

FCC Test Report

Report No.: RWAY202300007A

Applicant: NINGBO BAIHUANG ELECTRIC APPLIANCES CO., LTD

Address: NO.180, YANSHAN RD, HUXIMEN, HENG HE TOWN, CIXI, NINGBO, CHINA

Product Name: Remote Control Transmitter

Product Model: BH-T1

Multiple Models: N/A

Trade Mark: N/A

FCC ID: Q92-BH-T1

Standards: FCC CFR Title 47 Part 15C (§15.231)

Test Date: 2023-12-08 to 2023-12-29

Test Result: Complied

Report Date: 2024-01-02

Reviewed by:

Abel chen

Approved by:

Jacob Gong

Abel Chen Project Engineer Jacob Kong Manager

Prepared by:

World Alliance Testing and Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk " \star "

Report Template: TR-4-E-015/V1

Announcement

1. This test report shall not be reproduced in full or partial, without the written approval of World Alliance Testing and Certification (Shenzhen) Co., Ltd

2. The results in this report apply only to the sample tested.

3. This sample tested is in compliance with the limits of the above regulation.

4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No.	Issued Date	Description
00	2024-01-02	Original

Contents

1	Gener	al Information	4
	1.1	Client Information	4
	1.2	Product Description of EUT	4
	1.3	Antenna information	4
	1.4	Related Submittal(s)/Grant(s)	4
	1.5	Measurement Uncertainty	5
	1.6	Laboratory Location	5
	1.7	Test Methodology	5
2	Descr	iption of Measurement	6
	2.1	Test Configuration	6
	2.2	Test Auxiliary Equipment	6
	2.3	Test Setup	7
	2.4	Test Procedure	8
	2.5	Measurement Method	9
	2.6	Measurement Equipment 1	0
3	Test F	Results 1	1
	3.1	Test Summary1	11
	3.2	Limit 1	2
	3.3	AC Line Conducted Emissions Test Data 1	3
	3.4	Radiated emission Test Data 1	4
	3.5	Duty Cycle 2	20
	3.6	Deactivation Testing	23
	3.7	Bandwidth Test Data2	24
4	Test S	Setup Photo	25
5	E.U.T	Photo 2	26

1 General Information

1.1 Client Information

Applicant:	Ningbo Baihuang Electric Appliances Co.,Ltd
Address:	No.180, Yanshan Rd, Huximen, Heng He Town, Cixi, Ningbo, CHINA
Manufacturer:	Ningbo Baihuang Electric Appliances Co.,Ltd
Address:	No.180, Yanshan Rd, Huximen, Heng He Town, Cixi, Ningbo, CHINA

1.2 Product Description of EUT

Sample Serial Number	11-1, 11-2 (assigned by WATC)
Sample Received Date	2023-11-28
Sample Status	Good Condition
Frequency Range	433.92MHz
Maximum E-field Strength:	82.69dBuV/m@3m
Modulation Technology	ООК
Spatial Streams [#]	SISO (1TX, 1RX)
Power Supply	DC 12V from battery
Adapter Information	N/A
Modification	Sample No Modification by the test lab

1.3 Antenna information

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Device Antenna information:

The antenna is an internal antenna which cannot replace by end-user. Please see product internal photos for details.

1.4 Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s)

1.5 Measurement Uncertainty

Parameter		Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
AC Power Lines Condu	icted Emissions	±3.14dB
	Below 30MHz	±2.78dB
Emissions, Radiated	Below 1GHz	±4.84dB
	Above 1GHz	±5.44dB
Bandwidth		0.34%

Note 1: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Note 2: The Decision Rule is based on simple acceptance with ISO Guide 98-4:2012 Clause 8.2 (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

1.6 Laboratory Location

World Alliance Testing and Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: <u>qa@watc.com.cn</u>

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.7 Test Methodology

FCC CFR 47 Part 2 FCC CFR 47 Part 15 ANSI C63.10-2020

2 Description of Measurement

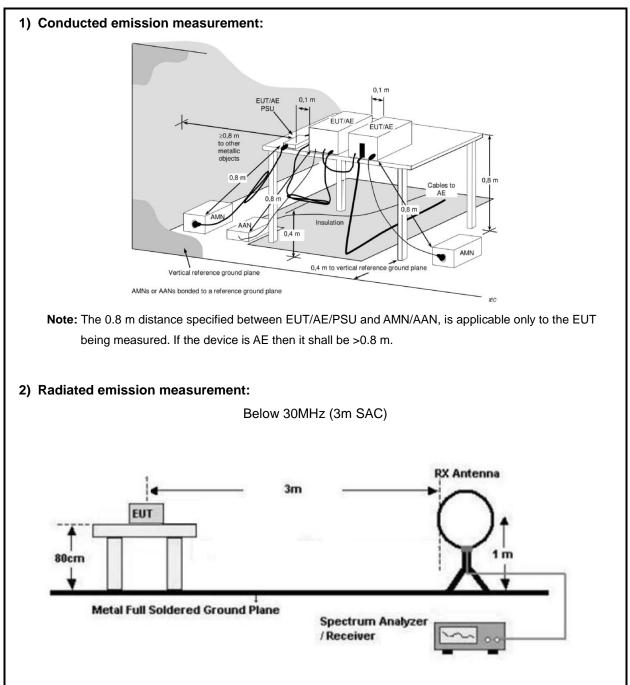
2.1 Test Configuration

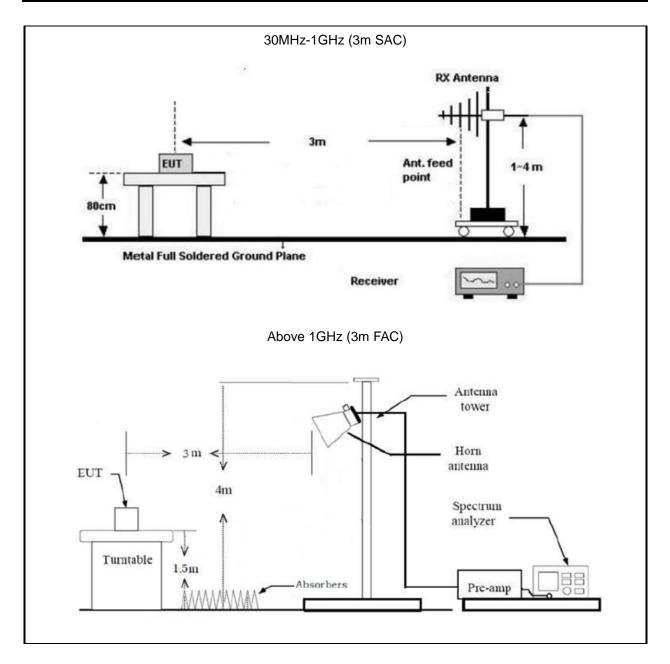
Operating channels:							
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
1	433.92	/	/	/	/		
channel, and	According to ANSI C63.10-2020 chapter 5.6.1 Table 11 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:						
Lowe	Lowest channel Middle channel Highest channel						
Channel No. (MHz)		Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
/	/	1	433.92	/	/		

Test Mode:					
Transmitting mode:	Kee	p the EUT in continuous transmitting with modulation			
Exercise software [#] :	The	EUT was configured to continuous transmitting mode by applicant			
Mode		Powel Level Setting [#]			
		Low Channel	Middle Channel	High Channel	
SRD / Default /				1	
The exercise software and the maximum power setting that provided by manufacturer.					

Worst-Case Configuration:

For radiated emissions, EUT was investigated in three orthogonal orientation, the worst-case orientation was recorded in report


All the keys with same power setting, the maximum duty cycle was tested and recorded.


2.2 Test Auxiliary Equipment

Manufacturer	Description	Model	Serial Number
/	/	/	/

2.3 Test Setup

2.4 Test Procedure

Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- 2. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

- a) For below 30MHz
- 1. All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30

MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance).

2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)

b) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

c) For above 1GHz:

- The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5 m (above 18GHz).
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
- 4. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

Bandwidth Test:

- 1. Use the same setup for radiated below 1GHz, found the maximum fundamental level.
- 2. Change the spectrum analyzer setting for bandwidth testing
- 3. Test the bandwidth and record the result

2.5 Measurement Method

Description of Test	Measurement Method
AC Line Conducted Emissions	ANSI C63.10-2020 Section 6.2
20dB Emission Bandwidth	ANSI C63.10-2020 Section 6.9.2
Field strength of fundamental and Radiated emission	ANSI C63.10-2020 Section 6.3&6.4&6.5&6.6

2.6 Measurement Equipment

Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date		
	Radiated Emission Test						
R&S	EMI test receiver	ESR3	102758	2023/7/3	2024/7/2		
ROHDE&	SPECTRUM		101000	2022/7/2	2024/7/2		
SCHWARZ	ANALYZER	FSV40-N	101608	2023/7/3	2024/7/2		
SONOMA	Low frequency	310	186014	2022/7/12	2024/7/11		
INSTRUMENT	amplifier	310	160014	2023/7/12	2024/7/11		
COM-POWER	preamplifier	PAM-118A	18040152	2023/8/21	2024/8/20		
ETS	Passive Loop	6512 29604	20004	2023/7/7	2024/7/6		
EIS	Antenna		2023/1/1	2024/7/6			
SCHWARZBECK	Log - periodic		9163-872	2023/7/7	2024/7/6		
SCHWARZDECK	wideband antenna	VULB 9163	9103-072	2023/1/1	2024/1/0		
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2024/7/5		
N/A	Coaxial Cable	N/A	NO.9	2023/8/8	2024/8/7		
N/A	Coaxial Cable	N/A	NO.10	2023/8/8	2024/8/7		
N/A	Coaxial Cable	N/A	NO.11	2023/8/8	2024/8/7		
Audix	Test Software	E3	191218 V9	/	/		

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

3 Test Results

3.1 Test Summary

FCC/ISEDC Rules	Description of Test	Result
FCC §15.203	Antenna Requirement	Compliance
FCC §15.207(a)	AC Line Conducted Emissions	N/A
FCC §15.231(c)	20dB Emission Bandwidth	Compliance
FCC §15.231(a)	Deactivation Testing	Compliance
FCC §15.205, §15.209, §15.231(b)	Field strength of fundamental and Radiated emission	Compliance

3.2 Limit

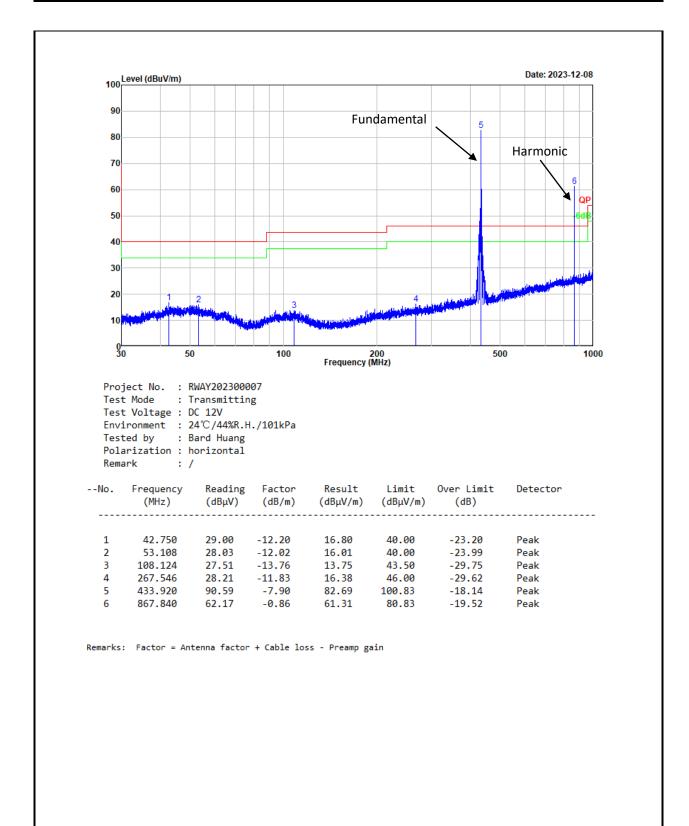
Limit				
See details §15.207 (a)				
The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900MHz.				
A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.				
-	-	-		
Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)		
40.66-40.70	2,250	225		
70-130	1,250	125		
130-174	¹ 1,250 to 3,750	¹ 125 to 375		
174-260	3,750	375		
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250		
Above 470	12,500	1,250		
¹ Linear interpolations.				
The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.				
Intentional radiators operating under the provisions of this section shall				
demonstrate compliance with the limits on the field strength of emissions, as				
shown in the above table, based on the average value of the measured				
emissions. As an alternative, compliance with the limits in the above table may				
be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in				
the application for equipment authorization. If average emission measurements				
are employed, the provisions in § 15.35 for averaging pulsed emissions and for				
limiting peak emissions apply. Further, compliance with the provisions of §				
15.205 shall be demonstrated using the measurement instrumentation specified				
in that section.				
The limits on the field strength of the spurious emissions in the above table are				
based on the fundamental frequency of the intentional radiator. Spurious				
whichever limit permits a higher field strength.				
	The bandwidth of the frequency for device A manually operate deactivate the trans In addition to the pre- intentional radiators Fundamental frequency (MHz) 40.66-40.70 70-130 130-174 174-260 260-470 Above 470 ¹ Linear interpolations. The above field struct tighter limits apply a Intentional radiators demonstrate compressions. As an are be based on the use detector. The special the application for eare employed, the limiting peak emisses 15.205 shall be deter in that section. The limits on the field based on the fundar emissions shall be quasi-peak) limits stars a section and the section are employed and the section are employed and the section. The limits on the field based on the fundar emissions shall be quasi-peak) limits stars a section and the section a a section and the section a section and the section	See details §15.207 (a) The bandwidth of the emission shall be no wide frequency for devices operating above 70 MHz A manually operated transmitter shall employ a deactivate the transmitter within not more than In addition to the provisions of § 15.205, the fire intentional radiators operated under this section Fundamental Field strength of fundamental (microvolts/meter) 40.66-40.70 2,250 70-130 1,250 130-174 1,250 to 3,750 260-470 1,3,750 to 12,500 Above 470 12,500 1 1 additors operating under the provisi demonstrate compliance with the limits on the shown in the above table, based on the average emissions. As an alternative, compliance with th be based on the use of measurement instrumed detector. The specific method of measurement the application for equipment authorization. If a are employed, the provisions in § 15.35 for ave limiting peak emissions apply. Further, complia 15.205 shall be demonstrated using the measur in that section. The limits on the field strength of the spurious based on the field strength of the spurious based on the field strength of the spurious based on the use of measurement instrumed detector. The specific method of measurement the application for equipment authorization. If a are employed, the provisions in § 15.35 for ave limiting peak emissions apply. Further, complia 15.205 shall be demonstrated using the measur in that section.		

3.3 AC Line Conducted Emissions Test Data

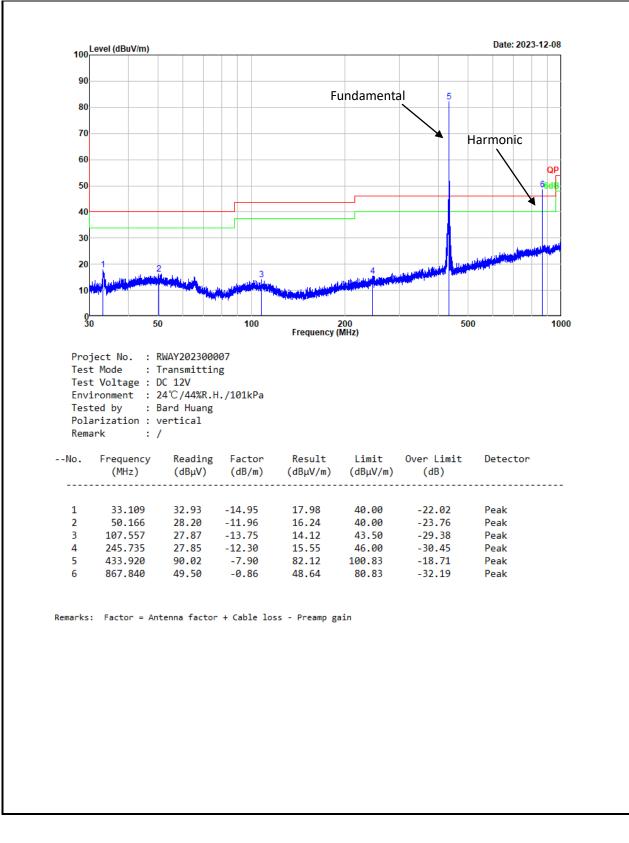
Not Applicable, the device only powered by battery

3.4 Radiated emission Test Data

9 kHz-30MHz:

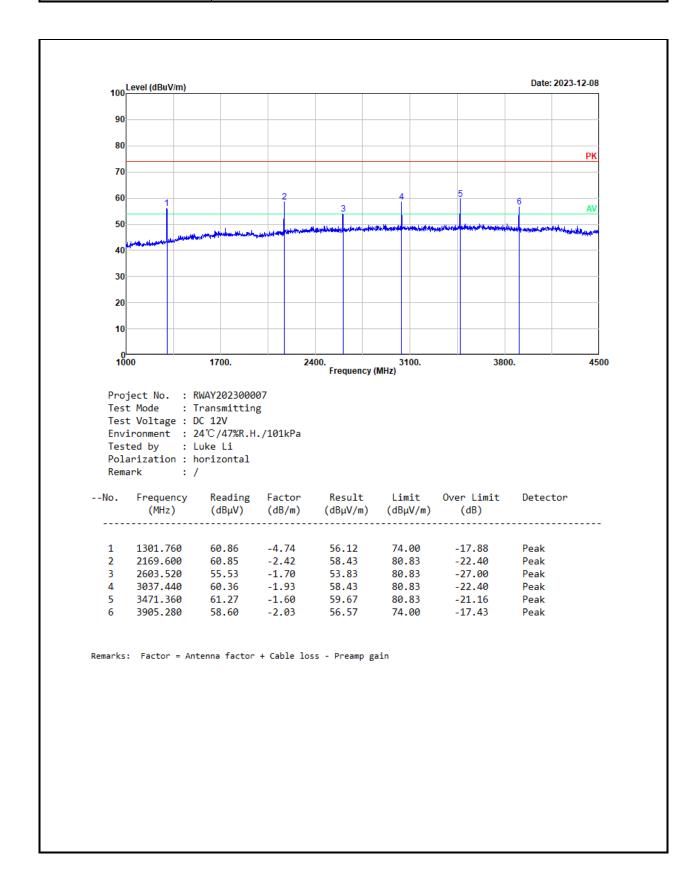

Test Date:	2023-12-08	Test By:	Bard Huang
Environment condition:	Temperature: 24°C; Relative H	umidity:44%; ATM Press	ure: 101kPa

For radiated emissions below 30MHz, there were no emissions found within 20dB of limit.

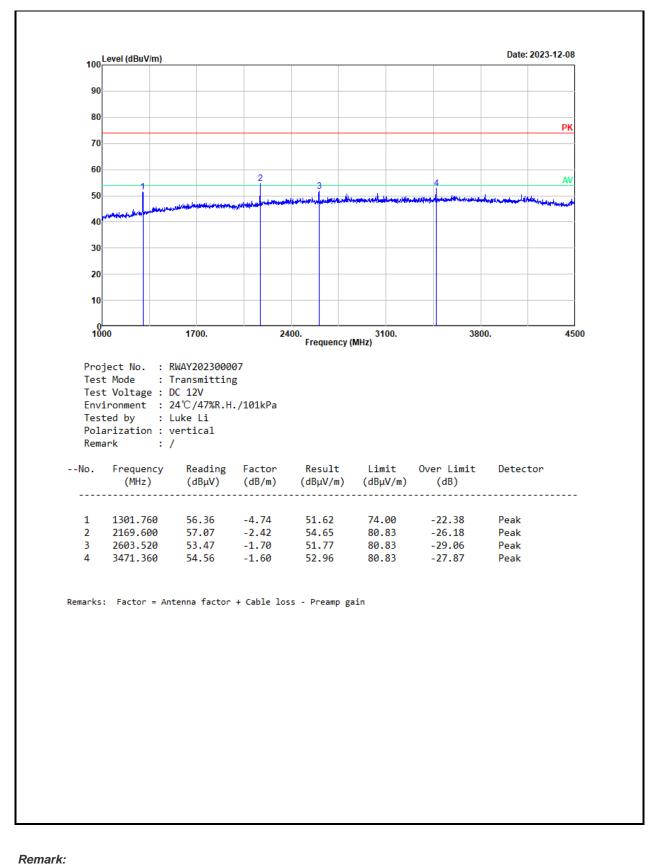


30MHz-1GHz:

Test Date:	2023-12-08	Test By:	Bard Huang
Environment condition:	Temperature: 24°C; Relative H	umidity:44%; ATM Press	ure: 101kPa


Remark:

Level = Reading + Factor Factor = Antenna factor + Cable loss – Amplifier gain Over Limit = Level – Limit



Above 1GHz:

Test Date:	2023-12-08	Test By:	Luke Li
Environment condition:	Temperature: 24°C; Relative H	umidity:47%; ATM Press	ure: 101kPa

Level = Reading + Factor Factor = Antenna factor + Cable loss – Amplifier gain Over Limit = Level – Limit

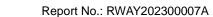
The emission levels of other frequencies that were lower than the limit 20dB not show in test report.

Field strength	of average:
-----------------------	-------------

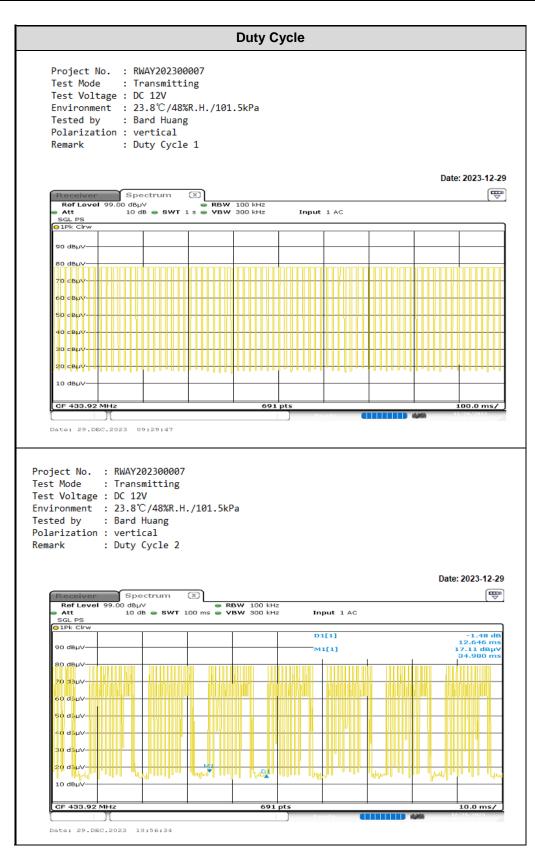
Frequency (MHz)	Peak level (dBµV)	Polar	Duty cycle Factor (dB)	Average Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
433.920	82.69	horizontal	-4.90	77.79	80.83	-3.04	Fundamental
433.920	82.12	vertical	-4.90	77.22	80.83	-3.61	Fundamental
867.840	61.31	horizontal	-4.90	56.41	60.83	-4.42	Harmonic
867.840	48.64	vertical	-4.90	43.74	60.83	-17.09	Harmonic
1301.760	56.12	horizontal	-4.90	51.22	54.00	-2.78	Harmonic
2169.600	58.43	horizontal	-4.90	53.53	60.83	-7.3	Harmonic
2603.520	53.83	horizontal	-4.90	48.93	60.83	-11.9	Harmonic
3037.440	58.43	horizontal	-4.90	53.53	60.83	-7.3	Harmonic
3471.360	59.67	horizontal	-4.90	54.77	60.83	-6.06	Harmonic
3905.280	56.57	horizontal	-4.90	51.67	54.00	-2.33	Harmonic
1301.760	51.62	vertical	-4.90	46.72	54.00	-7.28	Harmonic
2169.600	54.65	vertical	-4.90	49.75	60.83	-11.08	Harmonic
2603.520	51.77	vertical	-4.90	46.87	60.83	-13.96	Harmonic
3471.360	52.96	vertical	-4.90	48.06	60.83	-12.77	Harmonic

Remark:

Average Amplitude= Peak level + Duty Cycle Factor


3.5 Duty Cycle

Test Date:	2023-12-29	Test By:	Bard Huang
Environment condition:	Temperature: 23.8°C; Relative	Humidity:48%; ATM Pres	ssure: 101.5kPa


Subpulse	Ton Duration [ms]	Number of pulse	Total On time [ms]	Period of the pulse train [ms]	Duty Cycle [%]
1	0.200	13	7.196	12.646	56.90
2	0.383	12	7.190	12.040	50.90
Duty	cycle Factor[dB]:	-4.9	·	·	

Remark:

Total On time= Ton1*N1+Ton2*N2 Duty Cycle=(Total On time)/Tp Duty Cycle Factor=20*log(Duty Cycle)

3.6 Deactivation Testing

Test Date:	2023-12-29	Test By:	Bard Huang
Environment condition:	Temperature: 23.8°C; Relative	Humidity:48%; ATM Pres	ssure: 101.5kPa

Channel Frequency [MHz]	Deactivation time[s]	Limit[s]	Verdict
433.92	3.3913	≤5	Pass

Test Plots:

Deactivation time							
Project No. Test Mode Test Voltage Environment Tested by Polarization Remark	: Transmit : DC 12V : 23.8℃/4 : Bard Hua	ting 8%R.H./101 ng	.5kPa				
						Date	e: 2023-12-2
		- RBV	/ 100 kHz / 300 kHz	Input 1 AC			
SGL PS	w			D1[1]			-1.04 di 3.3913 : 18.66 dBuy
⊖1Pk Clrw⊖2Pk Clr	w			D1[1] M1[2]			3.3913 18.66 dBµ
● 1Pk Cirw●2Pk Cir 90 dBµV	w						3.3913 18.66 dBµ
● 1Pk Cirw ● 2Pk Cir 90 dBµV- 80 dBµV-	w						3.3913 18.66 dBµ
● 1Pk Cirw● 2Pk Cir 90 dBµV- 80 dBµV- 70 dBµV-	w						3.3913 18.66 dBµ
	w						3.3913 18.66 dBµ
DIPK Cirw●2PK Cir DIPK Cirw●2PK	w						
● 1Pk Cirw●2Pk Cir ●□ dBµV 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV		MI					3.3913 18.66 48µ' 3.2899
● 1Pk Cirw●2Pk Cir ●0 dBµV 80 dBµV 70 dBµV 60 dBµV 60 dBµV 40 dBµV 30 dBµV				M1[2]			3.3913 18.66 dBµ 3.2899
			691 pts	M1[2]			3.3913 18.66 dBµ 3.2899

3.7 Bandwidth Test Data

Test Date:	2023-12-07	Test By:	Bard Huang
Environment condition:	Temperature: 24°C; Relative H	umidity:44%; ATM Press	ure: 101kPa

Channel Frequency [MHz]	20dB BW [kHz]	Limit[kHz]	Verdict
433.92	10.4	1084.8	Pass

Test Plots:

			20dB B	W		
		RWAY202300007				
		「ransmitting				
Test Volta						
		24℃/44%R.H./101	(Pa			
		Bard Huang				
Polarizat						
Remark	: 2	20dB BandWidth				
						D-4 0000 40 0
						Date: 2023-12-0
Receiver	sp Sp	ectrum 🗵				(**
Ref Level Att		u∀ <mark>●</mark> dB SWT 6.3 ms ● 1	RBW 300 Hz VBW 1 kHz Mo	de Auto FFT In	out 1 AC	•
PS	0	ub awi 0.3 ms -	ADMA TKUS MU		JUL A NG	
01Pk Max				M1[1]		82.26 dBµV
			N1		4	33.837861 MHz
● 1Pk Max 80 dBµV			N13	ndB Bw		33.837861 MHz 20.00 dE 421017878 kHz
● 1Pk Max 80 dBµV 70 dBµV			12 T 12	ndB		33.837861 MHz 20.00 dB
1Pk Max 80 dBµV 70 dBµV 60 dBµV				ndB Bw		33.837861 MHz 20.00 dE 421017878 kHz
● 1Pk Max 80 dBµV 70 dBµV			- A W	Q factor		33.837861 MHz 20.00 dE 421017878 kHz
1Pk Max 80 dBµV 70 dBµV 60 dBµV			- A W	ndB Bw		33.837861 MHz 20.00 dE 421017878 kHz
 1Pk Мах 80 dвµV 70 dвµV 60 dвµV 50 dвµV 		manan	- A W	Q factor	10.	33.837861 MHz 20.00 dE 421017878 kHz
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- A W	Q factor	10.	33.837861 MHz 20.00 dE 421017878 kHz
		www.an	- A W	Q factor	10.	33.837861 MHz 20.00 dE 421017878 kHz
		www.a.	- A W	Q factor	10.	33.837861 MHz 20.00 dE 421017878 kHz
<ul> <li>● 1Pk Max</li> <li>80 dBµV</li> <li>70 dBµV</li> <li>60 dBµV</li> <li>50 dBµV</li> <li>40 dBµV</li> <li>30 dBµV</li> <li>20 dBµV</li> <li>10 dBµV</li> <li>0 dBµV</li> </ul>				Q factor		33.837861 Mit-3 20.00 de 421017878 kH- 41636.4
● 1Pk Max 80 dBµV 70 dBµV 60 dBµV 40 dBµV 20 dBµV 10 dBµV 0 dBµV 0 dBµV			- A W	Q factor		33.837861 MHz 20.00 dE 421017878 kHz
	561018	MHz X-value	691 pts	Punction	10.	33.837061 Mit-3 20.00 de 421017878 kH-3 41636.4
1Pk Max     80 dBµV     70 dBµV     60 dBµV     50 dBµV     40 dBµV     20 dBµV     10 dBµV     0 dBµV     0 dBµV     0 dBµV     0 dBµV     0 dBµV     10 dBµV     10 dBµV     11 T1	561018	MHz X-volue   433.837861 MHz 433.63651 MHz	691 pts	Punction ndB down ndB	10.	33.837051 Mit-3 20.00 de 421017878 kH-3 41636.4 pan 300.0 kH-2 ssult 421017878 kH-2 20.00 db
	561018	MHz X-value [ 433.837801 MHz	691 pts Y-value 82.26 dbyV	Punction ndB down	10.	93.837651 Mit- 20.00 de 421017878 kH- 41636.4 41636.4 pon 300.0 kHz ssult 421017878 kHz



# 4 Test Setup Photo

Please refer to the attachment RWAY202300007 test setup photo.



# 5 E.U.T Photo

Please refer to the attachment RWAY202300007 external photo and RWAY202300007 internal photo.

---End of Report---