

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Web: www.mrt-cert.com Report No.:1710TW0108-U1Report Version:V01Issue Date:11-16-2017

MEASUREMENT REPORT

FCC PART 15 Subpart C WLAN 802.11b/g/n

- FCC ID: Q9DAPEX037457
- **APPLICANT:** Hewlett Packard Enterprise Company
- Application Type: Certification
- Product: ACCESS POINT
- Model No.:
 APEX0374, APEX0375, APEX0377
- Brand Name:
- a Hewlett Packard Enterprise company

aruba

- **FCC Classification:** Digital Transmission System (DTS)
- FCC Rule Part(s): Part15 Subpart C (Section 15.247)
- Test Procedure(s):
 ANSI C63.10-2013, KDB 558074 D01v04

 KDB 662911 D01v02r01

Test Date: August 05 ~ November 15, 2017

Reviewed By

Approved By

Paddy Chen (Paddy Chen) (Chenz Ker)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 D01v04. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1710TW0108-U1	Rev. 01	Initial report	11-16-2017	Valid

CONTENTS

scriptio	n Page
1033 Ge	eneral Information5
INTRO	DDUCTION
1.1.	Scope6
1.2.	MRT Test Location
PROD	DUCT INFORMATION
2.1.	Feature of Equipment under Test7
2.2.	Product Specification Subjective to this Report7
2.3.	Working Frequencies for this report8
2.4.	Description of Available Antennas8
2.5.	Description of Antenna RF Port 10
2.6.	Test Mode11
2.7.	Description of Test Software11
2.8.	Device Capabilities
2.9.	Test Configuration
2.10.	EMI Suppression Device(s)/Modifications16
2.11.	Labeling Requirements
DESC	RIPTION of TEST18
3.1.	Evaluation Procedure
3.2.	AC Line Conducted Emissions
3.3.	Radiated Emissions
ANTE	NNA REQUIREMENTS20
TEST	EQUIPMENT CALIBRATION DATE
MEAS	SUREMENT UNCERTAINTY
TEST	RESULT
7.1.	Summary
7.2.	6dB Bandwidth Measurement24
7.2.1.	Test Limit
7.2.2.	Test Procedure used 24
7.2.3.	Test Setting
7.2.4.	Test Setup
7.2.5.	Test Result
7.3.	Output Power Measurement
7.3.1.	Test Limit
	IO33 Ge INTRO 1.1. 1.2. PROE 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.7. 2.8. 2.7. 2.8. 2.7. 2.8. 2.10. 2.11. DESC 3.1. 3.2. 3.3. ANTE TEST MEAS TEST 7.1. 7.2.1. 7.2.1. 7.2.3. 7.2.4. 7.2.5. 7.3.

7.3.2.	Test Procedure Used 2	6
7.3.3.	Test Setting2	6
7.3.4.	Test Setup2	6
7.3.5.	Test Result of Output Power 2	7
7.4.	Power Spectral Density Measurement	8
7.4.1.	Test Limit	8
7.4.2.	Test Procedure Used 2	8
7.4.3.	Test Setting2	8
7.4.4.	Test Setup 2	9
7.4.5.	Test Result2	9
7.5.	Conducted Band Edge and Out-of-Band Emissions	0
7.5.1.	Test Limit	0
7.5.2.	Test Procedure Used	0
7.5.3.	Test Settitng	0
7.5.4.	Test Setup3	1
7.5.5.	Test Result3	1
7.6.	Radiated Spurious Emission Measurement	2
7.6.1.	Test Limit	2
7.6.2.	Test Procedure Used	2
7.6.3.	Test Setting	2
7.6.4.	Test Setup	4
7.6.5.	Test Result	5
7.7.	Radiated Restricted Band Edge Measurement	6
7.7.1.	Test Limit	6
7.7.2.	Test Procedure Used	7
7.7.3.	Test Setting 3	7
7.7.4.	Test Setup 3	8
7.7.5.	Test Result	8
7.8.	AC Conducted Emissions Measurement	9
7.8.1.	Test Limit	9
7.8.2.	Test Setup	9
7.8.3.	Test Result	9
CONC	CLUSION4	0

8.

§2.1033 General Information

Applicant:	Hewlett Packard Enterprise Company	
Applicant Address:	ress: 3000 Hanover St. Palo Alto, CA 94304, USA	
Manufacturer: Hewlett Packard Enterprise Company		
Manufacturer Address:	3000 Hanover St. Palo Alto, CA 94304, USA	
Test Site:	MRT Technology (Taiwan) Co., Ltd	
Test Site Address:	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333,	
	Taiwan (R.O.C)	
MRT FCC Registration No.:	153292	
FCC Rule Part(s):	Part15 Subpart C (Section 15.247)	
Model No.:	APEX0374, APEX0375, APEX0377	
FCC ID: Q9DAPEX037457		
	APEX0374 (Conducted Sample S/N: CNDNK7Z002,	
	Radiated Sample S/N: CNDNK7Z001)	
Test Device Serial No.:	APEX0375 (Conducted Sample S/N: CNDJK8001T,	
	Radiated Sample S/N: CNDJK8001L)	
	APEX0377 (Conducted Sample S/N: CNDJK8001J,	
	Radiated Sample S/N: CNDNK81002)	

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Fuxing Rd., Taoyuan, Taiwan (R.O.C)

- •MRT facility is a FCC registered (Reg. No. 153292) test facility with the site description report on file and is designated by the FCC as an Accredited Test Film.
- MRT facility is an IC registered (MRT Reg. No. 21723-1) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (TAF) under the American Association for Laboratory Accreditation Program (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC, Industry Taiwan, EU and TELEC Rules.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name:	ACCESS POINT
Model No.:	APEX0374, APEX0375, APEX0377
Brand Name:	a Hewlett Packard Enterprise company
Wi-Fi Specification:	802.11a/b/g/n/ac
Bluetooth Specification:	v4.0 single mode
Software Version:	R660.1.1.0.3.005
Operating Temperature:	-40 ~ 65 °C
Power Type:	POE input or AC adapter input
Operating Environment:	Outdoor Use

Note 1: The difference between three models is that the EUT use different antenna and appearance, other hardware and software are the same. Each model has its own power parameter value.

Note 2: The applicant provide one POE adapter (Manufacturer: MICROSEMI & Model:

PD-9001GR/AT/AC) for approval testing, it is not for sale.

2.2. Product Specification Subjective to this Report

Frequency Range:	802.11b/g/n-HT20: 2412 ~ 2462MHz
	802.11n-HT40: 2422 ~ 2452MHz
Channel Number:	802.11b/g/n-HT20: 11
	802.11n-HT40: 7
Type of Modulation:	802.11b: DSSS
	802.11g/n: OFDM
Data Rate:	802.11b: 1/2/5.5/11Mbps
	802.11g: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 300Mbps

Note: For other features of this EUT, test report will be issued separately.

2.3. Working Frequencies for this report

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

Channel List for 802.11b/g/n-HT20

Channel List for 802.11n-HT40

Channel	Frequency	Channel	Frequency	Channel	Frequency
03	2422 MHz	04	2427 MHz	05	2432 MHz
06	2437 MHz	07	2442 MHz	08	2447 MHz
09	2452 MHz				

2.4. Description of Available Antennas

Model No.: APEX0374

Antenna No. Wi-Fi Exter	Polarization nal Antenna Li	Frequency Band (GHz) st (2.4GHz 2*	Model No. 2 MIMO, 5GHz 4*4	Max Peak Gain (dBi) MIMO)	30 Degree Antenna Gain (dBi)	BF Gain (dBi)	CDD Dir Gain For Power	
1 (Note 3)	Omni	2.4	ANT-2x2-2005	5.0	N/A	0	5.0	5.00
2 (Note 3)	Omni	5	ANT-2x2-5005	5.0	0	3.0	5.0	8.01
3 (Note 3)	Directional	2.4	ANT-2x2-2314	14.0	N/A	0	14.0	14.00
4 (Note 3)	Directional	5	ANT-3x3-5712	11.5	1.5	3.0	11.5	14.51
5 (Note 3)	Directional	5	ANT-4x4-5314	14.0	6.0	3.0	14.0	17.01
6 (Note 3)	Directional	5	MT-484052/NVH	16.0	3.0	3.0	16.0	19.01
7 (Note 3)	Directional	2.4	ANT-3x3-D608	7.5	N/A	3.0	7.5	10.51
7 (NOLE 3)	Directional	5	ANT-3X3-D006	7.5	4.5	3.0	7.5	10.51
8 (Note 3)	Directional	2.4	ANT-3x3-D100	5.0	N/A	3.0	5.0	8.01
	Directional	5	AINT-3X3-D100	5.0	4.0	3.0	5.0	8.01
Bluetooth I	Bluetooth Internal Antenna							
P	РСВ		2.4			3.0		

Model No.: APEX0377

Polarization	Frequency Band	Max Peak Gain	30 Degree Antenna Gain	BF Gain (dBi)	CDD Directional Gain (dBi)		
	(GHz)	(dBi)	(dBi)		For Power	For PSD	
Wi-Fi Internal Anter	Wi-Fi Internal Antenna List (2.4GHz 2*2 MIMO, 5GHz 4*4 MIMO)						
Directional (Note 3)	2.4	6.4	N/A	0.0	6.4	6.40	
Directional (Note 3)	5	6.3	6.3	3.0	6.3	9.31	
Bluetooth Internal A	Bluetooth Internal Antenna						
РСВ	2.4	6.7					

Model No.: APEX0375

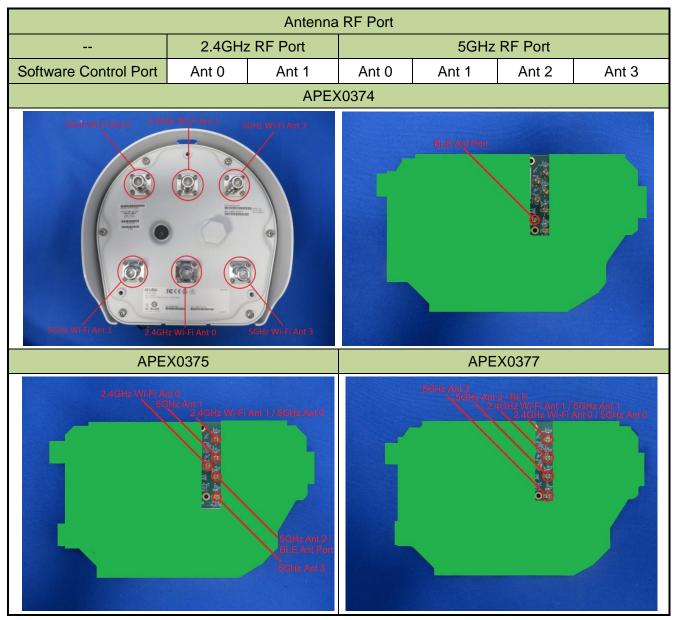
Polarization	Frequency Band	Max Peak Gain	30 Degree Antenna Gain	BF Gain (dBi)	CDD Directional Gain (dBi)		
	(GHz)	(dBi)	(dBi)		For Power	For PSD	
Wi-Fi Internal Anten	Wi-Fi Internal Antenna List (2.4GHz 2*2 MIMO, 5GHz 4*4 MIMO)						
Directional (Note 3)	2.4	4.0	N/A	0.0	4.0	4.00	
Directional (Note 3)	5	4.6	-4.0	3.0	4.6	7.61	
Bluetooth Internal Antenna							
PCB	2.4	4.5					

Note:

1. The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.

For CDD transmissions, directional gain is calculated as follows, $N_{ANT} = 2$, $N_{SS} = 1$.

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.


- For power spectral density (PSD) measurements on all devices, Array Gain = 10 log (N_{ANT}/ N_{SS}) dB = 3.01;
- For power measurements on IEEE 802.11 devices,
 Array Gain = 0 dB for N_{ANT} ≤ 4;
- 2. The EUT also supports Beam Forming mode, and the Beam Forming support 802.11n/ac, not include 802.11a/b/g.

Directional gain = G_{ANT} + BF Gain, BF Gain was declared by the applicant.

- 3. These antennas have Cross-Polarized design, the detail see the antenna specification.
- 4. For Model No.: APEX0374 approval, we selected the max peak gain antenna of each type to perform RF testing. (Omni antenna 1# and 2#, Directional antenna 3# and 6#)

2.5. Description of Antenna RF Port

2.6. Test Mode

Test Mode	Mode 1: Transmit by 802.11b
	Mode 2: Transmit by 802.11g
	Mode 3: Transmit by 802.11n-HT20
	Mode 4: Transmit by 802.11n-HT40

2.4GHz Test Mode	Ant 0 + 1		
	CDD	Beam-Forming	
802.11b		×	
802.11g	\checkmark	×	
802.11n-HT20	\checkmark	\checkmark	
802.11n-HT40			

2.7. Description of Test Software

The test utility software used during testing was "QCARCT", and the version was "v3.0.174.0".

Test	Test	Power	Test	Test	Power Paramete	r Value Ant 0 + 1
Mode		Parameter Value	Mode	Frequency	000	Beam-Forming
	(MHz)	Ant 0 + 1		(MHz)	Mode	Mode
	2442	22.0		2412	19.5	19.5
11b	2412	23.0	11n-HT20	2417	21.5	21.5
	2437	22.5		2437	23.0	23.0
	2462	22.0		2462	23.0	23.0
	2412	20.0		2422	16.0	16.0
11g	2437	22.5	11n-HT40	2437	17.0	17.0
	2462	22.5		2452	17.0	17.0

Power Parameter Value for APEX0374 / Omni Antenna (ANT-2x2-2005):

Test	Test	Power	Test	Test	Power Paramete	r Value Ant 0 + 1		
Mode	Frequency (MHz)	Parameter Value Ant 0 + 1	Mode	Frequency (MHz)	CDD Mode	Beam-Forming Mode		
	0440	10.5		2412	16.5	16.5		
	2412	19.5		2417	17.0	17.0		
11b	2437	19.5	11n-HT20	2437	19.5	19.5		
	2462	19.5	10.5			2457	17.0	17.0
	2462	19.5		2462	16.0	16.0		
	2412	17.0		2422	13.0	13.0		
11g	2437	18.5	11n-HT40	2437	15.0	15.0		
	2462	16.5		2452	13.5	13.5		

Power Parameter Value for APEX0374 / Directional Antenna (ANT-2x2-2314):

Power Parameter Value for APEX0375:

Test	Test	Power	Test	Test	Power Paramete	r Value Ant 0 + 1
Mode	Frequency	Parameter Value	Mode	Frequency	CDD	Beam-Forming
	(MHz)	Ant 0 + 1		(MHz)	Mode	Mode
	2412	22.0		2412	20.0	20.0
11b	2437	22.0	11n-HT20	2437	22.0	22.0
	2462	22.0		2462	22.0	22.0
	0.440	01.0		2422	15.5	15.5
11 ~	2412	21.0		2427	16.5	16.5
11g	2437	22.0	11n-HT40	2437	19.0	19.0
	2462	22.0		2452	18.0	18.0

Power Parameter Value for APEX0377:

Test	Test	Power	Test	Test	Power Paramete	r Value Ant 0 + 1
Mode		Parameter Value	Mode	Frequency	CDD	Beam-Forming
	(MHz)	Ant 0 + 1		(MHz)	Mode	Mode
	2412	22.0		2412	20.0	20.0
11b	2437	22.0	11n-HT20	2437	22.0	22.0
	2462	21.5		2462	22.0	22.0
	2412	21.0		2422	15.5	15.5
11g	2437	22.0	11n-HT40	2437	16.5	16.5
	2462	22.0		2452	14.5	15.0

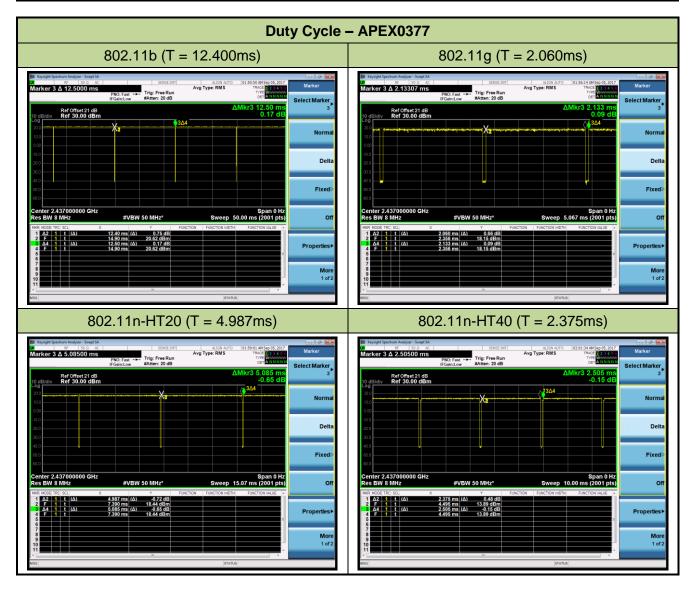
2.8. Device Capabilities

This device contains the following capabilities:

802.11a/b/g/n/ac Wi-Fi & Bluetooth v4.0 single mode

Note: 2.4GHz WLAN (DTS) operation is possible in 20MHz, and 40MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of KDB 558074 D01v04. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Model No.	Test Mode	Duty Cycle
	802.11b	99.19%
APEX0374	802.11g	96.19%
APEX0374	802.11n-HT20	98.00%
	802.11n-HT40	96.23%
	802.11b	99.28%
	802.11g	96.67%
APEX0375	802.11n-HT20	98.36%
	802.11n-HT40	95.83%
	802.11b	99.20%
APEX0377	802.11g	96.58%
	802.11n-HT20	98.07%
	802.11n-HT40	94.81%



Duty Cycle – APEX0374					
802.11b (T = 12.180ms)	802.11g (T = 2.020ms)				
Image: Spectrum Analyses - Spect End Spect End Aug Type: RMS Trice: Free Run Trice: Free Run Brancing: Spect End Marker Steel Marker	Image: Second Second Action Marker Marker 3 & 2.10000 ms PH0. Fast				
$\frac{1}{2} \underbrace{\begin{array}{c} p \\ 1 \\ p \\ 1 \\ p \\ 1 \\ p \\ p \\ p \\ p \\$	Properties More 13.69.46m More More More 1 1 1 1 2745 ms 13.69.46m 100.101.002.01 Properties 1 1 1 1 2745 ms 13.69.46m 100.101.002.01 Properties 1 1 1 2745 ms 13.69.46m 100.101.002.01 100.101.002.01 100.101.002.01 1 1 2745 ms 13.69.46m 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.101.002.01 100.102.01 </td				
Wyngett Section Analyzer - Swept SA. Control of 23 - 54 Attac 25, 217 Marker Marker 3 & 4.55767 ms FRO (Tata + 557 fm s) Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Tree Free Run Bright Section 20 B Arg Type RMS Arg Type RMS Arg Type RMS Bright Section 20 B Bri	Registive Section Analyse - Sweet SA. Content Alon Anto (P 36:32 Adding 25, 2017) Marker 3 & Z.25707 ms Projection The Free Run If Generation And Type RMS You and the rest of the re				

Duty Cycle – APEX0375						
802.11b (T = 12.410ms)	802.11g (T = 2.062ms)					
Ref Orse21 dB Allow arrow advance	Ref Office:21 dB AdMkr3 2:133 ms Excel with a control 12:95:24 Miss 06:2017 Marker Ref Office:21 dB Admkr3 2:133 ms Fig: Fig: Fig: Fig: Fig: Fig: Fig: Fig:					
to of 2 status statu	100 102 100					
Ref Offset 21 dB AMkr3 5.070 ms 3 10 dBdw Ref 30.00 dBm -0.09 dB 3 20 dB 324 0 3 10 dBdw Ref 30.00 dBm -0.09 dB 3 20 dB -0.09 dB -0.09 dB -0.09 dB 20 dB -0.09 dB -0.09 dB -0.09 dB -0.09 dB 20 dB -0.09 dB	Ref offset 21 dB △Mkr3 2.520 ms 3 100 dBloth 0.03 dB 0.03 dB 3 100 dBloth 100 dBloth 100 dBloth 0.03 dB 3 100 dBloth 100					
IMPRIMONENTICS CLI X Y PACTORI PARCTORI MOTHINE PARCTORI MOTHINE <td>Import Mode The: Sci. X Y Part Total Part Total withthin Part Total withthin</td>	Import Mode The: Sci. X Y Part Total Part Total withthin Part Total withthin					

2.9. Test Configuration

The **ACCESS POINT** was tested per the guidance of KDB 558074 D01v04. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.10. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.11. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 558074 D01v04 were used in the measurement of the **ACCESS POINT.**

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Line conducted emissions test results are shown in Section 7.8.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

Conclusion:

The product is defined as the professional installation of equipment by the manufacturer, there is no necessary to comply with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTTWA00045	1 year	2018/03/17
Two-Line V-Network	R&S	ENV216	MRTTWA00019	1 year	2018/03/23
Two-Line V-Network	R&S	ENV216	MRTTWA00020	1 year	2018/03/23
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2018/06/08

Radiated Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2018/03/02
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2018/03/16
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	1 year	2018/04/06
Broadband Amplifier	SCHWARZBECK	BBV 9721	MRTTWA00006	1 year	2018/04/06
Acitve Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	1 year	2018/04/06
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00001	1 year	2018/04/06
Broadband Hornantenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2018/04/06
Breitband Hornantenna	SCHWARZBECK	BBHA 9170	MRTTWA00004	1 year	2018/04/06
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2018/06/08

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2018/07/10
PSA Series Spectrum Analyzer	Agilent	E4447A	MRTTWA00060	1 year	2017/12/11
X-Series USB Peak and Average Power Sensor	KEYSIGHT	U2021XA	MRTTWA00014	1 year	2018/03/18
X-Series USB Peak and Average Power Sensor	KEYSIGHT	U2021XA	MRTTWA00015	1 year	2018/03/18
Programmable Temperature & Humidity Chamber	TEN BILLION	TTH-B3UP	MRTTWA00036	1 year	2018/05/10
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00033	1 year	2018/06/08

Software	Version	Function
e3	V 8.3.5	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement - SR2
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
150kHz~30MHz: 3.46dB
Radiated Emission Measurement - AC1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
9kHz ~ 1GHz: 4.18dB
1GHz ~ 25GHz: 4.76dB
Spurious Emissions, Conducted - SR1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
0.78dB
Output Power - SR1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
1.13dB
Power Spectrum Density - SR1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
1.15dB
Occupied Bandwidth - SR1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
0.28%

7. TEST RESULT

7.1. Summary

Product Name:	ACCESS POINT	
FCC ID:	Q9DAPEX037457	
FCC Classification:	Digital Transmission System (DTS)	
Data Rate(s) Tested:	<u>1Mbps ~ 11Mbps (b); 6Mbps ~ 54Mbps (g);</u>	
	<u>MCS0 for 802.11n-HT20MHz;</u>	
	MCS0 for 802.11n-HT40MHz.	

FCC Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.2
15.247(b)(3)	Output Power	≤ 30dBm		Pass	Section 7.3
15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Conducted	Pass	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	≥ 30dBc(Average)		Pass	Section 7.5
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.6 & 7.7
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8

Notes:

 The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

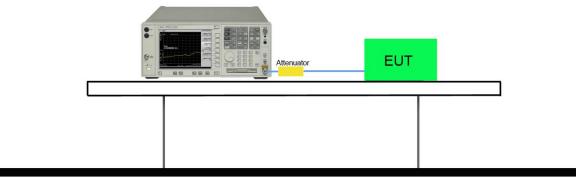
2) Test Items "6dB Bandwidth" & "Band Edge / Out-of-Band Emissions" have been assessed MIMO transmission and showed the worst test data in this report.

7.2. 6dB Bandwidth Measurement

7.2.1.Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

7.2.2.Test Procedure used


KDB 558074 D01v04 - Section 8.2 Option 2

7.2.3.Test Setting

- The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Set RBW = 100 kHz
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

7.2.4.Test Setup

Spectrum Analyzer

7.2.5.Test Result

For APEX0374, please refer to Annex A clause 1;

For APEX0375, please refer to Annex B clause 1;

For APEX0377, please refer to Annex C clause 1;

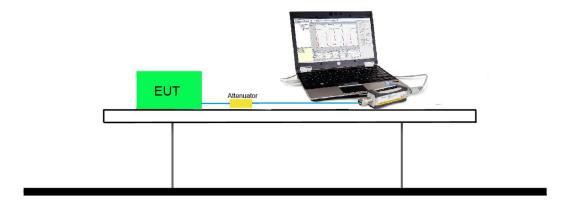
7.3. Output Power Measurement

7.3.1.Test Limit

The maximum output power shall be less 1 Watt (30dBm).

The conducted output power limit specified in paragraph FCC Part 15.247(b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs FCC Part 15.247(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.3.2.Test Procedure Used


KDB 558074 D01v04 - Section 9.2.3.2 AVGPM-G Average Power Method

7.3.3.Test Setting

Average Power Measurement

Average power measurements were perform only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

7.3.4.Test Setup

7.3.5.Test Result of Output Power

For APEX0374, please refer to Annex A clause 2;

For APEX0375, please refer to Annex B clause 2;

For APEX0377, please refer to Annex C clause 2;

7.4. Power Spectral Density Measurement

7.4.1.Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

The same method of determining the conducted output power shall be used to determine the power

spectral density.

7.4.2.Test Procedure Used

KDB 558074 D01v04 - Section 10.5 Method AVGPSD

7.4.3.Test Setting

- 1. Measure the duty cycle (x) of the transmitter output signal.
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. RBW = 10 kHz.
- 5. VBW = 30 kHz.
- 6. Detector = RMS.
- 7. Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- 8. Sweep time = auto couple.
- 9. Don't use sweep triggering. Allow sweep to "free run".
- 10. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.
- 13. Add Constant Factor = $10^{10}(3kHz / 10kHz) = -5.23$.

7.4.4.Test Setup

Spectrum Analyzer

7.4.5.Test Result

For APEX0374, please refer to Annex A clause 3;

For APEX0375, please refer to Annex B clause 3;

For APEX0377, please refer to Annex C clause 3;

7.5. Conducted Band Edge and Out-of-Band Emissions

7.5.1.Test Limit

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental

emission level, as determined from the in-band power measurement of the DTS channel performed

in a 100 kHz bandwidth per the PSD procedure.

7.5.2.Test Procedure Used

KDB 558074 D01v04 - Section 11.2 & Section 11.3

7.5.3.Test Settitng

Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW \geq 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize

Emission level measurement

- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

7.5.4.Test Setup

Spectrum Analyzer

7.5.5.Test Result

For APEX0374, please refer to Annex A clause 4;

For APEX0375, please refer to Annex B clause 4;

For APEX0377, please refer to Annex C clause 4;

7.6. Radiated Spurious Emission Measurement

7.6.1.Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47

CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209			
Frequency	Field Strength	Measured Distance	
[MHz]	[uV/m]	[Meters]	
0.009 - 0.490	2400/F (kHz)	300	
0.490 - 1.705	24000/F (kHz)	30	
1.705 - 30	30	30	
30 - 88	100	3	
88 - 216	150	3	
216 - 960	200	3	
Above 960	500	3	

7.6.2.Test Procedure Used

KDB 558074 D01v04 - Section 12.2.3 (quasi-peak measurements)

KDB 558074 D01v04 - Section 12.2.4 (peak power measurements)

KDB 558074 D01v04 - Section 12.2.5 (average power measurements)

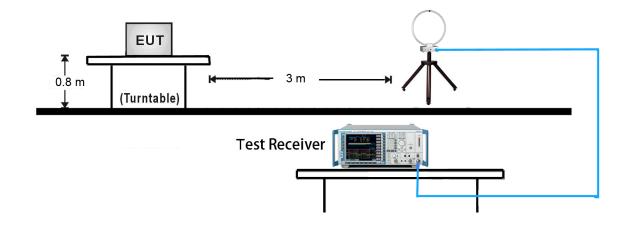
7.6.3.Test Setting

Peak Field Strength Measurements

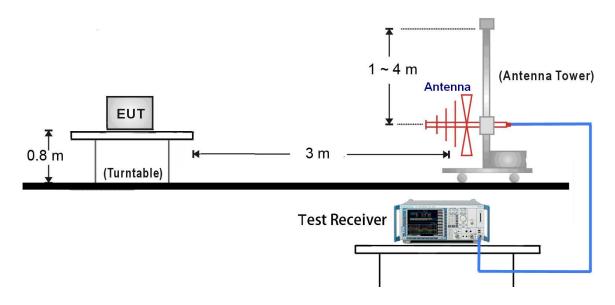
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in Table 1
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz
> 1000 MHz	1 MHz

Table 1 - RBW as a function of frequency

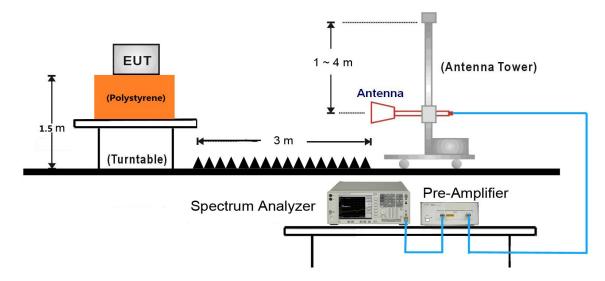

Average Field Strength Measurements

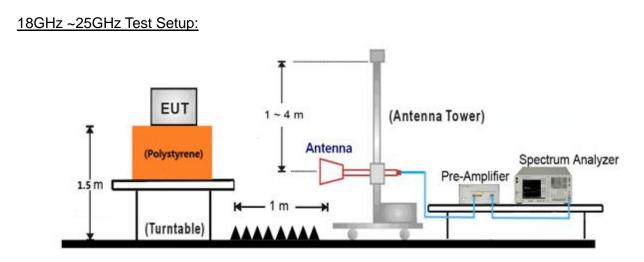
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ 1/T
- 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
- 5. Detector = Peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Allow max hold to run for at least 50 times (1/duty cycle) traces



7.6.4.Test Setup

9kHz ~ 30MHz Test Setup:




```
<u>30MHz ~ 1GHz Test Setup:</u>
```


1GHz ~ 18GHz Test Setup:

7.6.5.Test Result

For APEX0374, please refer to Annex A clause 5;

For APEX0375, please refer to Annex B clause 5;

For APEX0377, please refer to Annex C clause 5;

7.7. Radiated Restricted Band Edge Measurement

7.7.1.Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency	Frequency	Frequency	Frequency
(MHz)	(MHz)	(MHz)	(GHz)
0.090 - 0.110	16.42-16.423	399.9 - 410	4.5-5.15
¹ 0.495 - 0.505	16.69475-16.69525	608 - 614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960 - 1240	7.25-7.75
4.125-4.128	25.5 -25.67	1300 - 1427	8.25 - 8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660 - 1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123 - 138	2200 - 2300	14.47-14.5
8.291-8.294	149.9-150.05	2310–2390	15.35-16.2
8.362-8.366	156.52475-156.525	2483.5 - 2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690 - 2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260 - 3267	23.6-24.0
12.29-12.293	167.72-173.2	3332 - 3339	31.2-31.8
12.51975-12.52025	240 - 285	3345.8 - 3358	36.43-36.5
12.57675-12.57725	322-335.4	3600 - 4400	(²)
13.36-13.41			

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209			
Frequency	Field Strength	Measured Distance	
[MHz]	[uV/m]	[Meters]	
0.009 - 0.490	2400/F (kHz)	300	
0.490 - 1.705	24000/F (kHz)	30	
1.705 - 30	30	30	
30 - 88	100	3	
88 - 216	150	3	
216 - 960	200	3	
Above 960	500	3	

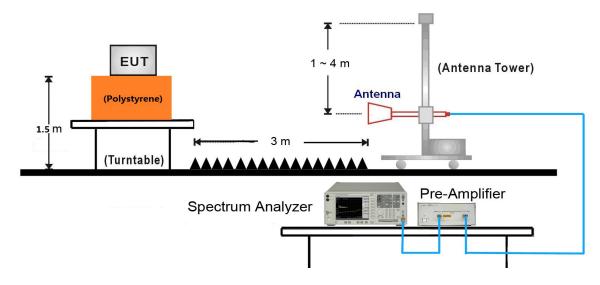
7.7.2.Test Procedure Used

KDB 558074 D01v04 - Section 12.2.4 (peak power measurements)

KDB 558074 D01v04 - Section 12.2.5 (average power measurements)

7.7.3.Test Setting

Peak Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ 1/T
- 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
- 5. Detector = Peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Allow max hold to run for at least 50 times (1/duty cycle) traces

7.7.4.Test Setup

7.7.5.Test Result

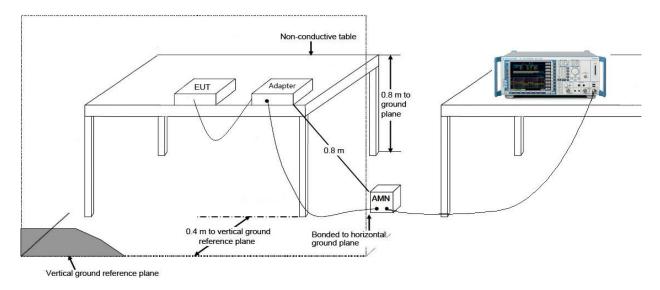
For APEX0374, please refer to Annex A clause 6;

For APEX0375, please refer to Annex B clause 6;

For APEX0377, please refer to Annex C clause 6;

7.8. AC Conducted Emissions Measurement

7.8.1.Test Limit


FCC Part 15 Subpart C Paragraph 15.207 Limits			
Frequency (MHz)	QP (dBuV)	AV (dBuV)	
0.15 - 0.50	66 - 56	56 - 46	
0.50 - 5.0	56	46	
5.0 - 30	60	50	

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to

0.5MHz.

7.8.2.Test Setup

7.8.3.Test Result

For APEX0374, please refer to Annex A clause 7;

For APEX0375, please refer to Annex B clause 7;

For APEX0377, please refer to Annex C clause 7;

8. CONCLUSION

The data collected relate only the item(s) tested and show that the ACCESS POINT FCC ID:

Q9DAPEX037457 is in compliance with Part 15C of the FCC Rules.

The End
