

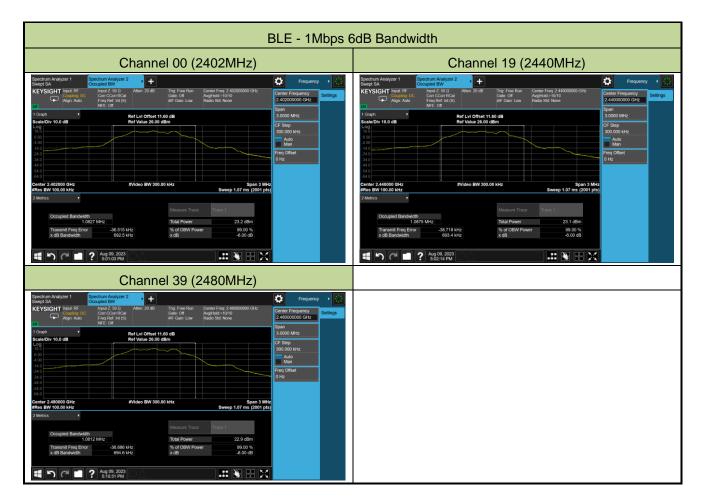
Annex A BLE Test Result

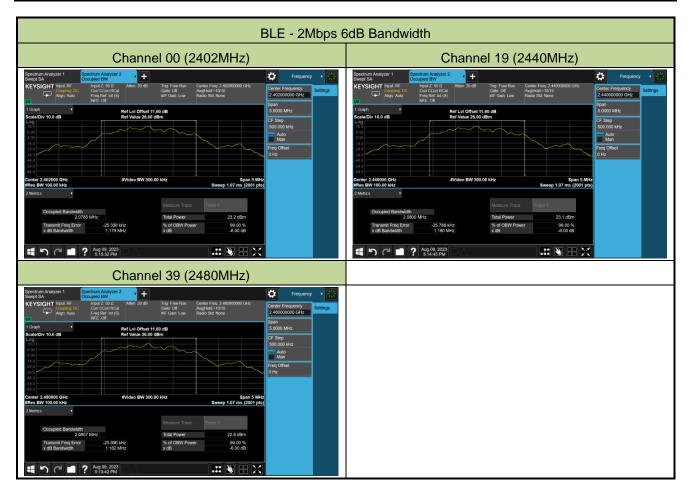
Model No.: APEX0679

Des	scription	Page
1.	Duty Cycle Test Result	2
2.	6dB Bandwidth Test Result	3
3.	Output Power Measurement Test Result	5
4.	Power Spectral Density Measurement Test Result	8
5.	Conducted Band Edge and Out-of-Band Emissions Test Result	10
6.	Radiated Spurious Emission Measurement Test Result	18
7.	Radiated Restricted Band Edge Measurement Test Result	32
8.	AC Conducted Emission Test Result	64

1. Duty Cycle Test Result

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2023-08-09		


Test Mode	Duty Cycle
BLE - 1Mbps	16.46%
BLE - 2Mbps	9.83%
Duty Cycle (T = Tra	nsmission Duration)
BLE - 1Mbps (T = 102.7μs)	BLE - 2Mbps (T = 61.33µs)
Steeper JA Marker KEY Impact 2011 Impact 2011 Imp	Specific Analyzer 1 Image: 20 cm Processing 20 cm Market Image: 20 cm KEY SUGHT week RM Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Note: 5 cm Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Image: 1 cm Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Image: 1 cm Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Image: 1 cm Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Image: 1 cm Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Image: 1 cm Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Image: 2 cm Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Image: 2 cm Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Image: 2 cm Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Image: 2 cm Processing 20 cm Processing 20 cm Processing 20 cm Processing 20 cm Image: 2 cm Processing 20 cm Processing 20 cm Procesing 20 cm <td< td=""></td<>


2. 6dB Bandwidth Test Result

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2023-08-09		

Test Mode	Data Rate	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)
BLE	1Mbps	00	2402	0.6925	≥ 0.5
BLE	1Mbps	19	2440	0.6934	≥ 0.5
BLE	1Mbps	39	2480	0.6946	≥ 0.5
BLE	2Mbps	00	2402	1.179	≥ 0.5
BLE	2Mbps	19	2440	1.180	≥ 0.5
BLE	2Mbps	39	2480	1.182	≥ 0.5

3. Output Power Measurement Test Result

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2023-12-19	Filter Configuration	Filter 4#

Test Result of Peak Output Power

Test Mode	Data Rate	Channel No.	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Result
BLE	1Mbps	00	2402	7.72	≤ 29.70	Pass
BLE	1Mbps	19	2440	7.02	≤ 29.70	Pass
BLE	1Mbps	39	2480	6.44	≤ 29.70	Pass
BLE	2Mbps	00	2402	7.96	≤ 29.70	Pass
BLE	2Mbps	19	2440	7.33	≤ 29.70	Pass
BLE	2Mbps	39	2480	6.54	≤ 29.70	Pass

Test Result of Average Output Power (Reporting Only)

Test Mode	Data Rate	Channel No.	Frequency (MHz)	Average Power (dBm)	Limit (dBm)	Result
BLE	1Mbps	00	2402	7.61	≤ 29.70	Pass
BLE	1Mbps	19	2440	6.89	≤ 29.70	Pass
BLE	1Mbps	39	2480	6.34	≤ 29.70	Pass
BLE	2Mbps	00	2402	5.75	≤ 29.70	Pass
BLE	2Mbps	19	2440	5.14	≤ 29.70	Pass
BLE	2Mbps	39	2480	4.33	≤ 29.70	Pass

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2023-12-19	Filter Configuration	Filter 5#

Test Result of Peak Output Power

Test	Data Rate	Channel	Frequency	Peak Power	Limit	Result
Mode		No.	(MHz)	(dBm)	(dBm)	
BLE	1Mbps	00	2402	4.87	≤ 30.00	Pass
BLE	2Mbps	00	2402	4.76	≤ 30.00	Pass

Test Result of Average Output Power (Reporting Only)

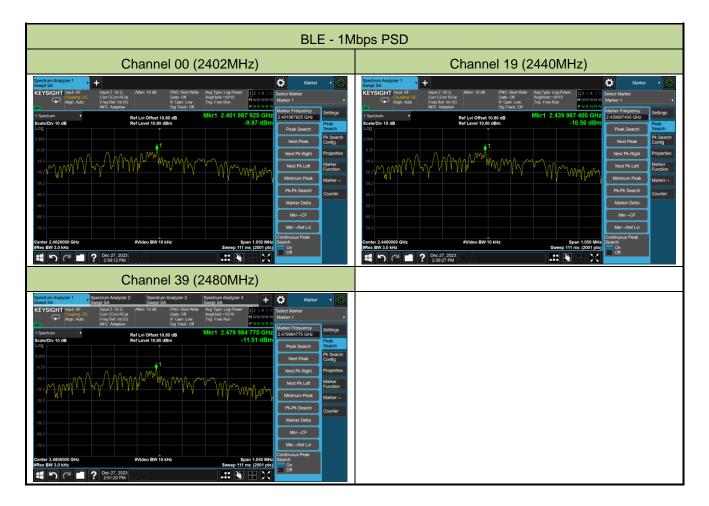
Test	Data Rate	Channel	Frequency	Average Power	Limit	Result
Mode		No.	(MHz)	(dBm)	(dBm)	
BLE	1Mbps	00	2402	4.72	≤ 30.00	Pass
BLE	2Mbps	00	2402	2.51	≤ 30.00	Pass

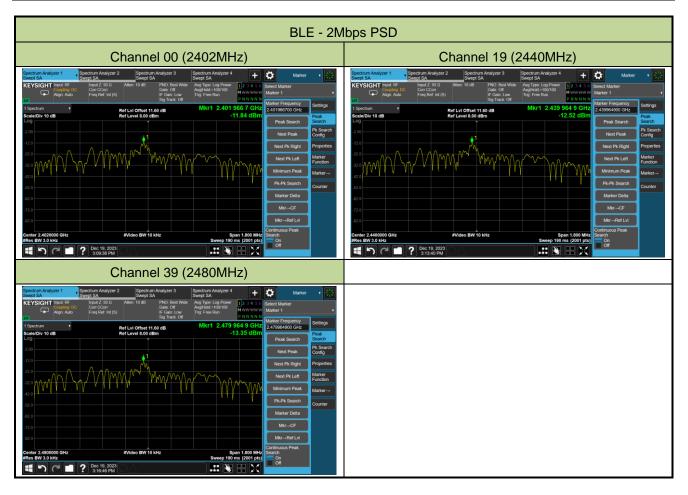
Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2023-12-19	Filter Configuration	Filter 6#

Test Result of Peak Output Power

Test	Data Rate	Channel	Frequency	Peak Power	Limit	Result
Mode		No.	(MHz)	(dBm)	(dBm)	
BLE	1Mbps	39	2480	3.65	≤ 30.00	Pass
BLE	2Mbps	39	2480	3.93	≤ 30.00	Pass

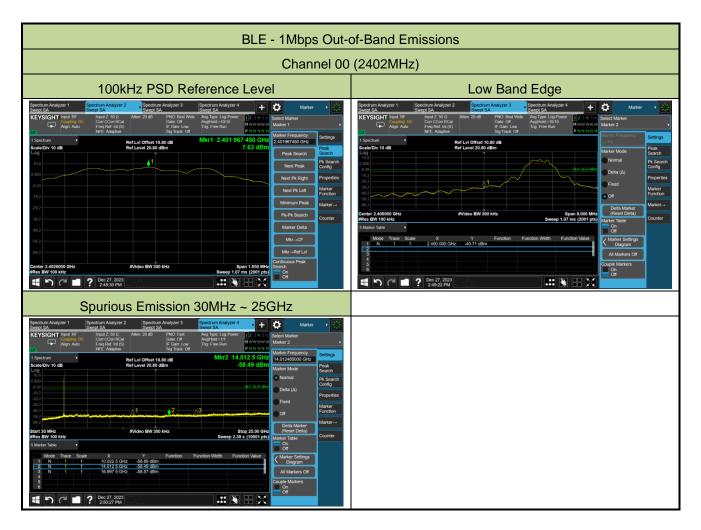
Test Result of Average Output Power (Reporting Only)

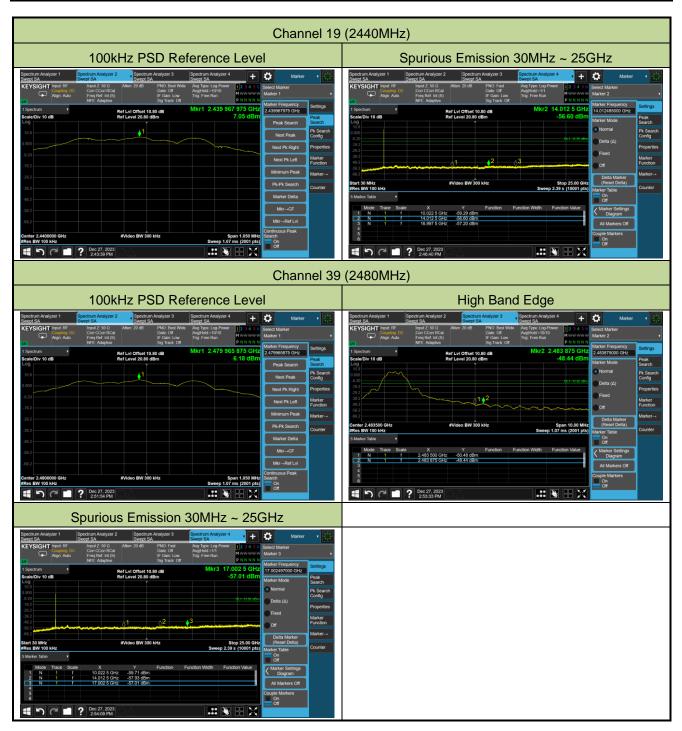

Test	Data Rate	Channel	Channel Frequency Avera		Limit	Result
Mode		No.	(MHz)	(dBm)	(dBm)	
BLE	1Mbps	39	2480	3.35	≤ 30.00	Pass
BLE	2Mbps	39	2480	1.60	≤ 30.00	Pass


4. Power Spectral Density Measurement Test Result

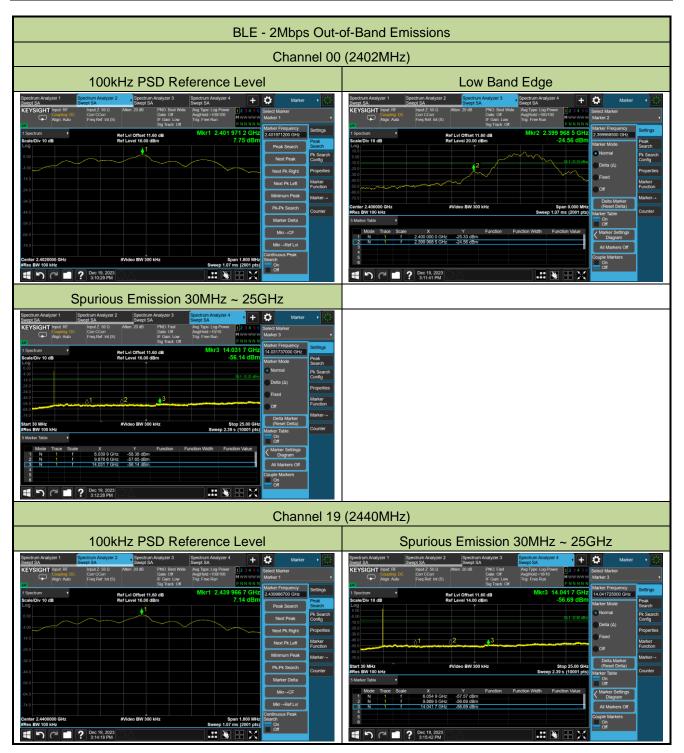
Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2023-12-19 ~ 2023-12-27		

Test Mode	Data Rate	Channel No.	Frequency	PSD Result	Limit	Result
			(MHz)	(dBm / 3kHz)	(dBm / 3kHz)	
BLE	1Mbps	00	2402	-9.97	≤ 8.00	Pass
BLE	1Mbps	19	2440	-10.56	≤ 8.00	Pass
BLE	1Mbps	39	2480	-11.51	≤ 8.00	Pass
BLE	BLE 2Mbps		2402	-11.84	≤ 8.00	Pass
BLE	LE 2Mbps 19		2440	-12.52	≤ 8.00	Pass
BLE	2Mbps 39		2480	-13.35	≤ 8.00	Pass

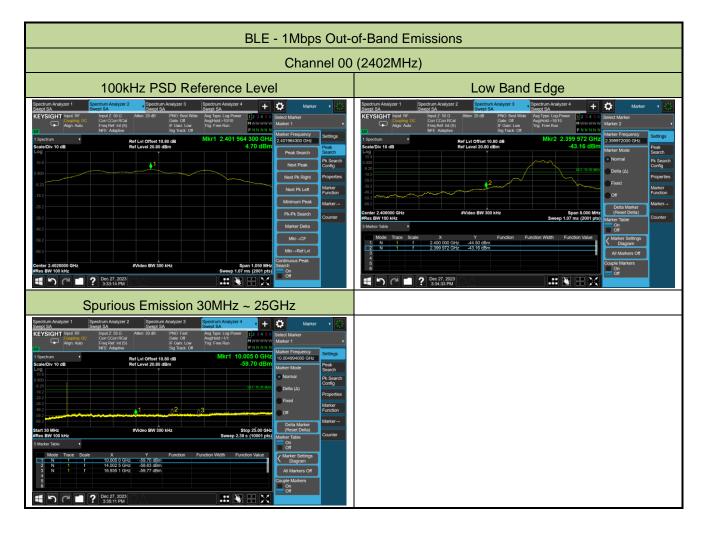



5. Conducted Band Edge and Out-of-Band Emissions Test Result

Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2023-12-19 ~ 2023-12-27	Filter Configuration	Filter 4#

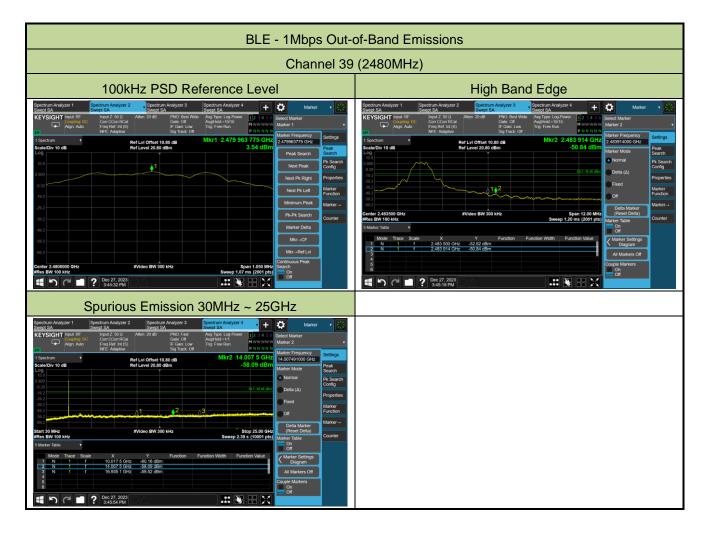

Test Mode	Data Rate	Channel No.	Frequency	Limit	Result
	/ Mbps		(MHz)	(dBc)	
BLE	1	00	2402	20	Pass
BLE	1	19	2440	20	Pass
BLE	1	39	2480	20	Pass
BLE	2	00	2402	20	Pass
BLE	2	19	2440	20	Pass
BLE	2	39	2480	20	Pass





Test Site	WZ-SR5	Test Engineer	Lynn Yang
Test Date	2023-12-19 ~ 2023-12-27	Filter Configuration	Filter 5#

Test Mode	Data Rate / Mbps	Channel No.	Frequency (MHz)	Limit (dBc)	Result
BLE	1	00	2402	20	Pass
BLE	2	00	2402	20	Pass



Test Site	WZ-SR5	Test Engineer	Lynn Yang	
Test Date	2023-12-19 ~ 2023-12-27	Filter Configuration	Filter 6#	

Test Mode	Data Rate / Mbps	Channel No.	Frequency (MHz)	Limit (dBc)	Result
BLE	1	39	2480	20	Pass
BLE	2	39	2480	20	Pass

6. Radiated Spurious Emission Measurement Test Result

Filter 4#

Test Site	WZ-AC1	Test Engineer	Frank Xue				
Test Date	2023-12-18	Test Mode:	BLE - 1Mbps				
Remark:	1. Average measurement was not p	erformed if peak level	lower than average limit.				
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						

Test Channel	Frequency (MHz)	Reading Level (dBµV)	Factor (dB/m)	Measure Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detect or	Polarizatio n
		,		,				
	7443.0	37.1	8.6	45.7	74.0	-28.3	Peak	Horizontal
	8148.5	36.5	9.3	45.8	74.0	-28.2	Peak	Horizontal
00	11540.0	35.6	13.5	49.1	74.0	-24.9	Peak	Horizontal
00	7460.0	37.0	8.6	45.6	74.0	-28.4	Peak	Vertical
	8106.0	36.4	9.3	45.7	74.0	-28.3	Peak	Vertical
	11523.0	35.6	13.6	49.2	74.0	-24.8	Peak	Vertical
	7460.0	36.7	8.6	45.3	74.0	-28.7	Peak	Horizontal
	8429.0	36.3	8.9	45.2	74.0	-28.8	Peak	Horizontal
10	10911.0	34.9	14.0	48.9	74.0	-25.1	Peak	Horizontal
19	7562.0	37.4	8.4	45.8	74.0	-28.2	Peak	Vertical
	8454.5	36.4	9.2	45.6	74.0	-28.4	Peak	Vertical
	11497.5	35.5	13.7	49.2	74.0	-24.8	Peak	Vertical
	7689.5	37.3	8.1	45.4	74.0	-28.6	Peak	Horizontal
	8148.5	35.6	9.3	44.9	74.0	-29.1	Peak	Horizontal
20	10911.0	35.9	14.0	49.9	74.0	-24.1	Peak	Horizontal
39	7451.5	36.6	8.6	45.2	74.0	-28.8	Peak	Vertical
	8140.0	35.8	9.2	45.0	74.0	-29.0	Peak	Vertical
	11557.0	35.8	13.4	49.2	74.0	-24.8	Peak	Vertical
Note: Mea	asure Level (dE	BµV/m) = Rea	ding Level	l (dBµV) + Fac	tor (dB/m)			

Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Test Site	WZ-AC1	Test Engineer	Frank Xue				
Test Date	2023-12-18	Test Mode:	BLE - 2Mbps				
Remark:	1. Average measurement was not p	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						

Test Channel	Frequency (MHz)	Reading Level (dBµV)	Factor (dB/m)			Margin (dB)	Detect or	Polarizatio n
	7298.5	36.5	8.4	44.9	74.0	-29.1	Peak	Horizontal
	8123.0	35.6	9.0	44.6	74.0	-29.4	Peak	Horizontal
00	11021.5	34.5	14.1	48.6	74.0	-25.4	Peak	Horizontal
00	7715.0	36.5	8.3	44.8	74.0	-29.2	Peak	Vertical
	8148.5	35.4	9.3	44.7	74.0	-29.3	Peak	Vertical
	10860.0	35.5	14.0	49.5	74.0	-24.5	Peak	Vertical
	7460.0	35.7	8.6	44.3	74.0	-29.7	Peak	Horizontal
	8165.5	35.9	9.2	45.1	74.0	-28.9	Peak	Horizontal
10	10639.0	34.2	14.3	48.5	74.0	-25.5	Peak	Horizontal
19	7324.0	36.1	8.2	44.3	74.0	-29.7	Peak	Vertical
	8131.5	38.0	9.1	47.1	74.0	-26.9	Peak	Vertical
	10953.5	34.9	14.1	49.0	74.0	-25.0	Peak	Vertical
	7426.0	36.5	8.5	45.0	74.0	-29.0	Peak	Horizontal
	8106.0	36.1	9.3	45.4	74.0	-28.6	Peak	Horizontal
	11021.5	36.1	14.1	50.2	74.0	-23.8	Peak	Horizontal
39	7502.5	36.0	8.5	44.5	74.0	-29.5	Peak	Vertical
	8327.0	36.0	8.7	44.7	74.0	-29.3	Peak	Vertical
	11081.0	-25.8	Peak	Vertical				
		• •	-	l (dBµV) + Fac tor (dB/m) - Pr	tor (dB/m) e_Amplifier Ga	ain (dB)		

Filter 5#

Test Site	WZ-AC1	Test Engineer	Frank Xue				
Test Date	2023-12-18	Test Mode:	BLE - 1Mbps				
Remark:	1. Average measurement was not p	erformed if peak level	lower than average limit.				
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						

Test	Frequency	Reading	Factor	Measure	Limit	Margin	Detect	Polarizatio
Channel	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)	or	n
		(dBµV)		(dBµV/m)				
	7511.0	36.2	8.4	44.6	74.0	-29.4	Peak	Horizontal
	8131.5	35.5	9.1	44.6	74.0	-29.4	Peak	Horizontal
00	11599.5	35.0	13.2	48.2	74.0	-25.8	Peak	Horizontal
00	7536.5	35.8	8.5	44.3	74.0	-29.7	Peak	Vertical
	8165.5	35.3	9.2	44.5	74.0	-29.5	Peak	Vertical
	11565.5	35.7 13.3 49.0 74.0 -25.0 Peak Ve						Vertical
Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m)								
Factor (dE	3/m) = Cable L	oss (dB) + Ant	tenna Fac	tor (dB/m) - Pr	e_Amplifier Ga	ain (dB)		

Test Site	WZ-AC1	Test Engineer	Frank Xue				
Test Date	2023-12-18	Test Mode: BLE - 2Mbps					
Remark:	1. Average measurement was not p	erformed if peak level	lower than average limit.				
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						

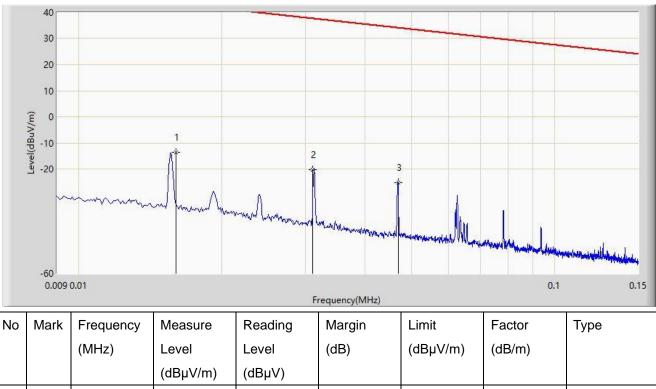
Test	Frequency	Reading	Factor	Measure	Limit	Margin	Detect	Polarizatio
Channel	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)	or	n
		(dBµV)		(dBµV/m)				
	7383.5	35.8	8.6	44.4	74.0	-29.6	Peak	Horizontal
	8165.5	35.6	9.2	44.8	74.0	-29.2	Peak	Horizontal
00	11055.5	34.3	14.1	48.4	74.0	-25.6	Peak	Horizontal
00	7494.0	35.2	8.6	43.8	74.0	-30.2	Peak	Vertical
	8437.5	36.4	8.9	45.3	74.0	-28.7	Peak	Vertical
	11115.0	36.0	13.5	49.5	74.0	-24.5	Peak	Vertical
Note: Mea	Note: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB/m)							
Factor (dE	8/m) = Cable L	oss (dB) + Ant	tenna Fac	tor (dB/m) - Pr	e_Amplifier Ga	ain (dB)		

Filter 6#

Test Site	WZ-AC1	Test Engineer	Frank Xue				
Test Date	2023-12-18	Test Mode:	BLE - 1Mbps				
Remark:	1. Average measurement was not p	1. Average measurement was not performed if peak level lower than average limit.					
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						

Test	Frequency	Reading	Factor	Measure	Limit	Margin	Detect	Polarizatio
Channel	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)	or	n
		(dBµV)		(dBµV/m)				
	7587.5	37.5	8.3	45.8	74.0	-28.2	Peak	Horizontal
	8182.5	37.2	8.9	46.1	74.0	-27.9	Peak	Horizontal
20	11489.0	35.9	13.8	49.7	74.0	-24.3	Peak	Horizontal
39	7587.5	37.5	8.3	45.8	74.0	-28.2	Peak	Vertical
	8182.5	37.2	8.9	46.1	74.0	-27.9	Peak	Vertical
	11123.5 37.1 13.5 50.6 74.0 -23.4 Peak Vertical							Vertical
Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m)								
Factor (dE	3/m) = Cable L	oss (dB) + Ant	tenna Fac	tor (dB/m) - Pr	e_Amplifier Ga	ain (dB)		

Test Site	WZ-AC1	Test Engineer	Frank Xue				
Test Date	2023-12-18	Test Mode: BLE - 2Mbps					
Remark:	1. Average measurement was not p	formed if peak level lower than average limit.					
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the					
	report.						


Test	Frequency	Reading	Factor	Measure	Limit	Margin	Detect	Polarizatio	
Channel	(MHz)	Level	(dB/m)	Level	(dBµV/m)	(dB)	or	n	
		(dBµV)		(dBµV/m)					
	7511.0	37.2	8.4	45.6	74.0	-28.4	Peak	Horizontal	
	8361.0	36.7	8.8	45.5	74.0	-28.5	Peak	Horizontal	
	11013.0	35.2	14.3	49.5	74.0	-24.5	Peak	Horizontal	
39	7460.0	36.2	8.6	44.8	74.0	-29.2	Peak	Vertical	
	8148.5	36.8	9.3	46.1	74.0	-27.9	Peak	Vertical	
	11489.0	35.6	13.8	49.4	74.0	-24.6	Peak	Vertical	
Note: Mea	Note: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB/m)								
Factor (dE	3/m) = Cable L	.oss (dB) + Ani	tenna Fac	tor (dB/m) - Pr	e_Amplifier Ga	ain (dB)			

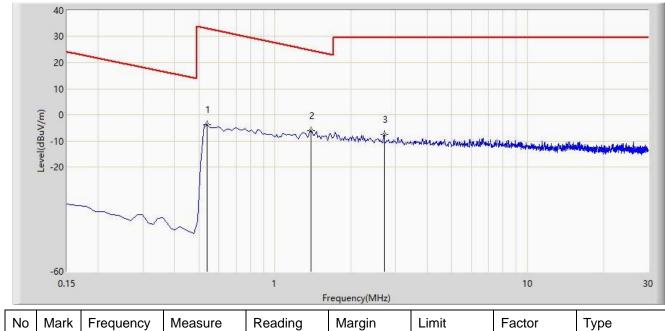
The Result of Radiated Emission below 1GHz:

Site: WZ-AC1	Test Date: 2023-10-12
Limit: FCC_Part 15.209_RSE(3m)	Engineer: Carl Jiang
Probe: FMZB1519_0.009-30MHz	Polarity: Coaxial
EUT: ACCESS POINT	Power: By PoE

Test Mode: Transmit by BLE 1M at 2402MHz

1	*	0.016	-13.569	66.395	-57.075	43.505	-79.964	PK
2		0.031	-20.205	59.756	-57.968	37.764	-79.961	PK
3		0.047	-25.359	54.598	-59.510	34.151	-79.957	PK

Note 1: " * ", means this data is the worst emission level.


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 4: Quasi-Peak measurement was not performed when peak measure level was lower than the quasi-peak limit.

Site: WZ-AC1	Test Date: 2023-10-12
Limit: FCC_Part 15.209_RSE(3m)	Engineer: Carl Jiang
Probe: FMZB1519_0.009-30MHz	Polarity: Coaxial
EUT: ACCESS POINT	Power: By PoE

No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)	
			(dBµV/m)	(dBµV)				
1		0.538	-3.839	36.005	-36.829	32.991	-39.844	PK
2	*	1.389	-5.952	33.846	-30.727	24.775	-39.798	PK
3		2.702	-7.654	32.132	-37.154	29.500	-39.786	PK

Note 1: " * ", means this data is the worst emission level.

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 4: Quasi-Peak measurement was not performed when peak measure level was lower than the quasi-peak limit.

Site: WZ-AC1		Test	Date: 2023-10-12	
Limit: FCC_Part ?	5.209_RSE(3m)	Engi	neer: Carl Jiang	
Probe: FMZB151	9_0.009-30MHz	Pola	rity: Coplanar	
EUT: ACCESS P	JINT	Powe	er: By PoE	
Test Mode: Trans	mit by BLE 1M at 2402MHz	i		
40				
30				
20				
10				
<u>و</u> ه				
0 0 -10 -10 -20 -20	1			
-20	AŤ	2		
m		*		

	-60	mum	m han h	million	human	an and a stand of a stand of a	in marking meriling	and was an adjustic field as
13	0.009	0.01		F	Frequency(MHz)	10 (N. 50) a	0.1	0.15
No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)	
			(dBµV/m)	(dBµV)				
1	*	0.016	-15.906	64.058	-59.412	43.505	-79.964	PK
2		0.031	-26.898	53.063	-64.661	37.764	-79.961	PK

0.062

3

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

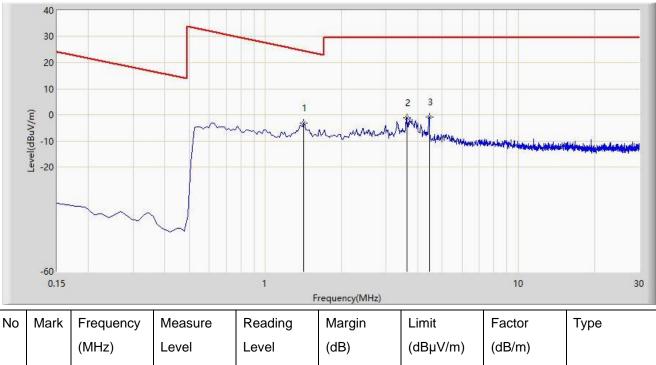
41.487

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

-38.467

Note 4: Quasi-Peak measurement was not performed when peak measure level was lower than the quasi-peak limit.

-70.214


31.746

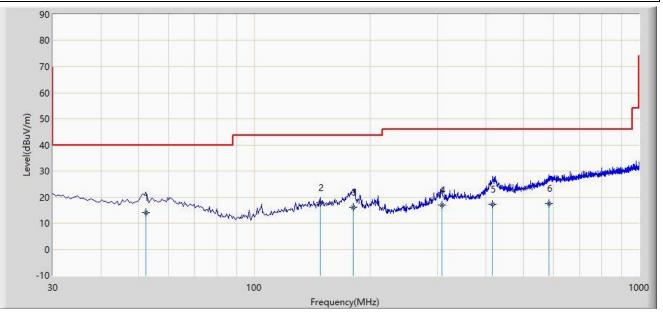
-79.954

ΡK

Site: WZ-AC1	Test Date: 2023-10-12
Limit: FCC_Part 15.209_RSE(3m)	Engineer: Carl Jiang
Probe: FMZB1519_0.009-30MHz	Polarity: Coplanar
EUT: ACCESS POINT	Power: By PoE

			(dBµV/m)	(dBµV)				
1	*	1.419	-3.078	36.719	-27.668	24.590	-39.797	PK
2		3.628	-1.269	38.495	-30.769	29.500	-39.764	PK
3		4.448	-0.967	38.772	-30.467	29.500	-39.739	PK

Note 1: " * ", means this data is the worst emission level.


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

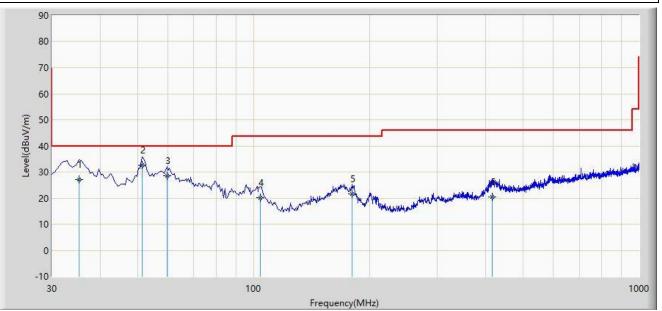
Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 4: Quasi-Peak measurement was not performed when peak measure level was lower than the quasi-peak limit.

Site: WZ-AC1	Test Date: 2023-08-22
Limit: FCC_Part 15.209_RSE(3m)	Engineer: Carl Jiang
Probe: VULB 9168_25-2000MHz	Polarity: Horizontal
EUT: ACCESS POINT	Power: By PoE

No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)	
			(dBµV/m)	(dBµV)				
1		52.310	13.965	-4.600	-26.035	40.000	18.565	QP
2	*	148.340	17.754	-0.300	-25.746	43.500	18.055	QP
3		180.835	16.082	-0.700	-27.418	43.500	16.782	QP
4		307.905	16.872	-1.900	-29.128	46.000	18.771	QP
5		416.545	17.187	-4.100	-28.813	46.000	21.287	QP
6		583.370	17.525	-7.400	-28.475	46.000	24.925	QP

Note 1: " * ", means this data is the worst emission level.


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 4: The amplitude of radiated emissions (frequency range from 9kHz to 30MHz and 18GHz to 25GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

Site: WZ-AC1	Test Date: 2023-08-22
Limit: FCC_Part 15.209_RSE(3m)	Engineer: Carl Jiang
Probe: VULB 9168_25-2000MHz	Polarity: Vertical
EUT: ACCESS POINT	Power: By PoE

No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)	
			(dBµV/m)	(dBµV)				
1		35.335	27.129	9.600	-12.871	40.000	17.529	QP
2	*	51.340	32.682	14.100	-7.318	40.000	18.582	QP
3		59.585	28.604	10.600	-11.396	40.000	18.004	QP
4		104.200	20.074	5.900	-23.426	43.500	14.174	QP
5		179.865	21.511	4.600	-21.989	43.500	16.911	QP
6		417.030	20.505	-0.800	-25.495	46.000	21.305	QP

Note 1: " * ", means this data is the worst emission level.

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 4: The amplitude of radiated emissions (frequency range from 9kHz to 30MHz and 18GHz to 25GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

Site	: WZ-A	.1			Test Date:	2023-09-23		
		_Part 15.209_I			Engineer:			
			. ,		-	•		
		IA9170_993_^	18-40GHz		Polarity: H			
EUT	: ACCE	SS POINT			Power: By	PoE		
Test		Transmit by B	BLE 1M at 240	2MHz				
	90							
	80							
	70							
	60							
	Ê 50				1	2	12	3
	50 40 30	prevention between the	nerselin and the second	مهم مردو المطلوب والمطلوب عام المسمود	a factor of the second	الويادي والمرجون المستلط ويراجع	a sha shi sa sa shi ya sa	where the state of
	30							
	20							
	10							
	0							
	-10 18000				1	d		25000
2		Γ			Frequency(MHz)		1	
No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)	
			(dBµV/m)	(dBµV)				
1		20877.000	46.498	55.140	-27.502	74.000	-8.642	PK
2	*	22539.500	46.828	54.197	-27.172	74.000	-7.369	PK
3		24342.000	46.407	52.913	-27.593	74.000	-6.506	PK

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Note 4: Average measurement was not performed when peak measure level was lower than the average limit.

Site	: WZ-A	C1			Test Date:	: 2023-09-23		
Limi	it: FCC	_Part 15.209_	RSE(3m)		Engineer:	Ajin Fan		
Prol	be: BBH	A9170_993_	18-40GHz		Polarity: V	/ertical		
EUT	T: ACCE	SS POINT			Power: By	/ PoE		
Test	t Mode:	Transmit by E	BLE 1M at 240	2MHz				
	90							
	80							
	70							
	60							
	E 50		1		2		3	
	Ang 40	apperture of the second state of the second second	with the second	and a state of the second s	man and a second and a second second	and the second	العدل المريعة المجمعة المجمعة المحمد المريدة المحمد المريدة المحمد المحمد المحمد المحمد المحمد المحمد المحمد ال	history of the second states
	20 50 10 10 10 10 10 10 10 10 10 10 10 10 10							
	20							
	20				-			
	10							
	10 <u>-</u>							
	10				Frequency(MHz)			250
No	10 0 -10	Frequency	Measure	Reading	Frequency(MHz)	Limit	Factor	250
No	10 0 -10 18000	1	Measure			Limit (dBµV/m)	Factor (dB/m)	
No	10 0 -10 18000	Frequency		Reading	Margin			
	10 0 -10 18000	Frequency	Level	Reading Level	Margin			
No 1 2	10 0 -10 18000	Frequency (MHz)	Level (dBµV/m)	Reading Level (dBµV)	Margin (dB)	(dBµV/m)	(dB/m)	Туре

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Note 4: Average measurement was not performed when peak measure level was lower than the average limit.

7. Radiated Restricted Band Edge Measurement Test Result

Filter 4#

3

1 1100	7				-				
Site	: WZ-AG	C1			Test Date: 2023-12-18				
Limit: FCC_2.4G_RE(3m)					Engineer: F	Engineer: Frank Xue			
Probe: BBHA9120D_1167_1-18GHz					Polarity: Horizontal				
EUT: ACCESS POINT					Power: By PoE				
Test Mode: Transmit by BLE 1M at 2402MHz									
I aval(ABuV/m)	50 40 30			1				3	
2310 2320 2330 2340 2350 2360 2370 2380 2390 2405 Frequency(MHz)									
No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре	
		(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)		
			(dBµV/m)	(dBµV)					
1	*	2339.070	57.040	25.637	-16.960	74.000	31.402	PK	
2		2390.000	55.461	24.207	-18.539	74.000	31.254	PK	

Note 1: " * ", means this data is the worst emission level.

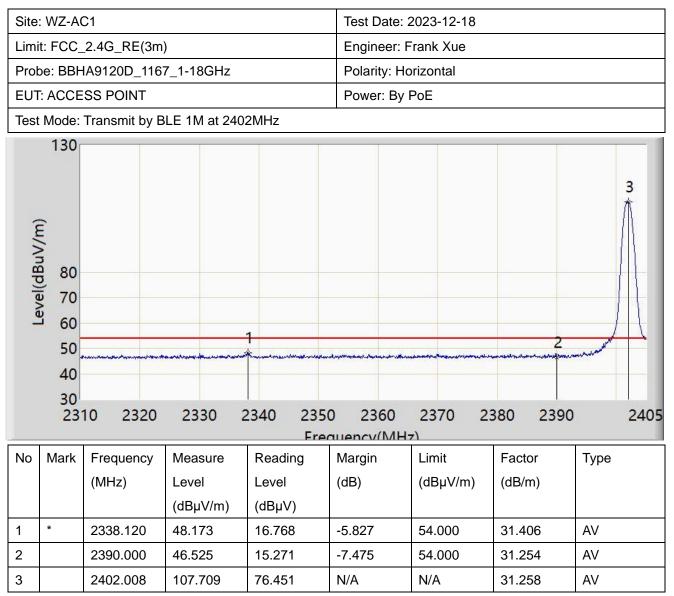
2402.008

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

77.037

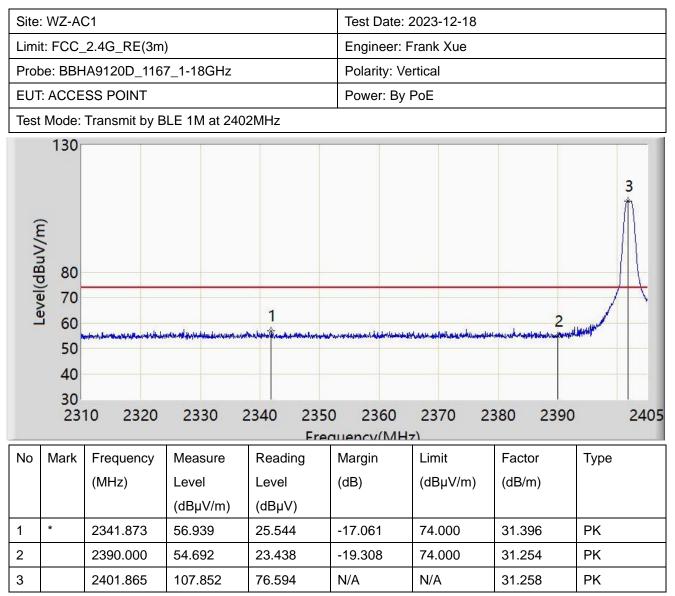
Note 3: Factor (dB/m) = Cable Loss (dB) + Antenna Factor (dB/m).

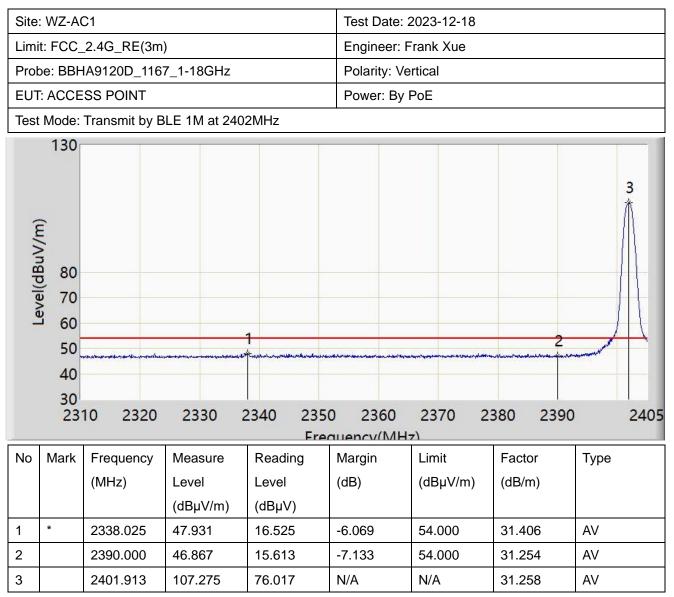
108.295

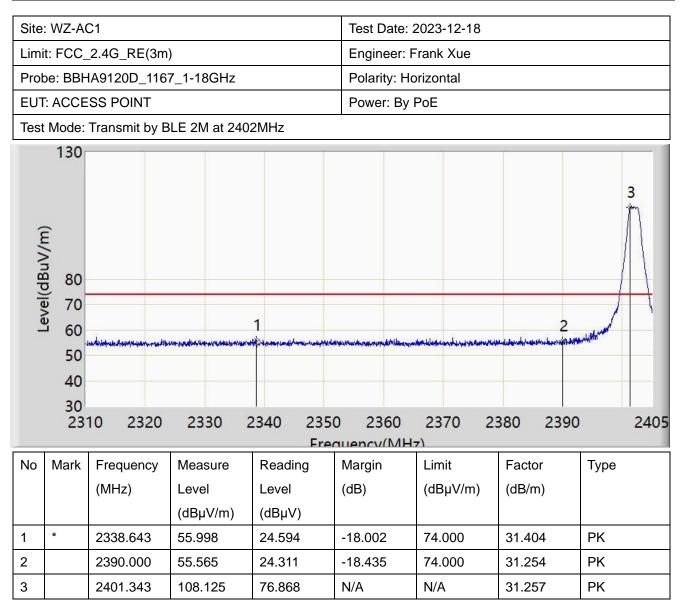

N/A

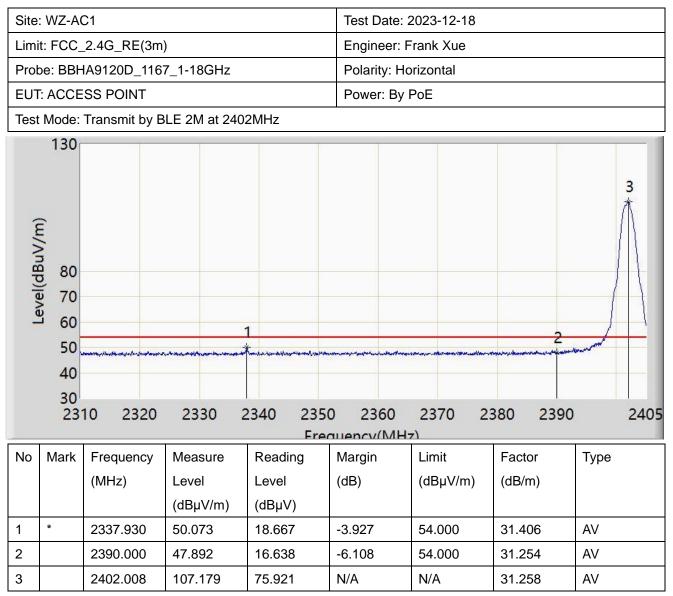
N/A

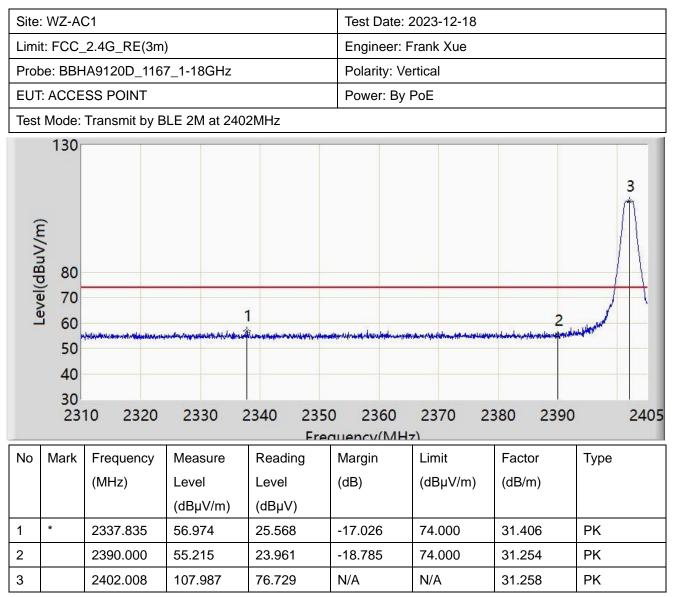
31.258

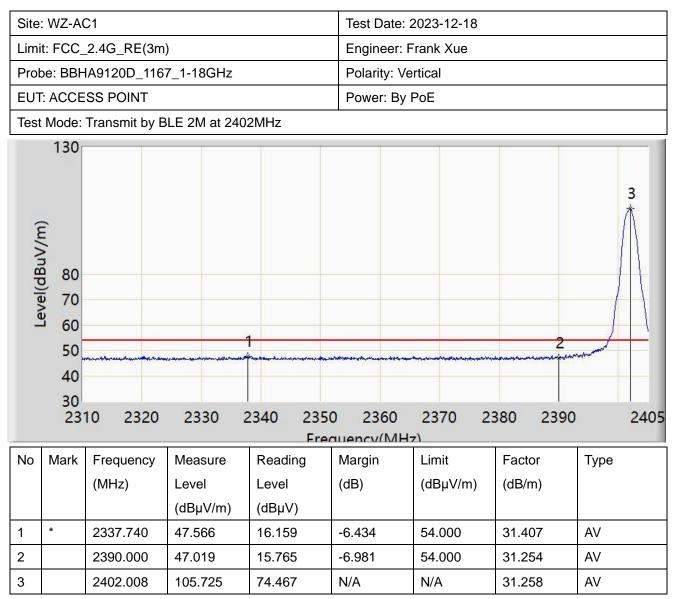

ΡK


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

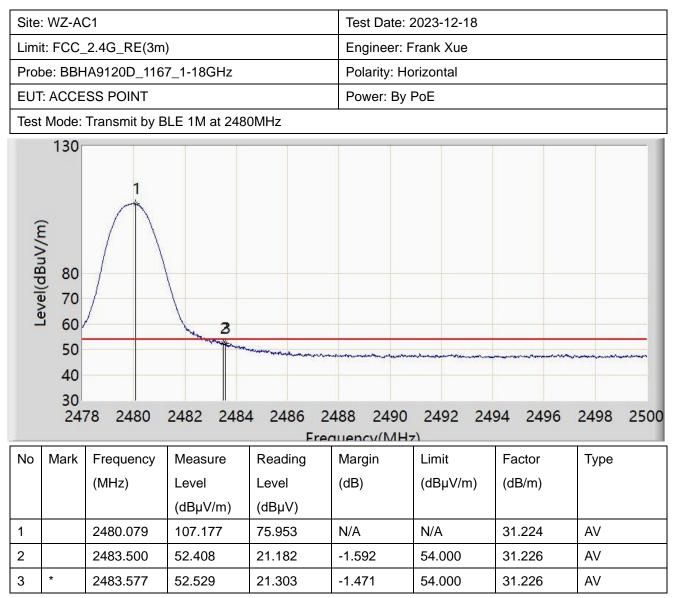

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

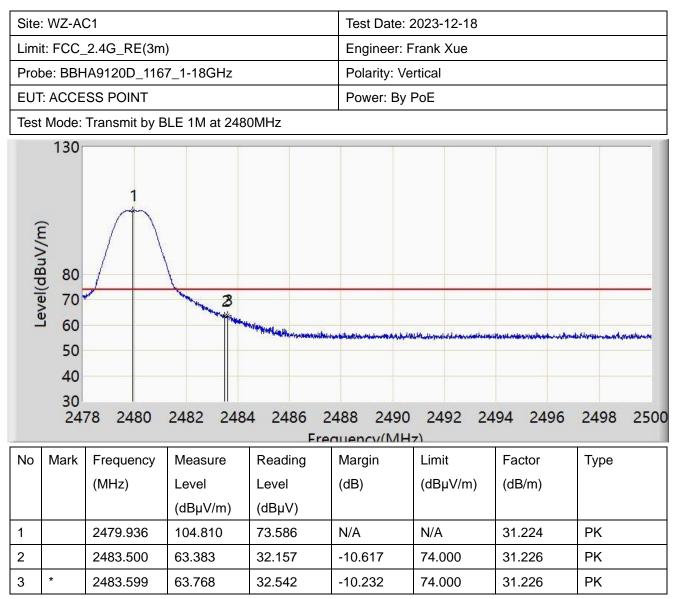

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

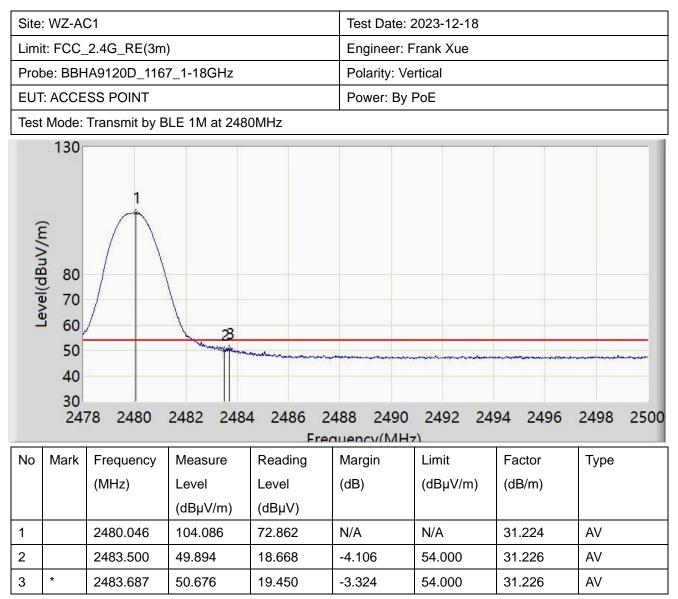

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

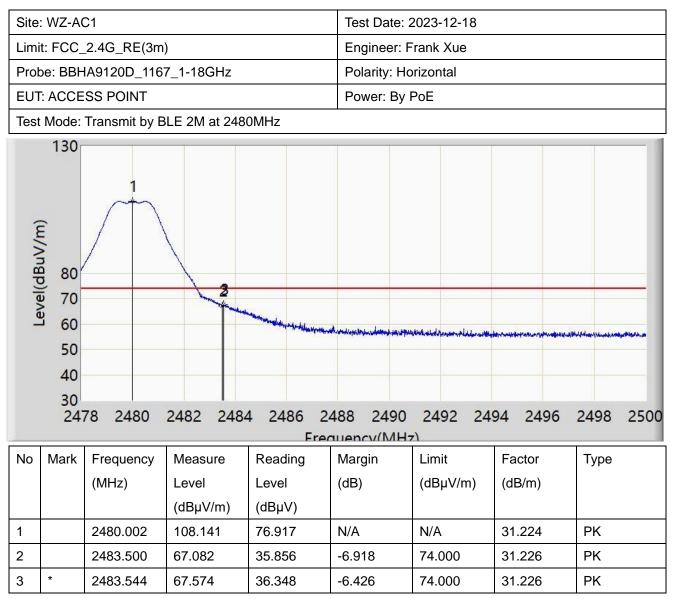
Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

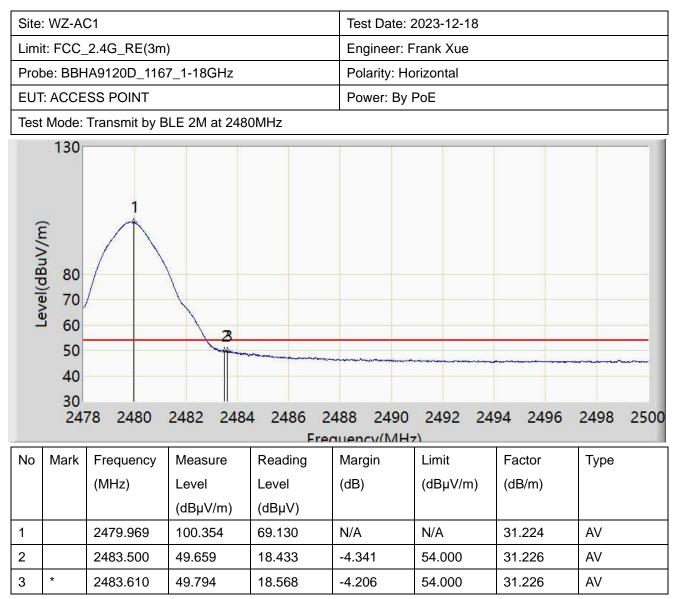

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

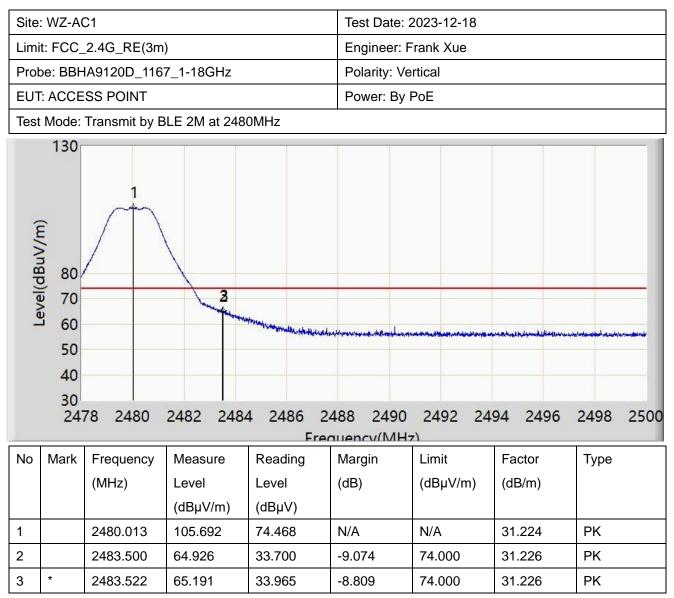
			1]	
Site: WZ-AC1			Test Date: 2	Test Date: 2023-12-18			
Limit: FCC_2.4G_RE(3m)		Engineer: F	rank Xue			
Probe: BBHA9120D_116	7_1-18GHz		Polarity: Ho	orizontal			
EUT: ACCESS POINT			Power: By	PoE			
Test Mode: Transmit by E	BLE 1M at 248	0MHz					
130 130 130 1 1 1 1 1 1 1 1 1 1 1 1 1	2482 2484		488 2490 auency(MH:	2492 24	94 2496	2498 2500	
No Mark Frequency	Measure	Reading	Margin	Limit	Factor	Туре	
(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)		
	(dBµV/m)	(dBµV)					
1 2480.002	107.892	76.668	N/A	N/A	31.224	PK	
2 2483.500	67.137	35.911	-6.863	74.000	31.226	PK	
3 * 2483.511	67.426	36.200	-6.574	74.000	31.226	PK	

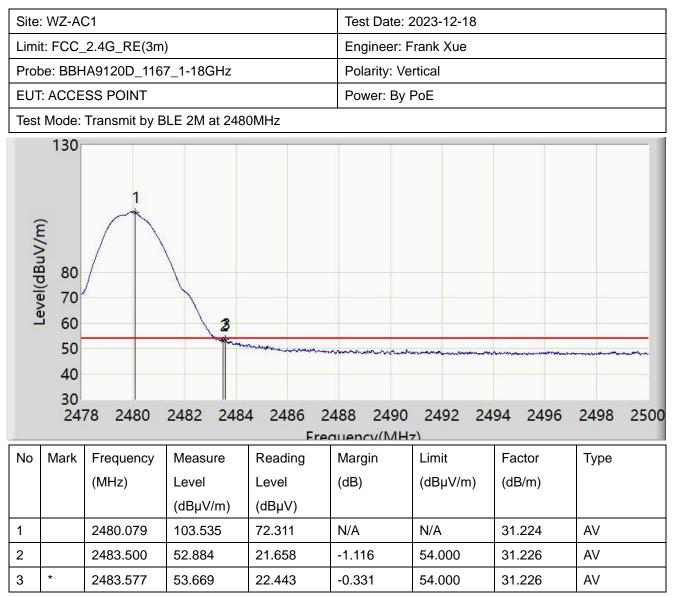

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

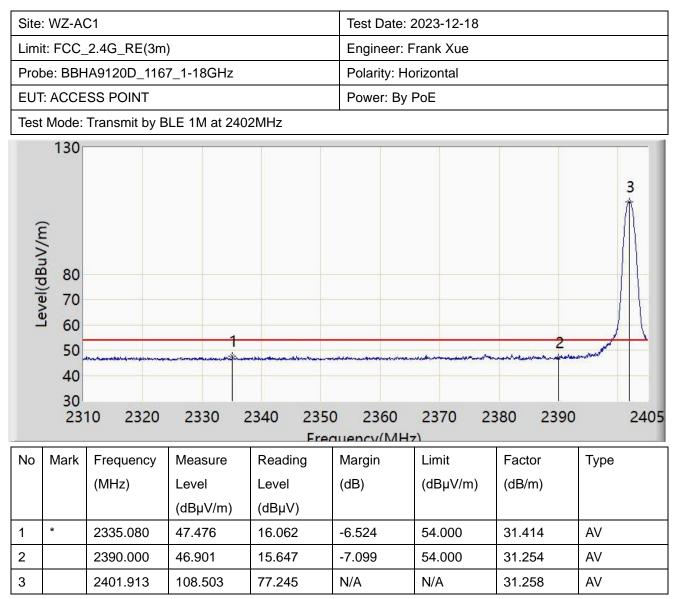

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

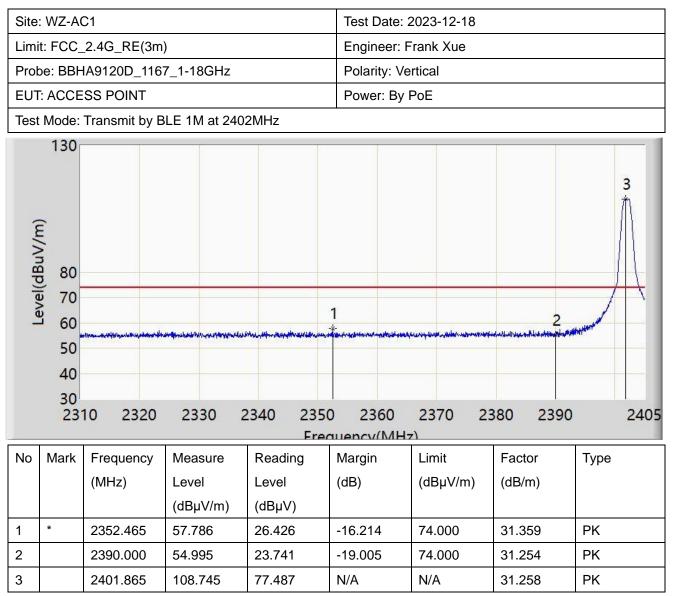
Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

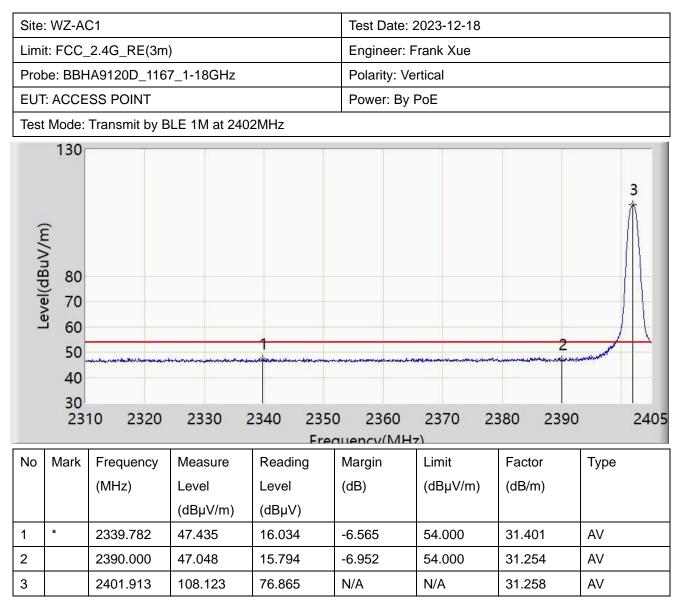
Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

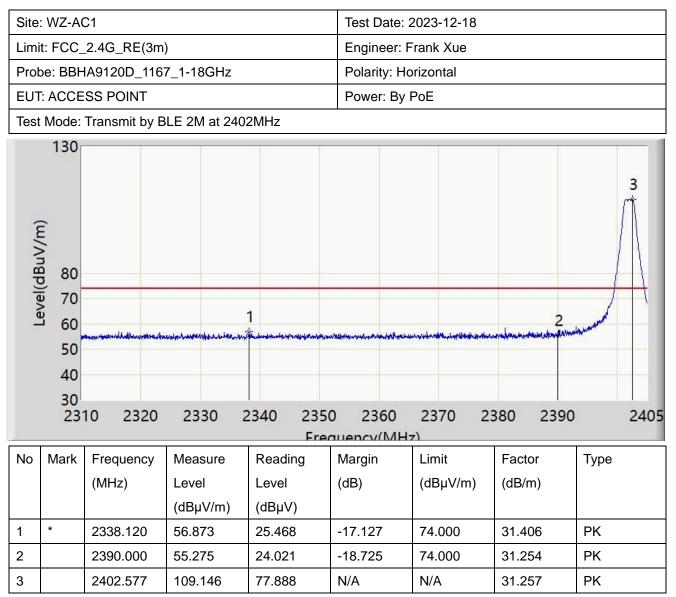

Filter 5#

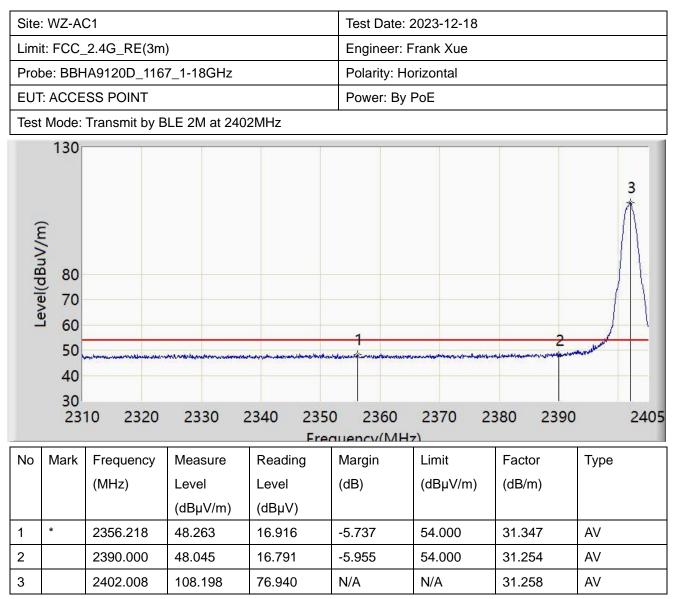
		_								
Site: WZ-AC1					Test Date: 2	Test Date: 2023-12-18				
Limit: FCC_2.4G_RE(3m)					Engineer: F	rank Xue				
Probe: BBHA9120D_1167_1-18GHz					Polarity: Ho	orizontal				
EUT	: ACCE	SS POINT			Power: By	PoE				
Test	Test Mode: Transmit by BLE 1M at 2402MHz									
I minically in the	130 80 70 60 50 40	Merildesun in spectra Man and and	1		Lego, forwarden ander gelantique of	net and she for a star base base base base base base base base	2	3		
	30 23	10 2320	2330 2	2340 2350 Free	0 2360 quency(MH		380 2390	2405		
No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре		
		(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)			
		-	(dBµV/m)	(dBµV)						
1	*	2327.955	57.779	26.345	-16.221	74.000	31.434	РК		
2		2390.000	56.307	25.053	-17.693	74.000	31.254	РК		
3		2402.245	109.245	77.987	N/A	N/A	31.258	PK		

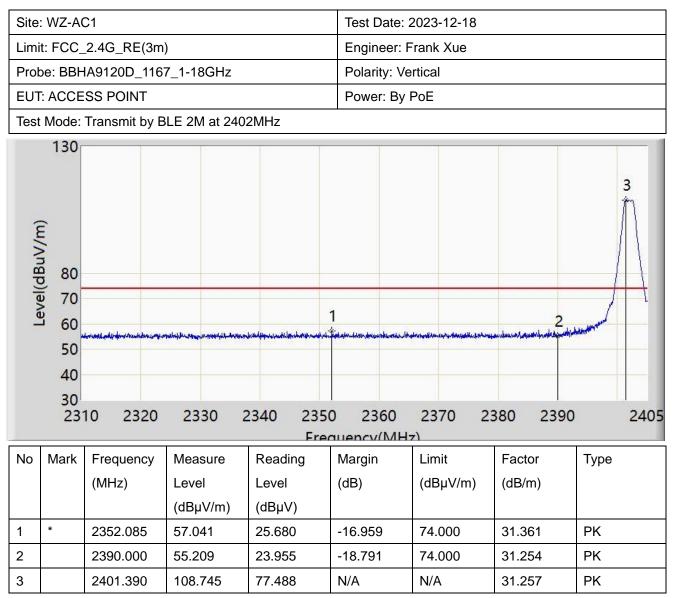
Note 1: " * ", means this data is the worst emission level.

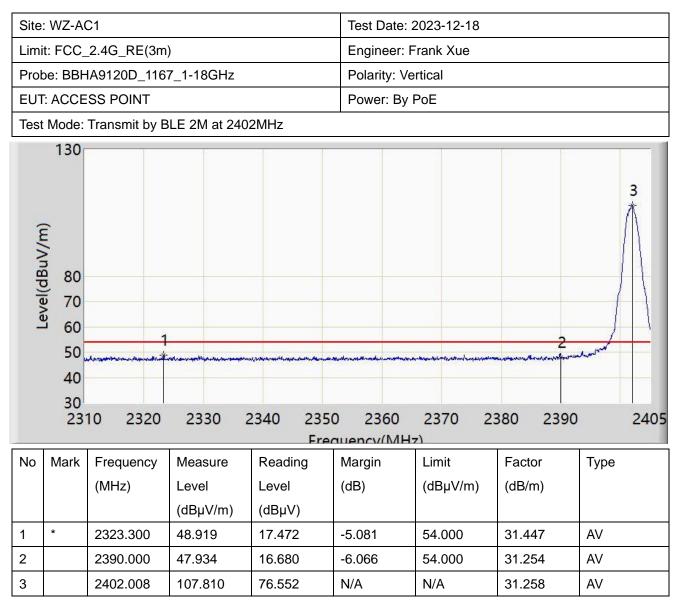

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Filter 6#

3

*

Site: WZ-/	AC1			Test Date: 2023-12-18			
	2.4G_RE(3m)		Engineer: Frank Xue			
	HA9120D_116			Polarity: Ho			
				Power: By			
	: Transmit by E	3I F 1M at 248	0MHz				
130						E	
(m//ngb) Fevel(dBu//m) 60 50 40 30		2482 2484	4 2486 2	488 2490	2492 24		2498 2500
No Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
	(MHz)	Level	Level	(dB)	(dBµV/m)	(dB/m)	
		(dBµV/m)	(dBµV)				
1	2480.112	109.146	77.922	N/A	N/A	31.224	PK
2	2483.500	68.008	36.782	-5.992	74.000	31.226	PK

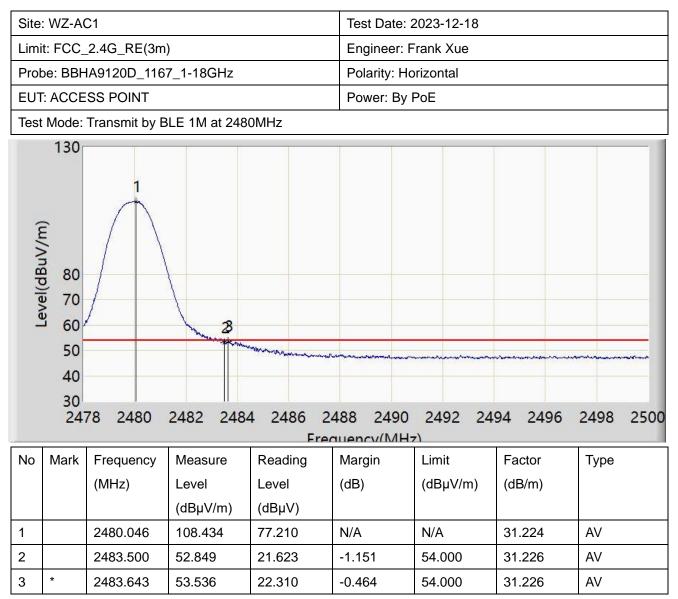
-5.415

74.000

31.226

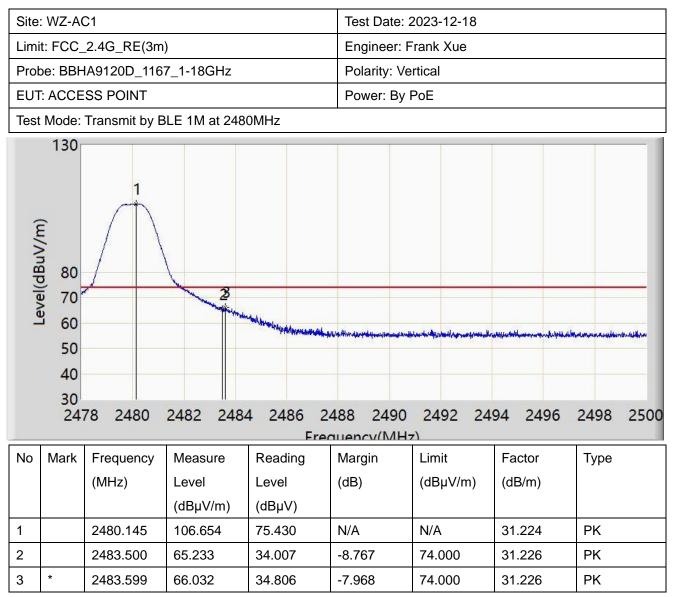
ΡK

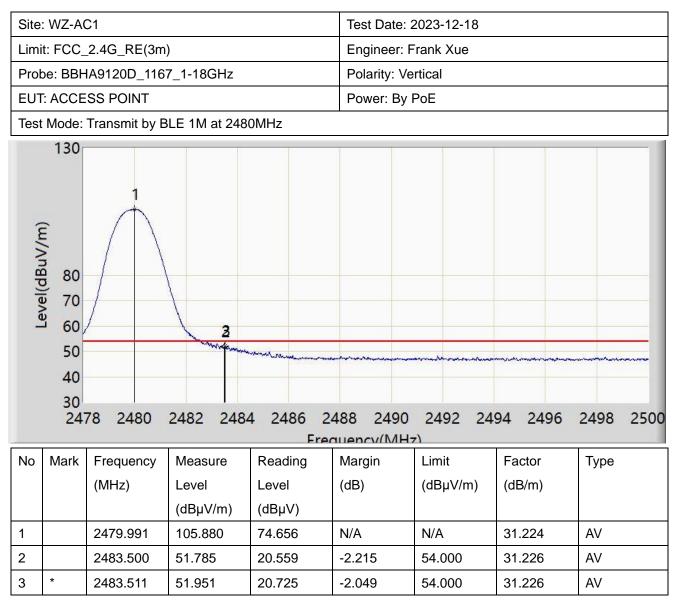
Note 1: " * ", means this data is the worst emission level.

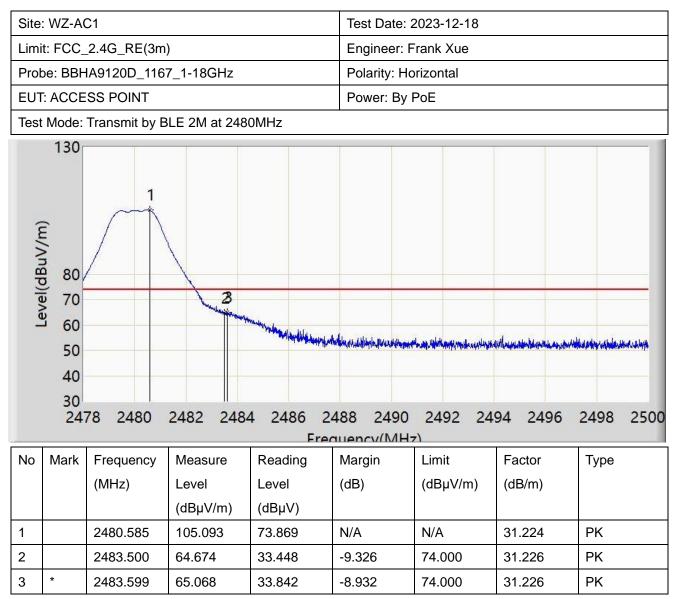

68.585

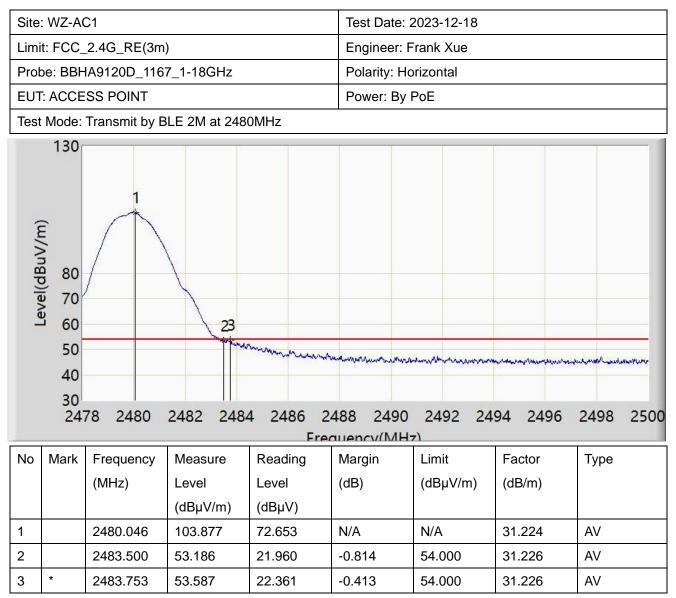
2483.522

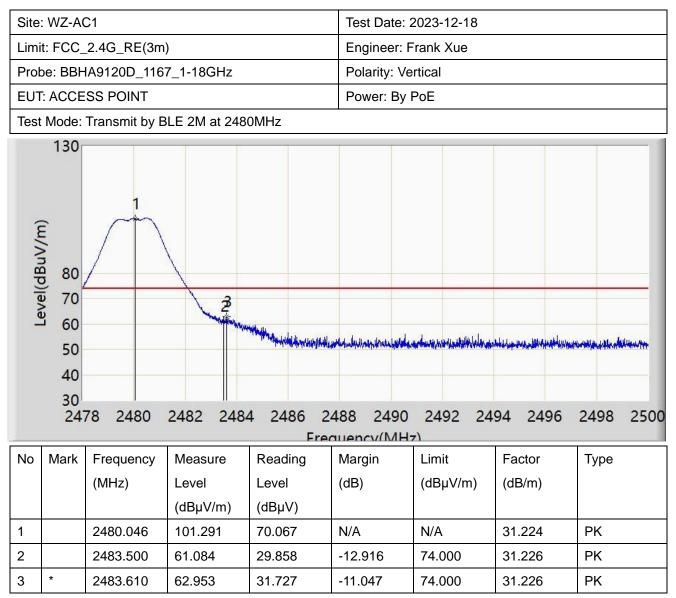
Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

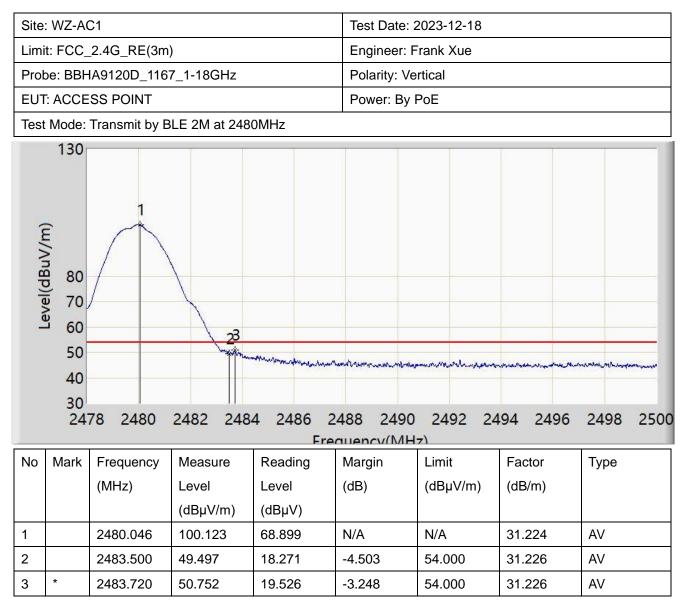

37.359


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

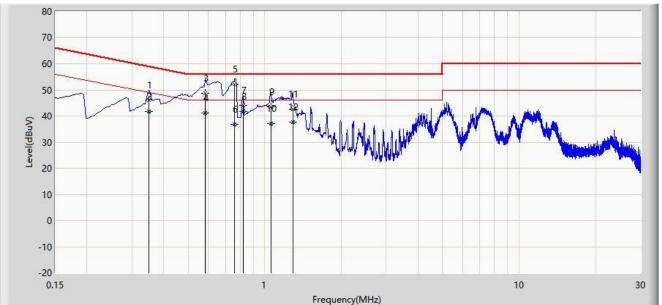

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).


Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB/m).

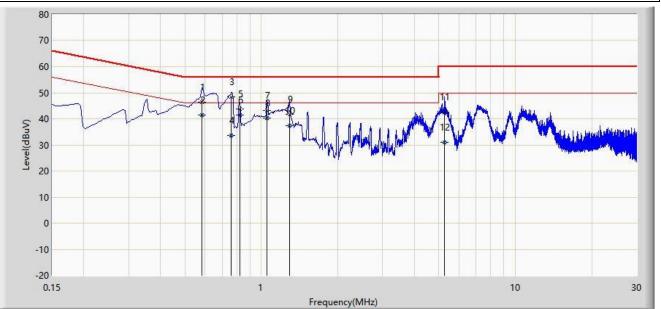
8. AC Conducted Emission Test Result

Test Mode: Transmit by PLE 1M at abannel 2402MHz					
EUT: ACCESS POINTACCESS POINT	Power: AC 120V/60Hz				
Probe: ENV216_101683_Filter Off_C	Polarity: Line				
Limit: FCC_Part15.207_CE_AC Power	Engineer: Linda Wei				
Site: WZ-SR2	Time: 2023/12/21 - 16:10				

Test Mode: Transmit by BLE 1M at channel 2402MHz

	1		-			-		
No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBµV)	(dB)	
			(dBµV)	(dBµV)				
1		0.350	46.029	36.257	-12.933	58.962	9.773	QP
2		0.350	41.612	31.839	-7.351	48.962	9.773	AV
3		0.582	48.618	38.740	-7.382	56.000	9.878	QP
4		0.582	41.289	31.411	-4.711	46.000	9.878	AV
5	*	0.762	52.272	42.305	-3.728	56.000	9.967	QP
6		0.762	36.858	26.891	-9.142	46.000	9.967	AV
7		0.822	44.105	34.106	-11.895	56.000	9.999	QP
8		0.822	41.694	31.696	-4.306	46.000	9.999	AV
9		1.058	43.433	33.352	-12.567	56.000	10.081	QP
10		1.058	37.144	27.063	-8.856	46.000	10.081	AV
11		1.290	42.731	32.648	-13.269	56.000	10.084	QP
12		1.290	37.552	27.468	-8.448	46.000	10.084	AV

Note 1: " * ", means this data is the worst emission level.


Note 2: Measure Level ($dB\mu V$) = Reading Level ($dB\mu V$) + Factor (dB).

Note 3: Factor (dB) = Cable Loss (dB) + LISN Factor (dB).

Site: WZ-SR2	Time: 2023/12/21 - 16:18
Limit: FCC_Part15.207_CE_AC Power	Engineer: Linda Wei
Probe: ENV216_101683_Filter Off_C	Polarity: Neutral
EUT: ACCESS POINTACCESS POINT	Power: AC 120V/60Hz

Test Mode: Transmit by BLE 1M at channel 2402MHz

No	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
		(MHz)	Level	Level	(dB)	(dBµV)	(dB)	
			(dBµV)	(dBµV)				
1		0.582	46.379	36.511	-9.621	56.000	9.868	QP
2	*	0.582	41.573	31.705	-4.427	46.000	9.868	AV
3		0.762	48.302	38.341	-7.698	56.000	9.961	QP
4		0.762	33.766	23.805	-12.234	46.000	9.961	AV
5		0.822	43.880	33.892	-12.120	56.000	9.989	QP
6		0.822	41.324	31.335	-4.676	46.000	9.989	AV
7		1.054	43.277	33.206	-12.723	56.000	10.071	QP
8		1.054	40.231	30.160	-5.769	46.000	10.071	AV
9		1.290	41.612	31.538	-14.388	56.000	10.074	QP
10		1.290	37.433	27.359	-8.567	46.000	10.074	AV
11		5.266	42.565	32.398	-17.435	60.000	10.167	QP
12		5.266	31.032	20.865	-18.968	50.000	10.167	AV

Note 1: " * ", means this data is the worst emission level.

Note 2: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB).

Note 3: Factor (dB) = Cable Loss (dB) + LISN Factor (dB).