Test of AP-175AC / MSR2K23N1 / AP-175DC / MSR2K23N2

To: FCC 47 CFR Part 90 & IC RSS 111

Test Report Serial No.: ARUB86- X1 Rev B

TEST REPORT

Test of Aruba Networks, Inc Aruba Networks, Inc AP-175AC / MSR2K23N1 AP-175DC / MSR2K23N2

To FCC 47 CFR Part 90 & IC RSS 111

Test Report Serial No.: ARUB86- X1 Rev B

This report supersedes ARUB86- Rev A

Manufacturer: Aruba Networks, Inc.

1344 Crossman Avenue

Sunnyvale

California 94089, USA

Product Function: Wireless LAN Access Point

Copy No: pdf Issue Date: 3rd February 2012

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306

www.micomlabs.com

TESTING CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 3 of 85

This page has been left intentionally blank

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 4 of 85

TABLE OF CONTENTS

AU	CREDITATION, LISTINGS & RECOGNITION	3
	1.1. ACCREDITATION	5
	1.2. RECOGNITION	
	PRODUCT CERTIFICATION	7
2.	TEST RESULT CERTIFICATE	9
3.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	3.1. Normative References	
	3.2. Test and Uncertainty Procedures	
4.	PRODUCT DETAILS AND TEST CONFIGURATIONS	11
	4.1. Technical Details	11
	4.2. Scope of Test Program	
	4.3. Equipment Model(s) and Serial Number(s)	
	4.4. Antenna Details	
	4.5. Cabling and I/O Ports	
	4.6. Test Configurations	
	4.7. Equipment Modifications	
_	4.8. Deviations from the Test Standard	
5.	TEST SUMMARY	17
6.	TEST RESULTS	19
	6.1. Device Characteristics	_
	6.1.1. Occupied Bandwidth and Emission Mask	
	6.1.2. Peak Output Power	
	6.1.3. Peak Power Spectral Density (PPSD)	
	6.1.4. Maximum Permissible Exposure	
	6.1.5. Frequency Stability; Temperature Variations, and Voltage Variations	
	6.1.6. Spurious Emissions at Antenna Terminals - Transmitter	
	6.1.7. Radiated Spurious Emissions	
	6.1.8. Receiver Radiated Spurious Emissions	
_	6.1.9. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	
7.	TEST SET-UP PHOTOGRAPHS	
	7.1. General Measurement Test Set-Up	
	7.2. Environmental Chamber	
	7.3. Radiated Emissions < 1 GHz	
	7.4. Spurious Emissions > 1 GHz	
8.	TEST EQUIPMENT DETAILS	84

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 5 of 85

ACCREDITATION, LISTINGS & RECOGNITION

1.1. ACCREDITATION

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-01.pdf schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 14th day of April 2010.

President & CEO V
For the Accreditation Council
Certificate Number 2381.01

Valid to March 31, 2012 Revised January 20, 2012

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 6 of 85

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A
Japan	MIC	CAB	APEC MRA 2	210
	VCCI			No. 2959
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Ministry of Information an Korea Communication Radio Research Laboratory (RR		CAB	APEC MRA 1	US0159
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	050159
Taiwan Taiwan National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)		CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

^{**}EU MRA – European Union Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

^{**}NB - Notified Body

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 7 of 85

PRODUCT CERTIFICATION

World Class Accreditation

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-02.pdf test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996

General requirements for bodies operating product certification systems. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system for a Telecommunications Certification Body (TCB) meeting FCC (U.S.), Japan (MIC), and IC (Canada) requirements.

Presented this 24th day of June 2010.

President & CEO D For the Accreditation Council Certificate Number 2381.02 Valid to March 31, 2012 Revised January 20, 2012

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

<u>United States of America – Telecommunication Certification Body (TCB)</u>

TCB Identifier - US0159

Industry Canada - Certification Body

CAB Identifier - US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB)

RCB Identifier - 210

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 8 of 85

DOCUMENT HISTORY

		Document History
Revision	Date	Comments
Draft		
Rev A	9 th January 2012	Initial Release
		This test report was initially released as AP-175P ARUB61-U4, 1 st November 2010 for the AP-175P.
		Product development modified the front end power supply to accept 120 Vac 60 Hz only (no dc). No changes were made to the 802.11 a/b/g/n wireless module also no changes were made to the selected antenna's.
		Product now released as AP-175AC
		As a result of changes to the power supply this test program tested Radiated Emissions below 1 GHz (see Section 6.1.7) and ac Wireline Emissions (see Section 6.1.9).
Rev B	3 rd February 2012	Included data for access point AP-175DC (48Vdc powered version)
		Updated Section 6.1.7 Radiated Spurious Emissions

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 9 of 85

2. TEST RESULT CERTIFICATE

Manufacturer: Aruba Networks, Inc Tested By: MiCOM Labs, Inc.

1344 Crossman Avenue. 440 Boulder Court,

Sunnyvale Suite 200, Pleasanton

California 94089, USA California, 94566, USA

EUT: Wireless Access Point Operating Telephone: +1 925 462 0304

at 4.9 GHz

Model(s): AP-175AC / MSR2K23N1, AP- Fax: +1 925 462 0306

175DC / MSR2K23N2

S/N: 25A02102800027 – AP-175AC

AY0009995 - AP-175DC

Test Date(s): 21st January 2012, 18 - 26th Website: www.micomlabs.com

August '10 & 28th November '11

STANDARD(S) TEST RESULTS

FCC 47 CFR Part 90 & IC RSS 111 EQUIPMENT COMPLIES

(4.9 GHz Operation)

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

ACCREDITED

GERTIFICATE #2381.01

Graemé Grieve

Gorden Hurst

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 10 of 85

Quality Manager MiCOM Labs,

President & CEO MiCOM Labs, Inc.

3. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

3.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 90	2009	Code of Federal Regulations
(ii)	RSS-111	2012 Issue 4	Broadband Public Safety Equipment Operating in the Band 4940- 4990 MHz
(iii)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(iv)	CISPR 22/ EN 55022	2008	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(v)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vi)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(vii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(viii)	A2LA	9 th June 2010	Reference to A2LA Accreditation Status – A2LA Advertising Policy

3.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 11 of 85

4. PRODUCT DETAILS AND TEST CONFIGURATIONS

4.1. Technical Details

Details	Description
Purpose:	Test of the AP-175AC / MSR2K23N1, AP-175DC /
·	MSR2K23N2 to FCC 47 CFR Part 90 Subpart Y and
	Industry Canada RSS-111 regulations.
Applicant:	As Manufacturer
Manufacturer:	Aruba Networks, Inc
	1344 Crossman Avenue
	Sunnyvale California 94089, USA
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	ARUB86- X1 Rev B
Date EUT received:	AP-175DC: 12 th January 2012
	AP-175AC: 23 rd September 2010
Standard(s) applied:	FCC 47 CFR Part 90 & IC RSS 111 (Public Safety
	Band)
Dates of test (from - to):	21st January 2012, 18 - 26th August '10 & 28th
	November '11
No of Units Tested:	2
Type of Equipment:	Wireless LAN Access Point
Manufacturers Trade Name:	Wireless LAN Access Point
Model(s):	·
Location for use:	
Software Release	Build# 75568 Version: 5.0.7.1
Declared Frequency Range(s):	4940 - 4990 MHz
Declared Nominal Output Power:	+18 dBm (average)
Type of Modulation:	OFDM
EUT Modes of Operation:	Per 802.11 – DBPSK, DQPSK, CCK, OFDM
Transmit/Receive Operation:	Duplex; Legacy 802.11a; 802.11n HT-20.
Rated Input Voltage and Current:	AP-175DC: +48 Vdc; AP-175DC: 120 Vac 60 Hz
Operating Temperature Range:	Declared range 0 to +40°C
ITU Emission Designator:	4.9 GHz - 16M1W7D
Clock/Oscillator(s):	25 MHz, 40 MHz.
Frequency Stability:	±20 ppm
Equipment Dimensions:	10.2" x 10.2" x 4.0" (25.9cm x 25.9cm x 10.2cm)
Weight:	7ibs (3.25 kgs)
Primary function of equipment:	Wireless Access Point for transmitting data and voice

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 12 of 85

4.2. Scope of Test Program

The scope of the test program was to test AP-175AC / MSR2K23N1, AP-175DC / MSR2K23N2 to;-

FCC 47 CFR Part 90, Subpart Y regulatory requirements;-

Industry Canada RSS-111.

The AP-175 is a Wireless Access Point operating in the 4.9 GHz Public Safety Band Radio employing OFDM modulation at 20 MHz bandwidths in the frequency range 4940 to 4990 MHz.

The device will operate using 802.11a and 802.11n HT-20 bandwidths. Results for both operational modes are presented in this document.

The Aruba Networks AP-175AC / MSR2K23N1, AP-175DC / MSR2K23N2 has external antennas with N-type connectors. The device has two radios with two transmit and receive antennae. The antennas used with the AP-175AC / MSR2K23N1 are detailed in section 6.4 "Antenna Details".

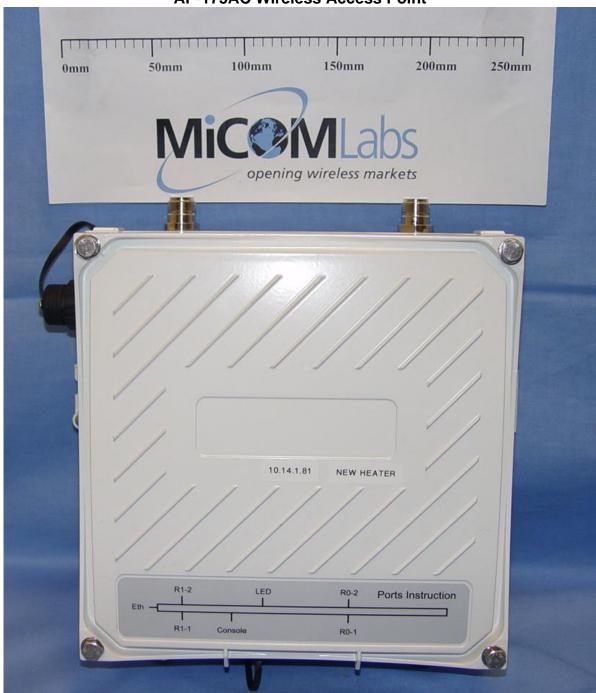
The Aruba Networks AP-175AC / MSR2K23N1, AP-175DC / MSR2K23N2 contains two WLAN 802.11a/b/g/n MiniPCI modules model DNMA-H92. The results for conducted testing for compliance to the requirements of FCC Pt 15.247 & IC RSS-210 Annex 8 are reported in Sporton International Inc test report No. FR9N1919-01AB.

Product Differences

The AP-175AC / MSR2K23N1 is connected directly to AC mains supply 100Vac – 240Vac

The AP-175DC / MSR2K23N2 is powered directly by +48 Vdc

As a result only Radiated Emissions were performed in order to prove compliance with this regulation.



To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 13 of 85

AP-175AC Wireless Access Point

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 14 of 85

AP-175DC Wireless Access Point

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 15 of 85

4.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	802.11 a/b/g/n Wireless Access Point	Aruba Networks Inc	AP- 175DC	AY0009995
EUT	802.11 a/b/g/n Wireless Access Point	Aruba Networks Inc	AP- 175AC	25A02102800027
Support Laptop PC – ThinkPad		IBM	T60	-
Support Laptop PC – ThinkPad		IBM	T30	-
Support	Switch Controller	Aruba Networks Inc	620	AE0000949

4.4. Antenna Details

The following is a description of the EUT antennas.

Antenna Type:	Manufacturer	Model	Gain (dBi)	Frequency Range (MHz)
Dipole	Aruba	AP-ANT-86	9	4900 – 5000 MHz
Directional	Aruba	AP-ANT-5714	14	4900 – 5000 MHz

No antennas were tested as part of this program.

4.5. Cabling and I/O Ports

Number and type of I/O ports

- 1. 1000/100/10 Ethernet
- 2. USB Local maintenance terminal (LMT) x 1.

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 16 of 85

4.6. Test Configurations

Matrix of test configurations

Parameter	Operational Mode	Test Conditions	Bandwidths (MHz)
Occupied BW & Emission Mask	Modulated	Ambient	20
Peak Output power	Modulated	Ambient	20
Peak Power Spectral Density	Modulated	Ambient	20
Frequency Stability	CW	Temperature Variations and Voltage Variations	
Conducted Spurious	Modulated	Ambient	20
Radiated Emissions	Modulated	Ambient	20

4.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

4.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 17 of 85

5. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 90, Subpart Y, Industry Canada RSS-111, and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
2.1049; 90.210(m) 4.4	26 dB / 99% Occupied BW & Emission Mask	Emission mask and bandwidth measurement(s)	Conducted	Complies	6.1.1
2.1046; 90.1215 (a) 4.3	Peak and Average Output Power	Modulated Output Power	Conducted	Complies	6.1.2
2.1046; 90.1215 (a) 4.3	Peak Power Spectral Density	Maximum Spectral Density	Conducted	Complies	6.1.3
Subpart C 90.1217	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Radiated	Complies	6.1.4
2.1055(a)(1); 90.213 4.2	Frequency Stability	Includes temperature and voltage variations	Conducted	Complies	6.1.5
2.1051; 90.210(m) 4.4/4.5 6	Conducted Spurious Emissions at Antenna Port	Emissions from the antenna port 30 MHz – 40 GHz	Conducted	Complies	6.1.6
2.1053; 90.210(m) ANSI/TIA- 603	Radiated Spurious Emissions	Spurious emissions 30 MHz – 40 GHz	Radiated	Complies*	6.1.7
4.4 Industry Canada only RSS-Gen §4.8, §6	Receiver Radiated Spurious Emissions	Emissions below and above 1 GHz	Radiated	Complies	6.1.8

*NOTE: EUT complied using a screened Ethernet cable for radiated emissions 0.03 – 1 GHz. See Section 6.1.7 Radiated Spurious Emissions

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 18 of 85

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 19 of 85

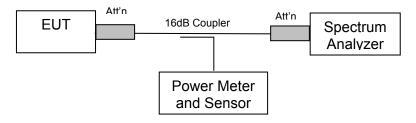
6. TEST RESULTS

6.1. Device Characteristics

6.1.1. Occupied Bandwidth and Emission Mask

FCC 47 CFR Part 90, Subpart Y; 2.1049; §90.210(m)

IC Section 4.4


Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure the 26 dB occupied bandwidth and emission mask for the radio. The system highest power setting was selected with modulation ON and duty cycle set for 100% i.e. continuous operation at all times.

For emission masks the zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz.

The EUT is not equipped with an audio low-pass filter.

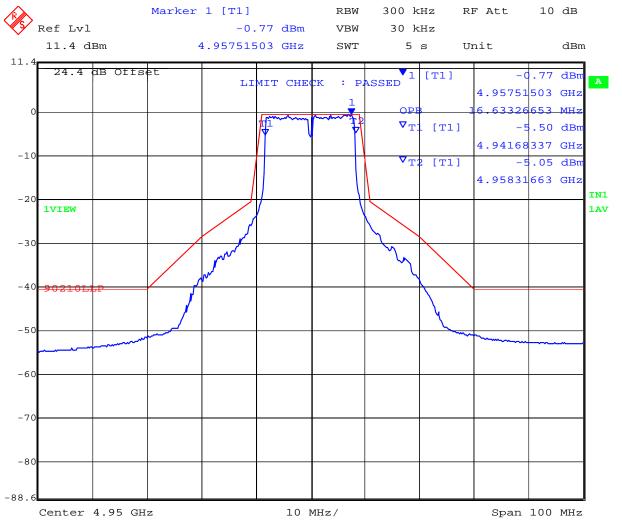
Test Measurement Set up

Test set up for Occupied Bandwidth and Emission Mask measurement

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part 90 & IC RSS 111


Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 20 of 85

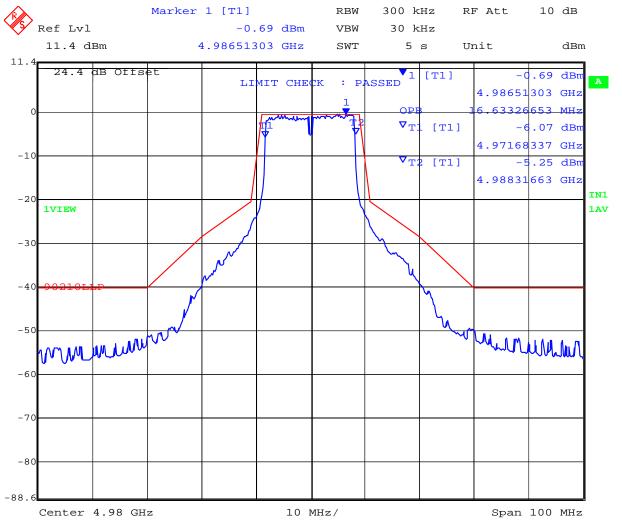
TABLE OF RESULTS - 802.11a

Center Frequency	99% Bandwidth
(MHz)	(MHz)
4,950.0	16.633

Emission Mask & 99% Bandwidth for 20 MHz BW Channel Freq 4950 MHz

Date: 16.AUG.2010 17:35:55

To: FCC 47 CFR Part 90 & IC RSS 111


Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 21 of 85

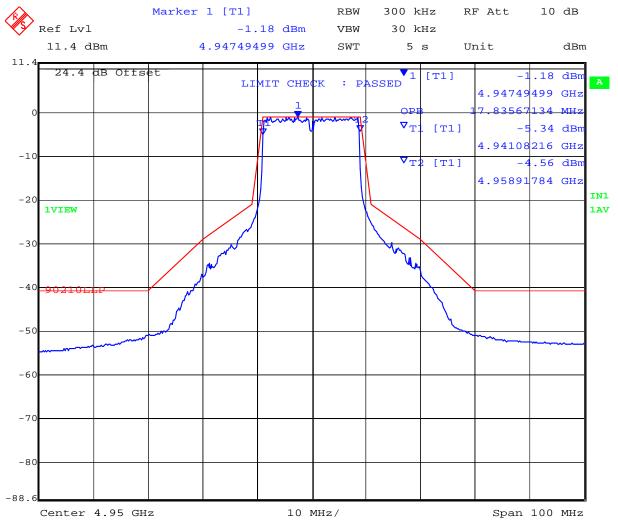
TABLE OF RESULTS - 802.11a

Center Frequency	99% Bandwidth
(MHz)	(MHz)
4,980.0	15.633

Emission Mask & 99% Bandwidth for 20 MHz BW Channel Freq 4980 MHz

Date: 16.AUG.2010 17:37:54

To: FCC 47 CFR Part 90 & IC RSS 111


Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 22 of 85

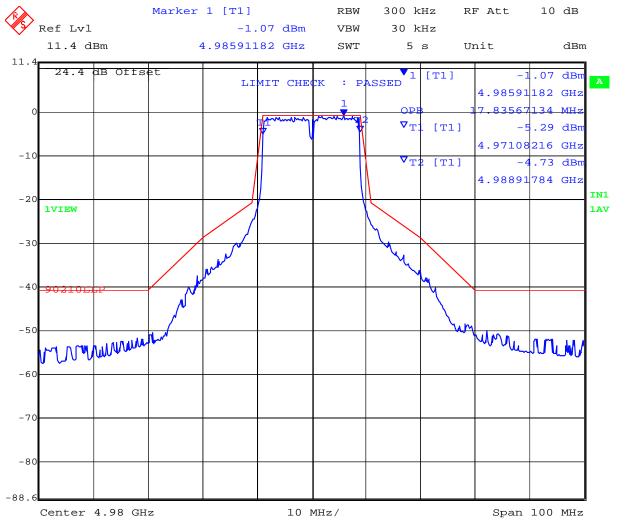
TABLE OF RESULTS - 802.11 HT-20

Center Frequency	99% Bandwidth
(MHz)	(MHz)
4,950.0	17.836

Emission Mask & 99% Bandwidth for 20 MHz BW Channel Freq 4950 MHz

Date: 16.AUG.2010 17:34:06

To: FCC 47 CFR Part 90 & IC RSS 111


Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 23 of 85

TABLE OF RESULTS - 802.11 HT-20

Center Frequency	99% Bandwidth
(MHz)	(MHz)
4,980.0	17.836

Emission Mask 99% Bandwidth for 20 MHz BW Channel Freq 4980 MHz

Date: 16.AUG.2010 17:39:00

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 24 of 85

Specification Limits FCC Part §90.210

Limits for Authorized Bandwidth

(MHz	quency Band) and Related ocuments	Spectrum Masks with Audio Filter	Without Audio Filter
4950 –	4990 MHz	L or M	L or M

Reference to the emission masks are provided below

Limits Emission Masks

90.210(L), Emission Mask L. For low power transmitters (20 dBm of less) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

- (1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0dB.
- (2) On any frequency removed from the assigned frequency between 45 50 % of the authorized bandwidth: 219 log (% of (BW)/45) dB.
- (3) On any frequency removed from the assigned frequency between 50 55 % of the authorized bandwidth: 10 + 242 log (% of (BW)/50) dB.
- (4) On any frequency removed from the assigned frequency between 55 100 % of the authorized bandwidth: 20 + 31 log (% of (BW)/55) dB attenuation.
- (5) On any frequency removed from the assigned frequency between 100-150~% of the authorized bandwidth: $28+68~\log$ (% of (BW)/100) dB attenuation.
- (6) On any frequency removed from the assigned frequency above 150 % of the authorized bandwidth: 50 dB.
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 25 of 85

Limits Emission Masks (continued)

90.210(m), Emission Mask M. For high power transmitters (greater than 20 dBm) operating in the 4940 – 4900 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

- (1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0dB.
- (2) On any frequency removed from the assigned frequency between 45 50 % of the authorized bandwidth: $568 \log (\% \text{ of (BW)/45}) \text{ dB}$.
- (3) On any frequency removed from the assigned frequency between 50 55 % of the authorized bandwidth: 26 + 145 log (% of (BW)/50) dB.
- (4) On any frequency removed from the assigned frequency between 55 100 % of the authorized bandwidth: 32 + 31 log (% of (BW)/55) dB attenuation.
- (5) On any frequency removed from the assigned frequency between 100 150 % of the authorized bandwidth: 40 + 57 log (% of (BW)/100) dB attenuation.
- (6) On any frequency removed from the assigned frequency between above 150 % of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

Note to paragraph m: Low power devices may as an option, comply with paragraph (m).

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty ±1.3

Traceability

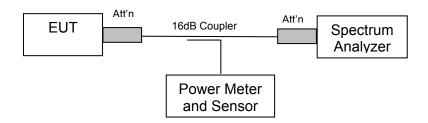
Method	Test Equipment Used
Measurements were made per work	0070, 0116, 0158, 0193, 0252, 0313, 0314.
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 26 of 85

6.1.2. Peak Output Power


FCC 47 CFR Part 90, Subpart Y; 2.1046; §90.1215

IC Section 4.3

Test Procedure

Average power measurements were measured with the use of an average power head. Peak power measurements were recorded via the spectrum analyzer. The system highest power setting was selected with modulation ON and duty cycle set for 100% i.e. continuous operation at all times.

Test Measurement Set up

Test set up for modulated output power measurement

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 27 of 85

TABLE OF RESULTS - 20 MHz Bandwidth Modulated Carrier

Center Frequency (MHz)	Operational Mode	Average Power (dBm)
4950.0	802.11a	+18.14
	HT-20	+18.20
4980.0	802.11a	+18.09
	HT-20	+18.00

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 28 of 85

Specification Limits FCC Part §90.1215(a)

Power limits.

The transmitting power of stations operating in the 4940-4990 MHz band must not exceed the maximum limits in this section.

(a) The peak transmit power should not exceed:

Channel Bandwidth	Low power peak	High power peak transmitter
(MHz)	transmitter power (dBm)	power (dBm)
1	7	20
5	14	27
10	17	30
15	18.8	31.8
20	20	33

High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. High power devices using channel bandwidths other than those listed above are permitted; however, they are limited to a peak power spectral density of 21 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the peak transmit power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point or point-to-multipoint operation (both fixed and temporary-fixed rapid deployment) may employ transmitting antennas with directional gain up to 26 dBi without any corresponding reduction in the transmitter power or spectral density. Corresponding reduction in the peak transmit power and peak power spectral density should be the amount in decibels that the directional gain of the antenna exceeds 26 dBi.

- (b) Low power devices are also limited to a peak power spectral density of 8 dBm per one MHz. Low power devices using channel bandwidths other than those listed above are permitted; however, they are limited to a peak power spectral density of 8 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the peak transmit power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi.
- (c) The peak transmit power is measured as a conducted emission over any interval of continuous transmission calibrated in terms of an RMS-equivalent voltage. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement conforming to the definitions in this paragraph for the emission in question.
- (d) The peak power spectral density is measured as conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 29 of 85

are made over a bandwidth of one MHz or the 26 dB emission bandwidth of the device, whichever is less. A resolution bandwidth less than the measurement bandwidth can be used, provided that the measured power is integrated to show total power over the measurement bandwidth. If the resolution bandwidth is approximately equal to the measurement bandwidth, and much less than the emission bandwidth of the equipment under test, the measured results shall be corrected to account for any difference between the resolution bandwidth of the test instrument and its actual noise bandwidth.

Laboratory Measurement Uncertainty for Power Measurement

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0070, 0116, 0158, 0193, 0252, 0313, 0314.
instruction WI-03 'Measurement of RF	
Output Power'	

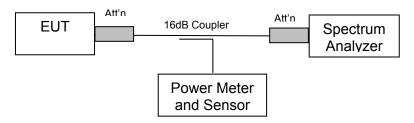
To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 30 of 85

6.1.3. Peak Power Spectral Density (PPSD)

FCC 47 CFR Part 90, Subpart Y; 2.1046; §90.1215


IC Section 4.3

Test Procedure

The test methodology used for this measurement was determined to provide the highest possible PPSD readings.

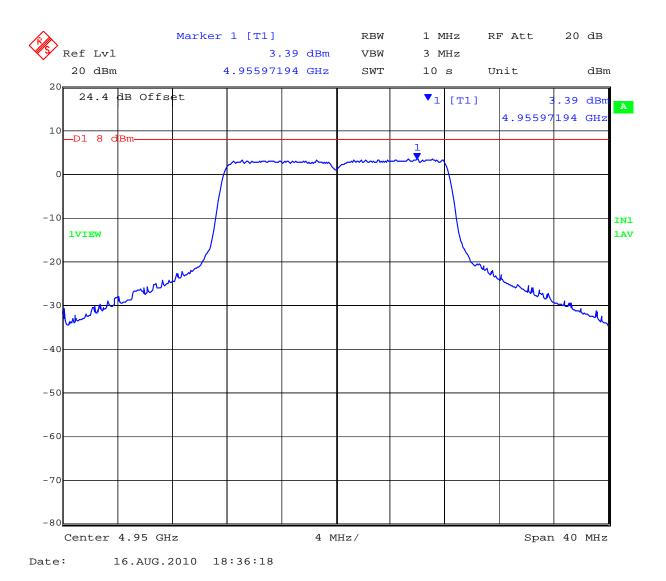
Peak power spectral density measurements were performed via the spectrum analyzer and plots were recorded. Modulation was ON and the system duty cycle was set for 100% i.e. continuous operation at all times. The system highest power setting was selected.

Test Measurement Set up

Test set up for Peak Power Spectral Density measurement(s)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar


To: FCC 47 CFR Part 90 & IC RSS 111

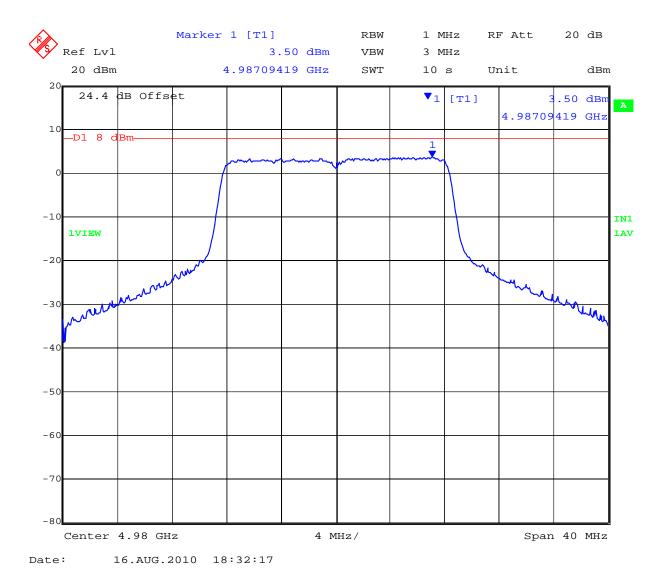
Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 31 of 85

TABLE OF RESULTS - 802.11a PPSD 20 MHz Bandwidth 4950 MHz

Center Frequency (MHz)	Peak Power Spectral Density (dBm/ MHz)	
4950.0	+3.39	

Peak Power Spectral Density 20 MHz BW Channel Freq 4950 MHz


To: FCC 47 CFR Part 90 & IC RSS 111

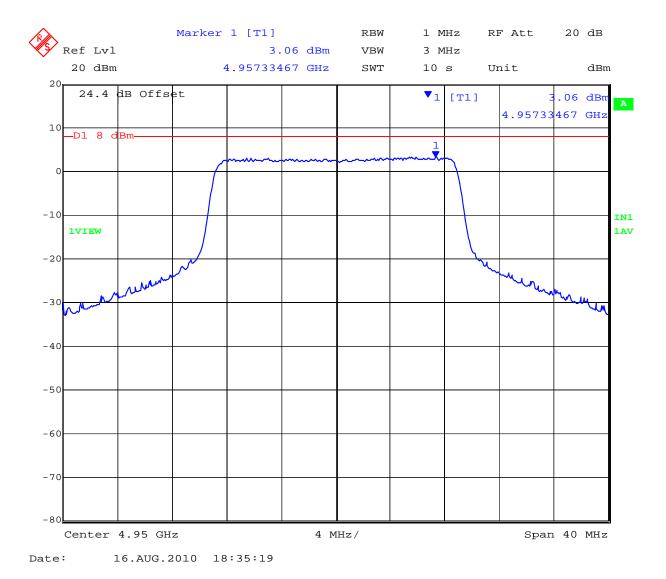
Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 32 of 85

TABLE OF RESULTS - 802.11a PPSD 20 MHz Bandwidth 4980 MHz

Center Frequency (MHz)	Peak Power Spectral Density (dBm/MHz)	
4980.0	+3.50	

Peak Power Spectral Density 20 MHz BW Channel Freq 4980 MHz


To: FCC 47 CFR Part 90 & IC RSS 111

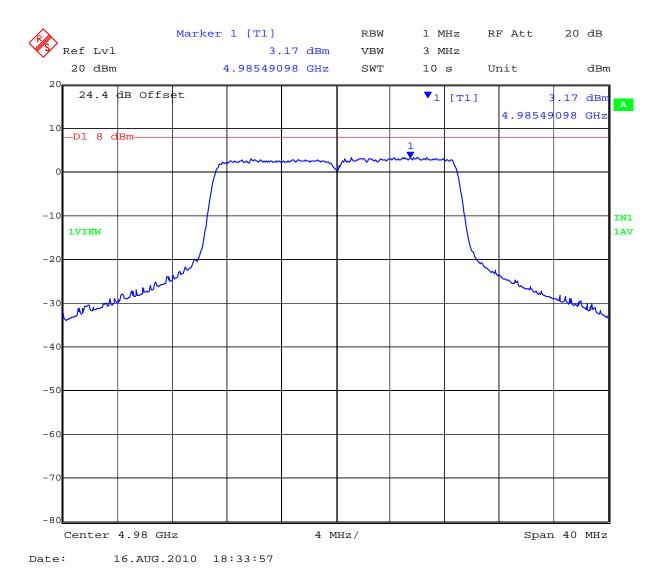
Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 33 of 85

TABLE OF RESULTS - 802.11 HT-20 PPSD 20 MHz Bandwidth 4950 MHz

Center Frequency (MHz)	Peak Power Spectral Density (dBm/ MHz)
4950.0	+3.06

Peak Power Spectral Density 20 MHz BW Channel Freq 4950 MHz


To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 34 of 85

TABLE OF RESULTS - 802.11 HT-20 PPSD 20 MHz Bandwidth 4980 MHz

Center Frequency (MHz)	Peak Power Spectral Density (dBm/MHz)	
4980.0	+3.17	

Peak Power Spectral Density 20 MHz BW Channel Freq 4980 MHz

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 35 of 85

Specification Limits FCC Part §90.1215

Refer to the Power Limits Specification in Section 5.1.2 of this report.

Laboratory Measurement Uncertainty for Power Measurement

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0070, 0116, 0158, 0193, 0252, 0313, 0314.
instruction WI-03 'Measurement of RF	
Output Power'	

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 36 of 85

6.1.4. <u>Maximum Permissible Exposure</u>

FCC, Part 90 Subpart C §90.1217

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/ $(4\pi d^2)$

EIRP = P * G

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10 ^ (G (dBi)/10)$

4 9 GHz 20 MHz Channel = Max. Peak Output Power +18.20 dBm, 66.1 mW

Max. Antenna Gain = 14 dBi, 25.12 numeric

The EUT belongs to the Occupational/Controlled Exposure class of devices; power density limit is 5.0mW/cm²

Maximum Gain Antennas – Calculated Safe Distance @ 1 mW/cm²

Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm² Limit(cm)	Minimum Separation Distance (cm)
14.0	25.12	+18.20	66.1	11.5	35.0

Note: for 4.9 GHz mobile or fixed location transmitters the minimum separation distance is 35 cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§90.1217 Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines. See §1.1307 (b)(1) of this chapter.

Limit S = $1 \text{mW} / \text{cm}^2 \text{ from } 1.310 \text{ Table } 1$

Laboratory Measurement Uncertainty for Power Measurements

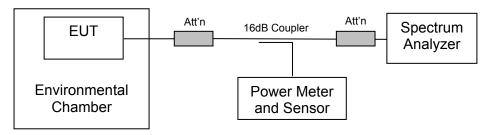
Measurement uncertainty	±1.33dB
-------------------------	---------

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 37 of 85

6.1.5. Frequency Stability; Temperature Variations, and Voltage Variations


FCC 47 CFR Part 90, Subpart Y; 2.1055(a)(1); §90.213

IC Section 4.2

Test Procedure

The transmitter output was connected to a spectrum analyzer and the frequency stability was measured in an un-modulated state. Frequency stability was measured through the extremes of temperature on the mid channel only. Before measurements were taken at each temperature the equipment waited until thermal balance was obtained.

Test Measurement Set up

Measurement set up for Frequency Stability

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

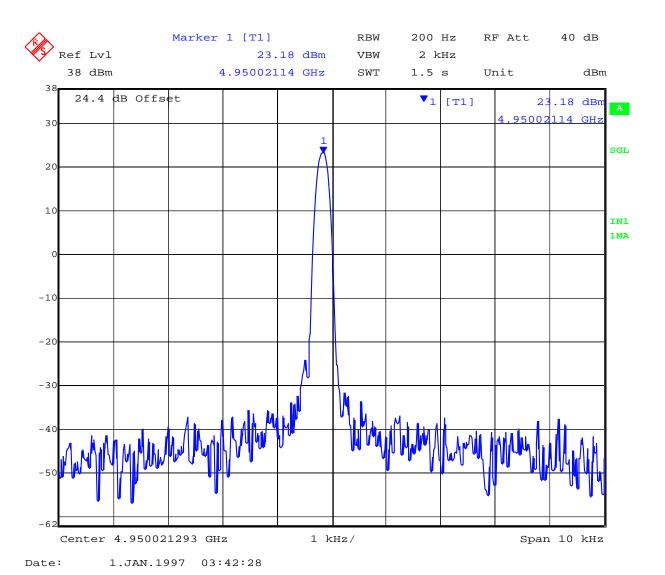
Page: 38 of 85

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS Frequency Stability;-

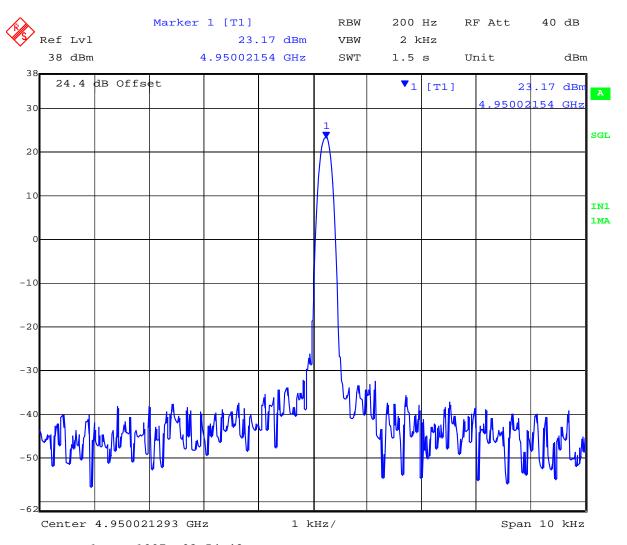
Temperature Variations


Voltage (Vdc)	Temperature(°C)	FREQUENCY Channel 4975 MHz	
		Measured Value (MHz)	ppm
	-25	4950.02114	4.27
	-15	4950.02154	4.35
+48.0	-10	4950.0212	4.28
140.0	-5	4950.01525	3.08
	+15	4950.01252	2.53
	+20	4949.99456	-1.10
+40.8	+20	4949.99504	-1.00
+55.2	+20	4949.99548	-0.91
	+25	4949.99052	-1.92
+43.2	+35	4949.98075	-3.89
+43.2	+45	4949.97671	-4.71
	+55	4949.98234	-3.57
Maximum Frequency Drift Minimum Frequency Drift		+21.54 kHz / -23.29 kHz /	

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 39 of 85

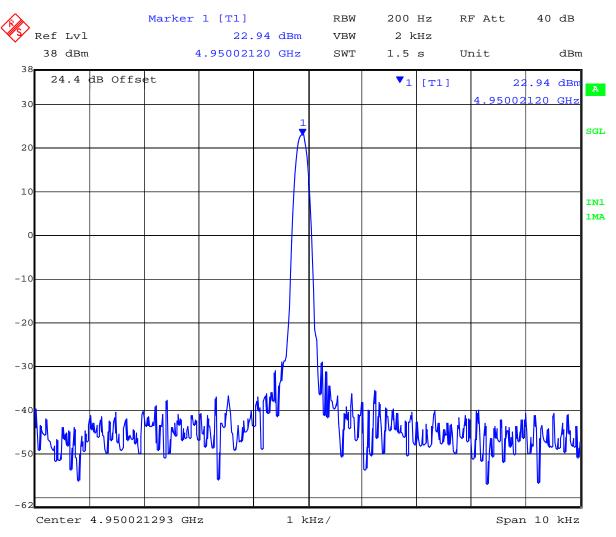

Frequency Stability @ -25°C, +48 Vdc

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 40 of 85

Date: 1.JAN.1997 03:54:42

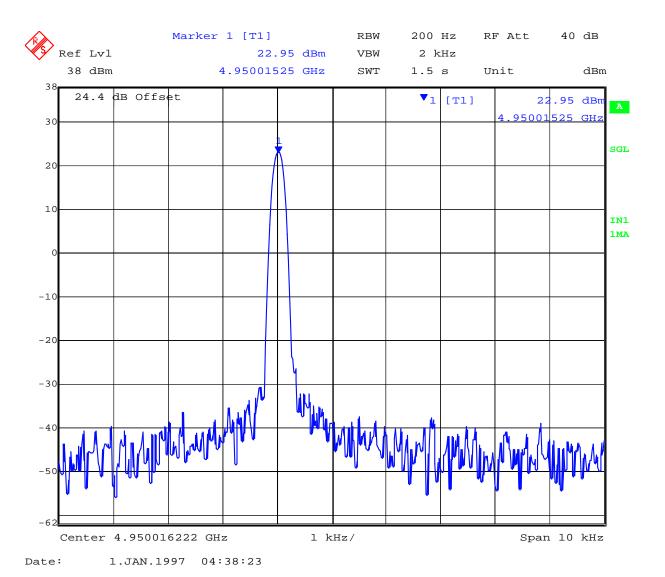

Frequency Stability @ -15°C, +48 Vdc

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 41 of 85

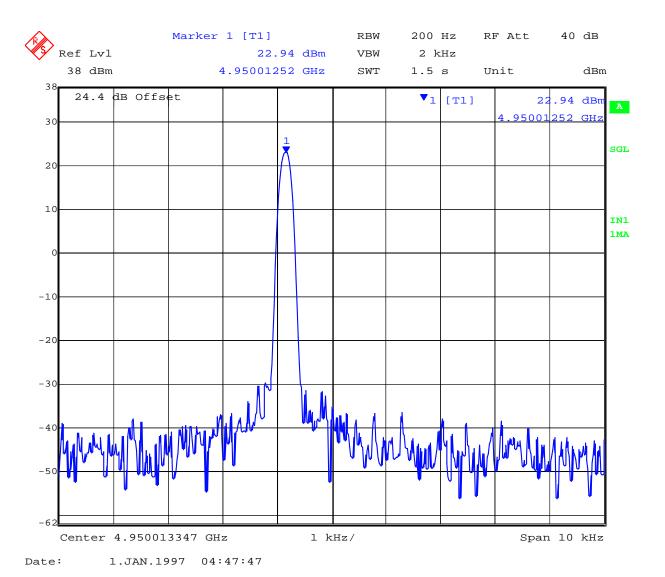
Date: 1.JAN.1997 04:09:29


Frequency Stability @ -5°C, +48 Vdc

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

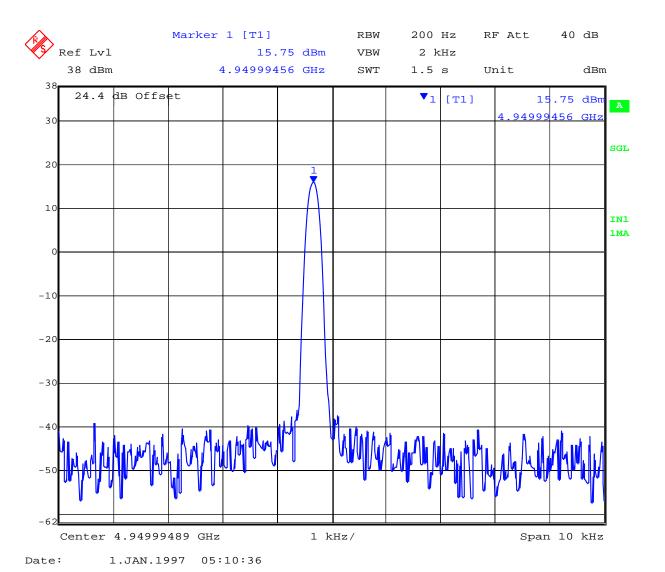
Page: 42 of 85


Frequency Stability @ +5°C, +48 Vdc

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

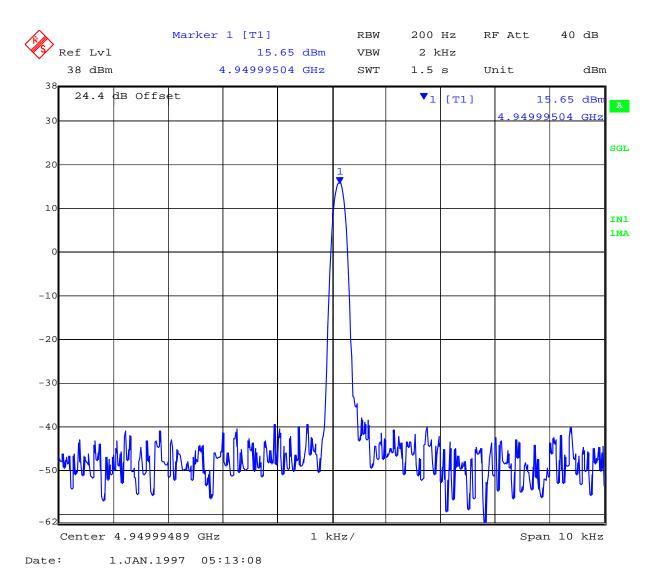
Page: 43 of 85


Frequency Stability @ +15°C, +48 Vdc

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

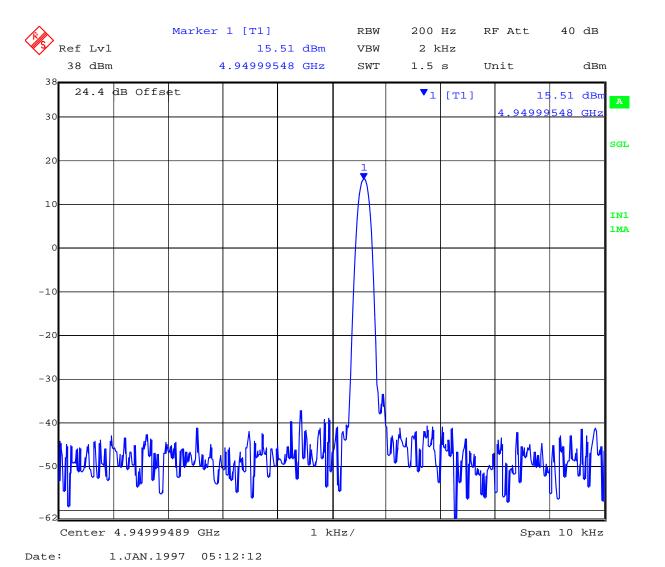
Page: 44 of 85


Frequency Stability @ +20°C, +48 Vdc

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

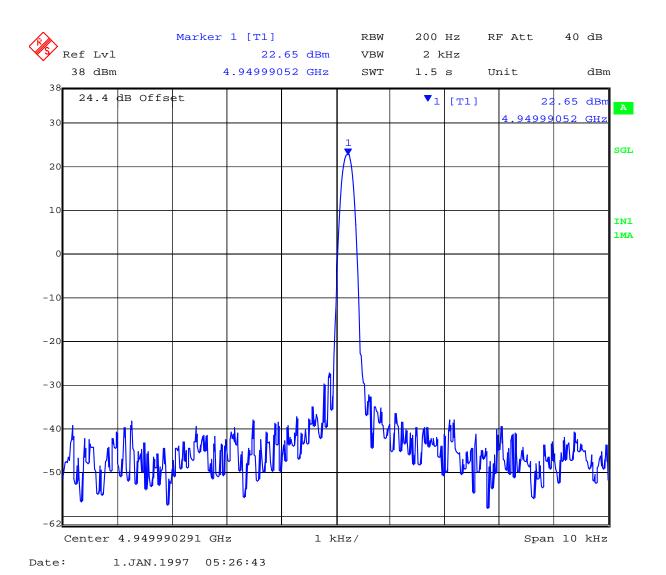
Page: 45 of 85


Frequency Stability @ +20°C, +40.8 Vdc

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

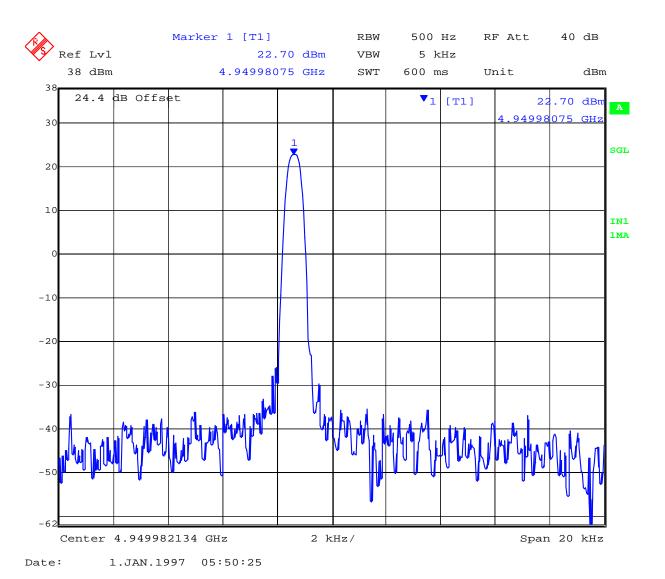
Page: 46 of 85


Frequency Stability @ +20°C, +55.2 Vdc

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

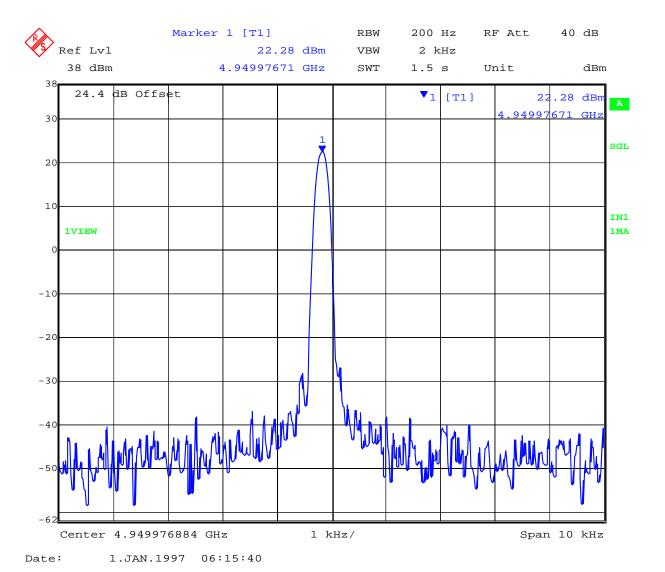
Page: 47 of 85


Frequency Stability @ +25°C

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

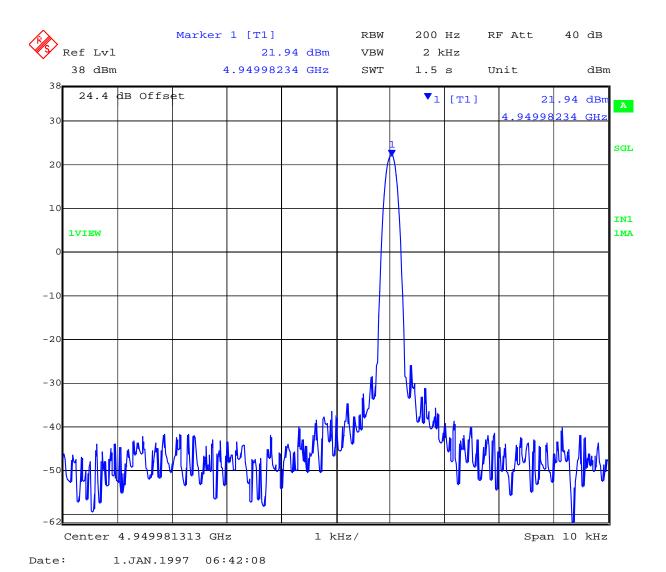
Page: 48 of 85


Frequency Stability @ +35°C

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 49 of 85


Frequency Stability @ +45°C

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 50 of 85

Frequency Stability @ +55°C

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 51 of 85

Laboratory Measurement Uncertainty for Frequency Stability

Measurement uncertainty	±0.866 ppm
-------------------------	------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-02 'Frequency Measurement'	0070, 0116, 0158, 0193, 0252, 0313, 0314.

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 52 of 85

6.1.6. Spurious Emissions at Antenna Terminals - Transmitter

FCC 47 CFR Part 90, Subpart Y; 2.1051; §90.210(m)

IC Section 4.4/4.5

Industry Canada RSS-Gen 6

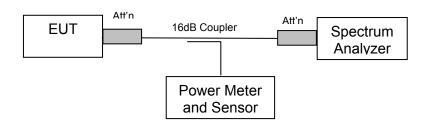
Test Procedure

Transmitter conducted spurious emissions were measured for each bandwidth. Measurement were made while EUT was operating in a modulated transmit mode of operation, at the appropriate center frequency, 100% duty cycle and maximum power at all times. Conducted spurious emissions were measured to 40 GHz.

Limit calculation depended on average transmit power level(s). See test report Section 5.1.2 for maximum power level measurements.

Worst case power measurement: +18.20 dBm (0.066W)

From FCC Part 90.210 (m)


On any frequency removed from the assigned frequency between above 150 % of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.

Attenuation

55 + 10 log (P) dB for 20 MHz bandwidth = 43.2 dB attenuation where P is Watts

Limit: +18.20 - 43.2 = -25.0 dBm

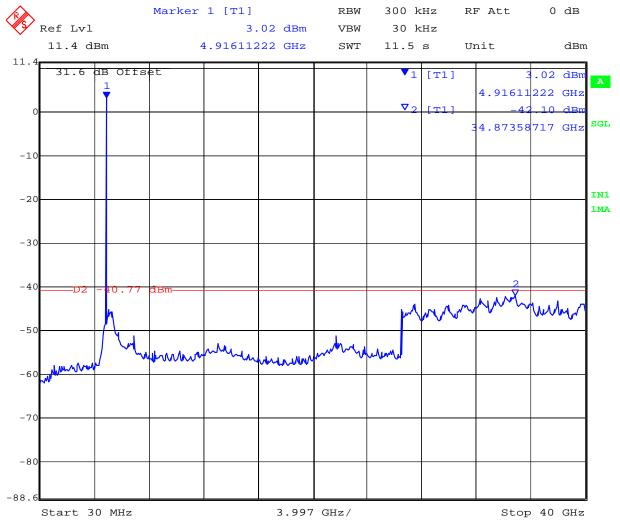
Test Measurement Set up

Conducted spurious emission test configuration

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS


To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

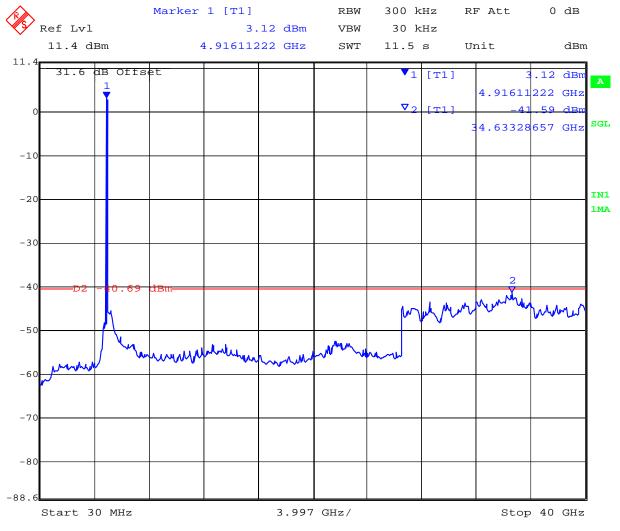
Page: 53 of 85

TABLE OF RESULTS - 802.11a 20 MHz Bandwidth 4950 MHz

Freque	ncy (MHz)			
Start (MHz)	Stop (MHz)	Freq of Maximum Emission (MHz)	Emission Amplitude (dBm)	Margin (dB)
30	40,000	34,87358717	-42.10	-17.1

Date: 17.AUG.2010 17:28:36

Transmitter Channel 4950 MHz, 20 MHz Channel Spacing, 30 - 40,000 MHz


To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

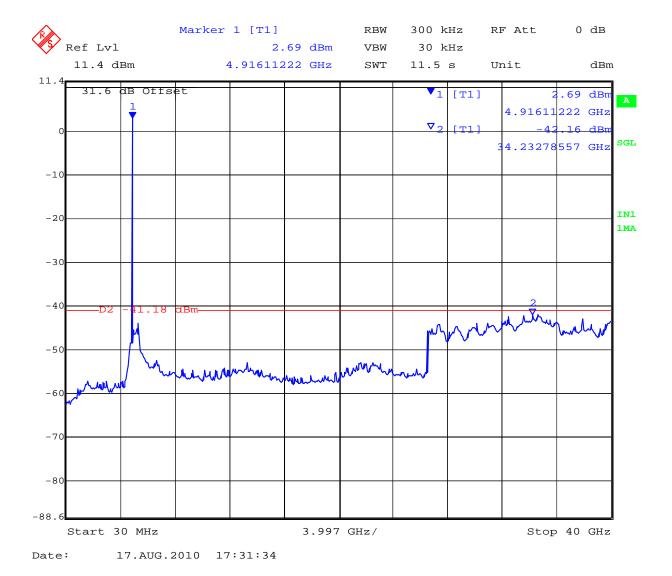
Page: 54 of 85

TABLE OF RESULTS - 802.11a 20 MHz Bandwidth 4980 MHz

Freque	ncy (MHz)			
Start (MHz)	Stop (MHz)	Freq of Maximum Emission (MHz)	Emission Amplitude (dBm)	Margin (dB)
30	40,000	34,633.28657	-41.59	-16.59

Date: 17.AUG.2010 17:34:42

Transmitter Channel 4980 MHz 20 MHz Spacing, 30 - 40,000 MHz


To: FCC 47 CFR Part 90 & IC RSS 111

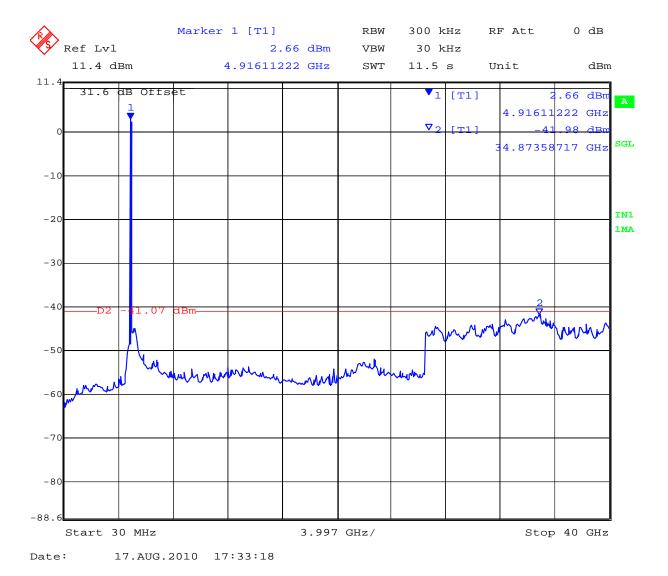
Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 55 of 85

TABLE OF RESULTS - 802.11 HT-20, 20 MHz Bandwidth 4950 MHz

Freque	ncy (MHz)			
Start (MHz)	Stop (MHz)	Freq of Maximum Emission (MHz)	Emission Amplitude (dBm)	Margin (dB)
30	40,000	34,232.78557	-42.16	-17.16

Transmitter Channel 4950 MHz, 20 MHz Channel Spacing, 30 – 40,000 MHz


To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 56 of 85

TABLE OF RESULTS - 802.11 HT-20, 20 MHz Bandwidth 4980 MHz

Freque	ncy (MHz)			
Start (MHz)	Stop (MHz)	Freq of Maximum Emission (MHz)	Emission Amplitude (dBm)	Margin (dB)
30	40,000	34,873.58717	-41.98	-16.98

Transmitter Channel 4980 MHz, 20 MHz Spacing, 30 - 40,000 MHz

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 57 of 85

Specification Limits

Conducted Spurious Emission at Antenna Terminals – Transmitter Limits FCC Part §90.210

Emission Mask (m)

(6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 50 dB or 55 + 10log(P) dB, whichever is the lesser attenuation.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0070, 0116, 0158, 0088, 0252, 0313, 0314
instruction WI-05 'Measurement of	
Spurious Emissions'	

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 58 of 85

6.1.7. Radiated Spurious Emissions

FCC 47 CFR Part 90, Subpart Y; 2.1053; §90.210(m)

IC Section 4.4

Test Procedure

Measurements were made while EUT was operating in a modulated transmit mode of operation, at the appropriate center frequency, 100% duty cycle and maximum power at all times. Substitution was performed on any emissions observed within 6 dB of the limit line. The antenna port was attenuated with a 50 Ω termination.

The measurement equipment was set to measure in peak hold mode. The emissions were measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode.

The highest emissions relative to the limit are listed for each frequency spanned.

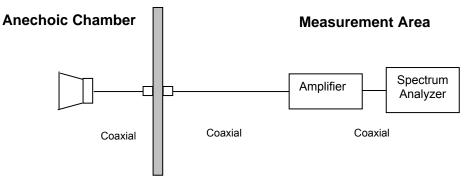
Measurements below 1 GHz utilized 100 KHz RBW, measurements above 1 GHz were performed using a minimum RBW of 1 MHz.

Limit calculation depended on average transmit power level(s). See test report Section 5.1.2 for maximum power level measurements.

Worst case power measurement: +18.20 dBm

From FCC Part 90.210 (m)

On any frequency removed from the assigned frequency between above 150 % of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.


Attenuation

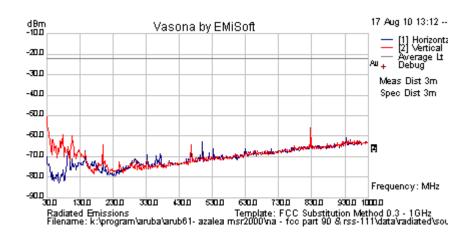
55 + 10 log (P) dB for 20 MHz bandwidth = 47.80 dB attenuation where P is Watts

Limit: +18.20 - 43.20 = -25.0 dBm

The -25 dBm limit was verified using a substitution method.

Test Measurement Set up

Measurement set up for Radiated Emission Test


To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 59 of 85

Test Freq.	4950 MHz	Engineer	CSB
Variant	802.11a; 6 Mbps	Temp (°C)	25.5
Freq. Range	30 - 1000 MHz	Rel. Hum.(%)	35
Power Setting	20 in ART test utility	Press. (mBars)	997
Antenna	50 Ohm terminations	Duty Cycle (%)	100
Test Notes 1	Limits was set at: 17.84 (lowest conducted output power) - 40dB = -22.16		
Test Notes 2			

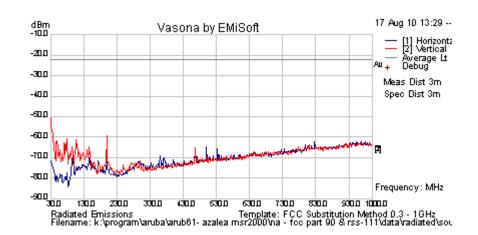
Formally measured emission peaks

No Redio emissions within 6dB of limits.

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

To: FCC 47 CFR Part 90 & IC RSS 111


Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 60 of 85

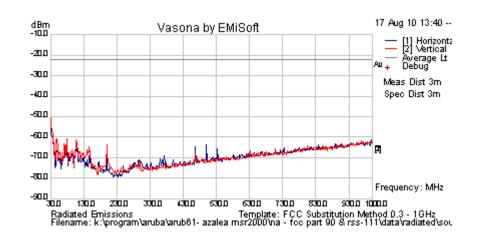
Test Freq.	4980 MHz	Engineer	CSB
Variant	802.11a; 6 Mbps	Temp (°C)	25.5
Freq. Range	30 - 1000 MHz	Rel. Hum.(%)	35
Power Setting	20 in ART test utility	Press. (mBars)	997
Antenna	50 Ohm terminations	Duty Cycle (%)	100
Test Notes 1	Limits was set at: 17.84 (lowest conducted output power) - 40dB = -22.16		
Test Notes 2	Notes 2		

Legend:

Formally measured emission peaks Frequency MHz Raw Cable ΑF Level Measurement Hgt Azt Limit Margin **Pass** Pol Comments dBm dBm Deg dBm dB Loss /Fail Type cm No Redio emissions within 6dB of limits.

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak


To: FCC 47 CFR Part 90 & IC RSS 111

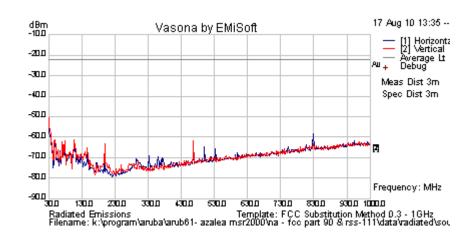
Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 61 of 85

Test Freq.	4950 MHz	Engineer	CSB			
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	25.5			
Freq. Range	30 - 1000 MHz	Rel. Hum.(%)	35			
Power Setting	20 in ART test utility	Press. (mBars)	997			
Antenna	50 Ohm terminations Duty Cycle (%) 100					
Test Notes 1	Limits was set at: 17.84 (lowest conducted output power) - 40dB = -22.16					
Test Notes 2						

Formally measured emission peaks Frequency MHz Raw Cable ΑF Level Measurement Azt Limit Margin **Pass** Hat Pol Comments dBm dB dBm Deg dBm dB Loss /Fail Type cm No Redio emissions within 6dB of limits. Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak


To: FCC 47 CFR Part 90 & IC RSS 111

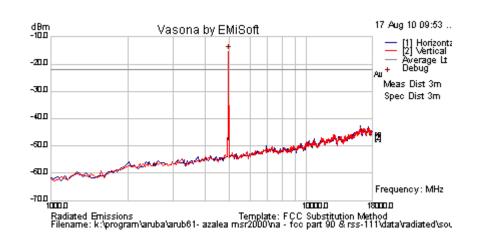
Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 62 of 85

Test Freq.	4980 MHz	Engineer	CSB			
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	25.5			
Freq. Range	30 - 1000 MHz	Rel. Hum.(%)	35			
Power Setting	20 in ART test utility	Press. (mBars)	997			
Antenna	50 Ohm terminations	100				
Test Notes 1	Limits was set at: 17.84 (lowest conducted output power) - 40dB = -22.16					
Test Notes 2						

Formally measured emission peaks Frequency MHz Raw Cable ΑF Level Measurement Hgt Azt Limit Margin **Pass** Pol Comments dBm dBm Deg dBm Loss dB /Fail Type cm No Redio emissions within 6dB of limits. Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak


To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

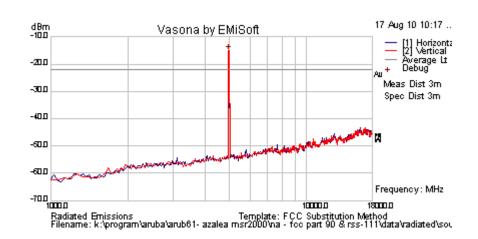
Page: 63 of 85

Test Freq.	4950 MHz	Engineer	CSB			
Variant	802.11a; 6 Mbps	Temp (°C)	25.5			
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	35			
Power Setting	20 in ART test utility	Press. (mBars)	997			
Antenna	50 Ohm terminations Duty Cycle (%) 100					
Test Notes 1	Limits was set at: 17.84 (lowest conducted output power) - 40dB = -22.16					
Test Notes 2						

Formally measured emission peaks Frequency MHz Raw Cable AF Level Measurement Hgt Azt Limit Margin **Pass** Pol Comments dBm dB dBm Deg dBm dB Loss /Fail Type cm 4950.020 -23.6 4.6 3.8 -15.3 Peak [Scan] ٧ 0 -22.2 **FUND** 150

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak


To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

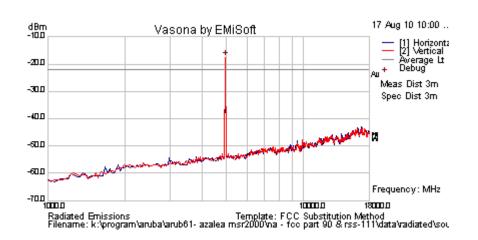
Page: 64 of 85

Test Freq.	4980 MHz	Engineer	CSB			
Variant	802.11a; 6 Mbps	Temp (°C)	25.5			
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	35			
Power Setting	20 in ART test utility	Press. (mBars)	997			
Antenna	50 Ohm terminations Duty Cycle (%) 100					
Test Notes 1	Limits was set at: 17.84 (lowest conducted output power) - 40dB = -22.16					
Test Notes 2						

Formally measured emission peaks Frequency MHz Raw Cable AF Level Measurement Hgt Azt Limit Margin **Pass** Pol Comments dBm dB dBm Deg dBm dB Loss /Fail Type cm 4979.760 -23.5 4.6 3.8 -15.1 Peak [Scan] ٧ 150 0 -22.2 **FUND** Legend:

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak


To: FCC 47 CFR Part 90 & IC RSS 111

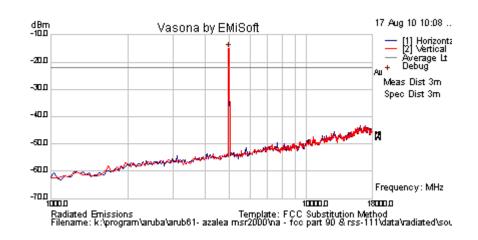
Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 65 of 85

Test Freq.	4950 MHz	Engineer	CSB			
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	25.5			
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	35			
Power Setting	20 in ART test utility	Press. (mBars)	997			
Antenna	50 Ohm terminations Duty Cycle (%) 100					
Test Notes 1	Limits was set at: 17.84 (lowest conducted output power) - 40dB = -22.16					
Test Notes 2						

Formally measured emission peaks Frequency MHz Raw Cable ΑF Level Measurement Hgt Azt Limit Margin **Pass** Pol Comments dBm dB dBm Deg dBm dB Loss /Fail Type cm 4950.001 -25.8 4.6 3.8 -17.4 Peak [Scan] ٧ 150 0 -22.2 **FUND** Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak


To: FCC 47 CFR Part 90 & IC RSS 111

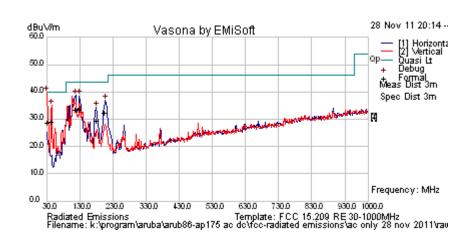
Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 66 of 85

Test Freq.	4980 MHz	Engineer	CSB			
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	25.5			
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	35			
Power Setting	20 in ART test utility	Press. (mBars)	997			
Antenna	50 Ohm terminations Duty Cycle (%) 100					
Test Notes 1	Limits was set at: 17.84 (lowest conducted output power) - 40dB = -22.16					
Test Notes 2						

Formally measured emission peaks Frequency MHz Raw Cable ΑF Level Measurement Hgt Azt Limit Margin **Pass** Pol Comments dBm dB dBm Deg dBm dB Loss /Fail Type cm 4979.760 -23.5 4.6 3.8 -15.1 Peak [Scan] ٧ 150 0 -22.2 **FUND** Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

To: FCC 47 CFR Part 90 & IC RSS 111


Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 67 of 85

Radiated Emissions from the modified AP-175AC device 28th November 2011

Test Freq.	N/A	Engineer	GMH			
Variant	Digital Emissions	Temp (°C)	20.5			
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	40			
Power Setting	120V AC 60Hz	Press. (mBars)	1007			
Antenna	4 x 2' meter N-Type cable with 50 Ohm loads					
Test Notes 1	EUT grounded to turntable. Shielded Ethernet cable connected and terminated.					
Test Notes 2	AP-175AC powered via 120Vac 60 Hz: FCC Class B limit used					

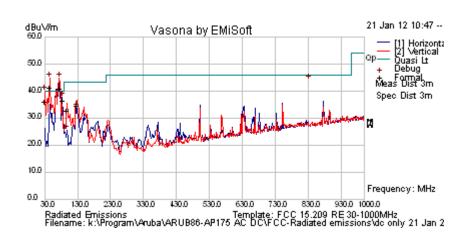
Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
32.243	35.9	3.4	-10.6	28.7	Quasi Max	V	98	211	40	-11.3	Pass	
116.775	46.6	4.3	-17.3	33.6	Quasi Max	Н	357	287	43.5	-9.9	Pass	
45.655	46.4	3.6	-21.0	29.1	Quasi Max	V	179	13	40	-10.9	Pass	
130.140	45.9	4.4	-16.9	33.4	Quasi Max	Н	230	70	43.5	-10.2	Pass	
205.348	46.9	4.8	-19.2	32.5	Quasi Max	Н	148	110	43.5	-11.0	Pass	
180.796	44.3	4.7	-19.5	29.5	Quasi Max	Н	207	113	43.5	-14.0	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

To: FCC 47 CFR Part 90 & IC RSS 111


Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 68 of 85

Radiated Emissions from the modified AP-175DC device 21st January 2012

Test Freq.	N/A	Engineer	GMH			
Variant	AP-175DC	Temp (°C)	18			
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	43			
Power Setting	48 Vdc	Press. (mBars)	1001			
Antenna	4 x 1' meter N-Type cable with 50 Ohm loads terminates antenna port					
Test Notes 1	EUT grounded to turntable. Shielded Ethernet cable connected and terminated.					
Test Notes 2	AP-175DC powered via 48Vdc (The Beast):	Class B limit used to prove comp	oliance			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
46.920	57.3	3.7	-21.3	39.7	Quasi Max	V	101	235	40	-0.3	Pass	
76.236	58.3	3.9	-22.8	39.4	Quasi Max	V	184	305	40	-0.6	Pass	
30.091	41.8	3.4	-9.2	36.1	Quasi Max	V	100	188	40	-3.9	Pass	
84.807	56.0	4.0	-23.5	36.5	Quasi Max	Н	362	123	40	-3.5	Pass	
127.540	47.1	4.4	-16.8	34.6	Quasi Max	V	100	252	43.5	-8.9	Pass	
98.125	49.8	4.1	-21.3	32.6	Quasi Max	V	98	82	43.5	-10.9	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 69 of 85

Transmitter Limits

Limits FCC Part §90.210 (m)

Emission Mask M

(6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty +5	+5.6/ -4.5 dB
----------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0104, 0158, 0134, 0310, 0312, Dipole.

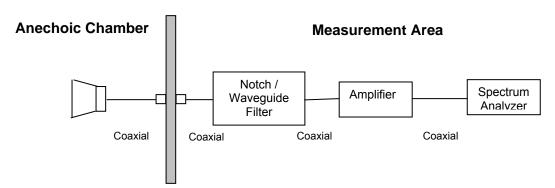
To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 70 of 85

6.1.8. Receiver Radiated Spurious Emissions

Industry Canada RSS-Gen §4.8, §6


Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

All Sectors of the EUT were tested simulatneously

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strenath

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 71 of 85

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V)$ and $\mu V/m$ (or $\mu V)$ are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 72 of 85

Receiver Spurious Emissions

Industry Canada RSS-Gen §4.10,

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RSS-Gen §6

The following receiver spurious emission limits shall be complied with; (a) If a radiated measurement is made, all spurious emissions hall comply with the limits of Table 1.

Table 1: FCC 15.209 Spurious Emissions Limits

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

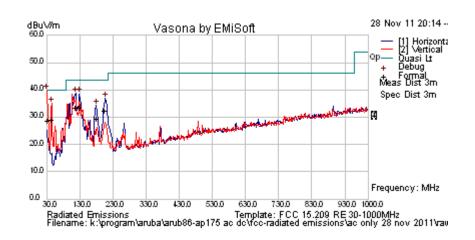
Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty	+5.6/ -4.5 dB
--------------------------------	---------------

Traceability:

Method	Test Equipment Used
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part 90 & IC RSS 111


Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 73 of 85

Measurement Results for Receiver Emissions

Test Freq.	N/A	Engineer	GMH			
Variant	Receiver Emissions	Temp (°C)	20.5			
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	40			
Power Setting	120V AC 60Hz	Press. (mBars)	1007			
Antenna	4 x 2' meter N-Type cable with 50 Ohm loads					
Test Notes 1	EUT grounded to turntable. Shielded Ethernet cable connected and terminated.					
Test Notes 2	AP-175AC powered via 120Vac 60 Hz: FCC	Class B limit used				

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
32.243	35.9	3.4	-10.6	28.7	Quasi Max	>	98	211	40	-11.3	Pass	
116.775	46.6	4.3	-17.3	33.6	Quasi Max	Н	357	287	43.5	-9.9	Pass	
45.655	46.4	3.6	-21.0	29.1	Quasi Max	V	179	13	40	-10.9	Pass	
130.140	45.9	4.4	-16.9	33.4	Quasi Max	Н	230	70	43.5	-10.2	Pass	
205.348	46.9	4.8	-19.2	32.5	Quasi Max	Н	148	110	43.5	-11.0	Pass	
180.796	44.3	4.7	-19.5	29.5	Quasi Max	Н	207	113	43.5	-14.0	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 74 of 85

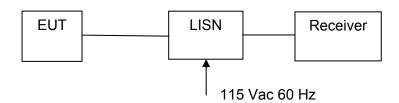
		1										
Test	Freq.	4965 N	1965 MHz					E	ngineer	CSB		
V	ariant	802.11	a/n;Re	ceive Mbd	е	Temp (°C)			26.5			
Freq. I	Range	1000 N	H z - 18	8000 MHz		Rel. Hum.(%)			33			
Power S	etting	NΑ	WA					ress.	(mBars)	998		
An	tenna	50 Chn	nTermir	nations			Duty Cycle (%)					
Test No	otes 1	EUT in I	Receive	e Mode								
Test No	otes 2											
Miceim	MiceMLabs dBuV Vasona by EMiSoft 17 Aug 10 11:46 19											
Formally	/ mea	sured	emis	sion pea	ıks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
No Redio emis	ssions v	vithin 60	Boflin	rits.								
Legend:	TX=T	ransmit	ter Emis	sions; DK	G=Digital Emissi	ons; F	UND=	Funda	mental; W	B = Wide	band En	rission
	RB=F	estricte	d Band	I (15.209 L	imits); NRB=N	bn Re	stricted	d Band	, Limit is 2	OdB belov	v funda	mental peak

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 75 of 85

6.1.9. AC Wireline Conducted Emissions (150 kHz - 30 MHz)


FCC, Part 15 Subpart C §15.207

Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

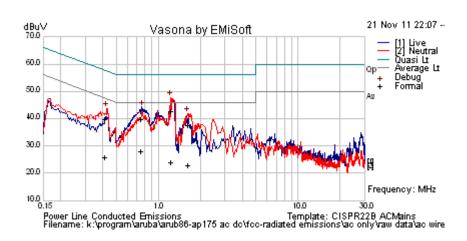
Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part 90 & IC RSS 111


Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 76 of 85

ac Wireline Emissions from the modified device 28th November 2011

Test Freq.	Test Freq. N/A		GMH				
Variant	AC Line Emissions	Temp (°C)	21.5				
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum.(%)	37				
Power Setting	120Vac 60 Hz	Press. (mBars)	1008				
Antenna	4 x 2' meter N-Type cable with 50 Ohm loads						
Test Notes 1	Ethernet cable connected and terminated.						
Test Notes 2	AP-175AC powered via 230Vac 50Hz: CISPR Class B limit used						

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.763	29.65	9.96	0.09	39.69	Quasi Peak	Live	56.00	-16.31	Pass	
0.418	29.96	9.88	0.08	39.93	Quasi Peak	Neutral	57.49	-17.57	Pass	
1.243	32.62	9.95	0.10	42.67	Quasi Peak	Neutral	56.00	-13.33	Pass	
1.645	27.52	10.01	0.11	37.64	Quasi Peak	Neutral	56.00	-18.36	Pass	
0.763	18.06	9.96	0.09	28.11	Average	Live	46.00	-17.89	Pass	
0.418	15.72	9.88	0.08	25.68	Average	Neutral	47.49	-21.81	Pass	
1.243	13.90	9.95	0.10	23.95	Average	Neutral	46.00	-22.05	Pass	
1.645	12.82	10.01	0.11	22.93	Average	Neutral	46.00	-23.07	Pass	
1.626	31.89	10.01	0.11	42.00	Peak [Scan]	Neutral	46.00	-4.00	Pass	
2.499	29.50	10.10	0.10	39.73	Peak [Scan]	Live	46.00	-6.30	Pass	
0.165	37.40	9.90	0.10	47.35	Peak [Scan]	Live	55.20	-7.90	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 77 of 85

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conduc	ted Limit (dBμV)
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

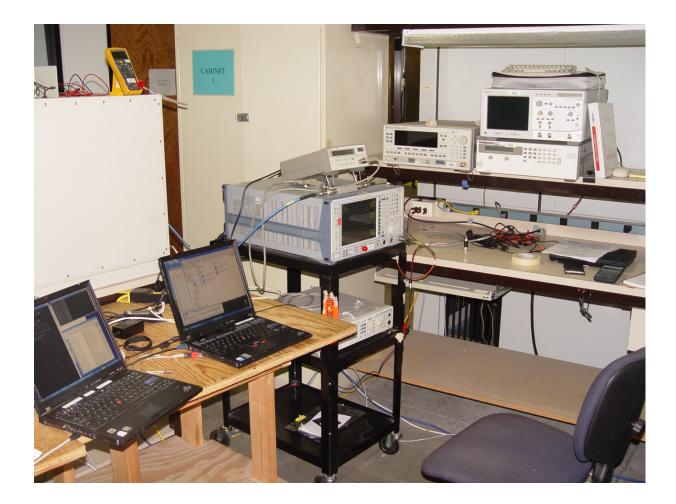
^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0287, 0190, 0293, 0307


To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 78 of 85

7. TEST SET-UP PHOTOGRAPHS

7.1. General Measurement Test Set-Up

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 79 of 85

7.2. <u>Environmental Chamber</u>

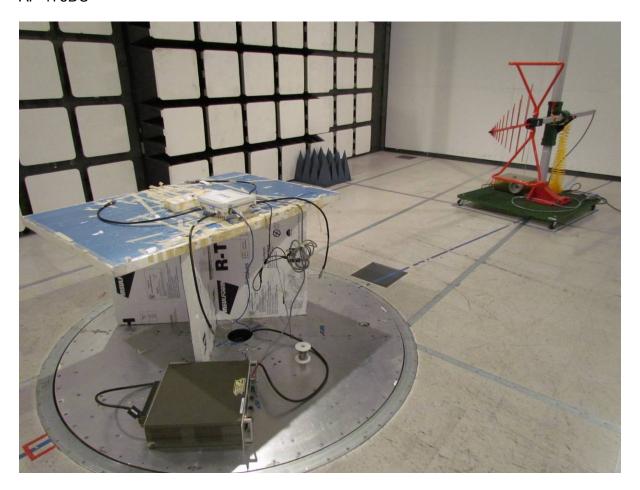
To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 80 of 85

7.3. Radiated Emissions < 1 GHz

AP-175AC

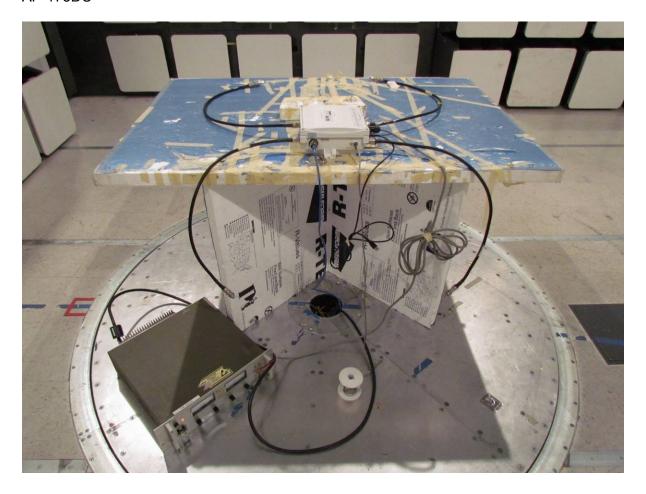

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 81 of 85

Radiated Emissions < 1 GHz

AP-175DC

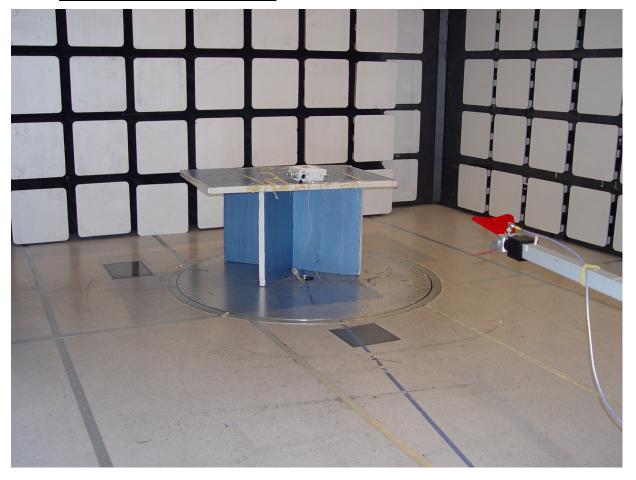


To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 82 of 85

AP-175DC



To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 83 of 85

7.4. Spurious Emissions > 1 GHz

To: FCC 47 CFR Part 90 & IC RSS 111

Serial #: ARUB86- X1 Rev B Issue Date: 3rd February 2012

Page: 84 of 85

8. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0287	EMI Receiver	Rhode & Schwartz	ESIB 40	100201
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0301	5.6 GHz Notch Filter	Micro-Tronics	RBC50704	001
0302	5.25 GHz Notch Filter	Micro-Tronics	BRC50703	002
0303	5.8 GHz Notch Filter	Micro-Tronics	BRC50705	003
0304	2.4GHzHz Notch Filter	Micro-Tronics		001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0335	1-18GHz Horn Antenna	ETS- Lindgren	3117	00066580
0337	Amplifier	MiCOM Labs		
0338	Antenna	Sunol Sciences	JB-3	A052907

440 Boulder Court, Suite 200 Pleasanton, California 94566, USA Tel: 1.925.462.0304

Fax: 1.925.462.0306 www.micomlabs.com