

**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 222 of 242

### 6.2.5. <u>In-Service Monitoring for Channel Move Time, Channel Closing Transmission</u> <u>Time and Non-Occupancy Period</u>

FCC §15.407(h)(2)(iii)

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the EUT (Master). The requisite MPEG video file ("TestFile.mpg" available on the NTIA website at the following link http://ntiacsd.ntia.doc.gov/dfs/) is streamed from the master device (AP) to the client.

#### **Channel Closing Transmission Time - Measurement**

A Type 1 waveform was introduced to the EUT, from which a 12 second transmission record was digitally captured, collecting nearly 250M samples of data, which included in excess of 600 ms of pre-trigger data. This Type 1 waveform had an integral marker built into its construction, marking the start of the radar waveform play, which directly triggered the PXI digitizer's data capture via the PXI backplane trigger bus.

The test system was set-up to capture all transmission data for access point events above a threshold level of -50 dBm. The test equipment time stamps all captured events with respect to  $T_0$  (zero time indicating the start of the measurements sequence) starting the 612.1 ms pre-trigger period followed by the radar type 1 burst period.

Radar (Type 1) Pre-trigger period 612.1 ms

Type 1 burst period 25.704 ms

(The period of the 18 pulse burst includes [18 pulses \*1.428mS PRI] = 25.704 ms. Then add 1  $\mu$ s pulse width for the final pulse.)

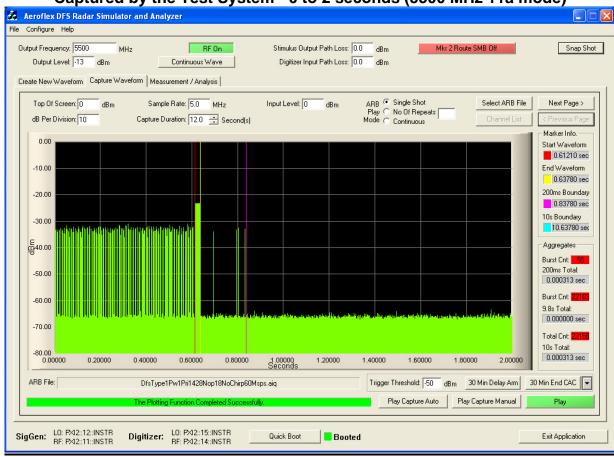
Channel Closing Transmission Time starts immediately after the last radar pulse is transmitted i.e. 637.8 ms after the start of the trace capture period.



**To:** FCC 47 CFR Part 15.407 & IC RSS-210

**Serial #:** ARUB89-U2 Rev A **Issue Date:** 2nd September 2011

Page: 223 of 242


Therefore, pulses seen after this 637.8 ms boundary are identified and totaled to provide an aggregate total of transmissions in order to determine whether the EUT is compliant with the Channel Closing Transmission Time requirements as described in MO&O FCC 06-96. In this case, it was found that an aggregate total of <u>0.190 ms</u> of transmission time accrued. This value is found at the right hand side at the foot of the following plot (10s Total).

Channel Closing Transmission Time (802.11a) = <u>0.313 mSecs (limit 260 mSecs)</u>

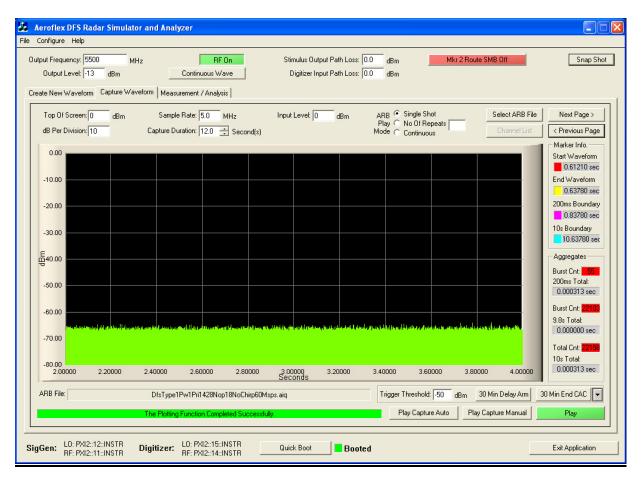
**Channel Move Time (802.11a)** 

= <u>0.199 Secs (limit 10 Secs)</u>

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 0 to 2 seconds (5500 MHz 11a mode)



From the plot above it can be seen that the transmission activity within the 200 mS window is 0.313 mS (see 200 mS Total). From the following plots which shows all additional activity within the remainder of the 10 sec measurement window it can be determined that the aggregate transmission is 0.000 mS. This is less than the 60 mS limit.



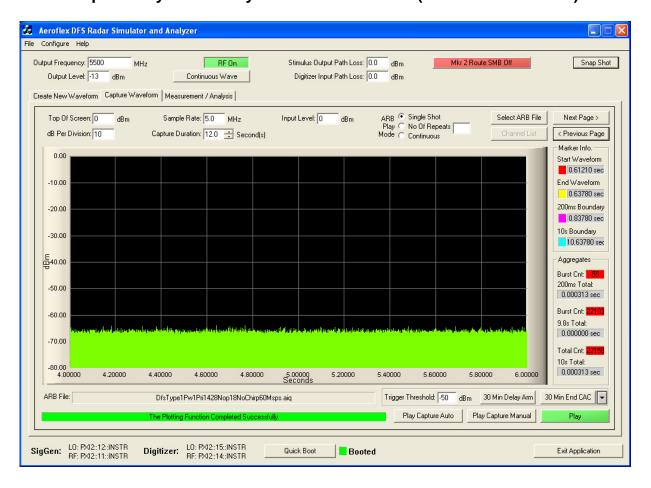

**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 224 of 242

## Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 2 to 4 seconds(5500 MHz 11a mode)





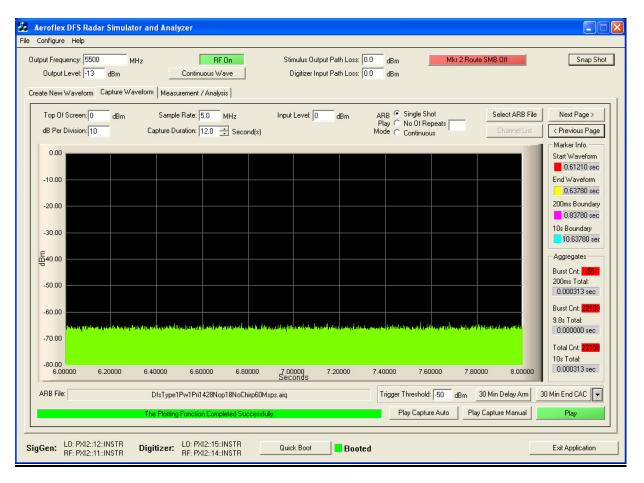

**To:** FCC 47 CFR Part 15.407 & IC RSS-210

**Serial #:** ARUB89-U2 Rev A **Issue Date:** 2nd September 2011

Page: 225 of 242

## Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 4 to 6 seconds(5500 MHz 11a mode)





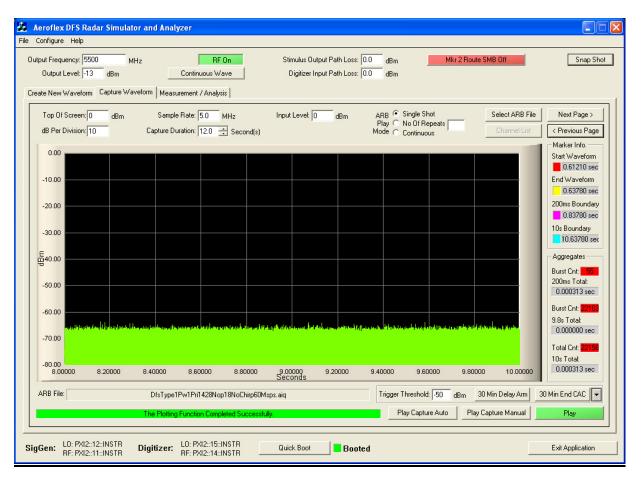

**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 226 of 242

## Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 6 to 8 seconds(5500 MHz 11a mode)





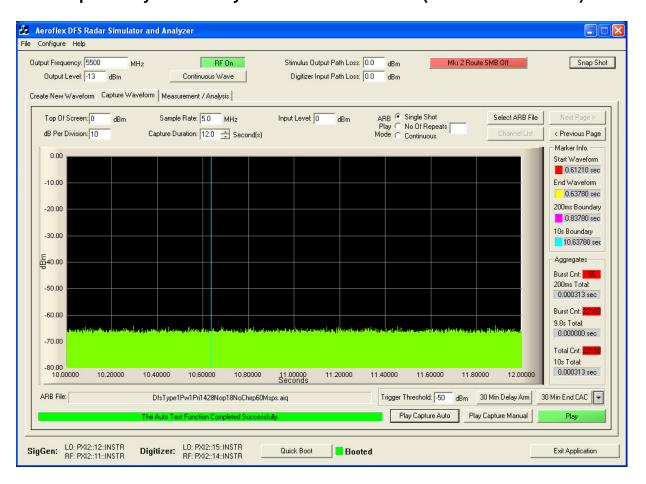

**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 227 of 242

# Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 8 to 10 seconds(5500 MHz 11a mode)






**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

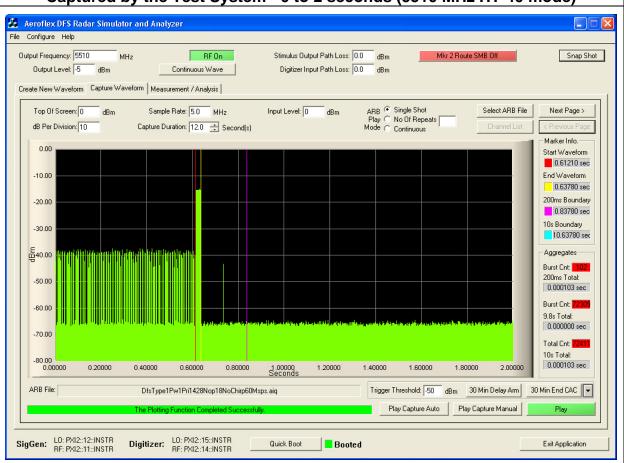
Page: 228 of 242

## Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 10 to 12 seconds(5500 MHz 11a mode)





**To:** FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 229 of 242

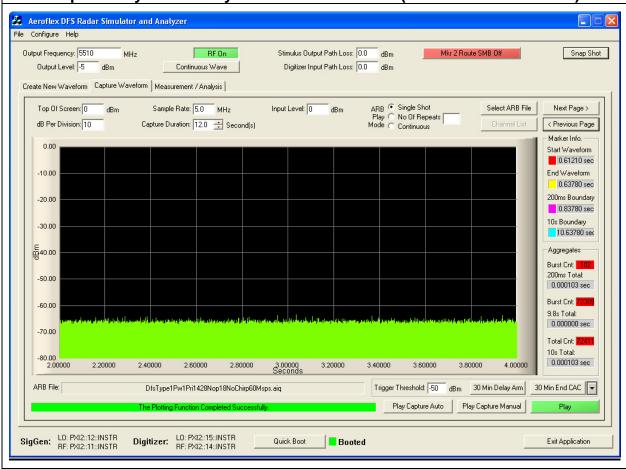
Channel Closing Transmission Time (802.11n HT40) = 0.103 mSecs (limit 260 mSecs)

Channel Move Time 5510 MHz (802.11n HT40) = 0.102 Secs (limit 10 Secs)

# Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 0 to 2 seconds (5510 MHz HT-40 mode)



From the plot above it can be seen that the transmission activity within the 200 mS window is 0.103 mS (see 200 mS Total). From the following plots which shows all additional activity within the remainder of the 10 sec measurement window it can be determined that the aggregate transmission is 0.000 mS. This is less than the 60 mS limit.



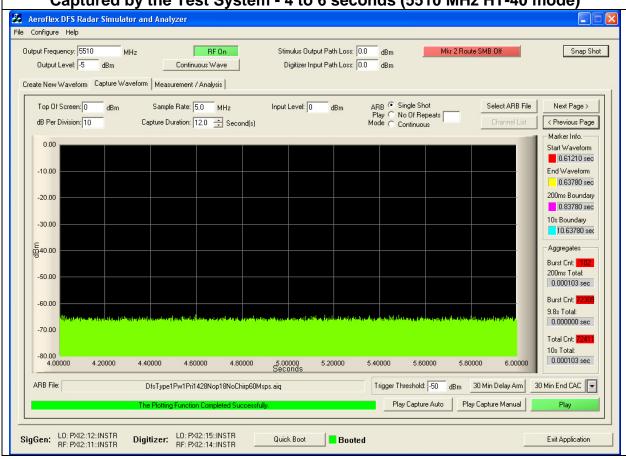

**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 230 of 242

## Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 2 to 4 seconds (5510 MHz HT-40 mode)



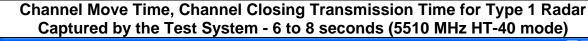


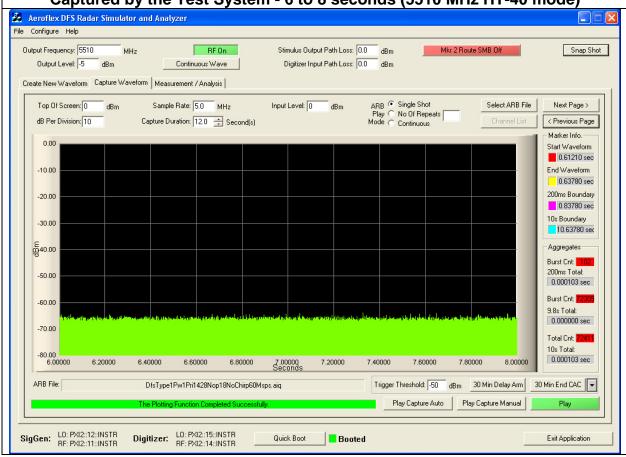

**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 231 of 242





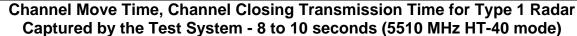



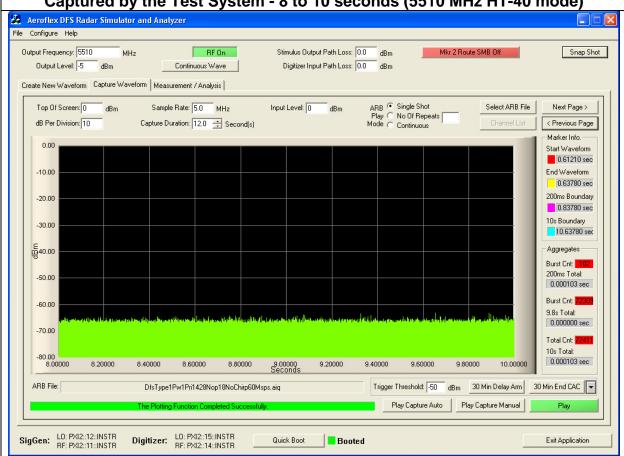

**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 232 of 242





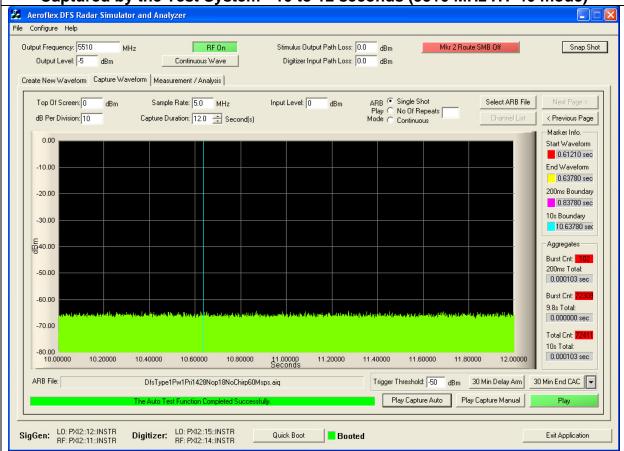

**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 233 of 242








**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

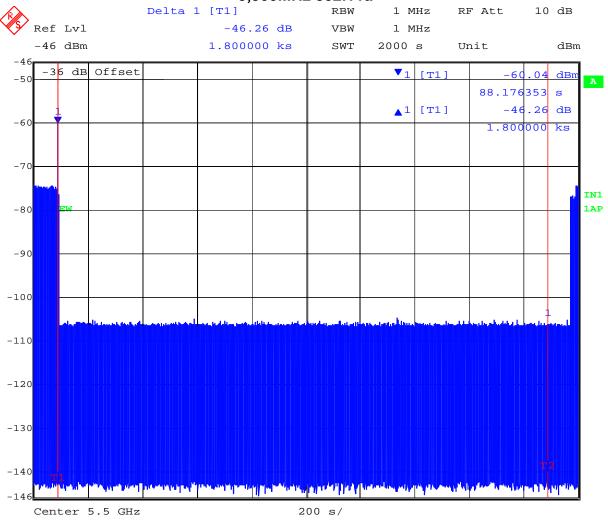
Page: 234 of 242

### Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 10 to 12 seconds (5510 MHz HT-40 mode)





**To:** FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 235 of 242

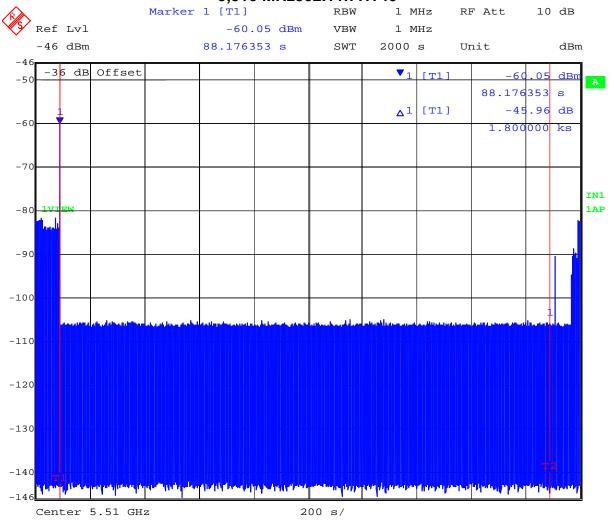
#### 30 Minute Non-Occupancy Period

The EUT is monitored for more than 30 minutes following the channel close/move time to verify no transmissions resume on this Channel.

### 30 Minute Non-Occupancy Period Type 1 Radar 5,500MHz 802.11a



Date: 8.JUN.2011 15:14:31




**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 236 of 242

### 30 Minute Non-Occupancy Period Type 1 Radar 5,510 MHz802.11n HT40





To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 237 of 242

#### 6.2.6. Statistical Performance Check

The steps below define the procedure to determine the minimum percentage of detection when a radar burst with a level equal to the DFS Detection Threshold is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the UUT (Master) at 5,500MHz 802.11a and 5,510MHz 802.11n HT40.

The Radar Waveform generator sends the individual waveform for each of the radar types 1-6. Statistical data will be gathered to determine the ability of the device to detect the radar test waveforms. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs. The percentage of successful detection is calculated by:

Total # of detections ÷ Total # of Trials × 100 = Probability of Detection

The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in the Radar Test Waveforms section.



**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 238 of 242

#### Verification of Detection 5,500MHz 802.11a

| Trial #                 |                 | Detection = √, No Detection = 0 |                 |                 |               |                 |
|-------------------------|-----------------|---------------------------------|-----------------|-----------------|---------------|-----------------|
|                         | Type 1          | Type 2                          | Type 3          | Type 4          | Type 5        | Type 6          |
| 1                       | 0               | √ V                             | 0               | V               | √             | V               |
| 2                       | V               | $\sqrt{}$                       | √               | V               | V             | 0               |
| 3                       | V               | $\sqrt{}$                       | 0               | V               | 0             | V               |
| 4                       | V               | $\sqrt{}$                       | √               | V               | V             | V               |
| 5                       | $\sqrt{}$       | $\sqrt{}$                       | $\sqrt{}$       | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$       |
| 6                       | $\sqrt{}$       | $\sqrt{}$                       | $\sqrt{}$       | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$       |
| 7                       | $\sqrt{}$       | $\sqrt{}$                       | $\sqrt{}$       | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$       |
| 8                       | V               | $\sqrt{}$                       | $\sqrt{}$       |                 | V             | 0               |
| 9                       |                 | V                               | √               | $\sqrt{}$       | 0             | V               |
| 10                      | <b>√</b>        | <b>√</b>                        | 0               | V               | √             | V               |
| 11                      | V               | $\sqrt{}$                       | $\sqrt{}$       |                 | 0             |                 |
| 12                      | V               | 0                               | $\sqrt{}$       | $\sqrt{}$       | V             |                 |
| 13                      | V               | 0                               | $\sqrt{}$       | $\sqrt{}$       | V             | 0               |
| 14                      | V               | 0                               | $\sqrt{}$       | $\sqrt{}$       | V             |                 |
| 15                      | V               | 0                               | $\sqrt{}$       | 0               | 0             |                 |
| 16                      | V               | 0                               | $\sqrt{}$       | 0               | V             |                 |
| 17                      | $\sqrt{}$       | 0                               | $\sqrt{}$       | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$       |
| 18                      | V               | $\sqrt{}$                       | $\sqrt{}$       | $\sqrt{}$       | V             | 0               |
| 19                      | V               | $\sqrt{}$                       | $\sqrt{}$       | $\sqrt{}$       | 0             |                 |
| 20                      | $\sqrt{}$       | $\sqrt{}$                       | 0               | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$       |
| 21                      | $\sqrt{}$       | $\sqrt{}$                       | $\sqrt{}$       | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$       |
| 22                      | $\sqrt{}$       | $\sqrt{}$                       | 0               | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$       |
| 23                      |                 |                                 | 0               | $\sqrt{}$       | V             | 0               |
| 24                      |                 |                                 | V               | 0               | V             | V               |
| 25                      | V               |                                 | V               | $\sqrt{}$       | 0             | V               |
| 26                      | V               | 0                               | $\sqrt{}$       | 0               | V             | 0               |
| 27                      | √ <b></b>       | $\sqrt{}$                       | $\sqrt{}$       | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$       |
| 28                      | V               |                                 | $\sqrt{}$       | 0               | V             | 0               |
| 29                      |                 |                                 |                 | $\sqrt{}$       | V             | V               |
| 30                      | √ <b></b>       | 0                               | $\sqrt{}$       | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$       |
| Detection<br>Percentage | 96.6%<br>(>60%) | 73.3%<br>(>60%)                 | 80.0%<br>(>60%) | 83.3%<br>(>60%) | 80%<br>(>80%) | 76.6%<br>(>70%) |

In addition an average minimum percentage of successful detection across all four Short pulse radar test waveforms is required and calculated as follows;

 $(P_d1 + P_d2 + P_d3 + P_d4) / 4 = (96.6\% + 73.3\% + 80\% + 83.3\%) / 4 = 83.3\% (> 80\%)$ 



**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 239 of 242

#### Verification of Detection 5,510MHz 802.11n HT40

| Trial #                 | Detection = $$ , No Detection = 0 |                 |               |               |               |                 |
|-------------------------|-----------------------------------|-----------------|---------------|---------------|---------------|-----------------|
|                         | Type 1                            | Type 2          | Type 3        | Type 4        | Type 5        | Type 6          |
| 1                       | $\sqrt{}$                         | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$     | $\sqrt{}$     |                 |
| 2                       | $\sqrt{}$                         | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$     | $\sqrt{}$     | 0               |
| 3                       |                                   | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$     | $\sqrt{}$     |                 |
| 4                       | $\sqrt{}$                         | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$     | $\sqrt{}$     |                 |
| 5                       | $\sqrt{}$                         | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$     | $\sqrt{}$     | $\sqrt{}$       |
| 6                       | $\sqrt{}$                         | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$     | $\sqrt{}$     |                 |
| 7                       | $\sqrt{}$                         | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$     | 0             | $\sqrt{}$       |
| 8                       | $\sqrt{}$                         | $\sqrt{}$       | $\sqrt{}$     | $\sqrt{}$     | 0             |                 |
| 9                       |                                   | $\sqrt{}$       | 0             | $\sqrt{}$     | $\sqrt{}$     |                 |
| 10                      |                                   | $\sqrt{}$       |               | $\sqrt{}$     | $\sqrt{}$     | V               |
| 11                      |                                   | $\sqrt{}$       |               | $\sqrt{}$     | $\sqrt{}$     | √               |
| 12                      | V                                 | 0               | V             | V             | 0             | <b>√</b>        |
| 13                      |                                   | 0               |               | $\sqrt{}$     | $\sqrt{}$     | <b>√</b>        |
| 14                      | V                                 | 0               | V             | V             | V             | <b>√</b>        |
| 15                      | V                                 | 0               | 0             | V             | V             | <b>√</b>        |
| 16                      | 0                                 | 0               | 0             | V             | V             | <b>√</b>        |
| 17                      |                                   | 0               |               | $\sqrt{}$     | 0             | √               |
| 18                      |                                   | $\sqrt{}$       | 0             | $\sqrt{}$     | $\sqrt{}$     | √               |
| 19                      |                                   | $\sqrt{}$       |               | $\sqrt{}$     | $\sqrt{}$     | √               |
| 20                      |                                   | $\sqrt{}$       |               | $\sqrt{}$     | $\sqrt{}$     | √               |
| 21                      |                                   | $\sqrt{}$       |               | $\sqrt{}$     | 0             | V               |
| 22                      |                                   | $\sqrt{}$       |               | $\sqrt{}$     | $\sqrt{}$     | √               |
| 23                      |                                   | 0               |               | $\sqrt{}$     | $\sqrt{}$     | V               |
| 24                      |                                   | $\sqrt{}$       | 0             | 0             | $\sqrt{}$     | V               |
| 25                      |                                   | V               | √             | V             | V             | √               |
| 26                      |                                   | V               | V             | 0             | V             | √               |
| 27                      |                                   | V               | V             | V             | V             | √               |
| 28                      | √ V                               | V               | 0             | 0             | V             | <b>√</b>        |
| 29                      | V                                 | V               | V             | V             |               | V               |
| 30                      | V                                 | 0               | √             |               | 0             | V               |
| Detection<br>Percentage | 96.6%%<br>(>60%)                  | 73.3%<br>(>60%) | 80%<br>(>60%) | 90%<br>(>60%) | 80%<br>(>80%) | 96.6%<br>(>70%) |

In addition an average minimum percentage of successful detection across all four Short pulse radar test waveforms is required and calculated as follows;



**To:** FCC 47 CFR Part 15.407 & IC RSS-210

**Serial #**: ARUB89-U2 Rev A **Issue Date**: 2nd September 2011

Page: 240 of 242

**Measurement Uncertainty Time/Power** 

| Measurement uncertainty |         |        |
|-------------------------|---------|--------|
|                         | - Time  | 4%     |
|                         | - Power | 1.33dB |

#### **Traceability**

### **Test Equipment Used**

 $0072,\,0083,\,0098,\,0116,\,0132,\,0158,\,0313,\,0314,\,0193,\,0223,\,0252,\,0253,\,0251,\,0256,\,0328,\,0329$ 



**To:** FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: ARUB89-U2 Rev A Issue Date: 2nd September 2011

Page: 241 of 242

### 7. TEST EQUIPMENT DETAILS

| Asset # | Instrument                | Manufacturer     | Part #                    | Serial #    |
|---------|---------------------------|------------------|---------------------------|-------------|
| 0134    | Amplifier                 | Com Power        | PA 122                    | 181910      |
| 0158    | Barometer<br>/Thermometer | Control Co.      | 4196                      | E2846       |
| 0287    | EMI Receiver              | Rhode & Schwartz | ESIB 40                   | 100201      |
| 0252    | SMA Cable                 | Megaphase        | Sucoflex 104              | None        |
| 0310    | 2m SMA Cable              | Micro-Coax       | UFA210A-0-0787-<br>3G03G0 | 209089-001  |
| 0312    | 3m SMA Cable              | Micro-Coax       | UFA210A-1-1181-<br>3G0300 | 209092-001  |
| 0313    | Coupler                   | Hewlett Packard  | 86205A                    | 3140A01285  |
| 0314    | 30dB N-Type<br>Attenuator | ARRA             | N9444-30                  | 1623        |
| 0070    | Power Meter               | Hewlett Packard  | 437B                      | 3125U11552  |
| 0116    | Power Sensor              | Hewlett Packard  | 8485A                     | 3318A19694  |
| 0117    | Power Sensor              | Hewlett Packard  | 8487D                     | 3318A00371  |
| 0184    | Pulse Limiter             | Rhode & Schwartz | ESH3Z2                    | 357.8810.52 |
| 0190    | LISN                      | Rhode & Schwartz | ESH3Z5                    | 836679/006  |
| 0293    | BNC Cable                 | Megaphase        | 1689 1GVT4                | 15F50B001   |
| 0301    | 5.6 GHz Notch Filter      | Micro-Tronics    | RBC50704                  | 001         |
| 0302    | 5.25 GHz Notch Filter     | Micro-Tronics    | BRC50703                  | 002         |
| 0303    | 5.8 GHz Notch Filter      | Micro-Tronics    | BRC50705                  | 003         |
| 0304    | 2.4GHzHz Notch Filter     | Micro-Tronics    |                           | 001         |
| 0307    | BNC Cable                 | Megaphase        | 1689 1GVT4                | 15F50B002   |
| 0335    | 1-18GHz Horn Antenna      | ETS- Lindgren    | 3117                      | 00066580    |
| 0337    | Amplifier                 | MiCOM Labs       |                           |             |
| 0338    | Antenna                   | Sunol Sciences   | JB-3                      | A052907     |



440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304

Fax: 1.925.462.0306 www.micomlabs.com