered AC/DC adapter on table near EUT;	2437 MHz Engineer Digital Emissions Temp (°C) 30 MHz - 1000 MHz Rel. Hum.(%) 18 Press. (mBars) integral EUT Position Vertical; AC/DC Powered AC/DC adapter on table near EUT; Ac/DC adapter on table near EUT;		

Formally	measured em	ission peaks
----------	-------------	--------------

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
35.122	49.0	3.6	-13.7	38.9	Quasi Max	V	103	208	40.0	-1.1	Pass	
100.839	49.9	4.1	-21.9	32.1	Peak [Scan]	V	103	320	43.5	-11.4	Pass	
200.600	36.0	4.6	-18.4	22.3	Peak [Scan]	V	103	327	43.5	-21.3	Pass	
300.511	34.2	5.1	-17.2	22.1	Peak [Scan]	V	103	352	46.0	-23.9	Pass	
372.309	34.3	5.4	-15.3	24.4	Peak [Scan]	V	103	357	46.0	-21.6	Pass	
486.686	33.0	5.8	-12.8	25.9	Peak [Scan]	V	103	365	46.0	-20.1	Pass	
Legend:	DIG =	DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency										
	NRB =	NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 104 of 257

Test Freq.	2437 MHz	Engineer	JMH		
Variant	Digital Emissions	Temp (ºC)	29		
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	32		
Power Setting	18	Press. (mBars)	1002		
Antenna	13B				
Test Notes 1	EUT Position Vertical; AC/DC Powered				
Test Notes 2	AC/DC adapter on table near EUT;				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 APIN0114, APIN0115 802.11a/b/g/n

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 ARUB149-U4 Rev A

 Issue Date:
 5th August 2013

 Page:
 105 of 257

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)		
30-88	100	40.0	3		
88-216	150	43.5	3		
216-960	200	46.0	3		
Above 960	500	54.0	3		

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions. Temperature: 17 to 23 °C

Relative humidity: 31 to 57 %

Pressure: 999 to 1012 mbar

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.