

Page Number: 52 of 704

802.11ac-VHT160 Power Spectral Density - Ant 3 / Ant 0 + 1 (Ant 0 + 1 + 2 + 3)									
Channel 50 (5250MHz)	Channel 114 (5570MHz)								
Spectrum Analyzer 1 Spectrum	Conter 5,5700 GHz Rescaled Received Received								

802.11ax-HE160 Power Spectral Density - Ant 3 / Ant 0 + 1 + 2 + 3										
Channel 50 (5250MHz)		Cha	annel 114 (5570M	/IHz)						
Spectrum Analyzer 1 Image Audio Made 10 dB Photo Fact Arg Type Prove (EASI) 2.3 4 5 0 Sector L Image Audio Image Audio Image Audio Photo Fact Arg Type Prove (EASI) 2.3 4 5 0 Sector Image Audio Image Audio Photo Fact Arg Type Prove (EASI) 2.3 4 5 0 Sector Image Audio Image Audio Photo Fact Arg Type Prove (EASI) 2.3 4 5 0 Sector Image Audio Image Audio <t< th=""><th>Marker Entry ett Marker Entry ett Marker Entry wher Frequency Seatch Normal Possich Dela (A) Properies Field Marker Off Integration Racker Off Marker Seating Curter Off Marker Seating Curter</th><th>Spectrum Analyzer 1 Verget 2A KEYSIGHT mode fre Approximation of the spectrum of the spectr</th><th>Wildon 20 00 PNO Fast Cade of Apple Prove Character (Cade of the Apple Prove Character (Cade of the Character) (Cade of the Character) Toy Free Tan I Level 17 20 db I Level 10 db I Level</th><th>Konster Konster K</th><th>v Search tings Search thig perties tker cklon tker → anter</th></t<>	Marker Entry ett Marker Entry ett Marker Entry wher Frequency Seatch Normal Possich Dela (A) Properies Field Marker Off Integration Racker Off Marker Seating Curter Off Marker Seating Curter	Spectrum Analyzer 1 Verget 2A KEYSIGHT mode fre Approximation of the spectrum of the spectr	Wildon 20 00 PNO Fast Cade of Apple Prove Character (Cade of the Apple Prove Character (Cade of the Character) (Cade of the Character) Toy Free Tan I Level 17 20 db I Level 10 db I Level	Konster K	v Search tings Search thig perties tker cklon tker → anter					
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	On Off	Conter 5.5/00 GHZ A #Res BW 1.0 MHz Jan 13, 2020 Image: Conter 5.5/00 GHZ A Image: Conter 5.5/00 GHZ Jan 13, 2020	Sweep 1.0	7 ms (2001 pts) General Scarch Off						

3. Radiated Spurious Emission Measurement Test Result

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	36					
Remark:	1. Average measurement was not p	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.							

Antenna Model: ANT-2x2-5005

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7528.0	33.0	11.7	44.7	54.0	-9.3	Peak	Horizontal
	8233.5	32.8	12.3	45.1	54.0	-8.9	Peak	Horizontal
*	9772.0	33.5	14.5	48.0	68.2	-20.2	Peak	Horizontal
*	10367.0	31.6	16.4	48.0	68.2	-20.2	Peak	Horizontal
	7604.5	32.5	11.8	44.3	54.0	-9.7	Peak	Vertical
	8242.0	32.9	12.3	45.2	54.0	-8.8	Peak	Vertical
*	9721.0	33.1	14.3	47.4	68.2	-20.8	Peak	Vertical
*	10214.0	33.1	15.9	49.0	68.2	-19.2	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions. Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	44					
Remark:	1. Average measurement was not	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7536.5	33.0	11.8	44.8	54.0	-9.2	Peak	Horizontal
	8191.0	31.6	12.3	43.9	54.0	-10.1	Peak	Horizontal
*	9729.5	32.4	14.4	46.8	68.2	-21.4	Peak	Horizontal
*	10282.0	31.6	16.2	47.8	68.2	-20.4	Peak	Horizontal
	7375.0	32.7	11.4	44.1	54.0	-9.9	Peak	Vertical
	8259.0	33.0	12.3	45.3	54.0	-8.7	Peak	Vertical
*	9755.0	32.8	14.5	47.3	68.2	-20.9	Peak	Vertical
*	10350.0	31.9	16.4	48.3	68.2	-19.9	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Iz. At a distand	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	48					
Remark:	1. Average measurement was not	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7570.5	34.5	11.8	46.3	54.0	-7.7	Peak	Horizontal
	8165.5	32.9	12.3	45.2	54.0	-8.8	Peak	Horizontal
*	9695.5	33.4	14.3	47.7	68.2	-20.5	Peak	Horizontal
*	10222.5	31.7	16.0	47.7	68.2	-20.5	Peak	Horizontal
	7349.5	32.1	11.4	43.5	54.0	-10.5	Peak	Vertical
	8140.0	31.9	12.3	44.2	54.0	-9.8	Peak	Vertical
*	9729.5	32.0	14.4	46.4	68.2	-21.8	Peak	Vertical
*	10273.5	31.6	16.1	47.7	68.2	-20.5	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	52					
Remark:	1. Average measurement was not	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7332.5	32.3	11.3	43.6	54.0	-10.4	Peak	Horizontal
	8276.0	32.6	12.4	45.0	54.0	-9.0	Peak	Horizontal
*	9704.0	33.2	14.3	47.5	68.2	-20.7	Peak	Horizontal
*	10299.0	32.1	16.2	48.3	68.2	-19.9	Peak	Horizontal
	7621.5	33.1	11.8	44.9	54.0	-9.1	Peak	Vertical
	8352.5	31.4	12.4	43.8	54.0	-10.2	Peak	Vertical
*	9899.5	31.7	14.9	46.6	68.2	-21.6	Peak	Vertical
*	10265.0	32.1	16.1	48.2	68.2	-20.0	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Hz. At a distand	e of 3 me	eters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	60					
Remark:	1. Average measurement was not	performed if peak lev	vel lower than average					
	limit.							
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show							
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7511.0	33.2	11.7	44.9	54.0	-9.1	Peak	Horizontal
	8208.0	32.7	12.3	45.0	54.0	-9.0	Peak	Horizontal
*	9636.0	32.7	14.1	46.8	68.2	-21.4	Peak	Horizontal
*	10171.5	31.8	15.8	47.6	68.2	-20.6	Peak	Horizontal
	7434.5	33.3	11.6	44.9	54.0	-9.1	Peak	Vertical
	8199.5	32.5	12.3	44.8	54.0	-9.2	Peak	Vertical
*	9636.0	32.8	14.1	46.9	68.2	-21.3	Peak	Vertical
*	10120.5	32.0	15.6	47.6	68.2	-20.6	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C				
Test Engineer	Kervin Ker	Relative Humidity	56 %				
Test Site	AC1	Test Date	2020/01/13				
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	64				
Remark:	1. Average measurement was not	performed if peak lev	el lower than average				
	limit.						
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7596.0	33.1	11.8	44.9	54.0	-9.1	Peak	Horizontal
	8097.5	32.8	12.3	45.1	54.0	-8.9	Peak	Horizontal
*	8522.5	32.6	12.5	45.1	68.2	-23.1	Peak	Horizontal
*	10214.0	32.1	15.9	48.0	68.2	-20.2	Peak	Horizontal
	7613.0	32.7	11.8	44.5	54.0	-9.5	Peak	Vertical
	8310.0	31.4	12.4	43.8	54.0	-10.2	Peak	Vertical
*	9721.0	33.7	14.3	48.0	68.2	-20.2	Peak	Vertical
*	10265.0	32.2	16.1	48.3	68.2	-19.9	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/M⊦	Iz. At a distanc	e of 3 me	eters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C				
Test Engineer	Kervin Ker	Relative Humidity	56 %				
Test Site	AC1	Test Date	2020/01/13				
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	100				
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average				
	limit.						
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in					
	the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7553.5	32.7	11.8	44.5	54.0	-9.5	Peak	Horizontal
	8284.5	31.8	12.4	44.2	54.0	-9.8	Peak	Horizontal
*	9695.5	32.9	14.3	47.2	68.2	-21.0	Peak	Horizontal
*	10307.5	32.5	16.3	48.8	68.2	-19.4	Peak	Horizontal
	7400.5	31.5	11.5	43.0	54.0	-11.0	Peak	Vertical
	8242.0	32.8	12.3	45.1	54.0	-8.9	Peak	Vertical
*	9746.5	34.2	14.4	48.6	68.2	-19.6	Peak	Vertical
*	10273.5	32.2	16.1	48.3	68.2	-19.9	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C				
Test Engineer	Kervin Ker	Relative Humidity	56 %				
Test Site	AC1	Test Date	2020/01/13				
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	120				
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average				
	limit.						
	2. Other frequency was 20dB below	. Other frequency was 20dB below limit line within 1-18GHz, there is not show					
	the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7468.5	32.7	11.6	44.3	54.0	-9.7	Peak	Horizontal
	8114.5	33.7	12.3	46.0	54.0	-8.0	Peak	Horizontal
*	9687.0	32.1	14.2	46.3	68.2	-21.9	Peak	Horizontal
*	10273.5	31.3	16.1	47.4	68.2	-20.8	Peak	Horizontal
	7375.0	32.8	11.4	44.2	54.0	-9.8	Peak	Vertical
	8488.5	33.3	12.5	45.8	54.0	-8.2	Peak	Vertical
*	9661.5	32.2	14.2	46.4	68.2	-21.8	Peak	Vertical
*	10188.5	31.1	15.9	47.0	68.2	-21.2	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/M⊦	Iz. At a distand	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C				
Test Engineer	Kervin Ker	Relative Humidity	56 %				
Test Site	AC1	Test Date	2020/01/13				
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	140				
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average				
	limit.						
	2. Other frequency was 20dB below	. Other frequency was 20dB below limit line within 1-18GHz, there is not show i					
	the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7587.5	32.0	11.8	43.8	54.0	-10.2	Peak	Horizontal
	8199.5	32.2	12.3	44.5	54.0	-9.5	Peak	Horizontal
*	10120.5	31.6	15.6	47.2	68.2	-21.0	Peak	Horizontal
*	10350.0	32.1	16.4	48.5	68.2	-19.7	Peak	Horizontal
	7553.5	34.0	11.8	45.8	54.0	-8.2	Peak	Vertical
	8250.5	33.3	12.3	45.6	54.0	-8.4	Peak	Vertical
*	9687.0	33.3	14.2	47.5	68.2	-20.7	Peak	Vertical
*	10460.5	32.1	16.7	48.8	68.2	-19.4	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C				
Test Engineer	Kervin Ker	Relative Humidity	56 %				
Test Site	AC1	Test Date	2020/01/13				
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	144				
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average				
	limit.						
	2. Other frequency was 20dB below	. Other frequency was 20dB below limit line within 1-18GHz, there is not show i					
	the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7570.5	32.9	11.8	44.7	54.0	-9.3	Peak	Horizontal
	8225.0	32.6	12.3	44.9	54.0	-9.1	Peak	Horizontal
*	9661.5	32.4	14.2	46.6	68.2	-21.6	Peak	Horizontal
*	10205.5	30.9	15.9	46.8	68.2	-21.4	Peak	Horizontal
	7587.5	33.6	11.8	45.4	54.0	-8.6	Peak	Vertical
	8225.0	32.6	12.3	44.9	54.0	-9.1	Peak	Vertical
*	9831.5	32.7	14.7	47.4	68.2	-20.8	Peak	Vertical
*	10188.5	31.8	15.9	47.7	68.2	-20.5	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	g a "conversi	ion" factor of 9	5.2dB to t	he EIRP l	imit of

-27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C				
Test Engineer	Kervin Ker	Relative Humidity	56 %				
Test Site	AC1	Test Date	2020/01/13				
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	149				
Remark:	1. Average measurement was not	performed if peak lev	vel lower than average				
	limit.						
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7604.5	31.5	11.8	43.3	54.0	-10.7	Peak	Horizontal
	8131.5	31.1	12.3	43.4	54.0	-10.6	Peak	Horizontal
*	9814.5	31.7	14.7	46.4	68.2	-21.8	Peak	Horizontal
*	10316.0	32.0	16.3	48.3	68.2	-19.9	Peak	Horizontal
	7519.5	32.8	11.7	44.5	54.0	-9.5	Peak	Vertical
	8225.0	34.5	12.3	46.8	54.0	-7.2	Peak	Vertical
*	9814.5	32.2	14.7	46.9	68.2	-21.3	Peak	Vertical
*	10282.0	32.5	16.2	48.7	68.2	-19.5	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	157					
Remark:	1. Average measurement was not	performed if peak lev	vel lower than average					
	limit.							
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7638.5	32.3	11.9	44.2	54.0	-9.8	Peak	Horizontal
	8250.5	32.6	12.3	44.9	54.0	-9.1	Peak	Horizontal
*	9823.0	32.2	14.7	46.9	68.2	-21.3	Peak	Horizontal
*	10129.0	31.3	15.7	47.0	68.2	-21.2	Peak	Horizontal
	7502.5	32.1	11.7	43.8	54.0	-10.2	Peak	Vertical
	8310.0	33.0	12.4	45.4	54.0	-8.6	Peak	Vertical
*	9551.0	33.1	13.8	46.9	68.2	-21.3	Peak	Vertical
*	10112.0	31.9	15.6	47.5	68.2	-20.7	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Iz. At a distand	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C				
Test Engineer	Kervin Ker	Relative Humidity	56 %				
Test Site	AC1	Test Date	2020/01/13				
Test Mode:	802.11a - Ant 0 + 1 + 2 + 3	Test Channel:	165				
Remark:	1. Average measurement was not	performed if peak lev	el lower than average				
	limit.						
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.						

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization	
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)			
		(dBµV)		(dBµV/m)					
	7502.5	32.0	11.7	43.7	54.0	-10.3	Peak	Horizontal	
	8267.5	32.8	12.4	45.2	54.0	-8.8	Peak	Horizontal	
*	9687.0	32.9	14.2	47.1	68.2	-21.1	Peak	Horizontal	
*	10214.0	32.3	15.9	48.2	68.2	-20.0	Peak	Horizontal	
	7451.5	33.3	11.6	44.9	54.0	-9.1	Peak	Vertical	
	8089.0	32.2	12.3	44.5	54.0	-9.5	Peak	Vertical	
*	9899.5	31.9	14.9	46.8	68.2	-21.4	Peak	Vertical	
*	10316.0	31.2	16.3	47.5	68.2	-20.7	Peak	Vertical	
Note 1:	Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength								
limit in c	dBµV/m can b	e determined	d by adding	g a "conversio	on" factor of 95	.2dB to t	he EIRP I	imit of	

-27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	36					
Remark:	1. Average measurement was not p	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below	. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7536.5	33.1	11.8	44.9	54.0	-9.1	Peak	Horizontal
	8242.0	33.1	12.3	45.4	54.0	-8.6	Peak	Horizontal
*	9993.0	32.2	15.2	47.4	68.2	-20.8	Peak	Horizontal
*	10299.0	32.2	16.2	48.4	68.2	-19.8	Peak	Horizontal
	7434.5	31.9	11.6	43.5	54.0	-10.5	Peak	Vertical
	8233.5	33.0	12.3	45.3	54.0	-8.7	Peak	Vertical
*	9763.5	33.3	14.5	47.8	68.2	-20.4	Peak	Vertical
*	10324.5	32.0	16.3	48.3	68.2	-19.9	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distand	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C
Test Engineer	Kervin Ker	Relative Humidity	56 %
Test Site	AC1	Test Date	2020/01/13
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	44
Remark:	1. Average measurement was not p	performed if peak lev	el lower than average
	limit.		
	2. Other frequency was 20dB below	v limit line within 1-1	8GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7604.5	31.7	11.8	43.5	54.0	-10.5	Peak	Horizontal
	8293.0	32.8	12.4	45.2	54.0	-8.8	Peak	Horizontal
*	9772.0	32.8	14.5	47.3	68.2	-20.9	Peak	Horizontal
*	10443.5	31.0	16.7	47.7	68.2	-20.5	Peak	Horizontal
	7681.0	32.6	11.9	44.5	54.0	-9.5	Peak	Vertical
	8497.0	32.2	12.5	44.7	54.0	-9.3	Peak	Vertical
*	9695.5	32.3	14.3	46.6	68.2	-21.6	Peak	Vertical
*	10265.0	32.3	16.1	48.4	68.2	-19.8	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Iz. At a distand	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C
Test Engineer	Kervin Ker	Relative Humidity	56 %
Test Site	AC1	Test Date	2020/01/13
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	48
Remark:	1. Average measurement was not p	erformed if peak lev	el lower than average
	limit.		
	2. Other frequency was 20dB below	/ limit line within 1-1	8GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7426.0	33.0	11.5	44.5	54.0	-9.5	Peak	Horizontal
	8242.0	32.6	12.3	44.9	54.0	-9.1	Peak	Horizontal
*	9704.0	32.9	14.3	47.2	68.2	-21.0	Peak	Horizontal
*	10214.0	31.9	15.9	47.8	68.2	-20.4	Peak	Horizontal
	7545.0	32.2	11.8	44.0	54.0	-10.0	Peak	Vertical
	8259.0	33.1	12.3	45.4	54.0	-8.6	Peak	Vertical
*	9636.0	33.9	14.1	48.0	68.2	-20.2	Peak	Vertical
*	10248.0	32.7	16.1	48.8	68.2	-19.4	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C
Test Engineer	Kervin Ker	Relative Humidity	56 %
Test Site	AC1	Test Date	2020/01/13
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	52
Remark:	1. Average measurement was not p	performed if peak lev	el lower than average
	limit.		
	2. Other frequency was 20dB below	v limit line within 1-1	8GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7672.5	32.2	11.9	44.1	54.0	-9.9	Peak	Horizontal
	8233.5	33.0	12.3	45.3	54.0	-8.7	Peak	Horizontal
*	9772.0	32.2	14.5	46.7	68.2	-21.5	Peak	Horizontal
*	10316.0	32.0	16.3	48.3	68.2	-19.9	Peak	Horizontal
	7528.0	32.2	11.7	43.9	54.0	-10.1	Peak	Vertical
	8140.0	32.5	12.3	44.8	54.0	-9.2	Peak	Vertical
*	8505.5	33.0	12.5	45.5	68.2	-22.7	Peak	Vertical
*	9899.5	31.9	14.9	46.8	68.2	-21.4	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distand	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C
Test Engineer	Kervin Ker	Relative Humidity	56 %
Test Site	AC1	Test Date	2020/01/13
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	60
Remark:	1. Average measurement was not p	erformed if peak lev	vel lower than average
	limit.		
	2. Other frequency was 20dB below	/ limit line within 1-1	8GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7570.5	31.9	11.8	43.7	54.0	-10.3	Peak	Horizontal
	8242.0	32.6	12.3	44.9	54.0	-9.1	Peak	Horizontal
*	9695.5	31.6	14.3	45.9	68.2	-22.3	Peak	Horizontal
*	10171.5	31.3	15.8	47.1	68.2	-21.1	Peak	Horizontal
	7638.5	31.7	11.9	43.6	54.0	-10.4	Peak	Vertical
	8250.5	32.2	12.3	44.5	54.0	-9.5	Peak	Vertical
*	9993.0	31.6	15.2	46.8	68.2	-21.4	Peak	Vertical
*	10511.5	31.4	16.9	48.3	68.2	-19.9	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C
Test Engineer	Kervin Ker	Relative Humidity	56 %
Test Site	AC1	Test Date	2020/01/13
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	64
Remark:	1. Average measurement was not p	performed if peak lev	el lower than average
	limit.		
	2. Other frequency was 20dB below	v limit line within 1-1	8GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization	
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)			
		(dBµV)		(dBµV/m)					
	7502.5	32.5	11.7	44.2	54.0	-9.8	Peak	Horizontal	
	8250.5	34.0	12.3	46.3	54.0	-7.7	Peak	Horizontal	
*	9721.0	32.4	14.3	46.7	68.2	-21.5	Peak	Horizontal	
*	10265.0	32.0	16.1	48.1	68.2	-20.1	Peak	Horizontal	
	7502.5	31.9	11.7	43.6	54.0	-10.4	Peak	Vertical	
	8352.5	32.6	12.4	45.0	54.0	-9.0	Peak	Vertical	
*	10069.5	31.2	15.5	46.7	68.2	-21.5	Peak	Vertical	
*	10562.5	31.8	17.0	48.8	68.2	-19.4	Peak	Vertical	
Note 1	Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength								
limit in	dBµV/m can	be determine	d by addin	ig a "convers	ion" factor of 9	5.2dB to t	he EIRP I	imit of	

-27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	100					
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average					
	limit.	limit.						
	2. Other frequency was 20dB below	. Other frequency was 20dB below limit line within 1-18GHz, there is not show in						
	the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7434.5	32.2	11.6	43.8	54.0	-10.2	Peak	Horizontal
	8242.0	32.5	12.3	44.8	54.0	-9.2	Peak	Horizontal
*	9984.5	32.1	15.2	47.3	68.2	-20.9	Peak	Horizontal
*	10341.5	30.7	16.4	47.1	68.2	-21.1	Peak	Horizontal
	7443.0	33.1	11.6	44.7	54.0	-9.3	Peak	Vertical
	8174.0	32.6	12.3	44.9	54.0	-9.1	Peak	Vertical
*	9950.5	31.5	15.1	46.6	68.2	-21.6	Peak	Vertical
*	10350.0	31.1	16.4	47.5	68.2	-20.7	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/M⊦	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	120					
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average					
	limit.							
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show i						
	the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7570.5	32.5	11.8	44.3	54.0	-9.7	Peak	Horizontal
	8233.5	34.0	12.3	46.3	54.0	-7.7	Peak	Horizontal
*	9755.0	33.8	14.5	48.3	68.2	-19.9	Peak	Horizontal
*	10358.5	32.0	16.4	48.4	68.2	-19.8	Peak	Horizontal
	7528.0	33.9	11.7	45.6	54.0	-8.4	Peak	Vertical
	8157.0	31.6	12.3	43.9	54.0	-10.1	Peak	Vertical
*	9729.5	32.2	14.4	46.6	68.2	-21.6	Peak	Vertical
*	10358.5	32.0	16.4	48.4	68.2	-19.8	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/Mł	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	140					
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average					
	limit.	limit.						
	2. Other frequency was 20dB below	. Other frequency was 20dB below limit line within 1-18GHz, there is not show in						
	the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7460.0	32.7	11.6	44.3	54.0	-9.7	Peak	Horizontal
	8063.5	32.7	12.3	45.0	54.0	-9.0	Peak	Horizontal
*	9755.0	33.5	14.5	48.0	68.2	-20.2	Peak	Horizontal
*	10307.5	31.1	16.3	47.4	68.2	-20.8	Peak	Horizontal
	7570.5	32.4	11.8	44.2	54.0	-9.8	Peak	Vertical
	8267.5	33.3	12.4	45.7	54.0	-8.3	Peak	Vertical
*	9678.5	32.8	14.2	47.0	68.2	-21.2	Peak	Vertical
*	10214.0	31.8	15.9	47.7	68.2	-20.5	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MH	Iz. At a distand	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	144					
Remark:	1. Average measurement was not p	erformed if peak leve	el lower than average					
	limit.							
	2. Other frequency was 20dB below	. Other frequency was 20dB below limit line within 1-18GHz, there is not show ir						
	the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7468.5	32.8	11.6	44.4	54.0	-9.6	Peak	Horizontal
	8089.0	33.4	12.3	45.7	54.0	-8.3	Peak	Horizontal
*	9636.0	33.0	14.1	47.1	68.2	-21.1	Peak	Horizontal
*	10307.5	32.3	16.3	48.6	68.2	-19.6	Peak	Horizontal
	7536.5	32.8	11.8	44.6	54.0	-9.4	Peak	Vertical
	8097.5	34.3	12.3	46.6	54.0	-7.4	Peak	Vertical
*	9925.0	32.1	15.0	47.1	68.2	-21.1	Peak	Vertical
*	10375.5	32.1	16.5	48.6	68.2	-19.6	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	149					
Remark:	1. Average measurement was not p	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7460.0	33.0	11.6	44.6	54.0	-9.4	Peak	Horizontal
	8250.5	33.1	12.3	45.4	54.0	-8.6	Peak	Horizontal
*	9755.0	33.2	14.5	47.7	68.2	-20.5	Peak	Horizontal
*	10256.5	31.9	16.1	48.0	68.2	-20.2	Peak	Horizontal
	7579.0	33.1	11.8	44.9	54.0	-9.1	Peak	Vertical
	8174.0	32.4	12.3	44.7	54.0	-9.3	Peak	Vertical
*	8522.5	32.3	12.5	44.8	68.2	-23.4	Peak	Vertical
*	10256.5	31.9	16.1	48.0	68.2	-20.2	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C
Test Engineer	Kervin Ker	Relative Humidity	56 %
Test Site	AC1	Test Date	2020/01/13
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	157
Remark:	1. Average measurement was not p	performed if peak lev	el lower than average
	limit.		
	2. Other frequency was 20dB below	v limit line within 1-1	8GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7502.5	31.6	11.7	43.3	54.0	-10.7	Peak	Horizontal
	8242.0	32.4	12.3	44.7	54.0	-9.3	Peak	Horizontal
*	9576.5	33.6	13.9	47.5	68.2	-20.7	Peak	Horizontal
*	10239.5	31.8	16.0	47.8	68.2	-20.4	Peak	Horizontal
	7468.5	32.4	11.6	44.0	54.0	-10.0	Peak	Vertical
	8131.5	33.3	12.3	45.6	54.0	-8.4	Peak	Vertical
*	10061.0	31.3	15.5	46.8	68.2	-21.4	Peak	Vertical
*	10503.0	31.0	16.9	47.9	68.2	-20.3	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/M⊦	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ig a "conversi	ion" factor of 9	5.2dB to t	he EIRP I	imit of

-27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C
Test Engineer	Kervin Ker	Relative Humidity	56 %
Test Site	AC1	Test Date	2020/01/13
Test Mode:	802.11ac-VHT20 - Ant 0 + 1 + 2 + 3	Test Channel:	165
Remark:	1. Average measurement was not p	performed if peak lev	el lower than average
	limit.		
	2. Other frequency was 20dB below	v limit line within 1-1	8GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7468.5	32.4	11.6	44.0	54.0	-10.0	Peak	Horizontal
	8208.0	33.1	12.3	45.4	54.0	-8.6	Peak	Horizontal
*	9721.0	33.4	14.3	47.7	68.2	-20.5	Peak	Horizontal
*	10494.5	31.6	16.8	48.4	68.2	-19.8	Peak	Horizontal
	7638.5	32.1	11.9	44.0	54.0	-10.0	Peak	Vertical
	8259.0	31.9	12.3	44.2	54.0	-9.8	Peak	Vertical
*	10129.0	32.3	15.7	48.0	68.2	-20.2	Peak	Vertical
*	10358.5	32.4	16.4	48.8	68.2	-19.4	Peak	Vertical
Note 1:	"*" is not in re	stricted band	l, its limit is	-27dBm/MH	z. At a distance	e of 3 met	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11ac-VHT40 - Ant 0 + 1 + 2 + 3	Test Channel:	38					
Remark:	1. Average measurement was not p	performed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7502.5	32.2	11.7	43.9	54.0	-10.1	Peak	Horizontal
	8276.0	31.9	12.4	44.3	54.0	-9.7	Peak	Horizontal
*	9721.0	33.3	14.3	47.6	68.2	-20.6	Peak	Horizontal
*	10511.5	33.0	16.9	49.9	68.2	-18.3	Peak	Horizontal
	7604.5	32.4	11.8	44.2	54.0	-9.8	Peak	Vertical
	8242.0	32.9	12.3	45.2	54.0	-8.8	Peak	Vertical
*	9823.0	32.2	14.7	46.9	68.2	-21.3	Peak	Vertical
*	10214.0	31.4	15.9	47.3	68.2	-20.9	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C
Test Engineer	Kervin Ker	Relative Humidity	56 %
Test Site	AC1	Test Date	2020/01/13
Test Mode:	802.11ac-VHT40 - Ant 0 + 1 + 2 + 3	Test Channel:	46
Remark:	1. Average measurement was not p	erformed if peak lev	el lower than average
	limit.		
	2. Other frequency was 20dB below	/ limit line within 1-1	8GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7468.5	32.9	11.6	44.5	54.0	-9.5	Peak	Horizontal
	8259.0	33.0	12.3	45.3	54.0	-8.7	Peak	Horizontal
*	9593.5	34.0	13.9	47.9	68.2	-20.3	Peak	Horizontal
*	10511.5	32.1	16.9	49.0	68.2	-19.2	Peak	Horizontal
	7502.5	32.6	11.7	44.3	54.0	-9.7	Peak	Vertical
	8191.0	33.5	12.3	45.8	54.0	-8.2	Peak	Vertical
*	9840.0	32.0	14.7	46.7	68.2	-21.5	Peak	Vertical
*	10503.0	31.9	16.9	48.8	68.2	-19.4	Peak	Vertical
Note 1	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MI	Iz. At a distanc	e of 3 me	eters, the f	ield strength

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C					
Test Engineer	Kervin Ker	Relative Humidity	56 %					
Test Site	AC1	Test Date	2020/01/13					
Test Mode:	802.11ac-VHT40 - Ant 0 + 1 + 2 + 3	Test Channel:	54					
Remark:	1. Average measurement was not p	erformed if peak lev	el lower than average					
	limit.							
	2. Other frequency was 20dB below	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.							

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	7400.5	32.4	11.5	43.9	54.0	-10.1	Peak	Horizontal
	8471.5	33.4	12.4	45.8	54.0	-8.2	Peak	Horizontal
*	9670.0	33.1	14.2	47.3	68.2	-20.9	Peak	Horizontal
*	10214.0	32.0	15.9	47.9	68.2	-20.3	Peak	Horizontal
	7681.0	33.2	11.9	45.1	54.0	-8.9	Peak	Vertical
	8480.0	33.5	12.4	45.9	54.0	-8.1	Peak	Vertical
*	10171.5	31.5	15.8	47.3	68.2	-20.9	Peak	Vertical
*	10571.0	32.1	17.0	49.1	68.2	-19.1	Peak	Vertical
Note 1:	: "*" is not in r	estricted ban	d, its limit i	s -27dBm/MF	Iz. At a distanc	e of 3 me	ters, the f	ield strength
limit in	dBµV/m can	be determine	d by addin	ig a "conversi	ion" factor of 9	5.2dB to t	he EIRP I	imit of

-27dBm/MHz to obtain the limit for out of band spurious emissions.

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Product	ACCESS POINT	Temperature	24°C						
Test Engineer	Kervin Ker	Relative Humidity	56 %						
Test Site	AC1	Test Date	2020/01/13						
Test Mode:	802.11ac-VHT40 - Ant 0 + 1 + 2 + 3	Test Channel:	62						
Remark:	1. Average measurement was not performed if peak level lower than average								
	limit.								
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show								
	in the report.								

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization		
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)				
		(dBµV)		(dBµV/m)						
	7426.0	32.7	11.5	44.2	54.0	-9.8	Peak	Horizontal		
	8242.0	33.1	12.3	45.4	54.0	-8.6	Peak	Horizontal		
*	10205.5	32.8	15.9	48.7	68.2	-19.5	Peak	Horizontal		
*	10460.5	31.3	16.7	48.0	68.2	-20.2	Peak	Horizontal		
	7400.5	32.6	11.5	44.1	54.0	-9.9	Peak	Vertical		
	8276.0	32.0	12.4	44.4	54.0	-9.6	Peak	Vertical		
*	9916.5	31.5	15.0	46.5	68.2	-21.7	Peak	Vertical		
*	10460.5	31.3	16.7	48.0	68.2	-20.2	Peak	Vertical		
Note 1:	Note 1: "*" is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength									

Note 2: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)