

Page Number: 51 of 283

802.11ac-VHT160 Power Spectra	ensity - Ant 3 / Ant 0 + 1 (Ant 0 + 1 + 2 + 3)
Channel 50 (5250MHz)	Channel 114 (5570MHz)
Normal Addm. 19 db Addm. 19 db <t< th=""><th>Center 5.5700 GHz Figure 200 Figure 20</th></t<>	Center 5.5700 GHz Figure 200 Figure 20

802.11ax-HE160 Power Spectral Density - Ant 3 / Ant 0 + 1 + 2 + 3										
Channel 50 (5250MH	z)	Ch	nannel 114 (5570MHz)						
Construent Analyzer 1 + Marcel 200 Prest 2: 50:0 #Metry for dill Prest 2: 50:0 #Metry for dill Prest 2: 50:0 Metry for dill Prest 2: 50:0 Metry for dill Prest 2: 50:0 Metry for dill Metry for dill	A 5 0 Select Marker WWWW Marker 2 N N N N	Spectrum Analyzer 1 + Weept SA KEYSIGHT Input RF Coupling: AC + Align: Auto NFE: Off	#Atten: 20 dB PNO: Fast eff Gate: Off S) IF Gain: Low Sig Track: Off	Avg Typo: Power (RMS) 1 2 3 4 5 6 Avg Hold: 100/100 Trig: Free Run A N N N N N	Select Marker Marker 1 Marker Erequency	• 🔛				
1 Spectrum * Ref Lv/ Offset 21.50 dB Mkr2 5.271 (Scale/Div 10 dB Ref Lvvel 1.50 dB - 6.30	GO GHz Settings Setings Settings Settings Settings Settings Set	1 Spectrum Scale/Div 10 dB Log 8.00	Ref Lvi Offset 18.00 dB Ref Level 18.00 dBm	Mkr1 5.572 40 GHz -3.247 dBm	5.572400000 GHz Peak Search Next Peak	Settings Peak Search Pk Search Config				
275 313 415 515 515 715	Fixed Marker Function Marker	-200 -120 -220	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Next Pk Right Next Pk Left Minimum Peak	Properties Marker Function Marker→				
Center 5,2500 GHz PVideo BW 3.0 MHz Span : artis BW 1.0 MHz Sweep 1.07 ms 5 Maker Tiele V Mode Trace Scale X Screen the Function Function Width Function	20.0 MHz 2001 pts) Marker Table Orf Value Value	-320 -420 -520			Pk-Pk Search Marker Delta MkrCF	Counter				
N I 3.24 Stor GM2 -5.306 dbm 2 N I S.27160 GH2 -5.306 dbm 3 I I S.27160 GH2 -5.306 dbm 6 I I S.27160 GH2 -5.306 dbm 6 I I S.27160 GH2 -5.306 dbm	All Markers Off Couple Markers Off	72 0 Center 5.5700 0Hz Res BW 1.0 MHz	#Video BW 3.0 MHz*	Span 320.0 MHz Sweep 1.07 ms (2001 pts)	Mkr→Ref Lvl Continuous Peak Search On Off					

Product	ACCESS POINT	Temperature	26°C					
Test Engineer	Kervin Ker	Relative Humidity	57 %					
Test Site	AC1	Test Date	2020/03/01					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	36					
Remark:	1. Average measurement was not	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.							

3. Radiated Spurious Emission Measurement Test Result

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7579.0	33.5	11.8	45.3	54.0	-8.7	Peak	Horizontal
	8165.5	32.5	12.3	44.8	54.0	-9.2	Peak	Horizontal
*	8820.0	31.5	13.3	44.8	68.2	-23.4	Peak	Horizontal
*	10248.0	34.2	16.1	50.3	68.2	-17.9	Peak	Horizontal
	7570.5	32.8	11.8	44.6	54.0	-9.4	Peak	Vertical
	8361.0	32.4	12.4	44.8	54.0	-9.2	Peak	Vertical
*	8879.5	31.2	13.5	44.7	68.2	-23.5	Peak	Vertical
*	9993.0	31.5	15.2	46.7	68.2	-21.5	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C					
Test Engineer	Kervin Ker	Relative Humidity	57 %					
Test Site	AC1	Test Date	2020/03/01					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	44					
Remark:	1. Average measurement was not	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7664.0	33.5	11.9	45.4	54.0	-8.6	Peak	Horizontal
	8310.0	31.7	12.4	44.1	54.0	-9.9	Peak	Horizontal
*	8930.5	31.6	13.6	45.2	68.2	-23.0	Peak	Horizontal
*	10078.0	30.9	15.5	46.4	68.2	-21.8	Peak	Horizontal
	7536.5	33.4	11.8	45.2	54.0	-8.8	Peak	Vertical
	8284.5	32.8	12.4	45.2	54.0	-8.8	Peak	Vertical
*	8811.5	31.5	13.3	44.8	68.2	-23.4	Peak	Vertical
*	9891.0	33.0	14.9	47.9	68.2	-20.3	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C					
Test Engineer	Kervin Ker	Relative Humidity	57 %					
Test Site	AC1	Test Date	2020/03/01					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	48					
Remark:	1. Average measurement was not	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7502.5	32.5	11.7	44.2	54.0	-9.8	Peak	Horizontal
	8276.0	32.1	12.4	44.5	54.0	-9.5	Peak	Horizontal
*	8811.5	31.8	13.3	45.1	68.2	-23.1	Peak	Horizontal
*	9704.0	34.4	14.3	48.7	68.2	-19.5	Peak	Horizontal
	7545.0	32.4	11.8	44.2	54.0	-9.8	Peak	Vertical
	8233.5	33.5	12.3	45.8	54.0	-8.2	Peak	Vertical
*	8811.5	31.9	13.3	45.2	68.2	-23.0	Peak	Vertical
*	9993.0	32.4	15.2	47.6	68.2	-20.6	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/M⊦	Hz. At a distand	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C					
Test Engineer	Kervin Ker	Relative Humidity	57 %					
Test Site	AC1	Test Date	2019/12/12					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	52					
Remark:	1. Average measurement was not	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7655.5	33.4	11.9	45.3	54.0	-8.7	Peak	Horizontal
	8267.5	32.8	12.4	45.2	54.0	-8.8	Peak	Horizontal
*	8718.0	32.3	13.0	45.3	68.2	-22.9	Peak	Horizontal
*	9678.5	33.8	14.2	48.0	68.2	-20.2	Peak	Horizontal
	7698.0	31.3	11.9	43.2	54.0	-10.8	Peak	Vertical
	8386.5	31.9	12.4	44.3	54.0	-9.7	Peak	Vertical
*	8896.5	31.2	13.5	44.7	68.2	-23.5	Peak	Vertical
*	10027.0	31.7	15.3	47.0	68.2	-21.2	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/M⊦	Iz. At a distand	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C					
Test Engineer	Kervin Ker	Relative Humidity	57 %					
Test Site	AC1	Test Date	2019/12/12					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	60					
Remark:	1. Average measurement was not	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7570.5	32.5	11.8	44.3	54.0	-9.7	Peak	Horizontal
	8310.0	32.1	12.4	44.5	54.0	-9.5	Peak	Horizontal
*	8811.5	31.9	13.3	45.2	68.2	-23.0	Peak	Horizontal
*	9687.0	34.6	14.2	48.8	68.2	-19.4	Peak	Horizontal
	7664.0	33.0	11.9	44.9	54.0	-9.1	Peak	Vertical
	8378.0	32.0	12.4	44.4	54.0	-9.6	Peak	Vertical
*	8871.0	32.5	13.4	45.9	68.2	-22.3	Peak	Vertical
*	10231.0	33.6	16.0	49.6	68.2	-18.6	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/M⊦	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C				
Test Engineer	Kervin Ker	Relative Humidity	57 %				
Test Site	AC1	Test Date	2019/12/12				
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	64				
Remark:	1. Average measurement was not	performed if peak lev	el lower than average				
	limit.						
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7477.0	33.6	11.7	45.3	54.0	-8.7	Peak	Horizontal
	8233.5	33.7	12.3	46.0	54.0	-8.0	Peak	Horizontal
*	8692.5	32.2	13.0	45.2	68.2	-23.0	Peak	Horizontal
*	10078.0	32.5	15.5	48.0	68.2	-20.2	Peak	Horizontal
	7604.5	33.9	11.8	45.7	54.0	-8.3	Peak	Vertical
	8276.0	32.7	12.4	45.1	54.0	-8.9	Peak	Vertical
*	8786.0	32.2	13.2	45.4	68.2	-22.8	Peak	Vertical
*	9746.5	34.2	14.4	48.6	68.2	-19.6	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C			
Test Engineer	Kervin Ker	Relative Humidity	57 %			
Test Site	AC1	Test Date	2019/12/12			
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	100			
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average			
	limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in					
	the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7545.0	33.8	11.8	45.6	54.0	-8.4	Peak	Horizontal
	8403.5	33.0	12.4	45.4	54.0	-8.6	Peak	Horizontal
*	8811.5	31.7	13.3	45.0	68.2	-23.2	Peak	Horizontal
*	9899.5	31.7	14.9	46.6	68.2	-21.6	Peak	Horizontal
	7698.0	31.2	11.9	43.1	54.0	-10.9	Peak	Vertical
	8310.0	32.2	12.4	44.6	54.0	-9.4	Peak	Vertical
*	8760.5	32.9	13.1	46.0	68.2	-22.2	Peak	Vertical
*	9823.0	33.6	14.7	48.3	68.2	-19.9	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C			
Test Engineer	Kervin Ker	Relative Humidity	57 %			
Test Site	AC1	Test Date	2019/12/12			
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	120			
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average			
	limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in					
	the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7536.5	33.6	11.8	45.4	54.0	-8.6	Peak	Horizontal
	8233.5	33.4	12.3	45.7	54.0	-8.3	Peak	Horizontal
*	8735.0	32.4	13.1	45.5	68.2	-22.7	Peak	Horizontal
*	9746.5	34.3	14.4	48.7	68.2	-19.5	Peak	Horizontal
	7451.5	32.7	11.6	44.3	54.0	-9.7	Peak	Vertical
	8208.0	33.3	12.3	45.6	54.0	-8.4	Peak	Vertical
*	8735.0	33.2	13.1	46.3	68.2	-21.9	Peak	Vertical
*	10341.5	32.2	16.4	48.6	68.2	-19.6	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	eters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C				
Test Engineer	Kervin Ker	Relative Humidity	57 %				
Test Site	AC1	Test Date	2019/12/12				
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	140				
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average				
	limit.	limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in						
	the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7536.5	33.4	11.8	45.2	54.0	-8.8	Peak	Horizontal
	8259.0	33.2	12.3	45.5	54.0	-8.5	Peak	Horizontal
*	8820.0	31.8	13.3	45.1	68.2	-23.1	Peak	Horizontal
*	9840.0	34.0	14.7	48.7	68.2	-19.5	Peak	Horizontal
	7502.5	33.3	11.7	45.0	54.0	-9.0	Peak	Vertical
	8242.0	33.6	12.3	45.9	54.0	-8.1	Peak	Vertical
*	8667.0	33.5	12.9	46.4	68.2	-21.8	Peak	Vertical
*	10137.5	32.9	15.7	48.6	68.2	-19.6	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C			
Test Engineer	Kervin Ker	Relative Humidity	57 %			
Test Site	AC1	Test Date	2019/12/12			
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	144			
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average			
	limit.					
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in					
	the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7672.5	33.7	11.9	45.6	54.0	-8.4	Peak	Horizontal
	8276.0	32.7	12.4	45.1	54.0	-8.9	Peak	Horizontal
*	8811.5	32.5	13.3	45.8	68.2	-22.4	Peak	Horizontal
*	10214.0	33.3	15.9	49.2	68.2	-19.0	Peak	Horizontal
	7630.0	33.3	11.8	45.1	54.0	-8.9	Peak	Vertical
	8335.5	31.9	12.4	44.3	54.0	-9.7	Peak	Vertical
*	8837.0	31.9	13.3	45.2	68.2	-23.0	Peak	Vertical
*	9763.5	34.0	14.5	48.5	68.2	-19.7	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C				
Test Engineer	Kervin Ker	Relative Humidity	57 %				
Test Site	AC1	Test Date	2020/03/01				
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	149				
Remark:	1. Average measurement was not	performed if peak lev	vel lower than average				
	limit.						
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7468.5	33.0	11.6	44.6	54.0	-9.4	Peak	Horizontal
	8310.0	31.5	12.4	43.9	54.0	-10.1	Peak	Horizontal
*	8828.5	31.2	13.3	44.5	68.2	-23.7	Peak	Horizontal
*	10273.5	33.4	16.1	49.5	68.2	-18.7	Peak	Horizontal
	7638.5	32.0	11.9	43.9	54.0	-10.1	Peak	Vertical
	8216.5	32.9	12.3	45.2	54.0	-8.8	Peak	Vertical
*	8735.0	32.8	13.1	45.9	68.2	-22.3	Peak	Vertical
*	9695.5	33.7	14.3	48.0	68.2	-20.2	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C		
Test Engineer	Kervin Ker	Relative Humidity	57 %		
Test Site	AC1	Test Date	2020/03/01		
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	157		
Remark:	1. Average measurement was not performed if peak level lower than average				
	limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show				
	in the report.				

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7485.5	32.3	11.7	44.0	54.0	-10.0	Peak	Horizontal
	8182.5	33.0	12.3	45.3	54.0	-8.7	Peak	Horizontal
*	8726.5	33.2	13.1	46.3	68.2	-21.9	Peak	Horizontal
*	9704.0	33.4	14.3	47.7	68.2	-20.5	Peak	Horizontal
	7570.5	33.5	11.8	45.3	54.0	-8.7	Peak	Vertical
	8259.0	33.8	12.3	46.1	54.0	-7.9	Peak	Vertical
*	8735.0	32.6	13.1	45.7	68.2	-22.5	Peak	Vertical
*	9891.0	32.8	14.9	47.7	68.2	-20.5	Peak	Vertical
Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength								

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	26°C		
Test Engineer	Kervin Ker	Relative Humidity	57 %		
Test Site	AC1	Test Date	2020/03/01		
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	165		
Remark:	1. Average measurement was not performed if peak level lower than average				
	limit.				
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show				
	in the report.				

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7562.0	33.9	11.8	45.7	54.0	-8.3	Peak	Horizontal
	8327.0	32.9	12.4	45.3	54.0	-8.7	Peak	Horizontal
*	8752.0	32.3	13.1	45.4	68.2	-22.8	Peak	Horizontal
*	9814.5	33.7	14.7	48.4	68.2	-19.8	Peak	Horizontal
	7604.5	32.8	11.8	44.6	54.0	-9.4	Peak	Vertical
	8327.0	31.9	12.4	44.3	54.0	-9.7	Peak	Vertical
*	8735.0	32.9	13.1	46.0	68.2	-22.2	Peak	Vertical
*	9746.5	34.8	14.4	49.2	68.2	-19.0	Peak	Vertical
Note 1:	Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength							

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)