

Page: 1 of 105

SAR TEST REPORT

The following samples were submitted and identified on behalf of the client as:

Equipment Under Test Max-Stream AC600 Wi-Fi Micro USB Adapter

Brand NameLINKSYSModel No.WUSB6100MCompany NameLinksys LLC

Company Address 121 Theory Drive, Irvine, CA 92617, USA Standards IEEE/ANSI C95.1-1992, IEEE 1528-2013,

KDB447498D01v06, KDB447498D02v02r01, KDB248227D01v02r02, KDB865664D01v01r04.

KDB865664D02v01r02

FCC ID Q87-WUSB6100M

Date of Receipt Feb. 25, 2016

Date of Test(s) Mar. 11, 2016 ~ Oct. 03, 2016

Date of Issue Oct. 11, 2016

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

Signed on behalf of SGS				
Asst. Supervisor	Supervisor			
Kevin Li	Ricky Huang			
Date: Oct. 11, 2016	Date: Oct. 11, 2016			

Page: 2 of 105

Revision History

Report Number	Revision	Description	Issue Date
E5/2016/90003	Rev.00	Initial creation of document	Oct. 07, 2016
E5/2016/90003	Rev.01	1 st modification	Oct. 11, 2016

Page: 3 of 105

Contents

1. General Information	4
1.1 Testing Laboratory	
1.2 Details of Applicant	
1.3 Description of EUT	5
1.4 Test Environment	14
1.5 Operation Description	14
1.6 The SAR Measurement System	17
1.7 System Components	19
1.8 SAR System Verification	21
1.9 Tissue Simulant Fluid for the Frequency Band	23
1.10 Evaluation Procedures	25
1.11 Probe Calibration Procedures	26
1.12 Test Standards and Limits	29
2. Summary of Results	31
3. Instruments List	33
4. Measurements	35
5. SAR System Performance Verification	43
6. DAE & Probe Calibration Certificate	
7. Uncertainty Budget	
8. Phantom Description	
9. System Validation from Original Equipment Supplier	_
of Oyston vandation from Original Equipment Supplier	

Page: 4 of 105

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. Electronics & Communication Laboratory				
No.134, Wu Kung Ro	ad, New Taipei Industrial Park, Wuku District, New Taipei			
City, Taiwan				
Tel	+886-2-2299-3279			
Fax	+886-2-2298-0488			
Internet	http://www.tw.sgs.com/			

1.2 Details of Applicant

Company Name	Linksys LLC
Company Address	121 Theory Drive, Irvine, CA 92617, USA

Page: 5 of 105

1.3 Description of EUT

-	1			
Equipment Under Test	Max-Stream AC600 Wi-Fi Micro USB Adapter			
Brand Name	LINKSYS			
Model No.	WUSB6100M			
FCC ID	Q87-WUSB6100M			
Mode of Operation		20M/40	M/80	M)
Duty Cycle	WLAN802.11 a/b/g/n(20M/40M)/ ac(20M/40M/80M)		1	
	WLAN802.11 b/g/n(20M)	2412	_	2462
	WLAN802.11 n(40M)	2422	_	2452
	WLAN802.11 a/n(20M)/ac(20M) 5.2G		_	5240
	WLAN802.11 n(40M)/ac(40M) 5.2G	5190	_	5230
	WLAN802.11 ac(80M) 5.2G		5210	
	WLAN802.11 a/n(20M)/ac(20M) 5.3G	5260	_	5320
TX Frequency Range	WLAN802.11 n(40M)/ac(40M) 5.3G		_	5310
(MHz)	WLAN802.11 ac(80M) 5.3G	5290		
	WLAN802.11 a/n/ac(20M) 5.6G	5500	_	5720
	WLAN802.11 n/ac(40M) 5.6G	5510	_	5710
	WLAN802.11 ac(80M) 5.6G	5530	_	5690
	WLAN802.11 a/n(20M)/ac(20M) 5.8G	5745	_	5825
	WLAN802.11 n(40M)/ac(40M) 5.8G	5755	_	5795
	WLAN802.11 ac(80M) 5.8G		5775	j

Page: 6 of 105

	WLAN802.11 b/g/n(20M)	1	_	11
	WLAN802.11 n(40M)	3	_	9
	WLAN802.11 a/n(20M)/ac(20M) 5.2G	36	_	48
	WLAN802.11 n(40M)/ac(40M) 5.2G	38	_	46
	WLAN802.11 ac(80M) 5.2G		42	
	WLAN802.11 a/n(20M)/ac(20M) 5.3G	52	_	64
Channel Number (ARFCN)	WLAN802.11 n(40M)/ac(40M) 5.3G	54	_	62
	WLAN802.11 ac(80M) 5.3G		58	
	WLAN802.11 a/n/ac(20M) 5.6G	100	_	144
	WLAN802.11 n/ac(40M) 5.6G	102	_	142
	WLAN802.11 ac(80M) 5.6G	106	_	138
	WLAN802.11 a/n(20M)/ac(20M) 5.8G	149	_	165
	WLAN802.11 n(40M)/ac(40M) 5.8G	151	_	159
	WLAN802.11 ac(80M) 5.8G		155	-

Max. SAR (1 g) (Unit: W/Kg)					
Band	Measured	Reported	Channel	Position	
WLAN802.11 b	0.625	0.644	6	Vertical-Front	
WLAN802.11 a 5.2G	0.918	0.924	48	Top side	
WLAN802.11 n(40M) 5.2G	0.904	0.936	46	Top side	
WLAN802.11 n(40M) 5.3G	0.856	0.924	62	Vertical-Back	
WLAN802.11 a 5.6G	1.100	1.157	120	Vertical-Front	
WLAN802.11 ac(80M) 5.6G	1.060	1.090	122	Vertical-Front	
WLAN802.11 a 5.8G	1.060	1.072	157	Top side	
WLAN802.11 n(40M) 5.8G	0.992	1.020	159	Top side	

Page: 7 of 105

WLAN802.11 a/b/g/n(20M/40M)/ac(20M/40M/80M) conducted power table:

	802.11 b	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	1
1	2412	20	19.86
6	2437	20	19.87
11	2462	20	19.74

	802.11 g	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	6
1	2412	17.5	17.21
6	2437	20	19.84
11	2462	16.5	16.38

802	2.11 n(20M)	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	6.5
1	2412	15.5	15.35
6	2437	20	19.85
11	2462	15.5	15.39

802	.11 n(40M)	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
ОП	(MHz)	Tolerance (dBm)	13.5
3	2422	15	14.92
6	2437	20	19.77
9	2452	15.5	15.42

Page: 8 of 105

802	2.11 ac(20M)	Max. Rated Avg.	Average Power Output (dBm)	
СН	Frequency	Power + Max.	Data Rate (Mbps)	
СП	(MHz)	Tolerance (dBm)	13	
1	2412	15.5	15.29	
6	2437	20	19.83	
11	2462	15.5	15.41	

802.	11 ac(40M)	Max. Rated Avg.	Average Power Output (dBm)	
СН	Frequency (MHz)	Power + Max.	Data Rate (Mbps)	
		Tolerance (dBm)	27	
3	2422	15	14.88	
6	2437	20	19.92	
9	2452	15.5	15.42	

Page: 9 of 105

802.11 a			Avorago Power Output/dPm)	
5.2/5.3/5.6/5.8G		Max. Rated Avg. Power + Max.	Average Power Output(dBm)	
СН	Frequency	Tolerance (dBm)	Data Rate (Mbps)	
OH	(MHz)		6	
36	5180	20	19.75	
40	5200	20	19.74	
44	5220	20	19.69	
48	5240	20	19.97	
52	5260	20	19.91	
56	5280	20	19.85	
60	5300	20	19.66	
64	5320	20	19.89	
100	5500	20	19.98	
120	5600	20	19.93	
136	5680	20	19.72	
140	5700	19	18.67	
149	5745	18	17.96	
157	5785	18	17.95	
165	5825	18	17.88	

Page: 10 of 105

802	.11 n(20M)		Average Power Output(dBm)		
5.2/5.3/5.6/5.8G		Max. Rated Avg. Power + Max.	Average Fower Output(ubin)		
СН	Frequency	Tolerance (dBm)	Data Rate (Mbps)		
СП	(MHz)		6.5		
36	5180	20	19.71		
40	5200	20	19.82		
44	5220	20	19.91		
48	5240	20	19.88		
52	5260	20	19.53		
56	5280	20	19.62		
60	5300	20	19.72		
64	5320	20	19.69		
100	5500	20	19.67		
120	5600	20	19.73		
140	5700	18	17.42		
149	5745	18	17.82		
157	5785	18	17.84		
165	5825	18	17.81		

Page: 11 of 105

802	.11 n(40M)		Average Power Output(dBm)	
5.2/5	5.3/5.6/5.8G	Max. Rated Avg. Power + Max.		
СН	Frequency	Tolerance (dBm)	Data Rate (Mbps)	
OH	(MHz)		13.5	
38	5190	17	16.91	
46	5230	20	19.85	
54	5270	20	19.47	
62	5310	20	19.73	
102	5510	17	16.79	
118	5590	20	19.68	
134	5670	19.5	18.98	
151	5755	15	14.91	
159	5795	18	17.88	

Page: 12 of 105

802.	11 ac(20M)		Average Power Output(dBm)		
5.2/5.3/5.6/5.8G		Max. Rated Avg. Power + Max.	Average i ower output(ubiti)		
СН	Frequency	Tolerance (dBm)	Data Rate (Mbps)		
СП	(MHz)		6.5		
36	5180	20	19.91		
40	5200	20	19.93		
44	5220	20	19.87		
48	5240	20	19.84		
52	5260	20	19.73		
56	5280	20	19.68		
60	5300	20	19.98		
64	5320	20	19.81		
100	5500	20	19.87		
120	5600	20	19.88		
140	5700	18	17.64		
149	5745	18	17.66		
157	5785	18	17.78		
165	5825	18	17.81		

Page: 13 of 105

802.	11 ac(40M)		Average Power Output(dBm)	
5.2/5	5.3/5.6/5.8G	Max. Rated Avg. Power + Max.		
СН	Frequency	Tolerance (dBm)	Data Rate (Mbps)	
ОП	(MHz)	, ,	13.5	
38	5190	17	16.88	
46	5230	20	19.71	
54	5270	20	19.63	
62	5310	20	19.81	
102	5510	17	16.93	
118	5590	20	19.76	
134	5670	19.5	19.15	
151	5755	15	14.92	
159	5795	18	17.82	

802.11 ac(80M)			Average Power Output(dBm)	
5.2/5	5.3/5.6/5.8G	Max. Rated Avg. Power + Max.	Average Fower Output(ubiti)	
CH Frequency		Tolerance (dBm)	Data Rate (Mbps)	
CH	(MHz)		29.3	
42	5210	16.5	16.35	
58	5290	18	17.62	
106	5530	16.5	16.01	
122	5610	20	19.67	
155	5775	15	14.88	

Page: 14 of 105

1.4 Test Environment

Ambient Temperature: 22±2° C Tissue Simulating Liquid: 22±2° C

1.5 Operation Description

Use chipset specific software to control the EUT, and makes it transmit in maximum power. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged.

Based on KDB447498 D02, EUT was tested at 5mm separation distance in the following configurations.

Horizontal-Up (A): connected directly with laptop computer.

Horizontal-Down (B): a high quality USB cable (with cable length less than 12 inches) is used.

Vertical-Front (C): connected directly with laptop computer.

Vertical-Back (D): a high quality USB cable (with cable length less than 12inches) is used.

Top: connected directly with laptop computer.

Front view of EUT

Page: 15 of 105

Note:

802.11b DSSS SAR Test Requirements:

- 1. SAR is measured for 2.4 GHz 802.11b DSSS mode using the highest measured maximum output power channel, when the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

802.11g/n OFDM SAR Test Exclusion Requirements:

3. SAR is not required for 802.11g/n since the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Initial Test Configuration:

- 4. An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band.
- 5. SAR is measured using the highest measured maximum output power channel. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 6. For WLAN, 5.2a/n(40M)/5.3n(40M)/5.6a/ac(80M)/5.8a/n(40M) are chosen to be the initial test configurations.
- 7. Since the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is < 1.2 W/kg, SAR is not required for subsequent test configuration.
- 8. According to KDB447498 D01, testing of other required channels is not required when the reported 1-g SAR for the highest output channel is ≤ 0.8 W/kg, when the transmission band is ≤ 100 MHz.

Page: 16 of 105

9. According to KDB865664 D01, SAR measurement variability must be assessed for each frequency band. When the original highest measured SAR is ≥ 0.8 W/kg, repeated that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit)

Page: 17 of 105

1.6 The SAR Measurement System

A block diagram of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 5 professional system). The model EX3DV4 field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ ($|Ei|^2$)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY 5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage intissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

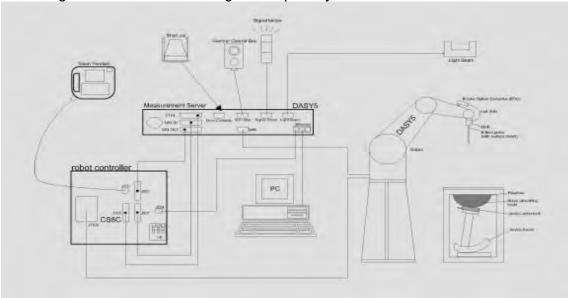


Fig. a The block diagram of SAR system

Page: 18 of 105

- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows 7.
- 8. DASY 5 software.
- 9. Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

Page: 19 of 105

1.7 System Components

EX3DV4 E-Field Probe

	cia i iobc				
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)				
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 2450/5200/5300/5600/5800 MHz Additional CF for other liquids and frequencies upon request				
Frequency	10 MHz to > 6 GHz				
Directivity	± 0.3 dB in HSL (rotation around probe as ± 0.5 dB in tissue material (rotation normal	,			
Dynamic	$10 \mu \text{W/g to} > 100 \text{mW/g}$	•			
Range	Linearity: ± 0.2 dB (noise: typically < 1 μV	V/g)			
Dimensions	Tip diameter: 2.5 mm				
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.				

Page: 20 of 105

SAM PHANTOM V4.0C

SAM PHANTO	OM V4.0C				
Construction					
Shell Thickness	2 ± 0.2 mm				
Filling Volume	Approx. 25 liters	The state of the s			
Dimensions	Height: 850 mm; Length: 1000 mm; Width: 500 mm				

DEVICE HOLDER

Construction The device holder (Supporter) for Notebook is made by POM (polyoxymethylene resin), which is non-metal and non-conductive. The height can be adjusted to fit varies kind of notebooks.	Device Holder

Page: 21 of 105

1.8 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 2450/5200/5300/5600/5800MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was 21.7°C, the relative humidity was 62% and the liquid depth above the ear reference points was \geq 15 cm \pm 5 mm (frequency \leq 3 GHz) or \geq 10 cm \pm 5 mm (frequency > 3 G Hz) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

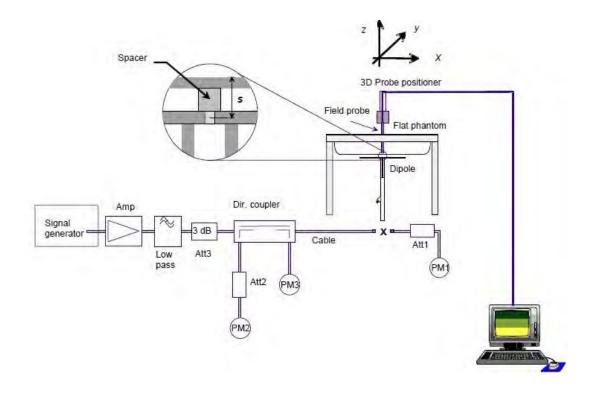


Fig. b The block diagram of system verification

Page: 22 of 105

Validation Kit	S/N	Frequency (MHz)		1W Target SAR-1g (mW/g)	Measured SAR-1g (mW/g)	Measured SAR-1g normalized to 1W (mW/g)	Deviation (%)	Measured Date
D2450V2	727	2450	Body	51	12.7	50.8	-0.39%	Mar. 11, 2016
	1023	5200	Body	71.9	7.43	74.3	3.34%	Mar. 14, 2016
D5GHzV2		5300	Body	75.1	7.41	74.1	-1.33%	Oct. 02, 2016
DOGHZVZ		5600	Body	78.3	8.11	81.1	3.58%	Oct. 03, 2016
		5800	Body	75.3	7.75	77.5	2.92%	Mar. 15, 2016

Table 1. Results of system validation

Page: 23 of 105

1.9 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this body-simulant fluid were measured by using the Agilent Model 85070E Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Network Analyzer (30 KHz-6000 MHz).

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the flat section of the phantom was \geq 15 cm \pm 5 mm (Frequency \leq 3G) or \geq 10 cm \pm 5 mm (Frequency >3G) during all tests. (Fig. 2)

Tissue Type	Measurement Date	Measured Frequency (MHz)	Target Dielectric Constant, εr	Target Conductivi ty, σ (S/m)	Measured Dielectric Constant, Er	Measured Conductivity, σ (S/m)	% dev ɛr	% dev σ
	Mar. 11, 2016	2437	52.717	1.938	52.137	2.015	1.10%	-4.00%
	Wai. 11, 2010	2450	52.700	1.950	52.089	2.028	1.16%	-3.99%
		5180	49.041	5.276	50.326	5.119	-2.62%	2.97%
	Mar. 14, 2016	5190	49.028	5.288	50.326	5.128	-2.65%	3.03%
		5200	49.014	5.299	50.324	5.139	-2.67%	3.02%
Body		5230	48.974	5.334	50.291	5.173	-2.69%	3.02%
Войу		5240	48.960	5.346	50.277	5.181	-2.69%	3.09%
		5745	48.275	5.936	49.646	5.749	-2.84%	3.15%
		5755	48.261	5.947	49.645	5.758	-2.87%	3.18%
	Mar. 15, 2016	5785	48.220	5.982	49.642	5.791	-2.95%	3.20%
		5795	48.207	5.994	49.635	5.793	-2.96%	3.35%
		5800	48.200	6.000	49.632	5.799	-2.97%	3.35%

Tissue Type	Measurement Date	ıreguencv	Dialogtria	Conductivi	Measured Dielectric Constant, Er	Measured	% dev εr	% dev σ
	Oct. 2, 2016	5270	48.919	5.381	48.480	5.441	0.90%	-1.11%
		5300	48.879	5.416	48.401	5.477	0.98%	-1.13%
		5310	48.865	5.428	48.396	5.490	0.96%	-1.14%
Body		5500	48.607	5.650	47.539	5.780	2.20%	-2.30%
	Oct. 3, 2016	5530	48.566	5.685	47.523	5.816	2.15%	-2.31%
	Oct. 3, 2016	5600	48.471	5.766	47.411	5.897	2.19%	-2.26%
		5610	48.458	5.778	47.406	5.906	2.17%	-2.22%

Table 2. Dielectric Parameters of Tissue Simulant Fluid

Page: 24 of 105

The composition of the tissue simulating liquid:

		•		Ing	redient			
Frequency (MHz)	LIVIOGE	DGMBE	Water	Salt	Preventol	Cellulose	Sugar	Total amount
2450M	Body	301.7ml	698.3ml	_	-	_	_	1.0L(Kg)

Body Simulating Liquids for 5 GHz, Manufactured by SPEAG:

Ingredients	Water	Esters, Emulsifiers, Inhibitors	Sodium and Salt
(% by weight)	60-80	20-40	0-1.5

Table 3. Recipes for Tissue Simulating Liquid

Page: 25 of 105

1.10 Evaluation Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measured volume of 30x30x30mm contains about 30g of tissue.

Page: 26 of 105

The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.11 Probe Calibration Procedures

For the calibration of E-field probes in lossy liquids, an electric field with an accurately known field strength must be produced within the measured liquid. For standardization purposes it would be desirable if all measurements which are necessary to assess the correct field strength would be traceable to standardized measurement procedures. In the following two different calibration techniques are summarized:

1.11.1 Transfer Calibration with Temperature Probes

In lossy liquids the specific absorption rate (SAR) is related both to the electric field (E) and the temperature gradient ($\delta T / \delta t$) in the liquid.

$$SAR = \frac{\sigma}{\rho} |E|^2 = c \frac{\delta T}{\delta t}$$

whereby $\boldsymbol{\sigma}$ is the conductivity, $\boldsymbol{\rho}$ the density and \boldsymbol{c} the heat capacity of the liquid.

Hence, the electric field in lossy liquid can be measured indirectly by measuring the temperature gradient in the liquid. Non-disturbing temperature probes (optical probes or thermistor probes with resistive lines) with high spatial resolution (<1-2 mm) and fast reaction time (<1 s) are available and can be easily calibrated with high precision [1]. The setup and the exciting source have no influence on the calibration; only the relative positioning uncertainties of the standard temperature probe and the E-field probe to be calibrated must be considered. However, several problems limit the available accuracy of probe calibrations with temperature probes:

Page: 27 of 105

• The temperature gradient is not directly measurable but must be evaluated from temperature measurements at different time steps. Special precaution is necessary to avoid measurement errors caused by temperature gradients due to energy equalizing effects or convection currents in the liquid. Such effects cannot be completely avoided, as the measured field itself destroys the thermal equilibrium in the liquid. With a careful setup these errors can be kept small.

- The measured volume around the temperature probe is not well defined. It is difficult to calculate the energy transfer from a surrounding gradient temperature field into the probe. These effects must be considered, since temperature probes are calibrated in liquid with homogeneous temperatures. There is no traceable standard for temperature rise measurements.
- The calibration depends on the assessment of the specific density, the heat capacity and the conductivity of the medium. While the specific density and heat capacity can be measured accurately with standardized procedures (~ 2% for c; much better for ρ), there is no standard for the measurement of the conductivity. Depending on the method and liquid, the error can well exceed ±5%.
- Temperature rise measurements are not very sensitive and therefore are often performed at a higher power level than the E-field measurements.
 The nonlinearities in the system (e.g., power measurements, different components, etc.) must be considered.

Considering these problems, the possible accuracy of the calibration of E-field probes with temperature gradient measurements in a carefully designed setup is about $\pm 10\%$ (RSS) [2]. Recently, a setup which is a combination of the waveguide techniques and the thermal measurements was presented in [3]. The estimated uncertainty of the setup is $\pm 5\%$ (RSS) when the same liquid is used for the calibration and for actual measurements and ± 7 -9% (RSS) when not, which is in good agreement with the estimates given in [2].

1.11.2 Calibration with Analytical Fields

In this method a technical setup is used in which the field can be calculated analytically from measurements of other physical magnitudes (e.g., input power). This corresponds to the standard field method for probe calibration in air; however, there is no standard defined for fields in lossy liquids. When using calculated fields in lossy liquids for probe calibration, several points must be considered in the assessment of the uncertainty:

- The setup must enable accurate determination of the incident power.
- The accuracy of the calculated field strength will depend on the assessment of the dielectric parameters of the liquid.

Page: 28 of 105

 Due to the small wavelength in liquids with high permittivity, even small setups might be above the resonant cutoff frequencies. The field distribution in the setup must be carefully checked for conformity with the theoretical field distribution.

References

- 1. N. Kuster, Q. Balzano, and J.C. Lin, Eds., *Mobile Communications Safety*, Chapman & Hall, London, 1997.
- K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, \Broadband calibration of E-field probes in lossy media", *IEEE Transactions on Microwave Theory and Techniques*, vol. 44, no. 10, pp. 1954{1962, Oct. 1996.
- 3. K. Jokela, P. Hyysalo, and L. Puranen, \Calibration of specific absorption rate (SAR) probes in waveguide at 900 MHz", *IEEE Transactions on Instrumentation and Measurements*, vol. 47, no. 2, pp. 432{438, Apr. 1998.

Page: 29 of 105

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1, By the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube).
- (2) Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (3) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not

Page: 30 of 105

exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section. (Table 4.)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational		
Spatial Peak SAR (Brain)	1.60 m W/g	8.00 m W/g		
Spatial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g		
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g		

Table 4. RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Page: 31 of 105

2. Summary of Results

Mode	Position	Distance (mm)	СН	Freq.	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling		SAR over 1g /kg)	Plot
		(mm)		(IVITZ)	Tolerance (dBm)	(dBm)		Measured	Reported	pag
	Top side	5	6	2437	20	19.87	3.04%	0.163	0.168	-
	Horizontal-Up	5	6	2437	20	19.87	3.04%	0.450	0.464	-
WLAN802.11 b	Horizontal-	5	6	2437	20	19.87	3.04%	0.521	0.537	-
	Vertical-Front	5	6	2437	20	19.87	3.04%	0.625	0.644	35
	Vertical-Back	5	6	2437	20	19.87	3.04%	0.319	0.329	-
	Top side	5	36	5180	20	19.75	5.93%	0.763	0.808	-
	Top side	5	48	5240	20	19.97	0.69%	0.918	0.924	36
	Top side*	5	48	5240	20	19.97	0.69%	0.916	0.922	-
	Horizontal-Up	5	36	5180	20	19.75	5.93%	0.744	0.788	-
WLAN802.11 a 5.2G	Horizontal-Up	5	48	5240	20	19.97	0.69%	0.908	0.914	-
J.2G	Horizontal-	5	48	5240	20	19.97	0.69%	0.688	0.693	-
	Vertical-Front	5	48	5240	20	19.97	0.69%	0.478	0.481	-
	Vertical-Back	5	36	5180	20	19.75	5.93%	0.523	0.554	-
	Vertical-Back	5	48	5240	20	19.97	0.69%	0.881	0.887	-
	Top side	5	38	5190	17	16.91	2.09%	0.471	0.481	-
	Top side	5	46	5230	20	19.85	3.51%	0.904	0.936	37
	Horizontal-Up	5	38	5190	17	16.91	2.09%	0.461	0.471	-
WLAN802.11	Horizontal-Up	5	46	5230	20	19.85	3.51%	0.899	0.931	-
n(40M) 5.2G	Horizontal-	5	46	5230	20	19.85	3.51%	0.679	0.703	-
	Vertical-Front	5	46	5230	20	19.85	3.51%	0.471	0.488	-
	Vertical-Back	5	38	5190	17	16.91	2.09%	0.441	0.450	-
	Vertical-Back	5	46	5230	20	19.85	3.51%	0.877	0.908	-
	Top side	5	54	5270	20	19.86	3.28%	0.707	0.730	-
	Top side	5	62	5310	20	19.67	7.89%	0.815	0.879	-
	Horizontal-Up	5	62	5310	20	19.67	7.89%	0.689	0.743	-
WLAN802.11	Horizontal-	5	62	5310	20	19.67	7.89%	0.696	0.751	-
n(40M) 5.3G	Vertical-Front	5	62	5310	20	19.67	7.89%	0.680	0.734	-
	Vertical-Back	5	54	5270	20	19.86	3.28%	0.861	0.889	38
	Vertical-Back*	5	54	5270	20	19.86	3.28%	0.858	0.886	-
	Vertical-Back	5	62	5310	20	19.67	7.89%	0.856	0.924	-
	Top side	5	100	5500	20	19.69	7.40%	0.748	0.803	-
	Top side	5	120	5600	20	19.78	5.20%	0.823	0.866	-
	Horizontal-Up	5	100	5500	20	19.69	7.40%	0.831	0.892	-
	Horizontal-Up	5	120	5600	20	19.78	5.20%	0.935	0.984	-
WLAN802.11 a	Horizontal-	5	100	5500	20	19.69	7.40%	0.702	0.754	-
5.6G	Vertical-Front	5	100	5500	20	19.69	7.40%	0.879	0.944	-
	Vertical-Front	5	120	5600	20	19.78	5.20%	1.100	1.157	39
	Vertical-Front*	5	120	5600	20	19.78	5.20%	1.080	1.136	-
	Vertical-Back	5	100	5500	20	19.69	7.40%	0.861	0.925	-
	Vertical-Back	5	120	5600	20	19.78	5.20%	0.953	1.003	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 32 of 105

Mode	Position	Distance (mm)	СН	Freq.	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged S (W/	(kg)	Plot
					Tolerance (dBm)	(dBm)		Measured	Reported	
	Top side	5	106	5530	16.5	15.92	14.29%	0.366	0.418	-
	Top side	5	122	5610	20	19.88	2.80%	0.827	0.850	-
	Horizontal-Up	5	106	5530	16.5	15.92	14.29%	0.418	0.478	-
WLAN802.11	Horizontal-Up	5	122	5610	20	19.88	2.80%	0.943	0.969	-
ac(80M) 5.6G	Horizontal-	5	122	5610	20	19.88	2.80%	0.776	0.798	-
, ,	Vertical-Front	5	106	5530	16.5	15.92	14.29%	0.410	0.469	-
	Vertical-Front	5	122	5610	20	19.88	2.80%	1.060	1.090	40
	Vertical-Back	5	106	5530	16.5	15.92	14.29%	0.421	0.481	-
	Vertical-Back	5	122	5610	20	19.88	2.80%	0.930	0.956	-
	Top side	5	149	5745	18	17.96	0.93%	1.050	1.060	-
	Top side	5	157	5785	18	17.95	1.16%	1.060	1.072	41
	Top side*	5	157	5785	18	17.95	1.16%	1.040	1.052	-
	Horizontal-Up	5	149	5745	18	17.96	0.93%	0.992	1.001	-
WLAN802.11 a	Horizontal-Up	5	157	5785	18	17.95	1.16%	0.995	1.007	-
5.8G	Horizontal-	5	149	5745	18	17.96	0.93%	0.850	0.858	-
	Horizontal-	5	157	5785	18	17.95	1.16%	0.872	0.882	-
	Vertical-Front	5	149	5745	18	17.96	0.93%	0.794	0.801	-
	Vertical-Front	5	157	5785	18	17.95	1.16%	0.767	0.776	-
	Vertical-Back	5	149	5745	18	17.96	0.93%	0.681	0.687	-
	Top side	5	151	5755	15	14.91	2.09%	0.502	0.513	-
	Top side	5	159	5795	18	17.88	2.80%	0.992	1.020	42
	Horizontal-Up	5	151	5755	15	14.91	2.09%	0.493	0.503	-
WLAN802.11	Horizontal-Up	5	159	5795	18	17.88	2.80%	0.981	1.008	-
n(40M) 5.8G	Horizontal-	5	151	5755	15	14.91	2.09%	0.432	0.441	-
	Horizontal-	5	159	5795	18	17.88	2.80%	0.861	0.885	-
	Vertical-Front	5	159	5795	18	17.88	2.80%	0.743	0.764	-
	Vertical-Back	5	159	5795	18	17.88	2.80%	0.664	0.683	_

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 33 of 105

3. Instruments List

Manufacturer	Device	Туре	Serial number	Date of last calibration	Date of next calibration
Schmid & Partner	Dosimetric E-Field	EX3DV4	3923	Aug.27,2015	Aug.26,2016
Engineering AG	Probe	LNOD V +	0020	Sep.02,2016	Sep.01,2017
Schmid & Partner	System Validation	D2450V2	727	Apr.22,2015	Apr.21,2016
Engineering AG	Dipole	D5GHzV2	1023	Jan.26,2016	Jan.25,2017
Schmid & Partner		DAE4	1374	May.06,2015	May.05,2016
Engineering AG	Electronics	DAL		Aug.23,2016	Aug.22,2017
Schmid & Partner Engineering AG	Software	DASY 52 V52.8.8	N/A	Calibration not required	Calibration not required
Schmid & Partner Engineering AG	Phantom	SAM	N/A	Calibration not required	Calibration not required
Agilent	Network Analyzer	E5071C	MY46107530	Jan.07,2016	Jan.06,2017
Agilent	Dielectric Probe Kit	85070E	MY44300677	Calibration not required	Calibration not required
Agilent	Dual-directional	772D	MY46151242	Jul.15,2015	Jul.14,2016
Agnorit	coupler	7720	MY52180142	Apr.13,2016	Apr.12,2017
Agilent	RF Signal	N5181A	MY50144143	Jul.16,2015	Jul.15,2016
Aglient	Generator	NOTOTA	MY50145142	Feb.19,2016	Feb.18,2017
Agilent	Power Meter	E4417A	MY52240003	Jul.15,2015	Jul.14,2016
Agiletit	i owei ivietel	L441/A	MY51410006	Jan.07,2016	Jan.06,2017

Page: 34 of 105

Manufacturer	Device	Туре	Serial number	Date of last calibration	Date of next calibration
Agilent	Power Sensor	E9301H	MY52200004	Jul.15,2015	Jul.14,2016
	Fower Sensor		MY51470001	Jan.07,2016	Jan.06,2017
TECPEL	Digital	DTM-303A	TP130075	Mar.27,2015	Mar.26,2016
TEOPEL	thermometer	D I IVI-3U3A	TP130073	Feb.26,2016	Feb.25,2017

Page: 35 of 105

4. Measurements

Date: 2016/3/11

WLAN 802.11b_Body_Vertical-Front_CH 6_5mm

Communication System: WLAN(2.45G); Frequency: 2437 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 2.015$ S/m; $\varepsilon_r = 52.137$; $\rho = 1000$ kg/m³

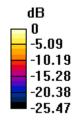
Phantom section: Flat Section

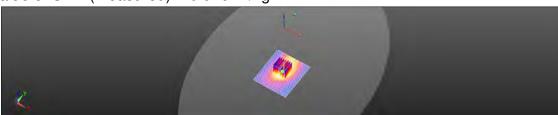
DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(7.63, 7.63, 7.63); Calibrated: 2015/8/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1374; Calibrated: 2015/10/23
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (71x81x1): Interpolated grid: dx=12 mm, dy=12 mm Maximum value of SAR (interpolated) = 0.946 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm


Reference Value = 14.10 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.625 W/kg; SAR(10 g) = 0.304 W/kg

Maximum value of SAR (measured) = 0.916 W/kg

0 dB = 0.916 W/kg = -0.38 dBW/kg

Page: 36 of 105

Date: 2016/3/14

WLAN 802.11a 5.2G_Body_Top side_CH 48_5mm

Communication System: WLAN(5G); Frequency: 5240 MHz

Medium parameters used: f = 5240 MHz; $\sigma = 5.181 \text{ S/m}$; $\varepsilon_r = 50.277$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4.68, 4.68, 4.68); Calibrated: 2015/8/27;

Sensor-Surface: 2mm (Mechanical Surface Detection)

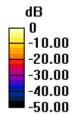
Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

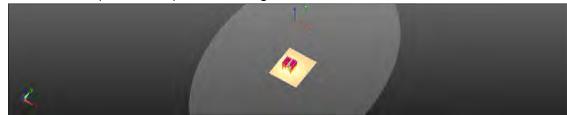
Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (71x81x1): Interpolated grid: dx=10 mm, dy=10 mm Maximum value of SAR (interpolated) = 1.99 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 13.90 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 0.918 W/kg; SAR(10 g) = 0.309 W/kg

Maximum value of SAR (measured) = 1.78 W/kg

0 dB = 1.78 W/kg = 2.49 dBW/kg

Page: 37 of 105

Date: 2016/3/14

WLAN 802.11n(40M) 5.2G_Body_Top side_CH 46_5mm

Communication System: WLAN(5G); Frequency: 5230 MHz

Medium parameters used: f = 5230 MHz; $\sigma = 5.173 \text{ S/m}$; $\varepsilon_r = 50.291$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

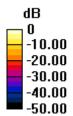
DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4.68, 4.68, 4.68); Calibrated: 2015/8/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1374; Calibrated: 2015/10/23
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/BODY/Area Scan (71x81x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 1.90 W/kg

Configuration/BODY/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 15.74 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 0.904 W/kg; SAR(10 g) = 0.299 W/kg

Maximum value of SAR (measured) = 1.73 W/kg

0 dB = 1.73 W/kg = 2.37 dBW/kg

Page: 38 of 105

Date: 2016/10/2

WLAN 802.11n(40M) 5.3G_Body_Vertical-Back_CH 54_5mm

Communication System: WLAN 5G; Frequency: 5270 MHz

Medium parameters used: f = 5270 MHz; $\sigma = 5.441 \text{ S/m}$; $\varepsilon_r = 48.48$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4.58, 4.58, 4.58); Calibrated: 2016/9/2;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: Body

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (81x91x1): Interpolated grid: dx=10 mm, dy=10 mm Maximum value of SAR (interpolated) = 1.91 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 19.27 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 0.861 W/kg; SAR(10 g) = 0.259 W/kg

Maximum value of SAR (measured) = 1.75 W/kg

0 dB = 1.75 W/kg = 2.43 dBW/kg

Page: 39 of 105

Date: 2016/10/3

WLAN 802.11a 5.6G Body Vertical-Front CH 120 5mm

Communication System: WLAN 5G; Frequency: 5600 MHz

Medium parameters used: f = 5600 MHz; $\sigma = 5.897 \text{ S/m}$; $\varepsilon_r = 47.411$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4, 4, 4); Calibrated: 2016/9/2;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: Body

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (81x91x1): Interpolated grid: dx=10 mm, dy=10 mm Maximum value of SAR (interpolated) = 2.22 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

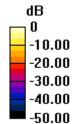
dy=4mm, dz=2mm

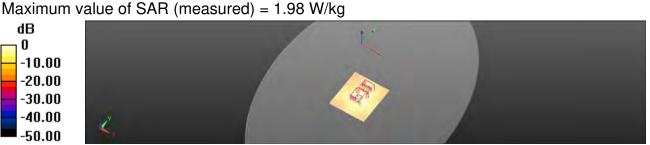
Reference Value = 17.29 V/m: Power Drift = -0.06 dB

Peak SAR (extrapolated) = 4.48 W/kg

SAR(1 g) = 1.1 W/kg; SAR(10 g) = 0.352 W/kg

Maximum value of SAR (measured) = 2.28 W/kg


Configuration/Body/Zoom Scan (7x7x12)/Cube 1: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 17.29 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.95 W/kg

SAR(1 g) = 0.959 W/kg; SAR(10 g) = 0.289 W/kg

0 dB = 1.98 W/kg = 2.96 dBW/kg

Page: 40 of 105

Date: 2016/10/3

WLAN 802.11ac(80M) 5.6G_Body_Vertical-Front_CH 122_5mm

Communication System: WLAN 5G; Frequency: 5610 MHz

Medium parameters used: f = 5610 MHz; $\sigma = 5.906 \text{ S/m}$; $\varepsilon_r = 47.406$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4, 4, 4); Calibrated: 2016/9/2;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: Body

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (81x91x1): Interpolated grid: dx=10 mm, dy=10 mm Maximum value of SAR (interpolated) = 2.11 W/kg

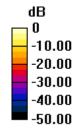
Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

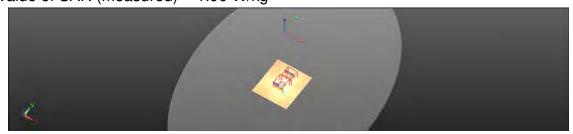
dy=4mm, dz=2mm

Reference Value = 17.43 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 4.08 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.344 W/kg Maximum value of SAR (measured) = 2.13 W/kg


Configuration/Body/Zoom Scan (7x7x12)/Cube 1: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 17.43 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 0.938 W/kg; SAR(10 g) = 0.285 W/kg Maximum value of SAR (measured) = 1.90 W/kg

0 dB = 1.90 W/kg = 2.78 dBW/kg

Page: 41 of 105

Date: 2016/3/15

WLAN 802.11a 5.8G_Body_Top side_CH 157_5mm

Communication System: WLAN(5G); Frequency: 5785 MHz

Medium parameters used: f = 5785 MHz; $\sigma = 5.791 \text{ S/m}$; $\varepsilon_r = 49.642$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4.3, 4.3, 4.3); Calibrated: 2015/8/27;

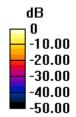
Sensor-Surface: 2mm (Mechanical Surface Detection)

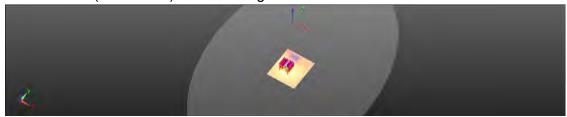
Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (71x81x1): Interpolated grid: dx=10 mm, dy=10 mm Maximum value of SAR (interpolated) = 2.21 W/kg


Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 11.41 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 4.59 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.344 W/kg Maximum value of SAR (measured) = 2.18 W/kg

0 dB = 2.18 W/kg = 3.38 dBW/kg

Page: 42 of 105

Date: 2016/3/15

WLAN 802.11n(40M) 5.8G_Body_Top side_CH 159_5mm

Communication System: WLAN(5G); Frequency: 5795 MHz

Medium parameters used: f = 5795 MHz; $\sigma = 5.793$ S/m; $\varepsilon_r = 49.635$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

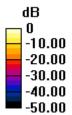
DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4.3, 4.3, 4.3); Calibrated: 2015/8/27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1374; Calibrated: 2015/10/23
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/BODY/Area Scan (71x81x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 2.36 W/kg

Configuration/BODY/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 11.82 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 4.67 W/kg

SAR(1 g) = 0.992 W/kg; SAR(10 g) = 0.321 W/kg

Maximum value of SAR (measured) = 2.19 W/kg

0 dB = 2.19 W/kg = 3.40 dBW/kg

Page: 43 of 105

5. SAR System Performance Verification

Date: 2016/3/11

Dipole 2450 MHz SN:727

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.028 \text{ S/m}$; $\varepsilon_r = 52.089$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(7.63, 7.63, 7.63); Calibrated: 2015/8/27;

Sensor-Surface: 2mm (Mechanical Surface Detection)

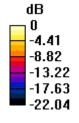
Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

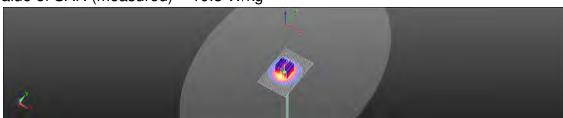
Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=250mW/Area Scan (61x91x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 19.9 W/kg


Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.39 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 25.8 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.87 W/kgMaximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.85 dBW/kg

Page: 44 of 105

Date: 2016/3/14

Dipole 5200 MHz_SN:1023

Communication System: CW; Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.139 \text{ S/m}$; $\varepsilon_r = 50.324$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4.68, 4.68, 4.68); Calibrated: 2015/8/27;

Sensor-Surface: 2mm (Mechanical Surface Detection)

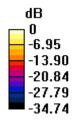
Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=100mW/Area Scan (61x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 16.0 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 55.21 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 15.5 W/kg

0 dB = 15.5 W/kg = 11.90 dBW/kg

Page: 45 of 105

Date: 2016/10/2

Dipole 5300 MHz SN:1023

Communication System: CW; Frequency: 5300 MHz

Medium parameters used: f = 5300 MHz; $\sigma = 5.477 \text{ S/m}$; $\varepsilon_r = 48.401$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4.58, 4.58, 4.58); Calibrated: 2016/9/2;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: Body

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (61x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 16.3 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 57.50 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.1 W/kgMaximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.84 dBW/kg

Page: 46 of 105

Date: 2016/10/3

Dipole 5600 MHz_SN:1023

Communication System: CW; Frequency: 5600 MHz

Medium parameters used: f = 5600 MHz; $\sigma = 5.897 \text{ S/m}$; $\varepsilon_r = 47.411$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4, 4, 4); Calibrated: 2016/9/2;

Sensor-Surface: 2mm (Mechanical Surface Detection)

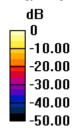
Electronics: DAE4 Sn1374; Calibrated: 2016/8/23

Phantom: Body

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (61x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 18.4 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.31 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 36.5 W/kg

SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 17.6 W/kg

0 dB = 17.6 W/kg = 12.46 dBW/kg

Page: 47 of 105

Date: 2016/3/15

Dipole 5800 MHz SN:1023

Communication System: CW; Frequency: 5800 MHz

Medium parameters used: f = 5800 MHz; $\sigma = 5.799 \text{ S/m}$; $\varepsilon_r = 49.632$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4.3, 4.3, 4.3); Calibrated: 2015/8/27;

Sensor-Surface: 2mm (Mechanical Surface Detection)

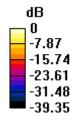
Electronics: DAE4 Sn1374; Calibrated: 2015/10/23

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=100mW/Area Scan (61x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 16.9 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 55.39 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 34.3 W/kg

SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 16.9 W/kg

0 dB = 16.9 W/kg = 12.28 dBW/kg

Page: 48 of 105

6. DAE & Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-TW (Auden) Certificate No: DAE4-1374 May15 **CALIBRATION CERTIFICATE** DAE4 - SD 000 D04 BM - SN: 1374 Object Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 06, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Caribration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 03-Oct-14 (No:15573) Oct-15 Secondary Standards ID # Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 06-Jan-15 (in house check) In house check: Jan-16 Calibrator Box V2.1 SE UMS 006 AA 1002 06-Jan-15 (in house check) In house check: Jan-16 Name Signature Calibrated by: R.Mayoraz Approved by: Fin Bomholt Deputy Technical Manager Issued: May 6, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1374_May15

Page 1 of 5

Page: 49 of 105

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di tanatura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltrneter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements,
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for Information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1974_May15

Page 2 of 5

Page: 50 of 105

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	z
High Range	405.241 ± 0.02% (k=2)	405.484 ± 0.02% (k=2)	405.011 ± 0.02% (k=2)
			3.98770 ± 1.50% (k=2)

Connector Angle

Comments of the state of the st	
Connector Angle to be used in DASY system	245.0°±1°
	2.10.0 1

Page: 51 of 105

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200027.58	-3.42	-0.00
Channel X + Input	20005.73	2.63	0.01
Channel X - Input	-20003.18	3.04	-0.02
Channel Y + Input	200027.12	-3.98	-0.00
Channel Y + Input	20002.62	-0.35	-0.00
Channel Y - Input	-20006.98	-0.59	0.00
Channel Z + Input	200031.31	-0.10	-0.00
Channel Z + Input	20000.66	-2.25	-0.01
Channel Z - Input	-20008.41	-1.94	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	1999.56	-0.09	-0.00
Channel X + Input	199.64	0.05	0.02
Channel X - Input	-201.87	-1.56	0.78
Channel Y + Input	1999.63	0.03	0.00
Channel Y + Input	198.55	-0.89	-0.45
Channel Y - Input	-201.10	-0.69	0.35
Channel Z + Input	2000.11	0.64	0.03
Channel Z + Input	197.27	-2.23	-1.12
Channel Z - Input	-202.39	-1.99	0.99

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-6.38	-8.61
	- 200	9.68	7.55
Channel Y	200	3.79	3.72
	- 200	-5.43	-6.05
Channel Z	200	-15.24	-15.61
	- 200	12.53	12.72

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	6.28	-2.15
Channel Y	200	9.34	-	7.43
Channel Z	200	9.24	6.77	-

Certificate No: DAE4-1374_May15

Page 4 of 5

Page: 52 of 105

0.53

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16120	15044
Channel Y	15972	15769
Channel Z	16364	15426

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

mput rolviss				
	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.68	-1.85	0.72	0.51
Channel Y	-1.37	-2.25	-0.26	0.36

-0.13

6. Input Offset Current

Channel Z

Nominal Input circuitry offset current on all channels: <25fA

1.05

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1374_May15

Page 5 of 5

Page: 53 of 105

Calibration Laboratory of Schmid & Partner Engineering AG Zeoghausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS). The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-TW (Auden)

Accreditation No.: SCS 0108

Certificate No: DAE4-1374_Aug16 CALIBRATION CERTIFICATE DAE4 SD 000 D04 BM SN: 1374 Calibration procedure(a) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) August 23, 2016 Calibration date: This calibration certificate documents the traceatality to national standards, which realize the physical units of measurements (SI). The measurements and the uncortainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the classed laboratory facility: environment temperature (22 ± 3)°C and humiday < 70%. Calibration Equipment used (M&TE precat for calibration) Scheduled Calibration DA Cal Date (Certificate No.) Primary Standards Sep-16 Keithley Multimater Type 2001 SN: 0810278 09-Sep-15 (No:17153) Scheduled Check Chack Date (in house) Secondary Standards In house check: Jan-17 In house check: Jan-17 SE UWS 053 AA 1001 05-Jen-16 (in house check) Calibrator Box V2.1 SE UMS 005 AA 1002 05-Jan-16 (in house check) Signature Function Dominique Steffen Technican Calibrated by Deputy Technical Manager Fin Bombot Approved by: IN B/ Lune Issued: August 23, 2018. This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1374_Aug16:

Page 1 at 5

Page: 54 of 105

Calibration Laboratory of

Schmid & Partner Engineering AG Zoughausstrasse 43, 8604 Zurich, Switzerland

Service suisse d'étalonnage C Servizio avizzaro di taretura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and +10% of the nominal calibration voltage. Influence of offset voltage is included in this
 - Common mode sensitivity; Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an
 - AD Converter Values with Inputs shorted: Values on the Internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-137A_Aug16

Page 2 of 6

Page: 55 of 105

DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: 1LSB = 6.1µV . full range = 100...+300 mV full range = -1.....+3mV Low Range: ILSB = 61nV DASY measurement parameters: Auto Zero Time: 3 sec. Measuring time: 3 sec.

Calibration Factors	X	Υ	Z
High Range	403.637 ± 0.02% (k=2)	403.886 ± 0.02% (k=2)	404.160 ± 0.02% (k=2)
Low Range	3.98275 ± 1.50% (k=2).	3,96719 ± 1,50% (1=2)	3.99036 ± 1.50% (⊫≥)

Connector Angle

Connector Angle to be used in DASY system	42,5°±1°

Conficate No: DAE4-1374_Aug15

Page 3 of 5

Page: 56 of 105

Appendix (Additional assessments outside the scope of SCS0108)

DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200039.11	0.18	0.00
Channel X + Input	20005.23	0.57	0.00
Channel X - Input	-20004.46	1.52	-0.01
Channel Y + Input	200041 10	3.98	0.00
Channel Y + Input	20002.96	-1,76	-0.01
Channel V - Input	-20007,46	-1.33	0.01
Channel Z + Input	200039.71	2.56	0.00
Channel Z + Input	20002.57	-2.04	-0.01
Channel Z - Input	-20008.39	-2.20	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.14	0.37	0.02
Channel X + Input	200.90	0.07	0.03
Channel X - Input	-198.75	0.41	-0.20
Channel Y + Input	2000.82	0.06	0.00
Channel Y + Input	200.17	-0.51	-0.25
Channel Y - Input	-199,47	-0.29	0.15
Channel Z + Input	2000.50	-0.29	-0.01
Channel Z + Input	199.36	-1,24	-0.62
Channel Z - Input	-200.79	-1.45	0.73

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (μV)
Channel X	200	6,08	3.93
	-200	-2.69	-4.73
Channel Y	200	7,56	7.12
	200	-8.69	8.88
Channel Z	200.	5.83	5/JB
	- 200	-8.94	-B 1B

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec. Measuring lime: 3 sec.

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	1	-2.29	-1.91
Channel Y	200	4.85		-1.13
Channel Z	200	10.99	2.02	-

Certificate No: DAE4-1374_Aug16

Page 4 of 5

Page: 57 of 105

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	15938	14709
Channel Y	16155	14646
Channel Z	16095	15566

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Daviation (µV)
Channel X	1.17	0.20	1.90	0.33
Channel Y	0.61	-0.17	1.24	0.30
Channel Z	-1,30	-2.42	-0.33	0.37

6. Input Offset Current

Nominal input circuitry offset current on all charmels: <25tA

	Zerolng (kOhm)	Measuring (MOhm)
Channel X	200	500
Channel Y	500	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Voc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA) Stand		Transmitting (mA	
Supply (+ Vec)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-6	-0	

Page: 58 of 105

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrassa 43, 8004 Zurich, Switzerli

Schweizertscher Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzaro di taratura Swiss Calibration Swive

Accredited by the Swass Accreditation Service (SAS). The Series Accreditation Service is one of the signatures to the EA. Multilateral Agreement for the recognition of calibration certificates.

SGS-TW (Auden)

Accreditation No.: SCS 0108

Certificate No. EX3-3923 Aug 15

CALIBRATION CERTIFICATE

Chied

EX3DV4 - SN:3923

Calbridge procedure(s)

QA CAL-01 v9, QA CAL-14 v4, QA CAL-23 v5, QA CAL-25 v6

Calibration procedure for dosimetric E-field probes

Calbeaue dos

August 27, 2016

This cultration perfectle tocuments the traceability to respond standards, which realize the physical units of measurements (Si) The measurements and the uncertainties with confidence probability are given on the following pages and are part of the centricate.

All californity have been conducted in the case of obstatory bodity: environment temperature (22 = 3/°C and humidity < 70%.

Calibration Equipment used (NIETE critical for calibration)

Primitry Glandards	10	Car Date (Certificate No.)	Schalland Chidronian
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02125)	MH-16
Power lenses E4412A	WY41496887	81-Apr-16 (No. 217-82128)	Mar-10
Reference 3 dB Alternator	SN, 55054 (3t)	07-Apr-15 (No. 217-62125)	Mar-16
Robertocal 20 dil Attenuator	SN: 56277 (20x)	01-Apr-15 (No. 217-02132)	Mar 18
Fileference 30 dt Attenuatur	SN 55129 (300)	D1-Apr-15 (No. 217-(2/139)	Mgc16
Roberence Probe ESSCA2	EN 3013	00-Dec-14 (No. ES3-3013 Dec14)	Dep15
DAE4	SN: 660	14-34n-15 (No. DAE4-660, Jan15)	Jan-10
Secondary Standards	10	Check Date (in figure)	Schedoled Check
RF generator HF 86450	LE3642U01700	4-Aug-99 (in house check Apr-13)	in house check. Apr-16
Network Analyzer HP 87506	V537390585	18-Oct-01 (in house shed) Oct-14)	In house theck Col-15

Function Calibrated by piced 2 m Ladoratory Technicism Approved by: Kathi Potmic Technical Manager tokued, August 27, 2015 The collinear certificate shall not be reproduced except in 6.8 without written approval of the laboratory

Certificate No: EX3-3923_Aug15

Page 1 of 11

Page: 59 of 105

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG

whateagrape 43, 600s Zerter, Sweppriand

Schweizenscher Kalbrierdienst 5 Service suisse d'étalomage C Servicio sylizzen di taratura Swise Calibration Service

Accommon No. SCS 010N

Scorphiad by the Swen Accomption Service (SAS)

The Swiss Augustitation Service (Lone of the signatories to the EA Mulhisteral Agreement for the recognition of calibration certificates

Glossary:

NORMX, y.E ConvE DCP

Jesse simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diade compression point

CE A.B.C.D Polarization a crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

grotation arraind probe axis

Polarization 9

3 rotation around an exist hat is in the plane primal to probe axis (at measurement center),

(iii), ii = 0 is normal to probe axis.

Corrector Angle information used in DASY system to align probe sensor X to the rotal coordinate system.

Calibration is Performed According to the Following Standards:

- a) IEEE 8td 1528-2019, "IEEE Recommended Practice for Determining the Peak Spatta-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices Messurement
- Techniques: June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for mand-neigh devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- ED 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wheless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
 KOB 965664, "SAR Measurement Requirements for 100 MHz to 6 GHz."

Methods Applied and Interpretation of Parameters:

- NORMx.y.z: Assessed for E-field polarization a = 0 (f < 900 MHz in TEM-cell; f > 1800 MHz; F22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E-field uncertainty inside TSL (see below ConvF).
- NORM(fix.y,z = NORMx.y,z = frequency_response (see Frequency Response Chart). This linearization is inclemented in DASY4 software versions later trian 4.2. The uncertainty of the responsy response is included: in the stated uncertainty of ConvF.
- QCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on fraquency nor media. VR is the maximum calibration range expressed in RMS voltage across the dioce.
- ConvF and Boundary Effect Personalers: Assessed in flat phantom using E-field (or Temperature Transler Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve crobal accuracy close to the boundary. The sensibility in TSL corresponds to NORMx,y,z " ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the velidity from ± 50 MHz to ± 100 MHE
- Spherical isotropy (3D deviation from Isotropy): in a field of live gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offsat: The sensor offsat corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the WDRMs (no. uncartainty required.

Certificate No. EXCLUSIVA ALCOS

Page: 60 of 105

EX3DV4 -- 8N:3923

August 27, 2015

Probe EX3DV4

SN:3923

Manufactured: Calibrated:

March 8, 2013 August 27, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3923_Aug15

Page 3 of 11

Page: 61 of 105

EX3DV4- SN:3923

August 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Una (k=2)
Norm (µV/(V/m) ²) ^A	0.57	0.48	0.47	± 10.1 %
DCP (mV) ⁸	103.6	96.4	101.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	Ċ	D dB	VR mV	Une ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	153.8	±3.3 %
		Y	0.0	0.0	1.0		155.6	
		Z	0.0	0.0	1.0		157.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page: 62 of 105

EX3DV4- SN:3923 August 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) F	ConvF X	ConvF Y	ConvFZ	Alpha ^o	Depth ^C (mm)	Una (k=2)
750	41.9	0.89	10.66	10.66	10.66	0.34	1.00	± 12.0 %
835	41.5	0.90	10.45	10.45	10.45	0.42	0.80	± 12.0 %
900	41.5	0.97	10.07	10.07	10.07	0.35	1.00	± 12.0 %
1750	40.1	1.37	8.71	8.71	8.71	0.19	1.12	± 12.0 %
1900	40.0	1.40_	8.43	8.43	8.43	0.36	0.90	± 12.0 %
2000	40.0	1.40	8.48	8.48	8.48	0.35	0.80	± 12.0 %
2300	39.5	1.67	8.05	8.05	8.05	0.36	0.80	± 12.0 %
2450	39.2_	1.80	7.57	7.57	7.57	0.40	0.80	± 12.0 %
2600	39.0	1.96	7.45	7,45	7.45	0.39	0.80	± 12.0 %
5250	35.9	4.71	5.22	5.22	5.22	0.35	1.80	± 13.1 %
5300	35.9	4.76	5.08	5.08	5.08	0.35	1.80	±13.1%
5600	35.6	5.07	4.78	4.78	4.78	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.81	4.81	4.81	0.40	1.80	±13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the Corn/F uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for Corn/F assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*A frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the Corn/F uncertainty for indicated target fissue parameters.

*ApharDepth are determined during calibration. SPEAS warmants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3923_Aug15

Page: 63 of 105

EX3DV4-SN:3923 August 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Calibration Parameter Determined in Body Tissue Simulating Media

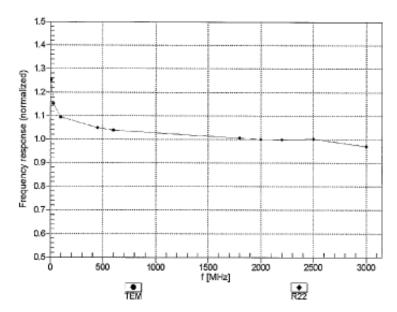
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ⁶ (mm)	Unc (k=2)
750	55.5	0.96	10.50	10.50	10.50	0.43	0.86	± 12.0 %
835	55.2	0.97	10.48	10.48	10.48	0.21	1.42	± 12.0 %
900	55.0	1.05	10.33	10.33	10.33	0.30	1.08	± 12.0 %
1750	53.4	1.49	8.40	8.40	8.40	0.39	0.87	± 12.0 %
1900	53.3	1.52	8.11	8.11	8.11	0.41	0.80	± 12.0 %
2000	53.3	1.52	8,31	8.31	8.31	0.29	1.02	± 12.0 %
2300	52.9	1.81	7.90	7.90	7.90	0.30	0.91	± 12.0 %
2450	52.7	1.95	7.63	7.63	7.63	0.29	0.90	± 12.0 %
2600	52.5	2.16	7.49	7.49	7.49	0.25	0.95	± 12.0 %
5250	48.9	5.36	4.68	4.68	4.68	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.56	4.56	4.56	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.10	4.10	4.10	0.45	1.90	± 13.1 %
5750	48.3	5.94	4.30	4.30	4.30	0.45	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 60 and 70 MHz for CornF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**All frequencies below 3 GHz, the validity of tissue parameters (a and a) can be released to ± 10% if figuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and a) is restricted to ± 5%. The uncertainty is the RSS of the CornF uncertainty for indicated target issue parameters.

AlphaDaph are determined during calibration.SPEAG warrants that the remaining divisation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-5 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3923_Aug15



Page: 64 of 105

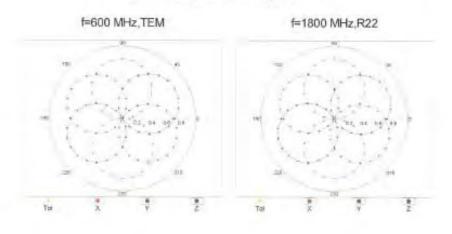
EX3DV4- SN:3923

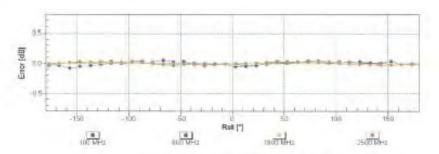
August 27, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3923_Aug15


Page 7 of 11

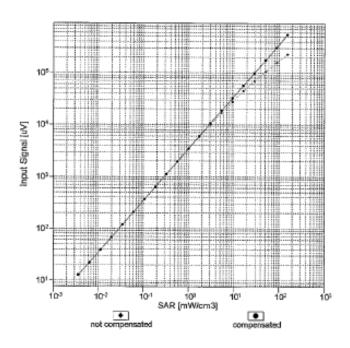


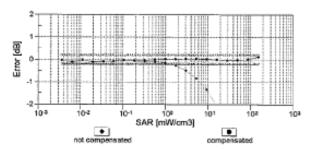
Page: 65 of 105

EX3DV4- SN:3923 August 27, 2015

Receiving Pattern (4), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)




Page: 66 of 105

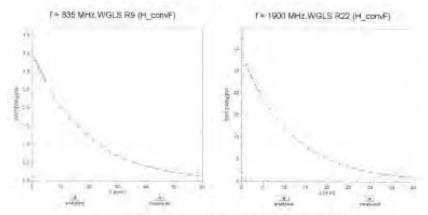
EX3DV4- SN:3923

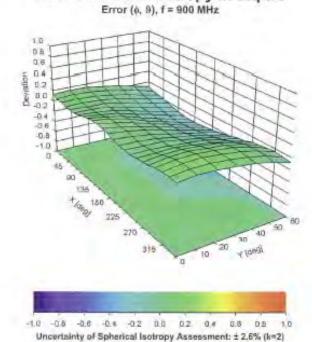
August 27, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Certificate No: EX3-3923_Aug15


Page 9 of 11


Page: 67 of 105

EX30V4—SN 3923 August 27, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Centificate No. EX3-3923_Aug15

Page 10 of 11

Page: 68 of 105

EX3DV4-SN:3923

August 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	123
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3923_Aug15

Page 11 of 11

Page: 69 of 105

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

Service suisse d'étalonnage Servizio evizzero di taratura Swiss Calibration Service

Accredited by the Swas Accreditation Service (SAS) The Swas Accreditation Service is one of the signatures to the EA Multilateral Agreement for the recognition of calibration certificates

them SGS-TW (Auden)

Calibration Equipment used (M61E ontical for calibration)

Germanie No: EX3-3923_Sep16

CALIBRATION CERTIFICATE EX3DV4 - SN:3923 **Dhird** QA GAL-01.v8, QA CAL-14.v/l, QA CAL-25.v6, QA GAL-25.v6 Calibration procedure for dosimitatic E-field probes. Calibration presedure(s) September 2, 2016 Calburios data: This calibration cardificate occurrents the tracestrifty to restored standards, which rassize the physical units of measurements (SI) The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed interestory facility invariantment introduction (22 ± 5)°C and humidity < 70%.

Primary Standards	6	Cat Date (Certificate No.)	Scheduled Calibration
Power pain NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-251	SN: 183244	06-Apt-18 (No. 217-02288)	Apr-17
Fower sensor NRP-Z91	BN: 103245	C6-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 55277 (20x)	05-Apr-18 (No. 217-02293)	Apr-17
Reference Probe ES9DV2	5N: 3013	31 Dec 15 (No E33-3813 Dec15)	Dec-16.
DAE4	SN: 660	23-Dac-15 (No DAE4-890 Deci-5)	Decl-16
Sepondary Standards	ID .	Check Date (in house)	Scheduled Check
Power meter E44198	SN: I3B41293874	DD-Apr-18 (in noise check Juli-16)	in house streck day-18
Power serisor E4412A	SN MY41408087	05-Apr-18 (in house check Jun-16)	in house check; aun 18
Power sensor E4412A	SN 000110210	BS-Agr-16 (in house check Jun-18)	av house check: am-18
RP generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	in house check: Jun-18
Network Analyzer HP 8753E	SN: US37390886	18-Oct-01 (in house check Oct-15)	in house check, Cits-16

	Name	Function	Signplure
Californiad by	Wetnel William	Linhardony (estimation)	M.Veses
Approved by	Kaşa Hokovic	Testinical Manager	BUNG
			Issuez Sestember 2, 2016

Certificate No: EX3-3923_Sep16

Page 1 of 11

Page: 70 of 105

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 6804 Zurich, Switzerland

Service suless of this service C Servizio svizzero di teretura Switz Calibration Buryleu

Accreditation No | SCS 010E

Accrecited by the Swee Ascrecitation Security (BAS)

The Swise Accorditation Service is use of the algorithms to the EA Muzetascral Agreement for the recognision of calibration certification

Glossary:

NORMx,y,z CUNF DCP

blopi pritelume susuil sensitivity in the space aussimity in TSL / NORMs, y, z diade compression point

A.B.C.D

crest factor (1/duty_cycle) of the RF signili. modulation dependent linearization parameters

Polarization is a rotation around probe axis

Polarization II

If relation around an oxes that is in the plane normal to probe exis (at measurement center),

a w = 0 is normal to probe axis

Corrector Angle

information used in DASY system to align probe sensor X to the probal coordinate system

Catibration is Performed According to the Following Standards:

- a) IEEE Std 1529-2013, *IEEE Recommended Practice for Colormining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 (b) IEC 62209-1, Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in cices praximity to the ser (frequency range of 300 MHz to 3 GHz)*, February 2005

 (c) IEC 62209-2, Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices a IEC 62209-2. Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices.
- used in close proximity to the human body (flequincy range of 90 MHz to 6 GHz)*. March 2010 d) KDB 965664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMs,y,z. Assessed for E-field potanization b=0 (f \leq 900 MHz in TEM-cell; f \approx 1800 MHz; R22 waveguide), NORMs,y,z are only intermediate values, i.e., the uncertainties of NORMs,y,z does not affect this \mathbb{R}^2 -field. uncertainty inside TSL (see below ConvF)
- NORM/I)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncortainty of the frequency response is included in the stated uncertainty of CovivP.
- DCPx.y.c. DCP are (winnerigal imperioal imperioal parameters assessed based on the data of power switch CW signal (no uncertainty (equired), DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signer characteristics
- Ax,y,z; Bx,y,z; Dx,y,z; Dx,y,z; VRx,y,z; A, B, C, U are numerical linearization paremeters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on requency no media. VR is the maximum calibration range expressed in RMS voltage across the Godd.
- ConyF and Boundary Effect Parameters: Assessed in fall phantom using 6-field (or Temperature Transfer Standard for I s 800 MHz; and inside waveguide using analytical field distributions based on power measurements for t > 800 MHz. The same satups are used for assessment of the parameters applied for houndary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMs, y.z.* Conv.* whereby the uncertainty corresponds to that given for Conv.* A frequency dependent ConvF is used in DASV version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 Mitte
- Spherical (subropy (SD) dewation from isotropy): in a field of low gradients realized using a flat phareon. soposed by a paich antenna.
- Sensor Officer. The sensor officet corresponds to the officer of virtual inequirement penter from the probe tip (on probe exist). No tolerance required
- Connector Angle: The angle is assessed using the information pained by determining the MORAS (no uncertainty required)

Cemificale Not EX3-3923 Septiti

Page 2 pt 11

Page: 71 of 105

EX3DV4 - SN 3923

September 2, 2016

Probe EX3DV4

SN:3923

Manufactured: M Repaired: A Calibrated: S

March 8, 2013 August 30, 2016 September 2, 2016

Calibrated for DASY/EASY Systems (Note: non-competible with DASY2 system!)

Cartificate No: EX3-0923_Sep16

Prige Edi | 1

Page: 72 of 105

EX30V4 SN:3923

September 2, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.55	0.46	0.45	± 10.1 %
DCP (mV)*	101.5	102.8	106.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	dBõV	C	D de	VR mV	Unc* (k=2)
0	CW	X	0.0	0.0	1.0	0.00	150.8	±3.0 %
		Y	0.0	0.0	1.0		149.7	1 100000
		2	0.0	0.0	1.0		151.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Cerviroste No. EX3-3923, Sep16

Page 4 of 11

A The succelenties of Norm X,Y,Z do not affect the E² field uncontainty reads TSL (see Pages 5 and 6).

Remarked in concentration presented succentainty not required.

Uncontainty is determined using the ripes, deviation from these response applying extenguish chrimosom, and a expense of the square of the field value.

Page: 73 of 105

EX3DV4-SN/3923

September 2, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Calibration Parameter Determined in Head Tissue Simulating Media

r(MHz) ^C	Relative Permittivity ^F	Conductivity (5/m)	ConvF X	ConvF Y	ConvFZ	Alpha ^c	Depth " (mm)	Unic (k=2)
750	41,9	0.88	11.01	11.01	11.01	0.53	0.80	±120%
835	41.5	0.90	10.66	10.66	10 65	0.47	0.80	±12.0%
900	41.5	0.07	10.40	10.40	10.40	0.38	0.93	±12.0 %
1750	40.1	1.37	9,27	9.27	9.27	0.29	0:80	± 12.0 9
1900	40.0	1.40	8.90	8.90	8.90	0.30	0.80	±12.09
2000	40.0	1,40	8.92	8.92	8.92	0.34	0.80	± 12.0 9
2450	39.2	1,80	7.95	7.95	7,95	0.33	0.85	± 12.0 9
2600	39.0	1,96	7.77	7.77	7.77	0.33	0.80	±12.0 9
0.250	35.9	4.71	5.36	5,36	5.36	0.30	1.80	±13.19
5800	35.5	5,07	4.94	4.94	4.94	0:40	1.80	± 13.1 9
5750	35.4	5.22	4.96	4.96	4.96	0.40	1.80	±13.1%

Frequency imingly above 300 WHz of ± 100 MHz only applied for DASY v4.4 and higher (see Page 2), also it is methicised to ± 50 MHz. The image will be the BSS of the ConnEurocetamy of calibration frequency and the uncertainty for the indicated frequency band. Frequency wildry below 300 MHz is ± 90.25, 40, 59 and 70 MHz by ConnEurocetamics at 20, 64, 128, 150 and 200 MHz respectively. Across 5 GHz frequency veiledly can be extended to ± 110 MHz.

*All Enquencies below 3 GHz the validity of testie parameters (years of can be imissed to ± 10%. If lead compositation formula is applied to measured SAR values. Aff representation of the 40 GHz the validity of testie parameters (years of constituting to the ConnEurocetality for indicated target testia parameters.

*Applied that are determined during outfardion. SP GHZ warmous that the femalians distribution during outfardion and the first probled in the contract of the Doubleton.

Certificate No: EX3-3923_Septili

Diego 5 of TT

Page: 74 of 105

EX3DV4-8N:3923

Doptomber 2, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Calibration Parameter Determined in Body Tissue Simulating Media

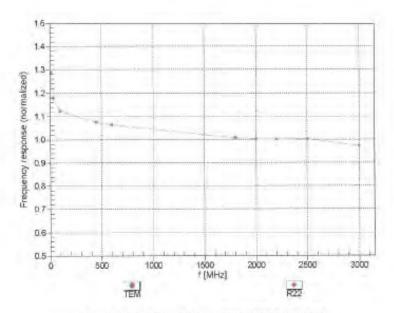
r (Miniz) c	Relative Permittivity	Gondastivity (S/m)	ConvF X	ConvF Y	ConvFZ	Alpha ⁶	Depth (mm)	Unc (k=2)
750	58.5	0.96	10.83	10.83	10.83	0.32	0.98	± 12.0 %
835	55.2	0.97	10.67	10.87	10.87	0,37	0.96	± 12.0 %
900	55.0	1,05	10.52	10.52	10.52	0.44	0.80	±12.0 %
1750	53.4	1.49	8,78	8.78	8.78	0.39	0.81	± 12.0 %
1900	53.3	1,52	8.47	8.47	8.47	0.37	0.80	± 12.0 %
2000	53.3	1.52	8.88	8.68	8,68	0.38	0.80	± 12.0 %
2450	52.7	1.95	5.06	8.08	8,08	0.30	0.80	± 12.0 %
2600	52,5	2.16	7.84	7.84	7.84	0.27	0.80	± 12.0 %
5250	48.9	5.36	4.58	4.58	4.58	0.50	1,90	₫ 13.1 %
5600	48.5	5.77	4.00	4.00	4:00	0,65	1,90	± 13,1 %
5760	46.6	5.94	4.19	4.19	4.19	0.55	1,90	± 13.1 %

Finguency validity above 300 MHz of ± 100 MHz only applies for DASY vA.4 and higher (see Proje 2), else if in invested to ± 50 MHz. The protectivity is the RSS of the Carlot uncertainty of calibration frequency and the uncertainty for the indicator frequency band. Firequency validity basis 200 MHz is ± 10, 25, 40, 50 and 10 MHz for ConvF assessments at 30, 64, 124, 100 and 230 MHz respectively. Above 5 GHz frequency validity can be retineded to ± 110 MHz.

At frequencies below 3 GHz, the waidity of asset parameters (e and of can be issued to ± 10% if iglad componention formula is applied to measured 3AR values. At frequencies above 3 GHz, the validity of these parameters is and of its restricted to ± 6%. The timestally is the RSS of this ConvF uncertainty for indicator length trace parameters.

Applicably are determined during calibration. SPAG scarnets their the timestally desired in the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies from the boundary.

Certificate No. 5X3-3923, Sep15



Page: 75 of 105

EX3DV4- BN:3923

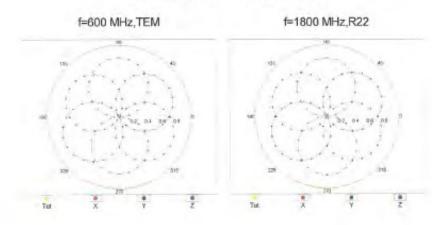
September 2, 2016

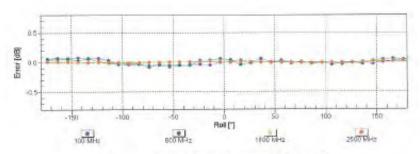
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3923_Sep16

Page 7 of 11




Page: 76 of 105

EX3DV4-SN:3923

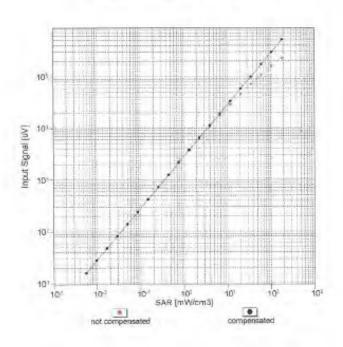
September 2, 2016

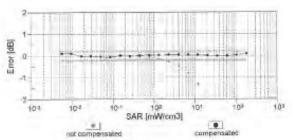
Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3923_Sep16

Page 8 of 11




Page: 77 of 105

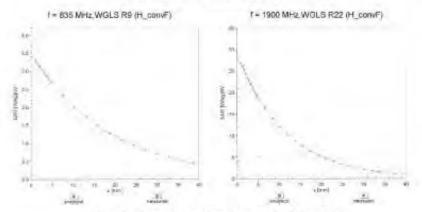
EX3DV4-SN:3923

September 2, 2016

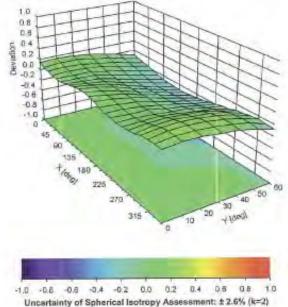
Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No. EX3-3923_Sep16


Page 9 of 11

Page: 78 of 105



Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (6, 8), f = 900 MHz

Certificate No: EX3-3923_Sep15

Page 10 of 11

Page: 79 of 105

EX3DV4- SN 3923

September 2, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	26,4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	pisabled
Probe Overall Length	337 mm
Probe Body Diameter	10 min
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 min
Recommended Measurement Distance from Surface	3.4 mm

Curulicate vio: EX3-3925, Sco15

Page 11 of 11

Page: 80 of 105

7. Uncertainty Budget

Measurement Uncertainty evaluation template for DUT SAR test (3-6G)

A	С	D	е		f	g	h=c * f / e	i=c * q / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probabilit v	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Veff
Measurement system									
Probe calibration	6.55%	N	1	1	1	1	6.55%	6.55%	80
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	œ
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	œ
Modulation Response	2.40%	R	√3	1.732	1	1	1.40%	1.40%	∞
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	00
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	00
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	80
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	80
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	00
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	8
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	80
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	80
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	8
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	80
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	80
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	œ
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	œ
Liquid permittivity (mea.)	2.97%	N	1	1	0.64	0.43	1.90%	1.28%	М
Liquid Conductivity (mea.)	3.35%	N	1	1	0.6	0.49	2.01%	1.64%	М
Combined standard uncertainty		RSS					12.04%	11.89%	
Expant uncertainty (95% confidence							24.08%	23.78%	

Page: 81 of 105

Measurement Uncertainty evaluation template for DUT SAR test (0.3-3G)

A	С	D	е		f	g	h=c * f / e	i=c * g / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probabilit v	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Veff
Measurement system									
Probe calibration	6.00%	N	1	1	1	1	6.00%	6.00%	∞
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	∞
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	∞
Modulation Response	2.40%	R	√3	1.732	1	1	1.40%	1.40%	∞
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	∞
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	∞
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	∞
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	∞
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	∞
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	∞
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	∞
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	∞
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	∞
Liquid permittivity (mea.)	1.16%	N	1	1	0.64	0.43	0.74%	0.50%	М
Liquid Conductivity (mea.)	4.00%	N	1	1	0.6	0.49	2.40%	1.96%	М
Combined standard uncertainty		RSS					11.69%	11.59%	
Expant uncertainty (95% confidence							23.38%	23.17%	

Page: 82 of 105

8. Phantom Description

Schmid & Panner Engineering AG Zeughausstasse 42, 8004 Zunch, Switzerland Phone +41 1 245 9709, Fax +41 1 245 9779 http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	SAM Twin Phantom V4.0	
Type No	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer	SPEAG Zeughausstrasse 43 CH-8004 Zörich Switzerland	

Tests

Tests
The series production process used allows the amission to test of first articles.
Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been referred using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness of shell	Compliant with the requirements according to the standards	2mm +/- 0,2mm in flat and specific areas of head section	First article, Samples, TP-1314 ff.
Material thickness at ERP	Compliant with the requirements according to the standards	6mm +/- 0.2mm at ERP	First article, All items
Material parameters	Dielectric parameters for required frequencies	300 MHz – 6 GHz: Relative permittivity < 5, Loss tangent < 0.05	Material samples
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material competibility.	DEGMBE based simulating liquids	Pre-series, First article, Material samples
Sagging	Compliant with the requirements according to the standards. Sagging of the flat section when filled with tissue simulating liquid.	< 1% typical < 0.8% if filled with 155mm of HSL900 and without DUT below	Prototypes, Sample testing

- Standards [1] CENELEC EN 50361 [2] IEEE Std 1528-2003 [3] IEC 62209 Part I

- FCC OET Bulletin 85, Supplement C, Edition 01-01
 The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Conformity
Based on the sample tasts above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4].

07.07.2005

Schmitt & Pagner Engineering AQ Zetigheussysses 43, 9004 Zorigh Geitzert Proces 441, 3 PK STROW Fac-961-7 245, 9773

Drur No. 881 - QQ 000 P40 C-F

Signature / Stamp

Page: 83 of 105

9. System Validation from Original Equipment Supplier

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdiens
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SGS-TW (Auden)

Certificate No: D2450V2-727_Apr15

	ERTIFICATE		
Object	D2450V2 - SN: 7	27	
Calibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	April 22, 2015		
		onal standards, which realize the physical un robability are given on the following pages an	
All calibrations have been condu-	cted in the closed laborator	ry facility: environment temperature (22 ± 3)°C	2 and humidity < 70%.
	TE critical for calibration)		
Calibration Equipment used (M&	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&		Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15 Oct-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Scheduled Calibration Oct-15 Oct-15 Oct-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN; 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Scheduled Calibration Oct-15 Oct-15 Mar-16 Mar-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN; 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN; 5058 (20k) SN; 5047.2 / 06327 SN; 3205 SN; 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D2450V2-727_Apr15

Page 1 of 8

Page: 84 of 105

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

sensitivity in TSL / NORM x,y,z ConvF N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-727 Apr15

Page 2 of 8

Page: 85 of 105

Measurement Conditions

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-727_Apr15

Page: 86 of 105

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.2 Ω + 1.3 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.8 Ω + 3.3 jΩ
Return Loss	- 28.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 09, 2003

Certificate No: D2450V2-727_Apr15

Page 4 of 8

Page: 87 of 105

DASY5 Validation Report for Head TSL

Date: 22.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type; D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ S/m; $\varepsilon_r = 37.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = 0.01 dB

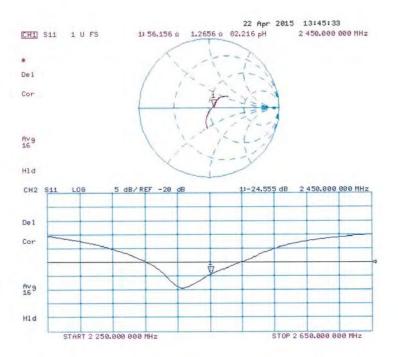
Peak SAR (extrapolated) = 27.4 W/kg

dB

-5.00 -10.00 -15.00 -20.00 -25.00

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.1 W/kg

Maximum value of SAR (measured) = 17.5 W/kg



0 dB = 17.5 W/kg = 12.43 dBW/kg

Page: 88 of 105

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-727_Apr15

Page: 89 of 105

DASY5 Validation Report for Body TSL

Date: 22.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\varepsilon_r = 50.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

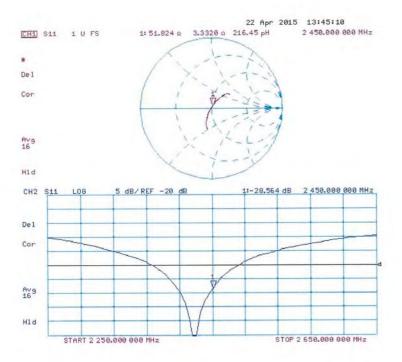
Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.54 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.1 W/kgMaximum value of SAR (measured) = 17.4 W/kg


0 dB = 17.4 W/kg = 12.41 dBW/kg

Certificate No: D2450V2-727_Apr15

Page: 90 of 105

Impedance Measurement Plot for Body TSL

Page: 91 of 105

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kallbrierdienst Service ausse d'étalonnage C Servizio evizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multitateral Agreement for the recognition of calibration sertificates

SGS-TW (Auden)

Certificate No. D5GHzV2-1023 Jan 16 CALIBRATION CERTIFICATE D5GHzV2 - SN: 1023 Object Calibration procedure(s) QA CAL-22.V2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date January 26, 2016 This colloration certificate documents the traceability to national standards, which realize the physical units of measurements (Si) The measurements and the uncontainties with confidence probability are given on the following pages and are cart of the certificate, All collorations have been conducted in the closed laboratory facility: environment temperature (22 a 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) DA Cai Date (Certificate No.) Scheduled Calibration Primary Standards GB37480704 07-Oct-15 (No. 217-02222) Power meter EPM-442A Oct-16 US37292783 07-Oct-15 (No. 217-02222) Oct-16 Power sensor HP 8461A Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-02223) Oct-16 Reference 20 dB Attenuator SN: 5055 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Type-N mismatch combination SN: 5047.2 / 06327 81-Apr-15 (No. 217-02154) May-16 Reference Probe EX3DV4 SNL 3503 31 Dec-15 (No. EX3-3533_Dec/15) Dec-18 DAE4 SN. 001 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Scheduled Check Secondary Standards ID # Check Date (in house) 15-Jun-15 (in house check Jun-15) In house check: Jun-18 RF generator R&S SMT-06 100972 US37390685-\$4206 18-Oct-01 (in house check Oct-15) In house check Oct-16 Nelwork Analyzar HP 8753E Name **Function** Calibrated by Michael Weber Liaboratory Technician Kaşa Pokovic Technical Manager Approved by: This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: 05GHzV2-1023_Jan16

Page 1 of 15

Page: 92 of 105

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstasse 57, 8004 Zurich, Switzerland

Schweizenscher Kallbriertliess Service suisse d'étalonnage Service ovizzere di taratura Swiss Califeration Service

Accreditation No.: SCS 0108

Accountied by the Swini Accounties on Service (SAS)

The Swiss Accreatation Service is any of the signatories to the EA Multilatoral Agreement for the recognition of collection certificates.

Glossary:

TSL ConvF

N/A

tissue simulating liquid

vF

sensitivity in TSL, / NORM x,y,z, not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement Techniques", June 2013
- EC 62208-2. "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Fixed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The Impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No. D5GHzV2-1023_Jan16

Page 2 of 15

Page: 93 of 105

Measurement Conditions

DASY system configuration, as far as not given on page 1.

WST system configuration, as lar as not	given on page 1.	
DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5600 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 m/ho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	4.51 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.74 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Page: 94 of 105

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.9 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Page: 95 of 105

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Page: 96 of 105

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

•	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.37 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	71.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Certificate No: D6GHzV2-1023_Jan16

Page 6 of 15

Page: 97 of 105

Body TSL parameters at 5600 MHz

-	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.91 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm² (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 ℃	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1023_Jan16

Page 7 of 15

Page: 98 of 105

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.1 Ω - 8.4 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	49.6 Ω · 4.2 jΩ
Return Loss	- 27.4 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.9 Ω - 1.4 jΩ
Return Loss	- 26.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.9 Ω + 2.2 jΩ
Return Loss	- 24.5 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.4 Ω - 6.8 jΩ
Return Loss	- 23.3 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	50.9 Ω - 2.4 jΩ
Return Loss	- 31.8 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.0 Ω - 0.1 jΩ
Fleturn Loss	- 25.0 dB

Certificate No: D5GHzV2-1023_Jan16

Page 8 of 15

Page: 99 of 105

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.4 Ω + 2.4 jΩ
Return Loss	- 23.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 05, 2004

Page: 100 of 105

DASY5 Validation Report for Head TSL

Date: 26.01.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Scrial: D5GHzV2 - SN: 1023

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600

MHz, Frequency: 5800 MHz

Medium parameters used: f=5200 MHz; $\sigma=4.51$ S/m; $\epsilon_r=35.2$; $\rho=1000$ kg/m³, Medium parameters used: f=5300 MHz; $\sigma=4.6$ S/m; $\epsilon_r=35.1$; $\rho=1000$ kg/m³, Medium parameters used: f=5600 MHz; $\sigma=4.9$ S/m; $\epsilon_r=34.7$; $\rho=1000$ kg/m³, Medium parameters used: f=5800 MHz; $\sigma=5.1$ S/m; $\epsilon_r=34.4$; $\rho=1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.59, 5.59, 5.59); Calibrated: 31.12.2015, ConvF(5.25, 5.25, 5.25); Calibrated: 31.12.2015, ConvF(4.99, 4.99, 4.99); Calibrated: 31.12.2015, ConvF(4.95, 4.95, 4.95); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Scrial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.68 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.23 W/kgMaximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.14 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.32 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 32.6 W/kg

SAR(1 g) = 8.31 W/kg; SAR(10 g) = 2.38 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

Certificate No: D5GHzV2-1023_Jan16

Page 10 of 15

Page: 101 of 105

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid; dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.15 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kg = 12.74 dBW/kg

Page: 102 of 105

Impedance Measurement Plot for Head TSL

Page: 103 of 105

DASY5 Validation Report for Body TSL

Date: 25.01.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1023

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.37$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.5$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.91$ S/m; $\varepsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.19$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.99, 4.99, 4.99); Calibrated: 31.12.2015, ConvF(4.75, 4.75, 4.75); Calibrated: 31.12.2015, ConvF(4.27, 4.27, 4.27); Calibrated: 31.12.2015;
 Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.72 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 7.25 W/kg; SAR(10 g) = 2.05 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.43 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.67 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 32.6 W/kg

SAR(1 g) = 7.89 W/kg; SAR(10 g) = 2.23 W/kg

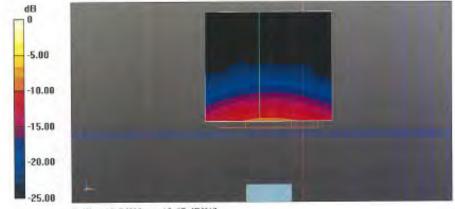
Maximum value of SAR (measured) = 19.1 W/kg

Certificate No: D6GHzV2-1023_Jan16

Page 13 of 15

Page: 104 of 105

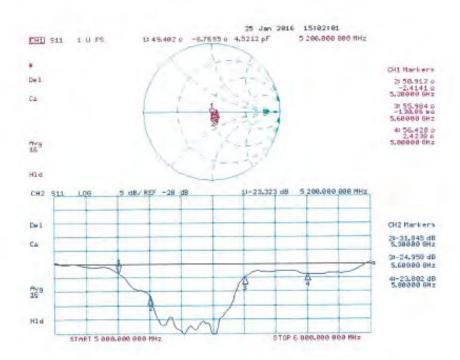
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.76 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.13 W/kg


Maximum value of SAR (measured) = 18.5 W/kg

Page: 105 of 105

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1023_Jan16

Page 15 of 15

- End of 1st part of report -