

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to RSS-Gen §5.5, before equipment certification is granted, the applicable requirements of RSS-102 shall be met.

EUT Specification

EUT	Wireless IP Camera
Frequency band (Operating)	Bluetooth: 2.402 GHz ~ 2.480 GHz
	⊠ WLAN: 2.412GHz ~ 2.462GHz
	□ WLAN: 5.745GHz ~ 5.825GHz
Device category	Portable (<20cm separation)
	Mobile (>20cm separation)
Exposure classification	\Box Occupational/Controlled exposure (S=5mW/cm ²)
	General Population/Uncontrolled exposure
	$(S=1 \text{mW/cm}^2)$
Antenna diversity	Single antenna
	Multiple antennas
	Tx diversity
	Rx diversity
	Tx/Rx diversity
Max. output power	IEEE 802.11b: 20.27 dBm (146.41mW)
	IEEE 802.11g: 19.98 dBm (99.54mW)
Antenna gain (Max)	2 dBi (Numeric gain: 1.58)
Evaluation applied	MPE Evaluation
	SAR Evaluation
	N/A

Remark:

- 1. The maximum output power is <u>20.27dBm (146.41mW)</u> at <u>2437MHz</u> (with <u>1.58 numeric</u> <u>antenna gain</u>.)
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given

 $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$ Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000 \text{ and}$$

 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm P = Power in mW G = Numeric antenna gain S = Power density in mW/cm²

Maximum Permissible Exposure

EUT output power = 146.41mW

Numeric Antenna gain = 1.58

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW G = Numeric antenna gain S = Power density in mW / cm^2

\rightarrow Power density = 0.0460 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)