

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 1 / RSS 210 Issue 6 FCC Part 15, Subpart E on the Cisco-Linksys Transmitter Model: WRT600N

UPN: FCC ID:	3839A-WRT6NV1 Q87-WRT600NV1
GRANTEE:	Cisco-Linksys 121 Theory Drive Irvine, CA 92617
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: April 6, 2007

FINAL TEST DATE:

March 22, March 23 and April 6, 2007

AUTHORIZED SIGNATORY:

man

Juan Martinez Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	April 10, 2007	Initial Release	David Guidotti

TABLE OF CONTENTS

	1
REVISION HISTORY	2
	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	7
TEST RESULTS SUMMARY	8
UNII / LELAN DEVICES	8
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	11
GENERAL	
OTHER EUT DETAILS	
ANTENNA SYSTEM	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	13
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
	13
RADIATED EMISSIONS CONSIDERATIONS	14
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER	14 14
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN)	14 14 14
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS	14 14 14 15
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS	14 14 14 15 15
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER. LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER. LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES EUT AND CABLE PLACEMENT	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS. RADIATED EMISSIONS	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS FCC 15.407 (A) OUTPUT POWER LIMITS	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION TEST PROCEDURES EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS RADIATED EMISSIONS. RADIATED EMISSIONS BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS FCC 15.407 (A) OUTPUT POWER LIMITS OUTPUT POWER AND SPURIOUS LIMITSINI DEVICES	

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data1
EXHIBIT 2: Test Measurement Data
EXHIBIT 3: Photographs of Test Configurations
EXHIBIT 4: Proposed FCC ID Label & Label Location
EXHIBIT 5: Detailed Photographs
EXHIBIT 6: Operator's Manual
EXHIBIT 7: Block Diagram
EXHIBIT 8: Schematic Diagrams
EXHIBIT 9: Theory of Operation
EXHIBIT 10: RF Exposure Information

SCOPE

An electromagnetic emissions test has been performed on the Cisco-Linksys LLC model WRT600N pursuant to the following rules:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Cisco-Linksys LLC model WRT600N and therefore apply only to the tested sample. The sample was selected and prepared by Jennifer Yu of Cisco-Linksys

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Cisco-Linksys LLC model WRT600N complied with the requirements of the following regulations:

RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (1)		26dB Bandwidth	802.11a = 22.3 MHz 802.11Siso = 46 MHz 802.11n 20MHz = 23.7 MHz 802.11n 40MHz = 44.3 MHz	N/A – limits output power if < 20MHz	N/A
	RSP100	99% Bandwidth	802.11a = 17 MHz 802.11 Siso = 36.6 MHz 802.11n 20 MHz = 18 MHz 802.11n 40 MHz = 36.9 MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (1)	A9.2(1)	Output Power	16dBm dBm (.04 W)		Complies
15.407(a) (1))	A9.2(1)	Power Spectral Density	3.64dBm/MHz		Complies
	A9.5b	Peak Spectral Density	3.64dBm/MHz	Shall not exceed the average value by more than 3dB	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Integral to the device. User will not have access or be able to open the device.		Complies
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No emission detected 20-dB of the limit		Complies
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	53.1dBµV/m (451.9µV/m) @ 3282.7MHz		Complies (-0.9 dB)
15.407(a)(6)	-	Peak Excursion Ratio	12.63 dB	<13dB	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	53.4dBμV/m (467.7μV/m) @ 2125.1MHz		Complies (-0.6 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	Refer to data	Refer to standard	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding detachable antenna	

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$\pm 2.4 \\ \pm 3.0 \\ \pm 3.6 \\ \pm 6.0$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Cisco-Linksys LLC model WRT600N is a Dual-band Wireless-N Router that is designed to provide wireless internet and networking service. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120Volts, 60 Hz, 1 Amps.

The sample was received on March 20, 2007 and tested on March 22, March 23 and April 6, 2007. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Cisco-Linksys	WRT600N	Dual-band	-	Q87-
LLC		Wireless-N Router		WRT600NV1

OTHER EUT DETAILS

List any items from the test log.

ANTENNA SYSTEM

The integral antenna system used with the Cisco-Linksys LLC model WRT600N consists of a diple antenna with a maximum gain of 3.7dBi, PiFA antenna maximum gain 3.7, and a PCB antenna maximum gain 2.9dBi.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 30 cm wide by 5 cm deep by 25 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
-	-	-	-	-

The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	Zv6000	Laptop	CBD52904S1	DoC

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port Connected To		Cable(s)			
TOIT	Connected 10	Description	Shielded or Unshielded	Length(m)	
Ethernet	Laptop	Cat5	Unshielded	1.0	
AC power	AC mains	-	-	-	

EUT OPERATION

During emissions testing the EUT was set to either to transmit at maximum power or receive on appropriate channels.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on March 22, March 23 and April 6, 2007at the Elliott Laboratories Open Area Test Site # located at 684 West Maude Avenue, Sunnyvale, California or 41039 Boyce Road, Fremont, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

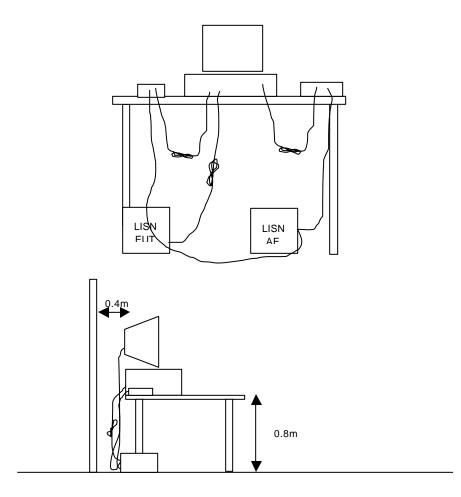
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 and RSS 212 specify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

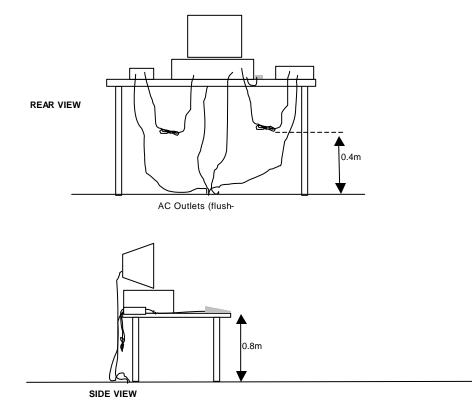

TEST PROCEDURES

EUT AND CABLE PLACEMENT

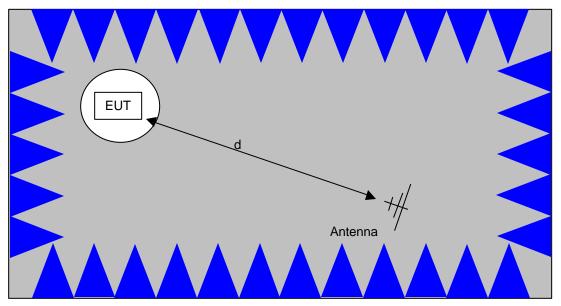
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

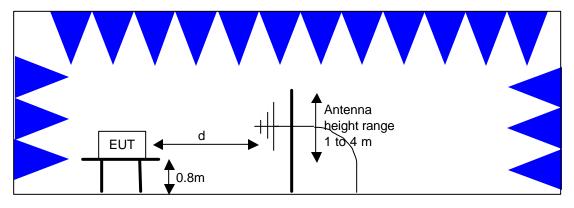

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER AND SPURIOUS LIMITS -UNII DEVICES

The table below shows the limits for output power and output power density defined by FCC Part 15 Subpart E. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	50mW (17 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5470 - 5725	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

The peak excursion envelope is limited to 13dB.

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3}$ microvolts per meter

where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radio Antenna Port (Power and Spurious Emissions), 23-Mar-07 Engineer: Mark Hill Asset # 28-Nov-07 Manufacturer Description Model # EMCO Antenna, Horn, 1-18 GHz 3115 Hewlett Packard SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue 8564E (84125C) 1393 09-Jan-08 Rohde & Schwarz EMI Test Receiver, 20 Hz-7 GHz ESIB7 1538 08-Aug-07

Radio Antenna Port (Power and Spurious Emissions), 20-Mar to 4-Apr-07

Engineer: Juan war	linez, Raiael Vareias			
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	16-Mar-08
EMCO	Antenna, Horn, 1-18 GHz	3115	786	28-Nov-07
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	09-Jan-08

EXHIBIT 2: Test Measurement Data

106 Pages

Elliott

EMC Test Data

Client:	Cisco-Linksys	Job Number:	J67313
Model:	WRT600N	Test-Log Number:	T67324
		Project Manager:	-
Contact:	Kevin Lee		
Emissions Spec:	FCC 15.407	Class:	Radio
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

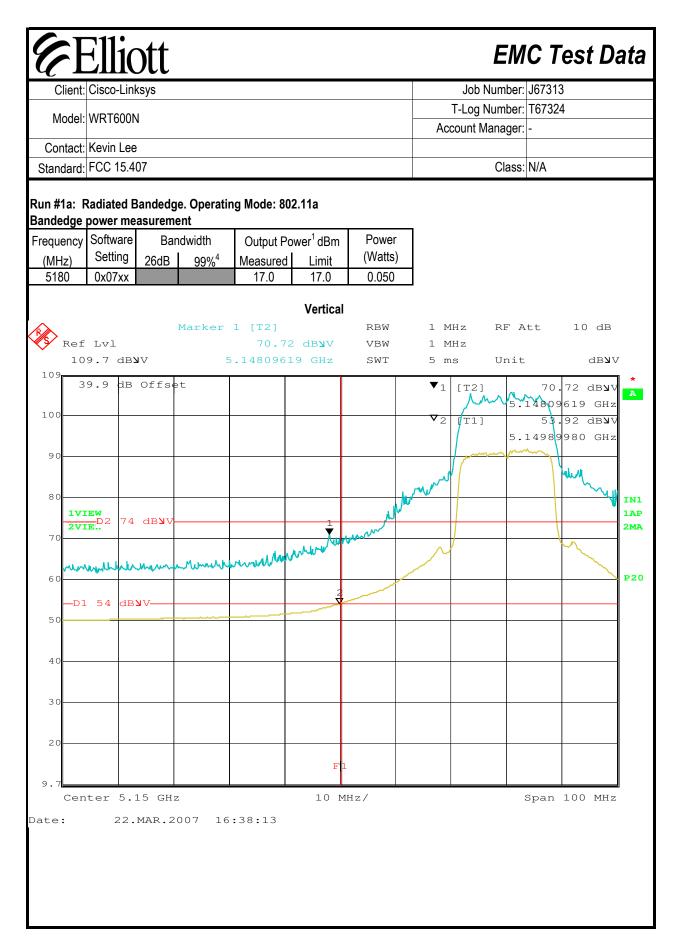
Cisco-Linksys

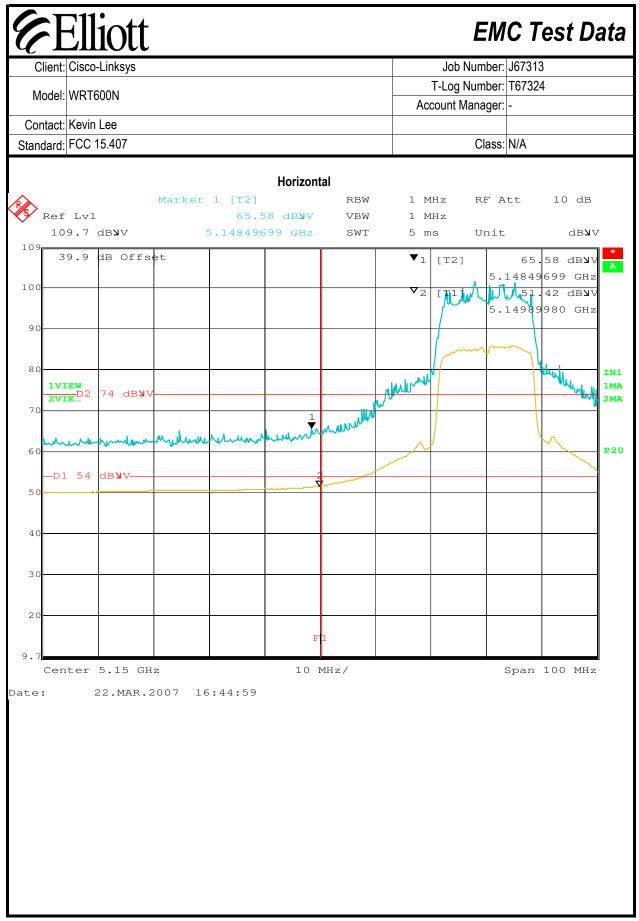
Model

WRT600N

Date of Last Test: 4/14/2007

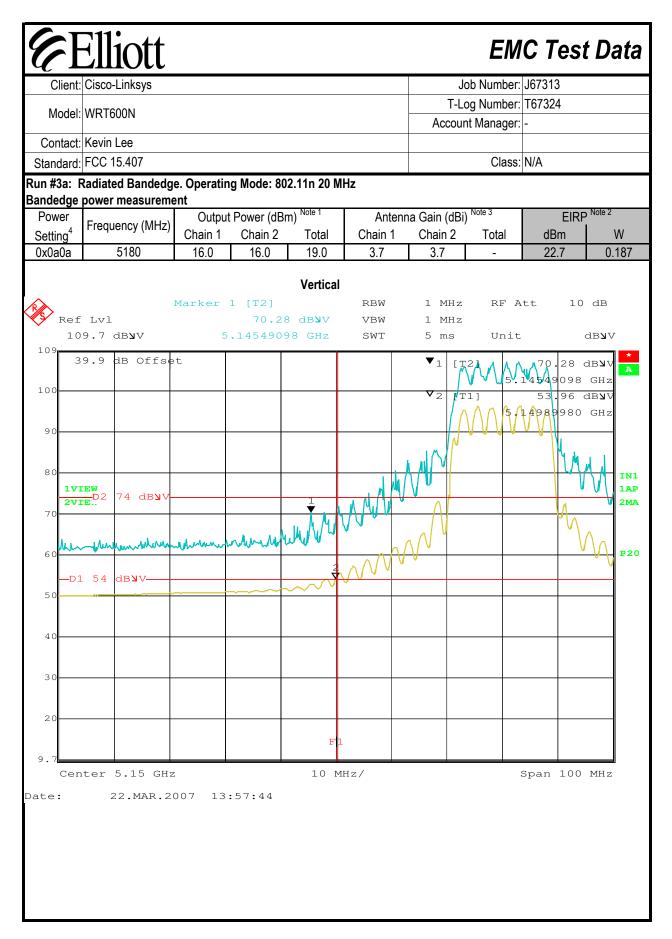
Elliot	tt		EM	C Test Data
Client:	Cisco-Linksys		Job Number:	J67313
	WRT600N		Test-Log Number:	
			Project Manager:	
Contact.	Kevin Lee			
Emissions Spec:			Class:	Radio
Immunity Spec:			Environment:	-
inimunity Spec.	-			-
The	-	IT INFORMATIO	-	s(s).
EUT would be placed o	d Wireless-N Router that is on a table top during operatent ent. The electrical rating o	General Description s designed to provide wirele- tion, the EUT was treated a f the EUT is 120 Volts , 60	ess internet and networking as table-top equipment dur Hz, .5 Amps.	-
		Equipment Under Tes		
Manufacturer	Model	Description	Serial Number	FCC ID
Cisco-Linksys LLC	WRT600N	Dual-band Wireless-N	-	Q87-WRT600NV1
None The antenna is integral PCB antenna maximun	to the device. A diple ante	Other EUT Details ana (Intentional Radia enna with a maximum gain	• •	naximum gain 3.7, and a
The EUT enclosure is p	primarily constructed of pla	EUT Enclosure stic. It measures approxim	nately 30 cm wide by 5 cm	deep by 25 cm high.

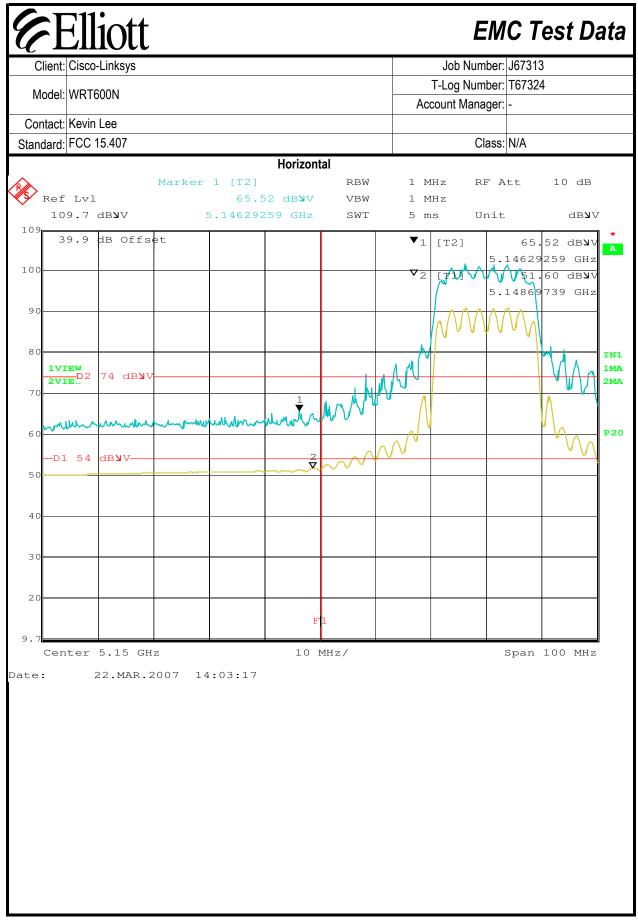

Elliot	t	EM	C Test Data
Client:	Cisco-Linksys	Job Number:	J67313
Model:	WRT600N	Test-Log Number:	T67324
		Project Manager:	-
Contact:	Kevin Lee		
Emissions Spec:	FCC 15.407	Class:	Radio
Immunity Spec:	-	Environment:	-
	Modification History		

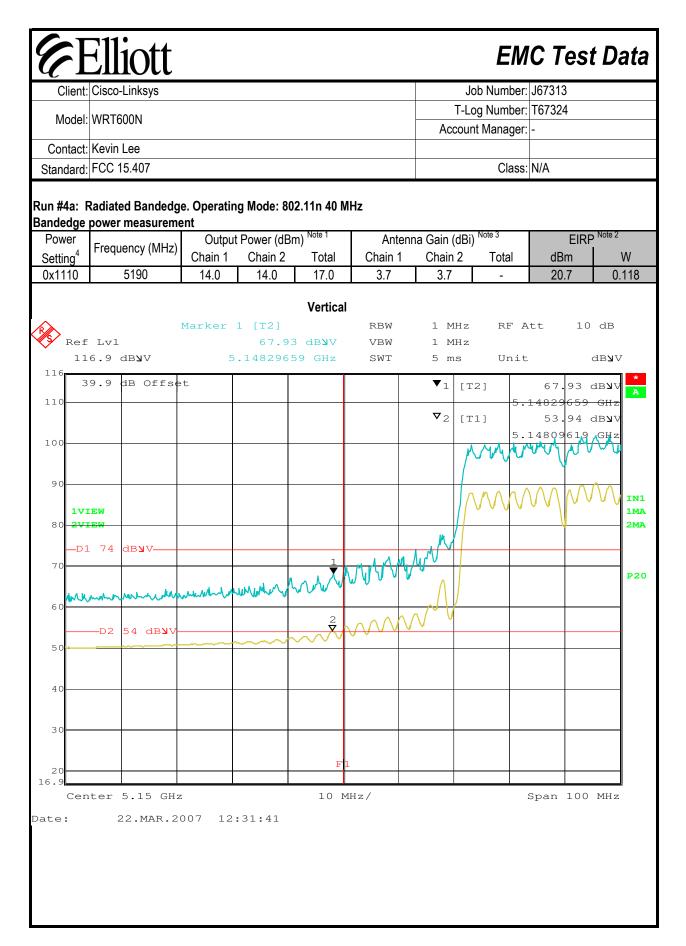

		Modifi	cation History
Mod. #	Test	Date	Modification
1			
2			
3			

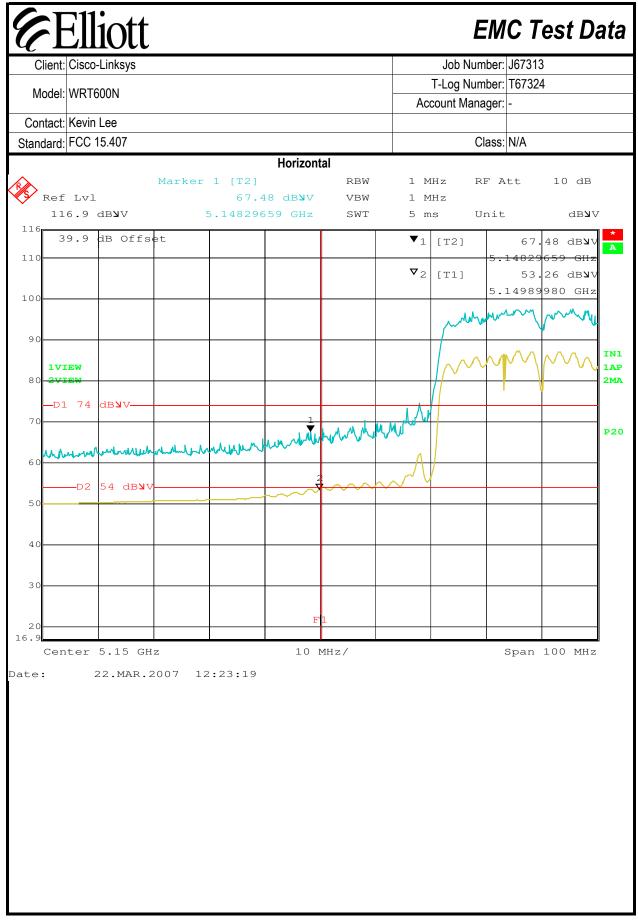
Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Elliot	t		EM	C Test Data
	Cisco-Linksys		Job Number:	J67313
	WRT600N		T-Log Number:	T67324
			Project Manager:	
Contact:	Kevin Lee		· · · · ·	
Emissions Spec:	FCC 15.407		Class:	Radio
Immunity Spec:			Environment:	-
The	following informatio	t Configuratio	ring the test sessions	s(s).
Manufacturer	Model	Description	Serial Number	FCC ID
-	-	-	-	-
Manufacturer	Rem	note Support Equipr	ment Serial Number	FCC ID
Hewlett Packard	zv6000	Laptop	CND52904S1	DoC
Port	Connected To	Cabling and Ports	Cable(s)	
	L	Description	Shielded or Unshield	
Ethernet	Laptop	Cat5	Unshielded	1.0
AC Power	AC Mains		<u> </u>	-
During emissions testin	•	ration During Emissi er to transmit at maximum	ions Tests power or receive on approp	priate channels.

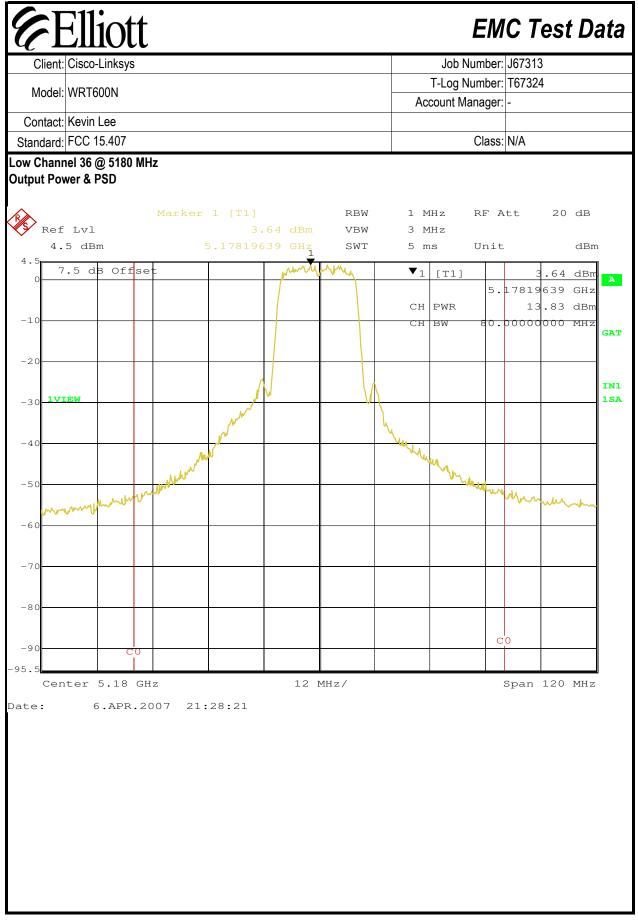

Client: Cisco-Links	ys			Number: J67313	
Model: WRT600N			-	Number: T67324 Manager: -	
Contact: Kevin Lee					
Standard: FCC 15.407	7			Class: N/A	
F	RSS 210 and FCC	C 15.247 Radia	ted Ban	dedges	
Fest Specific Detai	ils				
Objective: T	he objective of this test session pecification listed above.	on is to perform final quali	fication testing	of the EUT with respec	ct to the
Date of Test: 3		Config. Used			
Test Engineer: Ji	uan Martinez remont Chamber #3	Config Change EUT Voltage			
	IS: Temperature	: 18 °C			
Ambient Condition Summary of Resul	ns: Temperature Rel. Humidity	: 18 °C : 37 %			1
Ambient Condition Summary of Resul	ns: Temperature Rel. Humidity its Test Performed	: 18 °C : 37 % Limit	Pass / Fail	Result / Margin]
Ambient Condition Summary of Resul	ns: Temperature Rel. Humidity	E 18 °C 37 % Limit FCC Part 15.209 / 15.407]
Ambient Condition Summary of Resul Run # 1 (802.11a Mode)	ns: Temperature Rel. Humidity its Test Performed	: 18 °C : 37 % ELimit FCC Part 15.209 / 15.407 FCC Part 15.209 /	Pass / Fail	Result / Margin	
1 (802.11a Mode) 2 (802.11Siso Mode) 3 (802.11n 40 MHz	IS: Temperature Rel. Humidity Its Test Performed Bandedges	Limit FCC Part 15.209 / 15.407 FCC Part 15.209 / 15.407 FCC Part 15.209 / FCC Part 15.209 /	Pass / Fail Pass	Result / Margin Refer to runs	
Ambient Condition Summary of Resul Run # 1 (802.11a Mode) 2 (802.11Siso Mode)	ns: Temperature Rel. Humidity Its Test Performed Bandedges Bandedges	E 18 °C 37 % E 2007 FCC Part 15.209 / 15.407 FCC Part 15.209 / 15.407	Pass / Fail Pass Pass	Result / Margin Refer to runs Refer to runs	

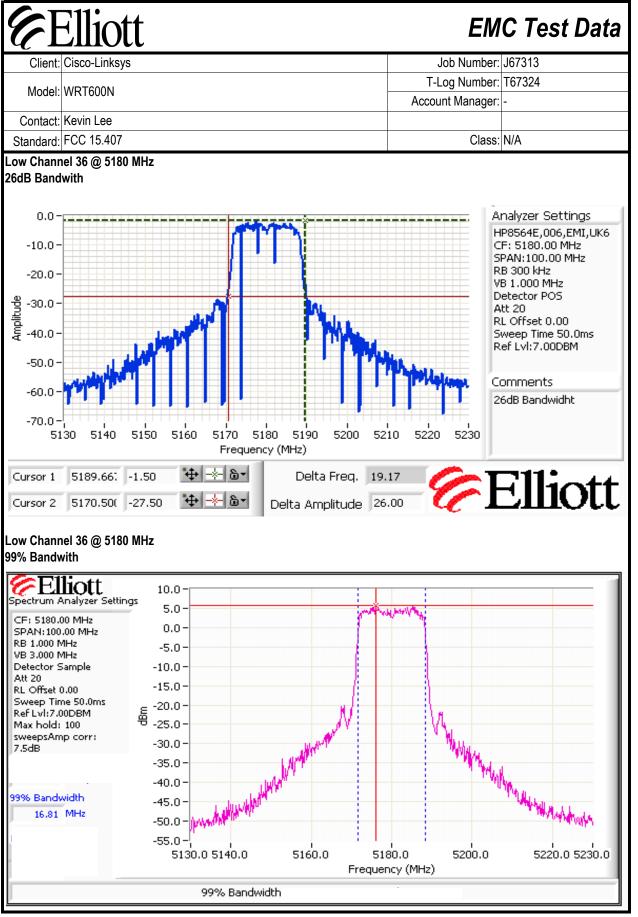


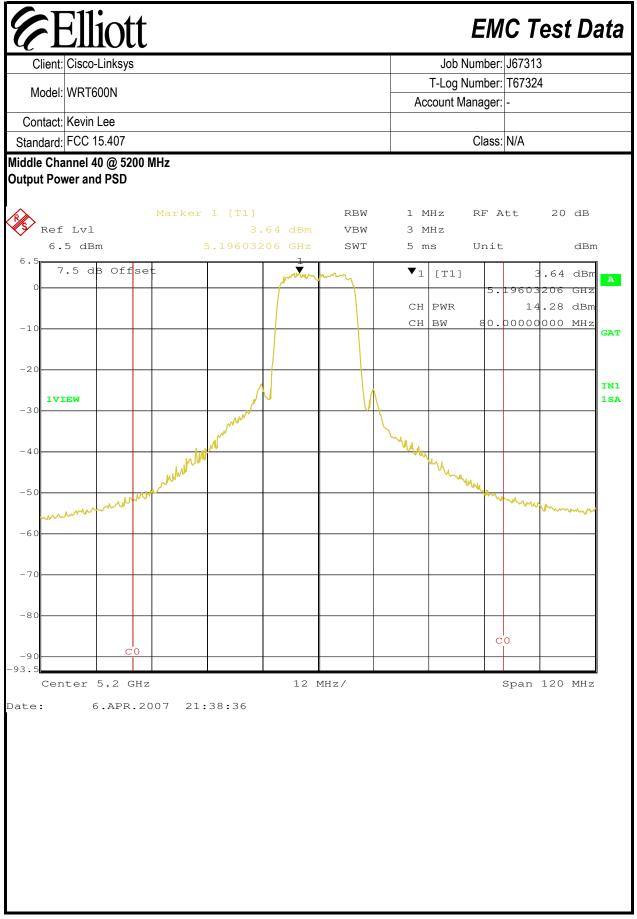


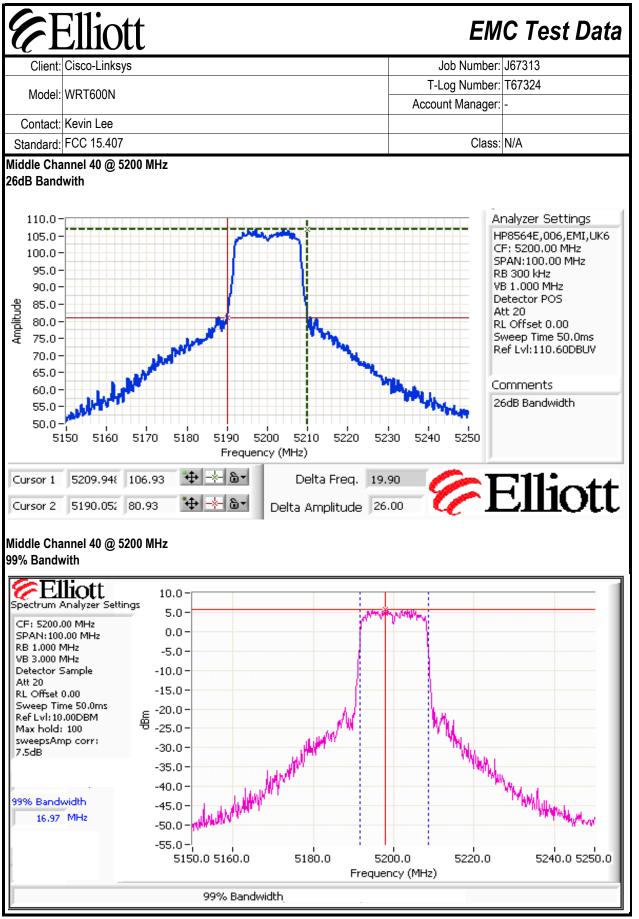


Client: Cisco-Linksys Model: WRT600N Contact: Kevin Lee Standard: FCC 15.407 Marker 2 [T2] Ref Lv1 65.06 dBNV VBW 104 39.5 dB Offset 90 90 90 90 90	Job Number: J67313 T-Log Number: T67324 Account Manager: - Class: N/A 1 MHz RF Att 10 dB 1 MHz 5 ms Unit dB¥V ▼2 [T2] 65.06 dB¥V 5.14989980 GHz ↓ 4 ↓
Contact: Kevin Lee Image: Standard: FCC 15.407 Horizontal Marker 2 [T2] RBW Ref Lv1 65.06 dBNV VBW 104.7 dBNV 5.14989980 GHz SWT 104 39.5 dB Offset Image: SWT	Class: N/A 1 MHz RF Att 10 dB 1 MHz 5 ms Unit dB¥V ▼2 [T2] 65.06 dB¥V 5.14989980 GHz
Standard: FCC 15.407 Horizontal Marker 2 [T2] RBW Ref Lv1 65.06 dBVV VBW 104.7 dBV 5.14989980 GHz SWT 104 100 39.5 dB Offset 0	1 MHz RF Att 10 dB 1 MHz 5 ms Unit dB¥V ▼2 [T2] 65.06 dB¥V 5.14989980 GHz
Horizontal Marker 2 [T2] RBW Ref Lvl 65.06 dBNV VBW 104.7 dBNV 5.14989980 GHz SWT 104 39.5 dB Offset 100	1 MHz RF Att 10 dB 1 MHz 5 ms Unit dB¥V ▼2 [T2] 65.06 dB¥V 5.14989980 GHz
Marker 2 [T2] RBW Ref Lvl 65.06 dBNV VBW 104.7 dBNV 5.14989980 GHz SWT 104 39.5 dB Offset	1 MHz 5 ms Unit dB \ V ▼2 [T2] 65.06 dB \ V 5.14989980 GHz
Ref Lvl 65.06 dB V VBW 104.7 dB V 5.14989980 GHz SWT 104 39.5 dB Offset	1 MHz 5 ms Unit dB \ V ▼2 [T2] 65.06 dB \ V 5.14989980 GHz
104 100 39.5 dB Offset	▼2 [T2] 65.06 dB¥V 5.14989980 GHz
39.5 dB Offset	5.14989980 GHz
	5.14989980 GHz
90	
	5.14969940 GHz
80	
D2 74 dB y V	
	1M2
70 IVIEW 2VIEW 60	2Mi
60 mar hersen and and and and and and and and and an	
	P2
50	
40	
30	
20	
. 7	

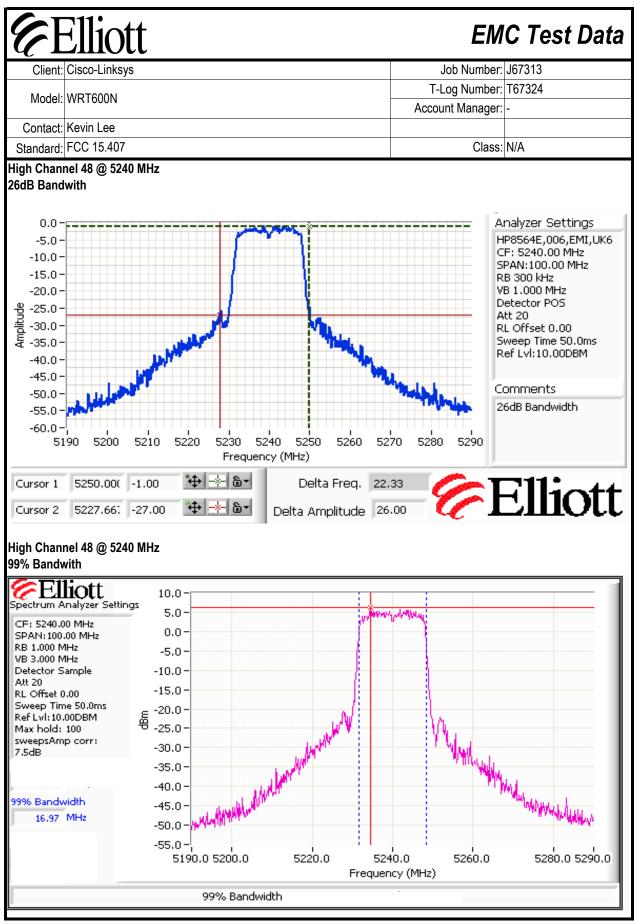


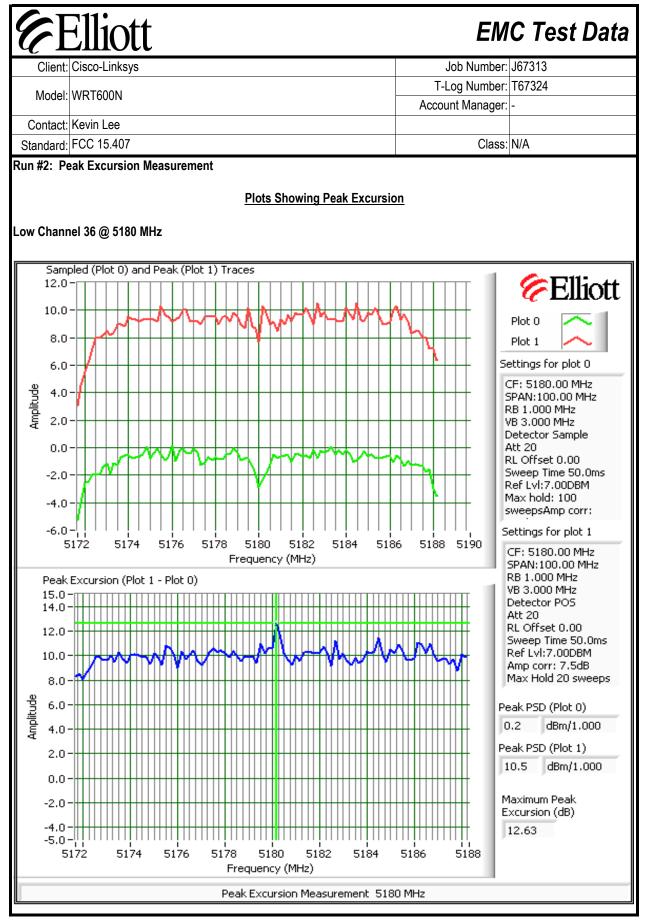


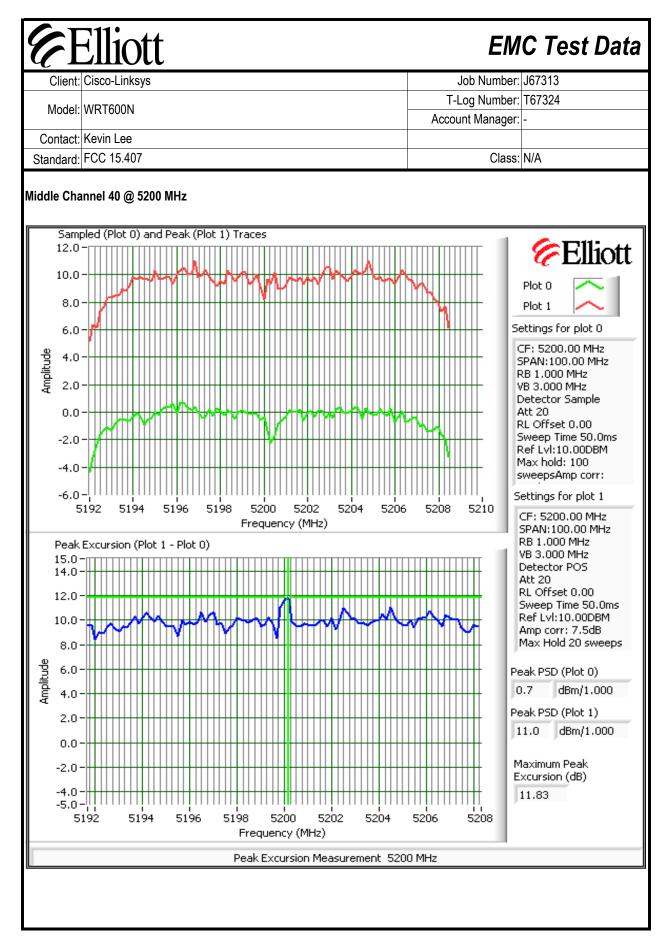


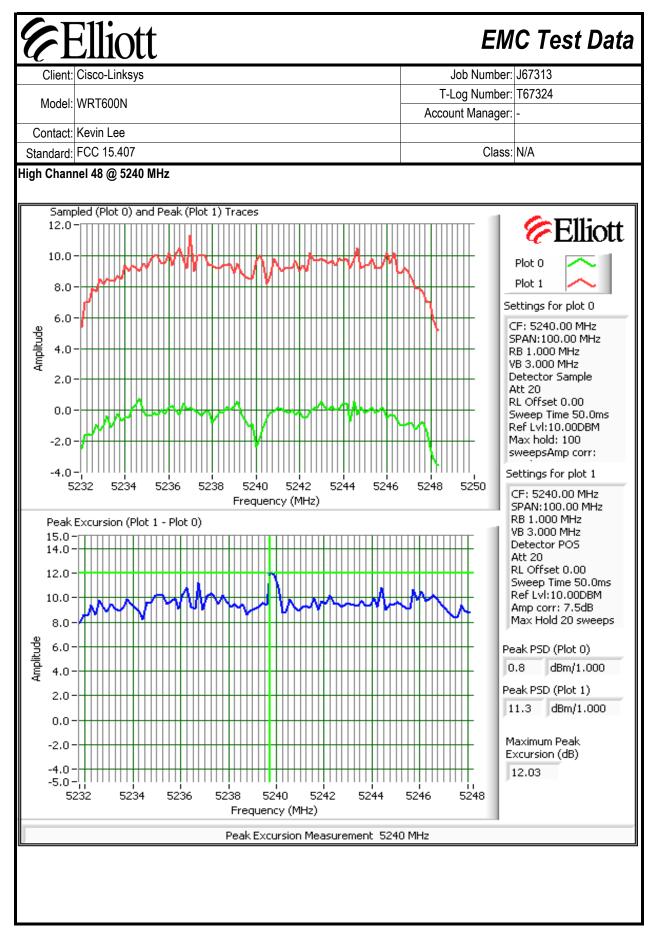

Client: Cisco-Li	nksys			ob Number: J67313 og Number: T67324	
Model: WRT60	N		-	nt Manager: -	
Contact: Kevin Lo	96				
Standard: FCC 15	.407			Class: N/A	
FCC	Part 15 Subpart E	Tests (Legac	∶y A - 5 1	150-5250 MHz)	
est Specific D	atails				
Objective	The chiective of this test appaier	n is to perform final qual	ification testir	ng of the EUT with respect	to th
Test Enginee	t: 3/22/2007 9:01 r: Mark Hill/Rafael n: Fremont Chamber #3	Config. Used Config Change EUT Voltage	: None		
/hen measuring the	onfiguration e conducted emissions from the EU r power meter via a suitable attenu w for the external attenuators and	uator to prevent overload			
Vhen measuring the pectrum analyzer or re corrected to allo	e conducted emissions from the EL r power meter via a suitable attenu w for the external attenuators and	uator to prevent overload cables used.			
Vhen measuring the pectrum analyzer o re corrected to allo Ambient Condit	e conducted emissions from the EL r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity:	uator to prevent overload cables used. 22.2 °C			
Vhen measuring the pectrum analyzer o re corrected to allo Ambient Condit	e conducted emissions from the EL r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity:	uator to prevent overload cables used. 22.2 °C			
/hen measuring the pectrum analyzer of re corrected to allo ambient Condit Summary of Re Run # 1	e conducted emissions from the EU r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity: sults Test Performed Power, 5150 - 5250MHz	Limit	ling the meas	surement system. All mea Result / Margin 14.3 dBm	
hen measuring the pectrum analyzer of e corrected to allo mbient Condit ummary of Re Run # 1 1	e conducted emissions from the EU r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity: sults Test Performed Power, 5150 - 5250MHz PSD, 5150 - 5250MHz	Limit 15.407(a) (1), (2)	ling the meas Pass / Fail Pass Pass	surement system. All mea Result / Margin 14.3 dBm 3.64dBm/MHz	
then measuring the pectrum analyzer of e corrected to allo mbient Condit ummary of Re Run # 1 1 1	e conducted emissions from the EU r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity: sults Test Performed Power, 5150 - 5250MHz PSD, 5150 - 5250MHz 26dB Bandwidth	Limit 15.407(a) (1), (2) 15.407	Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 14.3 dBm 3.64dBm/MHz > 20 MHz	
/hen measuring the pectrum analyzer of re corrected to allo ambient Condit ummary of Re Run # 1 1	e conducted emissions from the EU r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity: sults Test Performed Power, 5150 - 5250MHz PSD, 5150 - 5250MHz	Limit 15.407(a) (1), (2)	ling the meas Pass / Fail Pass Pass	surement system. All mea Result / Margin 14.3 dBm 3.64dBm/MHz	
Vhen measuring the pectrum analyzer of re corrected to allo Ambient Condit Summary of Re Run # 1 1 1	e conducted emissions from the EU r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity: sults Test Performed Power, 5150 - 5250MHz PSD, 5150 - 5250MHz 26dB Bandwidth	Limit 15.407(a) (1), (2) 15.407	Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 14.3 dBm 3.64dBm/MHz > 20 MHz	
Ambient Condit Ambient Condit Summary of Re Run # 1 1 1 1 2	e conducted emissions from the EU r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity: sults Test Performed Power, 5150 - 5250MHz PSD, 5150 - 5250MHz 26dB Bandwidth 99% Bandwidth	Limit 15.407(a) (1), (2) 15.407(a) (6) 15.407(a) (6)	Pass / Fail Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 14.3 dBm 3.64dBm/MHz > 20 MHz 17 MHz	
When measuring the pectrum analyzer of an ecorrected to allo an ec	e conducted emissions from the EU r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity: sults Test Performed Power, 5150 - 5250MHz PSD, 5150 - 5250MHz 26dB Bandwidth 99% Bandwidth Peak Excursion Envelope	Limit 15.407(a) (1), (2) 15.407 RSS 210	Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 14.3 dBm 3.64dBm/MHz > 20 MHz 17 MHz 12.63 dB	
When measuring the pectrum analyzer of the order of the o	e conducted emissions from the EU r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity: sults Test Performed Power, 5150 - 5250MHz PSD, 5150 - 5250MHz 26dB Bandwidth 99% Bandwidth Peak Excursion Envelope Antenna Conducted - Out of Band Spurious	Limit 22.2 °C 44 % Limit 15.407(a) (1), (2) 15.407 RSS 210 15.407(a) (6) 15.407(b)	Pass / Fail Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 14.3 dBm 3.64dBm/MHz > 20 MHz 17 MHz 12.63 dB All emissions below the	
When measuring the spectrum analyzer of are corrected to allo are corrected to allo Ambient Condit Summary of Re Run # 1 1 1 2 3 Modifications W No modifications we	e conducted emissions from the EU r power meter via a suitable attenu w for the external attenuators and ions: Temperature: Rel. Humidity: sults Test Performed Power, 5150 - 5250MHz PSD, 5150 - 5250MHz 26dB Bandwidth 99% Bandwidth Peak Excursion Envelope Antenna Conducted - Out of Band Spurious	Limit 22.2 °C 44 % Limit 15.407(a) (1), (2) 15.407 RSS 210 15.407(a) (6) 15.407(b)	Pass / Fail Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 14.3 dBm 3.64dBm/MHz > 20 MHz 17 MHz 12.63 dB All emissions below the	

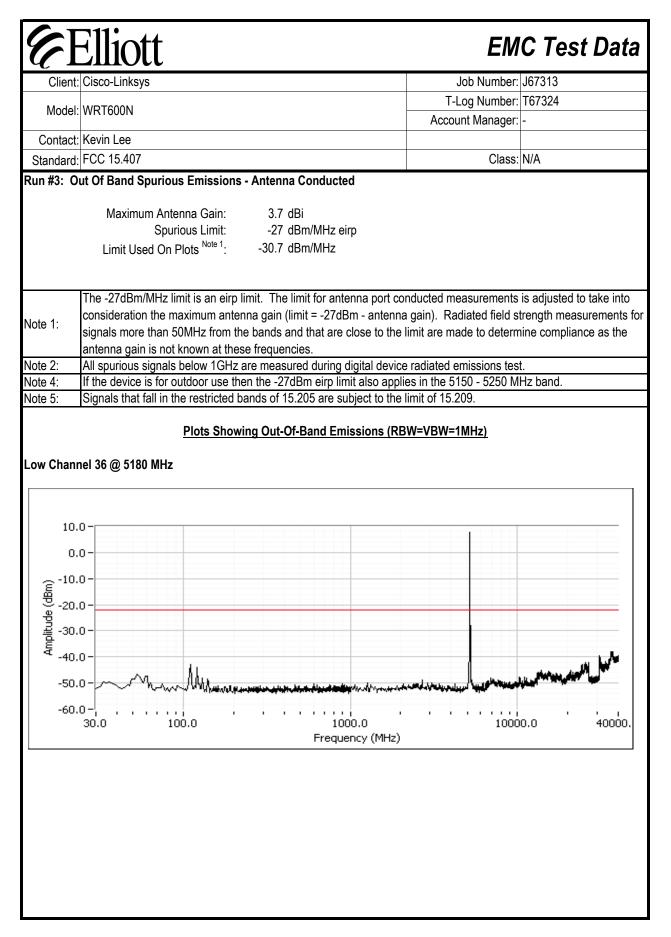
E	Ellic	ott						EM	C Test	Data
	Cisco-Link						J	ob Number:	J67313	
							T-L	og Number:	T67324	
Model:	WRT600N	1					Accou	nt Manager:	-	
Contact:	Kevin Lee									
Standard:	FCC 15.4	07						Class:	N/A	
Run #1: Ba	ndwidth, (Output P	ower and	Power spec	tral Density	1				
	Antenr	na Gain:	3.7	dBi						
Regulatory				1			1			
Frequency	Software	Ban	dwidth	Output Po	wer ¹ dBm	Power	F	PSD ² dBm/M	Hz	Result
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)			RSS Limit ³	
5180	0x1010	19.2	16.8	13.8	16.0	0.024	3.64	4.0	4.6	Pass
5200	0x0f0f	19.9	17.0	14.3	16.0	0.027	3.64	4.0	5.0	Pass
5240	0x1414	22.3	17.0	14.1	16.0	0.026	3.43	4.0	4.8	Pass
Note 3: Note 4:	measured	power d	ivided by th	ne measured	99% bandw	vidth) by more EN - RB > 1%	e than 3dB.	-	ue (calculated B	

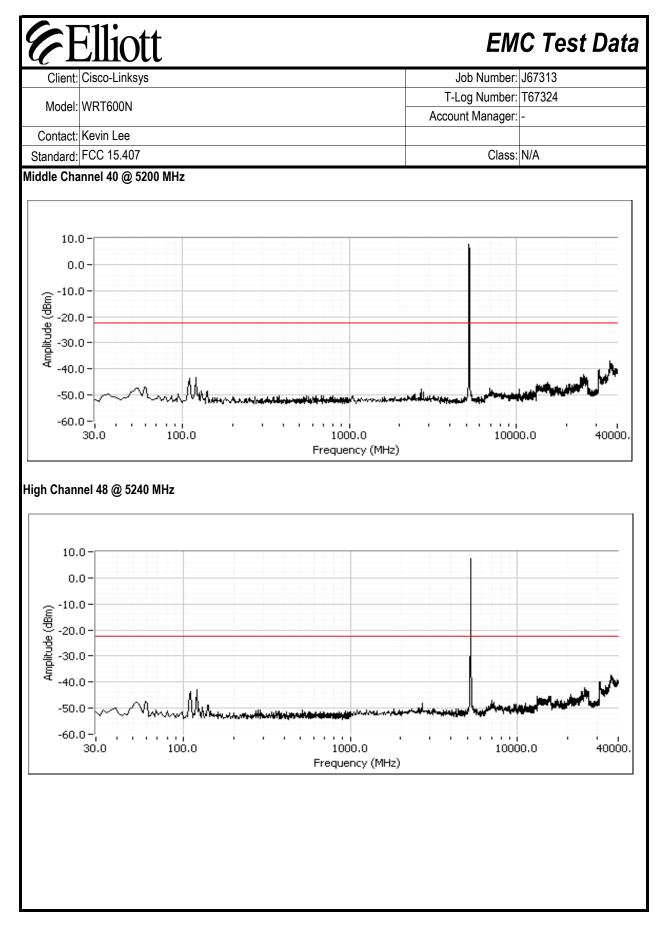












EMC Test Data

<u> </u>	2111077		
Client:	Cisco-Linksys	Job Number:	J67313
Model	WRT600N	T-Log Number:	T67324
wouer.	WRIGOON	Account Manager:	-
Contact:	Kevin Lee		
Standard:	FCC 15.407	Class:	N/A

FCC Part 15 Subpart E Tests (5150-5250 MHz, SISO, 40 MHz)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 3/22/2007 9:01 Test Engineer: Mark Hill/Rafael Test Location: Fremont Chamber #3 Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

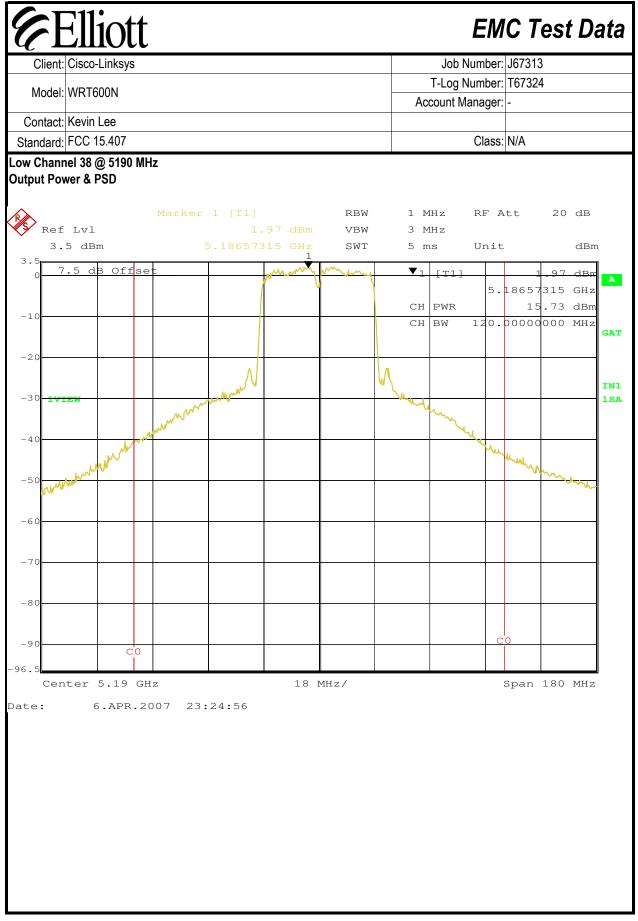
General Test Configuration

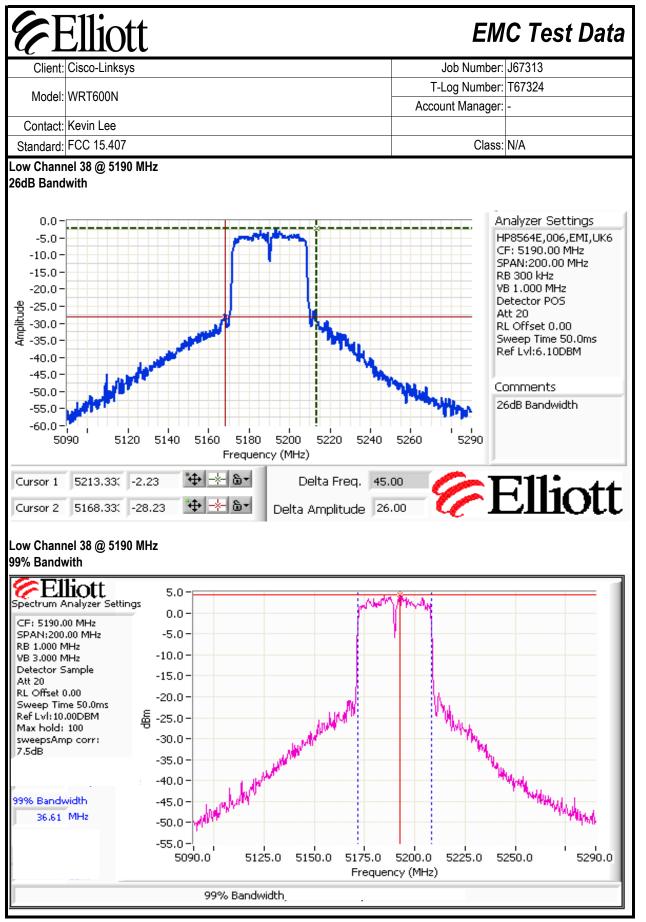
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

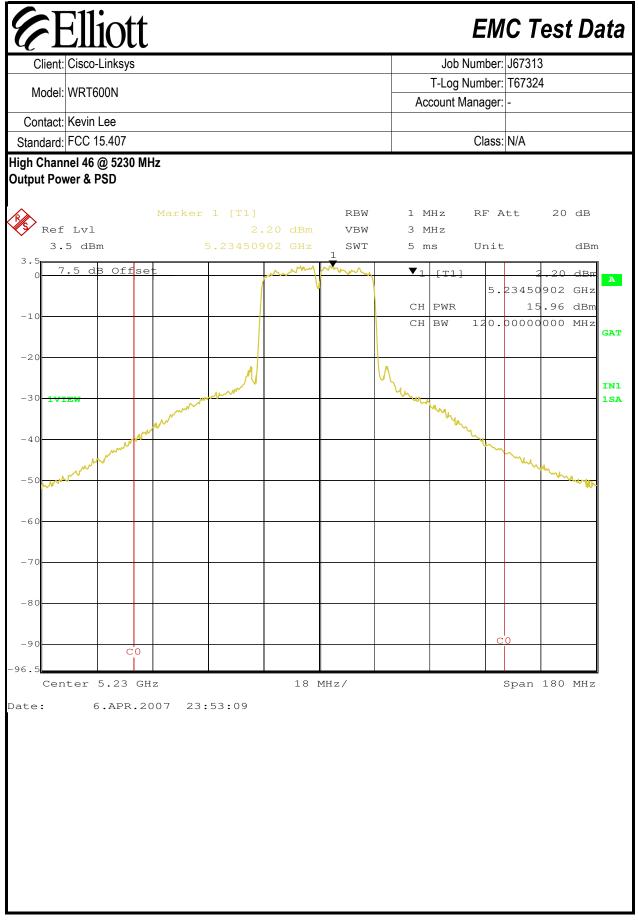
Ambient Conditions:	Temperature:	21.9 °C
	Rel. Humidity:	44 %

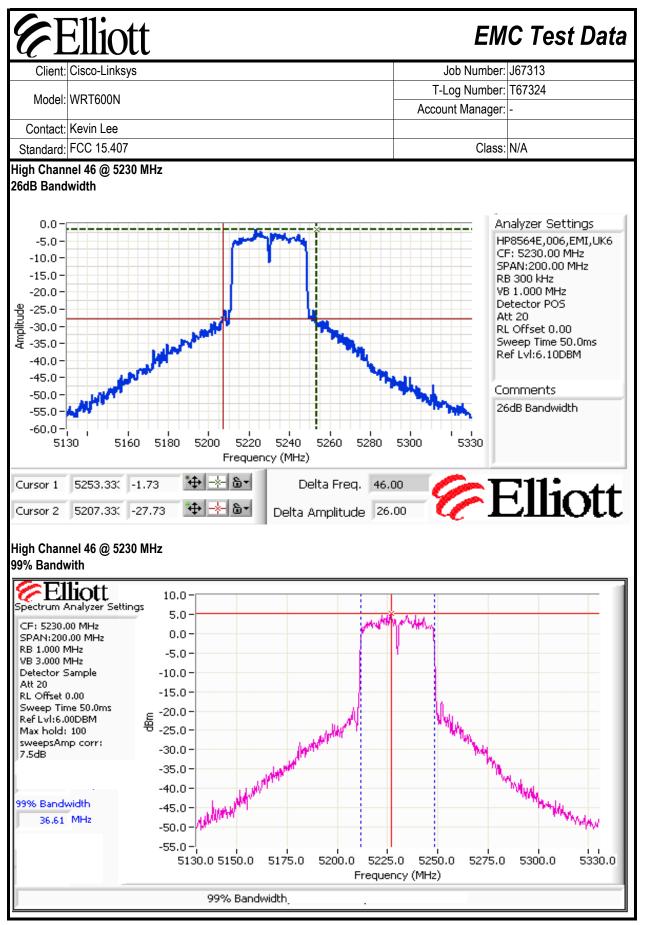
Summary of Results

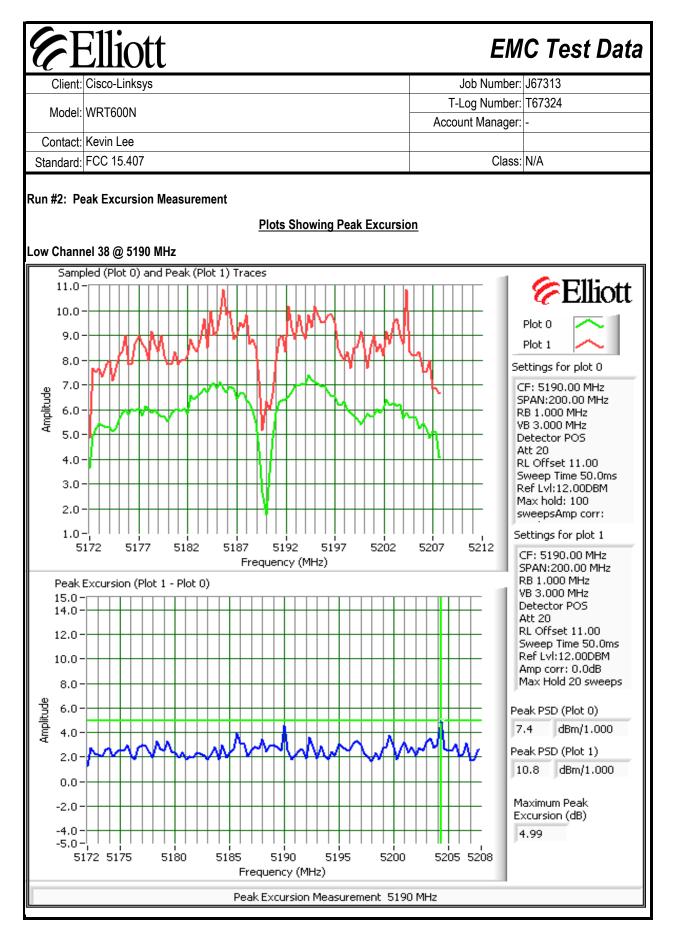
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	16dBm
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	2.2 dBm/MHz
1	26dB Bandwidth	15.407	Pass	> 20 MHz
1	99% Bandwidth	RSS 210	Pass	36.6 MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	5.54 dB
3	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	All emissions below the -27dBm/MHz limit

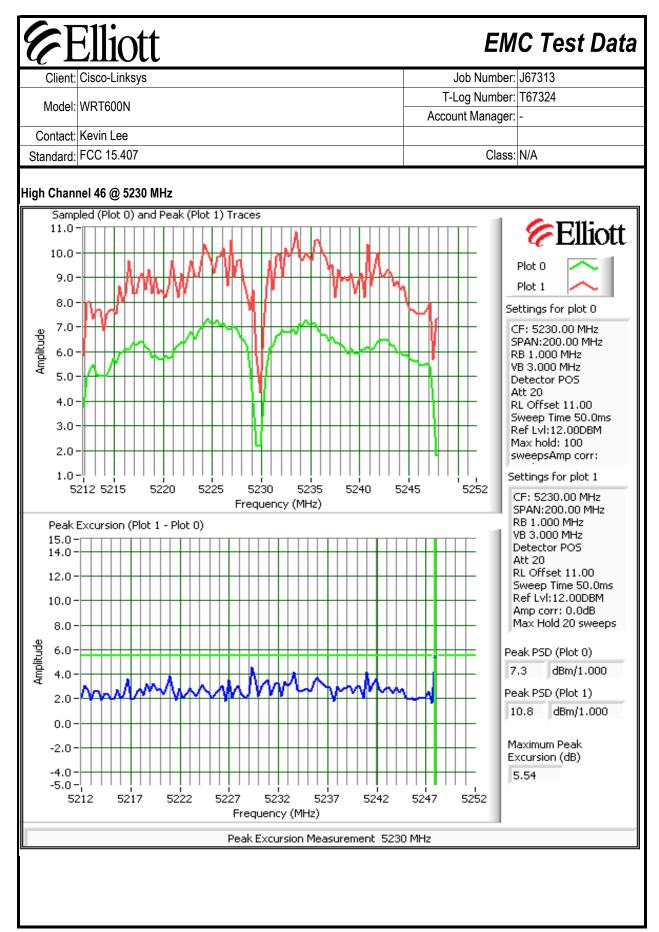

Modifications Made During Testing:

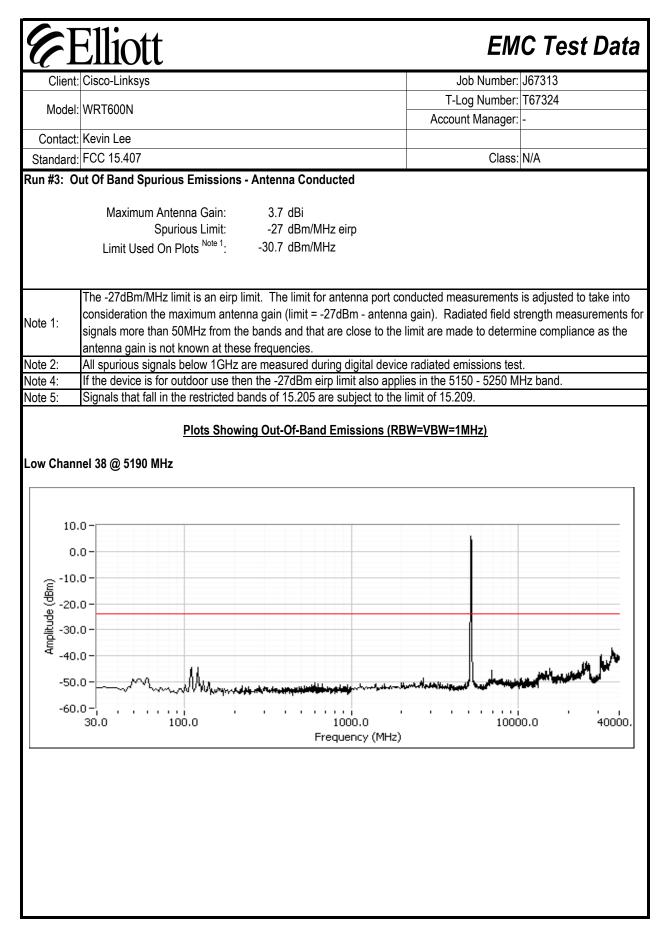

No modifications were made to the EUT during testing

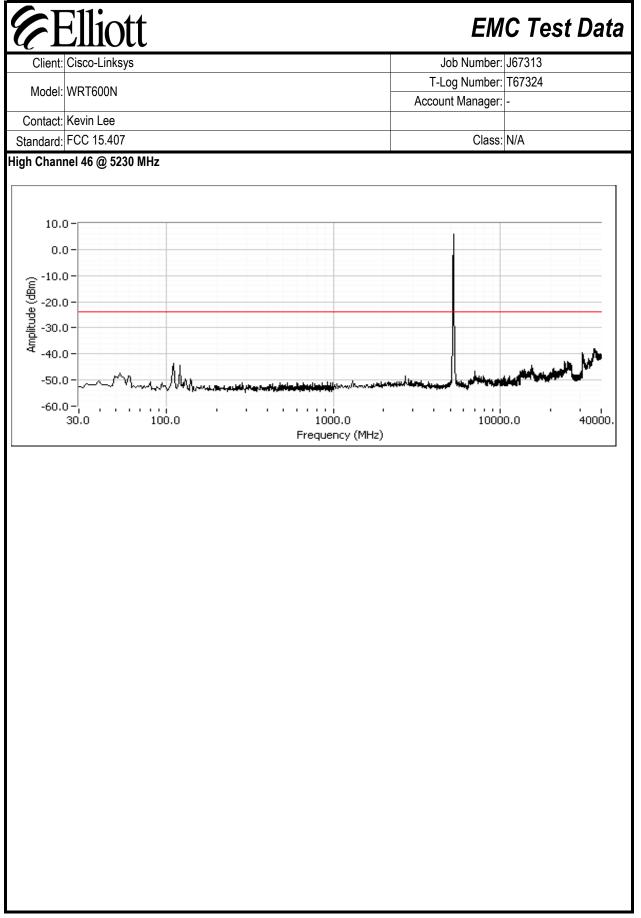

Deviations From The Standard

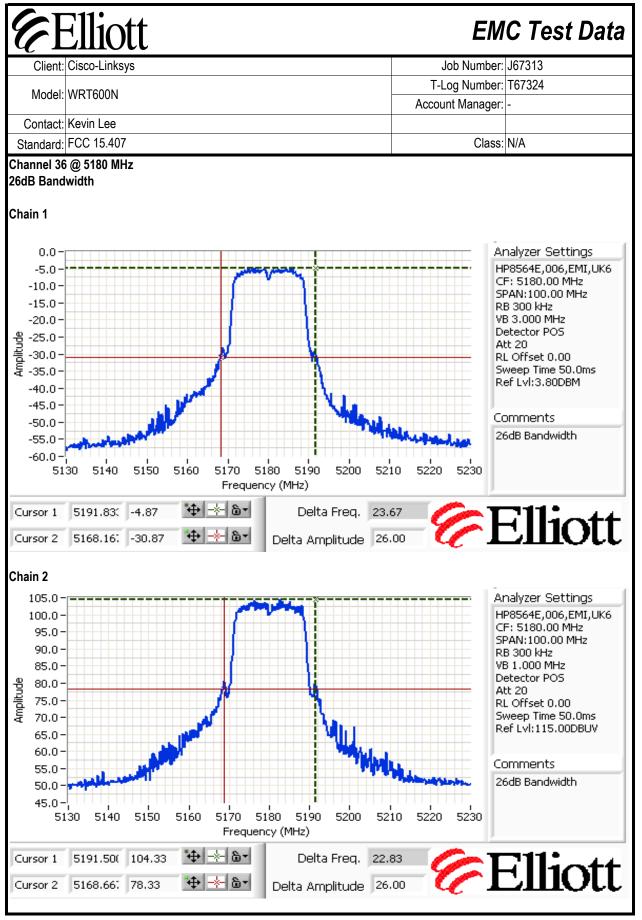

No deviations were made from the requirements of the standard.

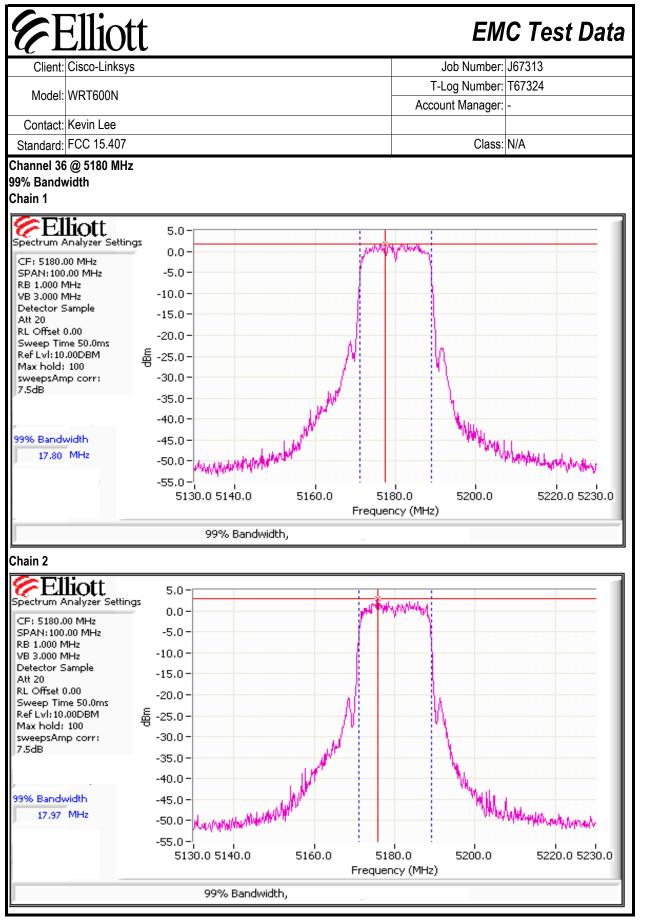

	Ellic	ott						EM	C Test	Data
-	Cisco-Lini						J	ob Number:	J67313	
		•					T-Lo	og Number:	T67324	
Model	WRT600N	N					Accour	nt Manager:	-	
	Kevin Lee									
Standard	FCC 15.4	07						Class:	N/A	
Regulatory	ing uprigh Anten <i>r Final Pov</i> Software	na Gain: ver Meas	3.7 urements: Iwidth	-	wer ¹ dBm	Power	F	2SD ² dBm/M	IH7	
(MHz)	Setting	26dB	99% ⁴	Measured		(Watts)			RSS Limit ³	Result
5190	0x0a0a	200B 45.0	<u>99%</u> 36.6	15.7	17.0	0.037	1.97	4.0	3.1	Pass
5230	0x0c0c	46.0	36.6	16.0	17.0	0.040	2.20	4.0	3.4	Pass
Note 3:	For RSS2	10 the me	asured va	lue of the PS	SD (see note	output power. e 3) must not vidth) by more		average val	ue (calculated	from the

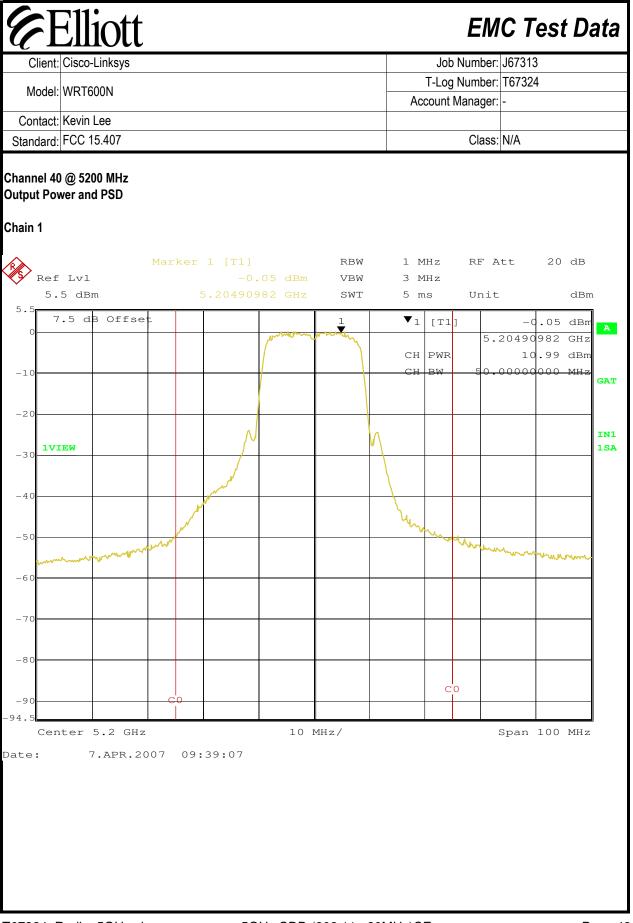


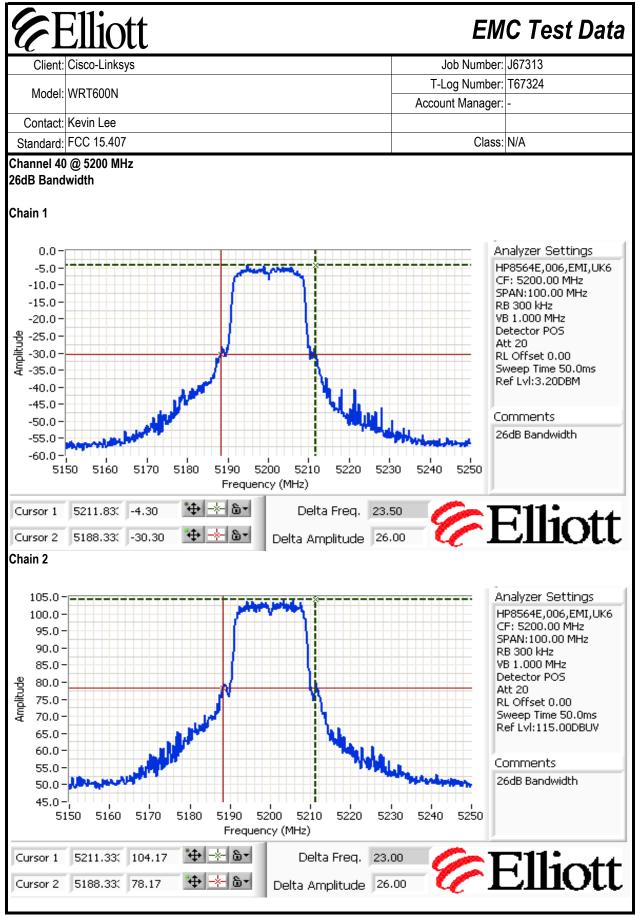


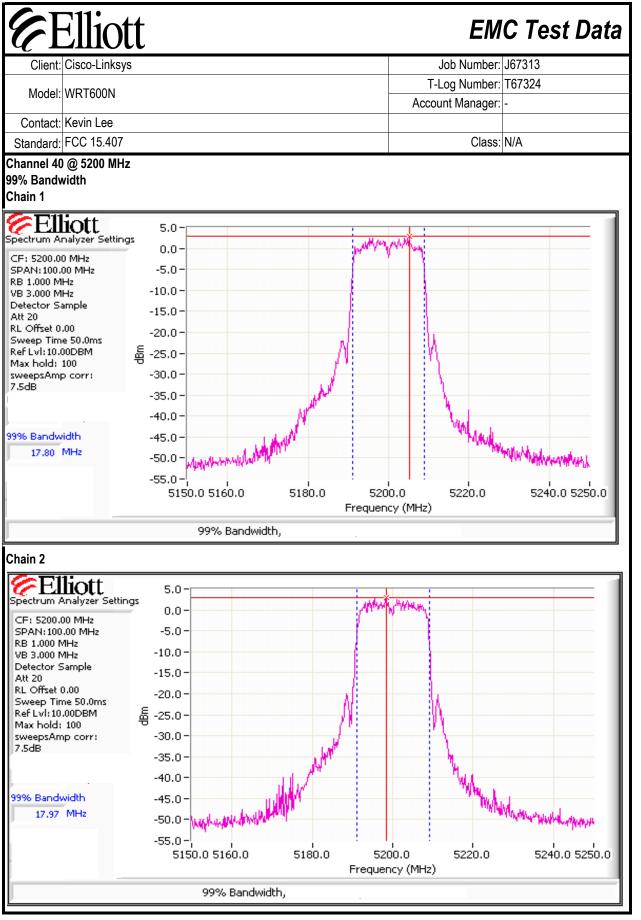


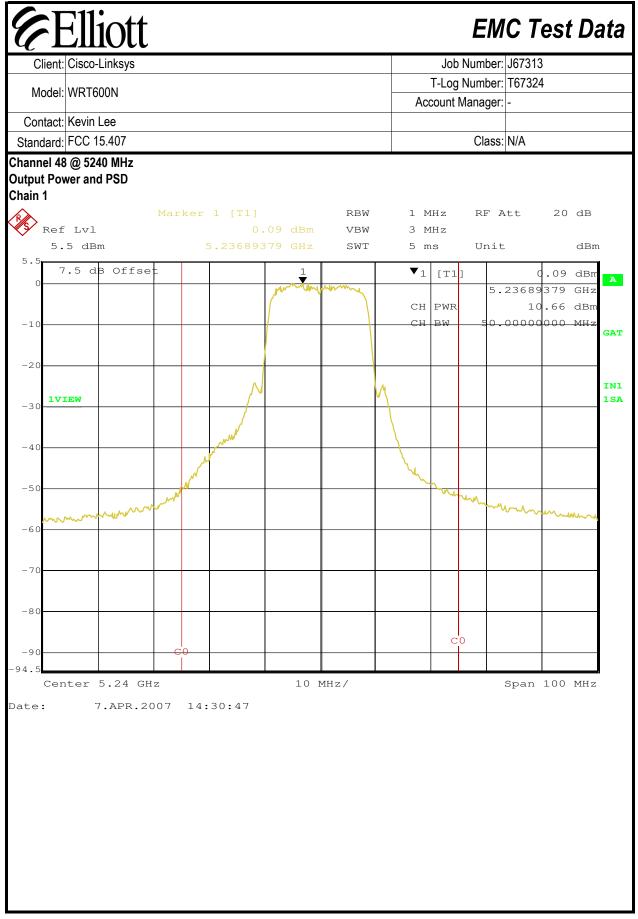


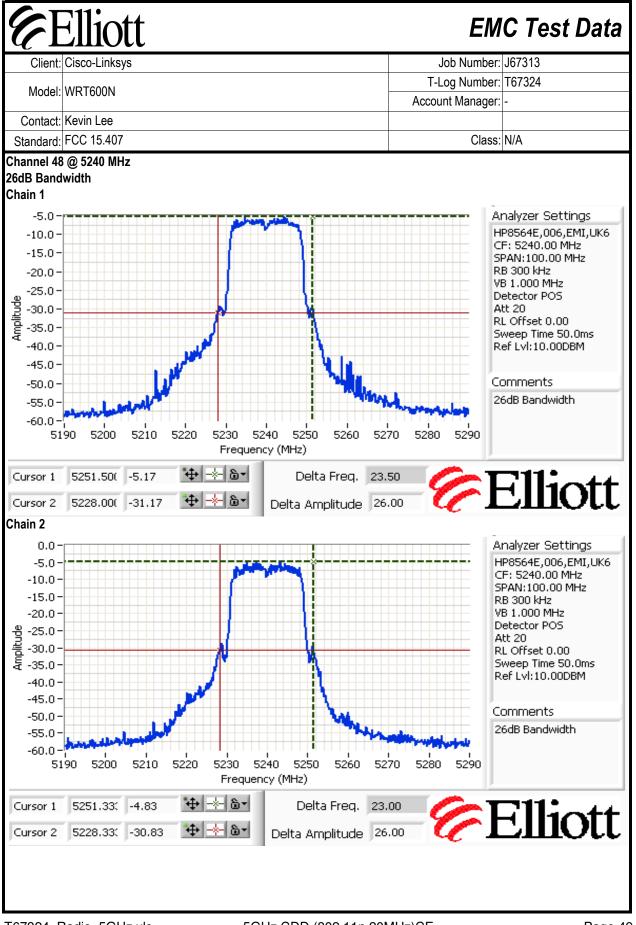

Elliott EMC Test Data Client: Cisco-Linksys Job Number: J67313 T-Log Number: T67324 Model: WRT600N Account Manager: Contact: Kevin Lee Standard: FCC 15.407 Class: N/A FCC Part 15 Subpart E Tests (5150-5250 MHz, 802.11n, 20 MHz) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 3/22/2007 Config. Used: 1 Test Engineer: Mark Hill Config Change: None Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain. All measurements have been corrected to allow for the external attenuators used. Ambient Conditions: Temperature: 21.8 °C Rel. Humidity: 47 % Summary of Results Run # Test Performed Pass / Fail Result / Margin Limit 15.407(a) (1), (2) 1 Power, 5150 - 5250MHz 14.1 dBm Pass 15.407(a) (1), (2) PSD, 5150 - 5250MHz 3.15dBm/MHz 1 Pass 1 26dB Bandwidth 15.407 Pass > 20 MHz RSS 210 1 99% Bandwidth 18 MHz Pass 2 12.47 dB Peak Excursion Envelope 15.407(a) (6) Pass Antenna Conducted - Out of All emissions below the 3 15.407(b) Pass Band Spurious -27dBm/MHz limit Modifications Made During Testing: No modifications were made to the EUT during testing **Deviations From The Standard** No deviations were made from the requirements of the standard.

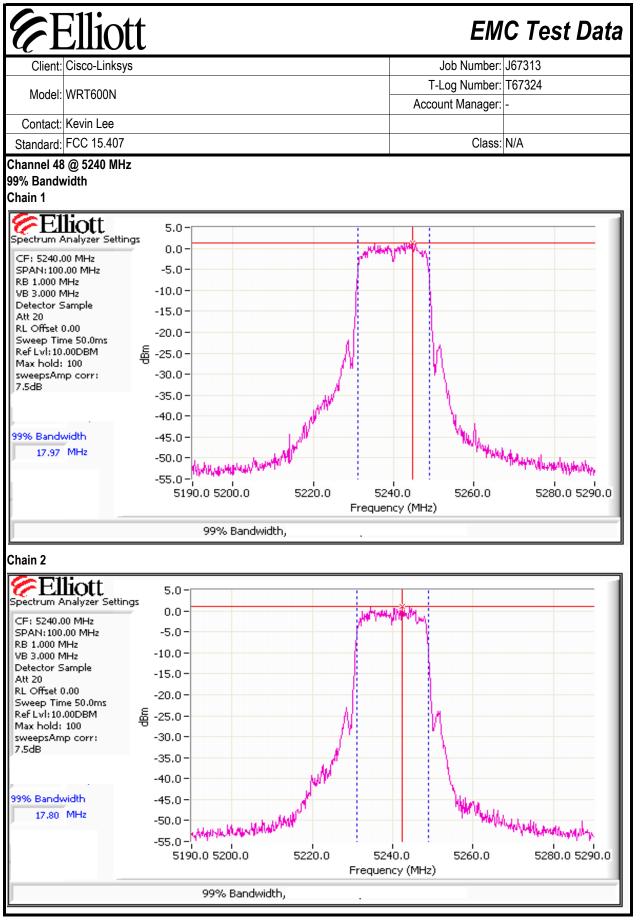

Setting 5 0x1a1a 5 0x1a1a 5	nksys IN 407 ower In chain is ower Meas Icy (MHz) 180 200 240 Bar	urements:		Total		T-Lo Accoun	b Number: g Number: t Manager: Class:	T67324 -	
Contact: Kevin Le Standard: FCC 15. Run #1a: Output P Transmitted signal of Power Setting ⁴ 0x1a1a 55 0x2424 55 Frequency (MHz) Setting 5180 0x1a1a 5200 0x1a1a	e 407 ower n chain is ower Meas cy (MHz) 80 200 240 Bar	Surements: Output Chain 1 10.8 11.0	Power (dBr Chain 2 11.0	Total		Accoun	t Manager:	-	
Contact: Kevin Le Standard: FCC 15. Run #1a: Output P Transmitted signal of Power Setting ⁴ 0x1a1a 55 0x2424 55 Frequency (MHz) Setting 5180 0x1a1a 5200 0x1a1a	e 407 ower n chain is ower Meas cy (MHz) 80 200 240 Bar	Surements: Output Chain 1 10.8 11.0	Power (dBr Chain 2 11.0	Total					
Standard:FCC 15.Run #1a:Output PTransmitted signal ofPowerSetting40x1a1a0x1a1a0x242450FrequencySoftward(MHz)51800x1a1a52000x1a1a	407 ower n chain is ower Meas icy (MHz) 180 200 240 Bar	Surements: Output Chain 1 10.8 11.0	Power (dBr Chain 2 11.0	Total		na Gain (dBi)	Class:	N/A	
Run #1a: Output P Transmitted signal of Regulatory Power Setting ⁴ 0x1a1a 0x2424 5 Frequency Kequency Software (MHz) Setting 5200 0x1a1a	ower Meas ower Meas ocy (MHz) 180 200 240 Bar	Surements: Output Chain 1 10.8 11.0	Power (dBr Chain 2 11.0	Total		a Gain (dBi)	Class:	N/A	
Transmitted signal of Regulatory Final Power Power Setting ⁴ 0x1a1a 0x1a1a 0x2424 50 0x2424 5180 0x1a1a 5200 0x1a1a	on chain is ower Meas Icy (MHz) 180 200 240 Bar	Surements: Output Chain 1 10.8 11.0	Power (dBr Chain 2 11.0	Total		na Gain (dBi)			
Power Setting ⁴ 0x1a1a 0x1a1a 0x2424 Frequency (MHz) 5180 0x1a1a S200 0x1a1a	ey (MHz) 180 200 240 Bar	Output Chain 1 10.8 11.0	Power (dBr Chain 2 11.0	Total		na Gain (dBi)			
Setting ⁴ Frequer 0x1a1a 5 0x1a1a 5 0x2424 5 Frequency Softward (MHz) Setting 5180 0x1a1a 5200 0x1a1a	200 240 Bar	Chain 1 10.8 11.0	Chain 2 11.0	Total			Note 3	EIRP	Note 2
0x1a1a 5 0x1a1a 55 0x2424 55 Frequency Softward (MHz) Setting 5180 0x1a1a 5200 0x1a1a	200 240 e Bar	10.8 11.0	11.0		(Chain 1	Chain 2	Total	dBm	W
0x1a1a 52 0x2424 52 Frequency Software (MHz) Setting 5180 0x1a1a 5200 0x1a1a	200 240 e Bar	11.0		1.40	Chain 1 3.7	3.7	6.7	20.6	0.115
0x2424 5: Frequency (MHz) Software Setting 5180 0x1a1a 5200 0x1a1a	240 e Bar			13.9 14.1	3.7	3.7	6.7	20.8	0.115
Frequency Softwar (MHz) Setting 5180 0x1a1a 5200 0x1a1a			9.8	13.3	3.7	3.7	6.7	20.0	0.099
(MHz) Setting 5180 0x1a1a 5200 0x1a1a			· · · · · ·			•			
(MHz) Setting 5180 0x1a1a 5200 0x1a1a		dwidth	Output Po	wer ¹ dBm	Power	P	SD ² dBm/M	Hz	
5180 0x1a1a 5200 0x1a1a	26dB	99% ⁴	Measured	Limit	(Watts)			RSS Limit ³	Result
5200 0x1a1a		18.0	13.9	15.8	0.024	3.02	3.3	4.3	Pass
		18.0	14.1	15.8	0.026	3.15	3.3	4.6	Pass
		18.0	13.3	15.8	0.021	2.48	3.3	3.7	Pass
Note 2: EIRP - it power (i then the If the tra Note 3: antenna can be t Power s	transmit c e. beam-fi EIRP is cansmit chai If the traine eated inde etting - if a pr each ch	hains are c priming is as alculated from ans are cohe ansmit chain appendently. single num	sumed beca om the sum o rent then the s are incohe ber the sam	the EIRP is ause of cohe of the individ total system rent then the e power set	erency on the dual EIRPs fo m antenna ga e system ante ting was use	chains). If th r each chain. ain is the sum enna gain is r d for each cha	ne individua n of the num not applicat ain. If multi	nna gains plus I chains are in heric gains for ole as each tra ple numbers t chain 1, powe	each each Insmit chair he power

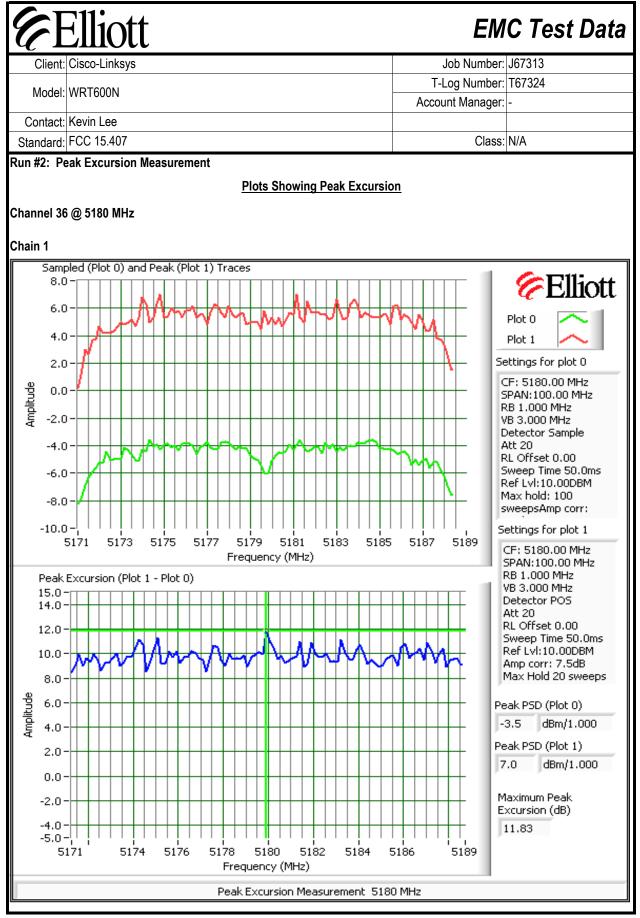

Model:	Cisco-Linksys							ber: J6731		
	WRT600N						⁻ -Log Num ount Mana	ber: T6732 ger: -	4	
	Kevin Lee							_		
	FCC 15.407						Cl	ass: N/A		
~	Lvl	Marke		.01 dBm	RBW VBW	1 MH 3 MH	Ηz	? Att		
5.5	5 dBm		5.183707	/41 GHz	SWT	5 ms		nit	dBr	71
-10	.5 dB Offse	t		man		▼1 CH 1 CH 1		5.18370 10	.01 dBn 741 GHz .95 dBn 000 MHz	z n
-20										GAI
-30	EW				Л					IN1 157
-40			- America							_
-50		- conder	<u>/</u>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man			
-60	- Marthan Mary Marka						· • • •	mennen		4
-70										
- 8 0										
-90							C0			
4.5										

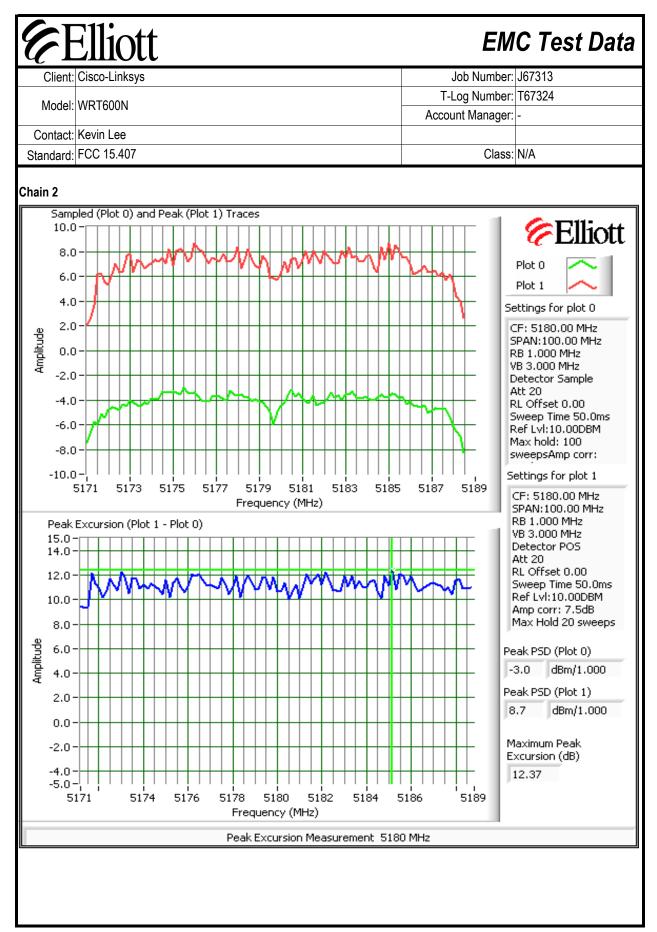


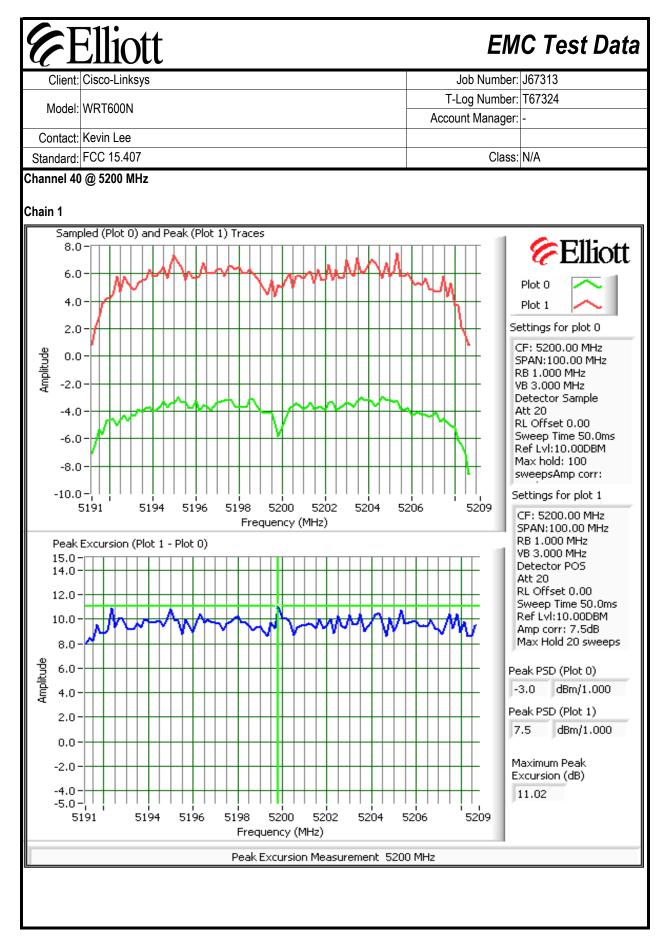


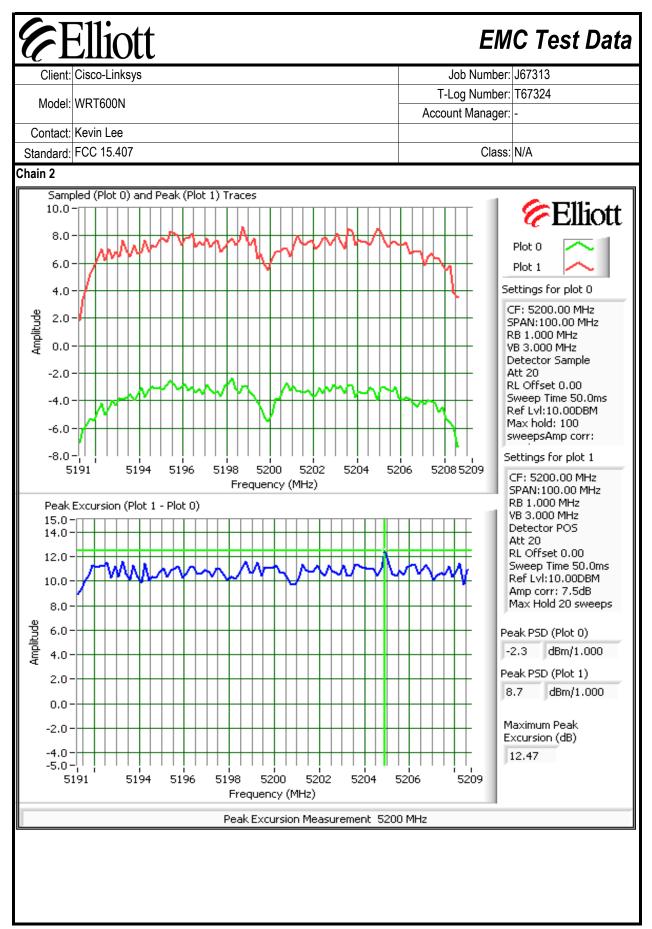

E C	Elliott							C Tes	st Da	ta
Client	: Cisco-Linksys						ob Number:			
	: WRT600N						og Number: nt Manager:			
	: Kevin Lee									
	: FCC 15.407						Class	N/A		
~	- Lvl 5 dBm	Marker		33 dBm 79 GHz	RBW VBW SWT	1 MHz 3 MHz 5 ms	RF A Unit		0 dB dBm	
5.5	7.5 dB Offse				5111					
0-10		-				▼1 [1 CH PW <u>CH BW</u>	8 5.	1968937	9 GHz 7 dBm 0 MHz	A
-20										
-30 -1 V	IEW		N		M					IN1 LSA
-40			www.							
-50		- And a start				ha	men .			
-60	ummmmm							weenen	men	
-70										
-80										
-90		C0					C0			
-94.5										
	nter 5.2 GHz	007 09:	57:04		MH z /			Span 10	5 1112	

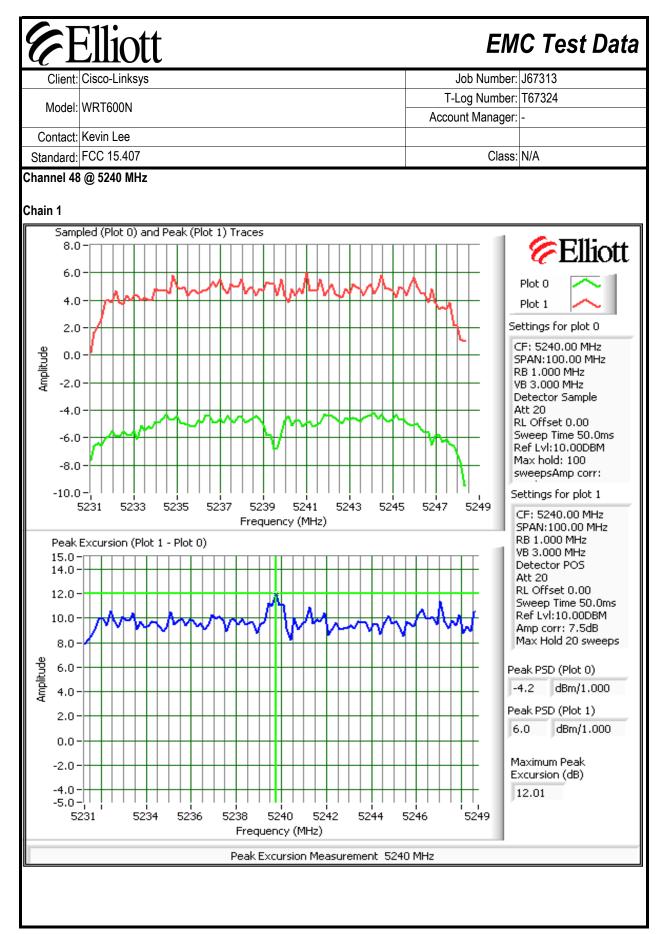


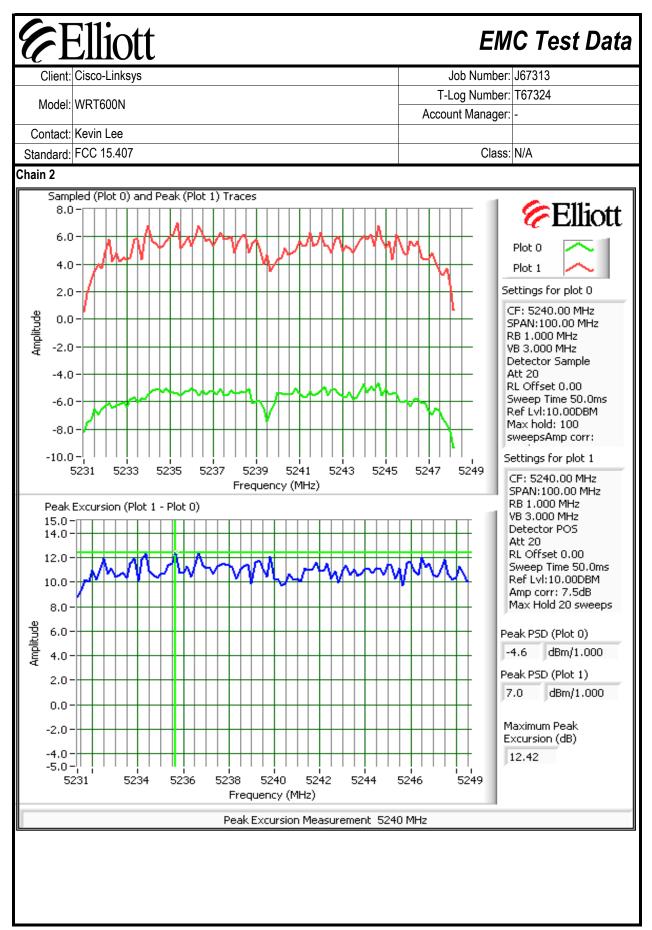


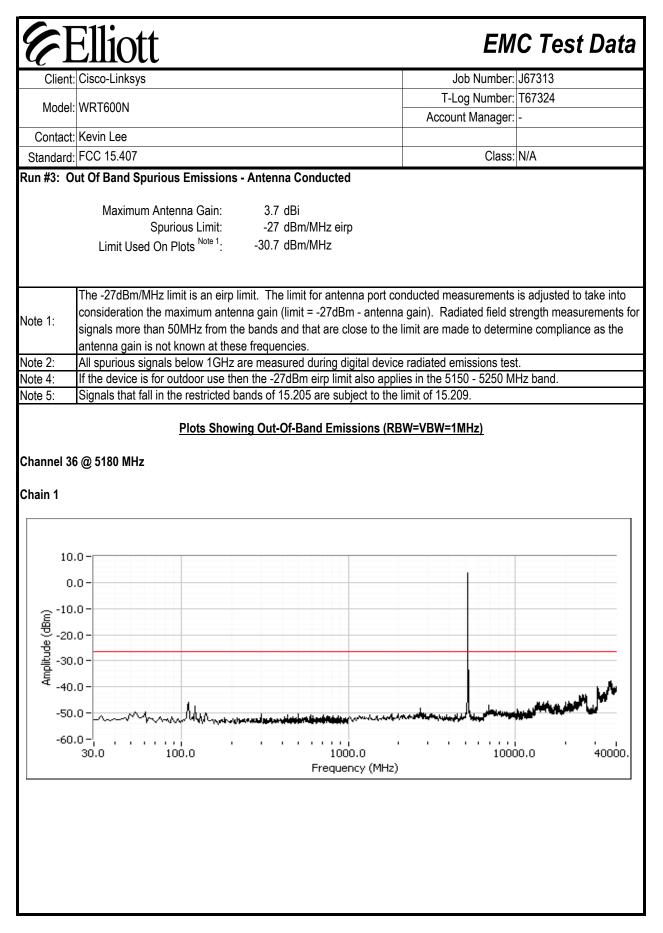

						Job	Number:	J67313	3	
Model: WRT600N							Number:		4	
Contact: Kevin Lee					Ac	count N	lanager:	-		
tandard: FCC 15.407							Class:	N/A		
ain 2										
Ref Lvl	Marker	1 [T1] -1.1	25 dBm	rbw Vbw	1 M 3 M		RF A	.tt	20 de	3
5.5 dBm		5.234288		SWT	5 m		Unit		dE	ßm
7.5 dB Off	set		1		V 1	[T1]		- 1	.25 dB	m
0			money	manny			5.	23428		z
10						PWR BW	50		.76 dB	
										G
20										
		n n								п
30 IVIEW		/ V		V	}					1:
40		AN A			+	\vdash				
	- L J									
50	a manual rat				<u>_</u>	han the	h.			
60							- Maria	ma	menen	~
70										
80										
						C0				
90		+ +								
.5 Center 5.24	GHz	1	10 N	1Hz/				Span	100 MH	7

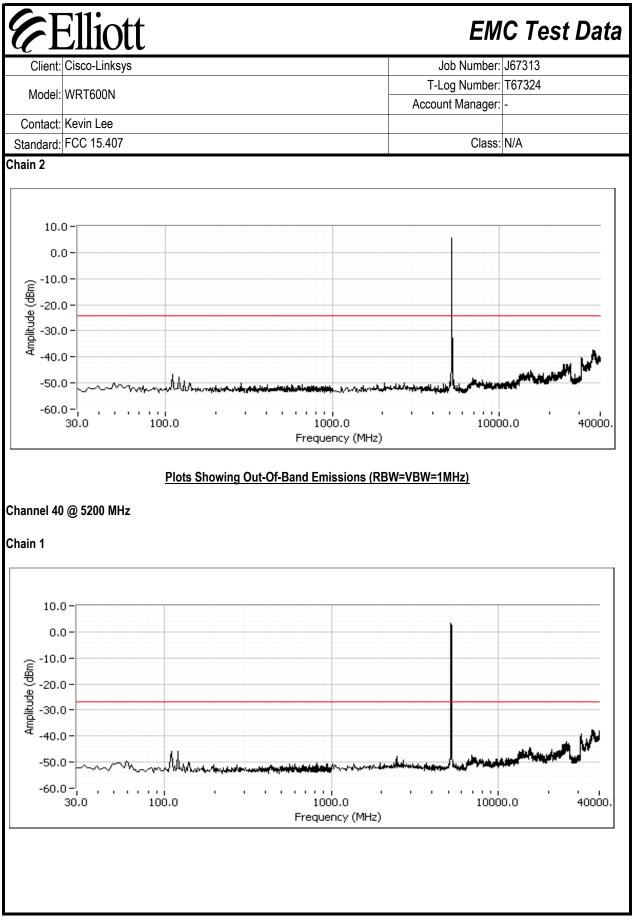


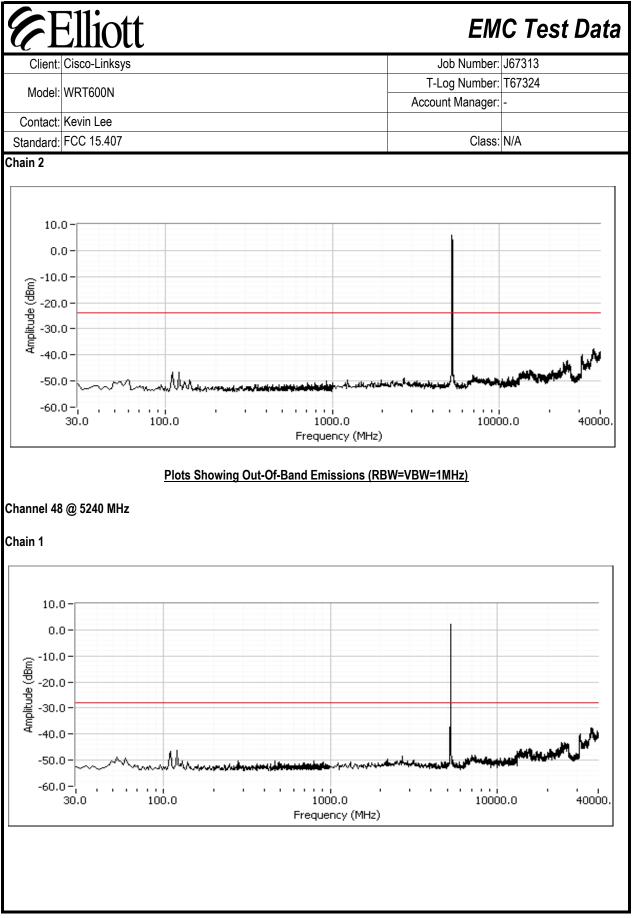


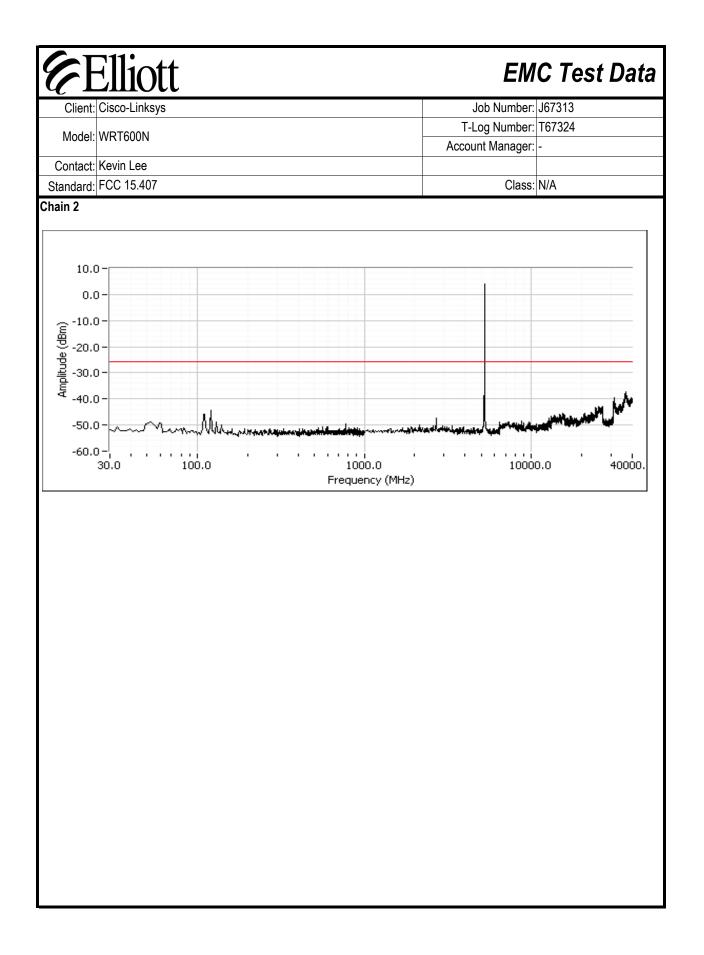

E	Elliott						EM	C Test Dat
_	Cisco-Linksys					J	lob Number:	J67313
Model.	WRT600N						og Number:	
	Kevin Lee					Accou	nt Manager:	-
	FCC 15.407						Class:	N/A
	Power spectral Der	nsity					010001	
		-		Note 1	-			
Power	Frequency (MHz)	PSD Main	(dBm/1MHz I)			1	
Setting		(dBm)	Aux (dBm)	Total	dBm/1MHz			
Ox1a1a	5180	0.0	0.0	3.0	3.3	Pass		
0x1a1a 0x2424	5200 5240	-0.1 0.1	0.3 -1.3	3.2 2.5	3.3 3.3	Pass Pass		
		÷''			1 2.0	1. 0.00	4	





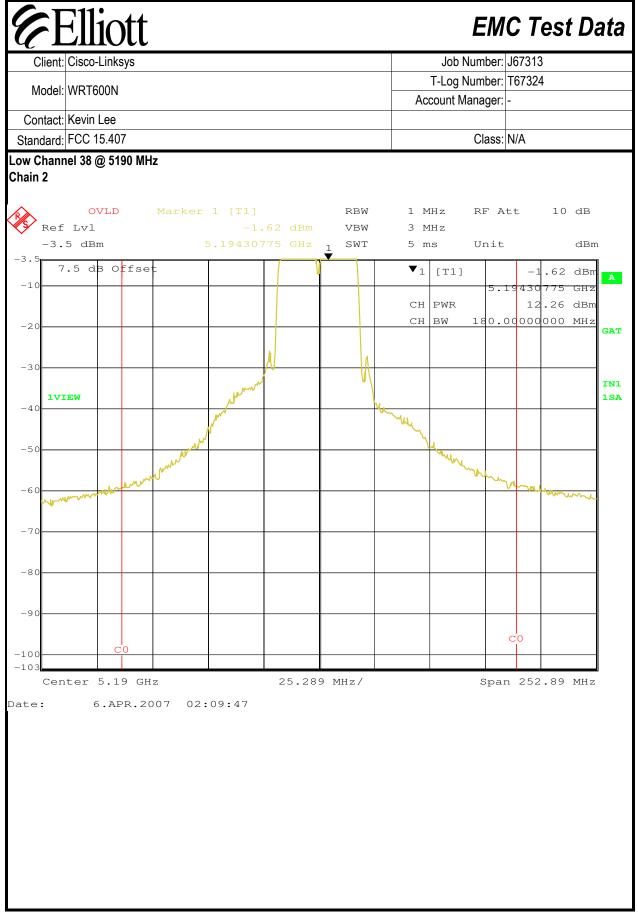


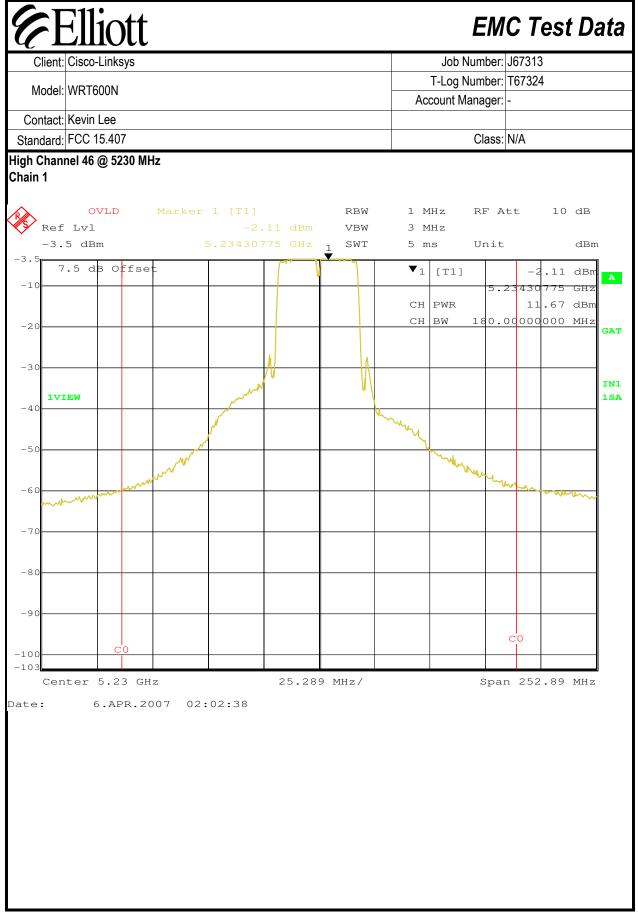


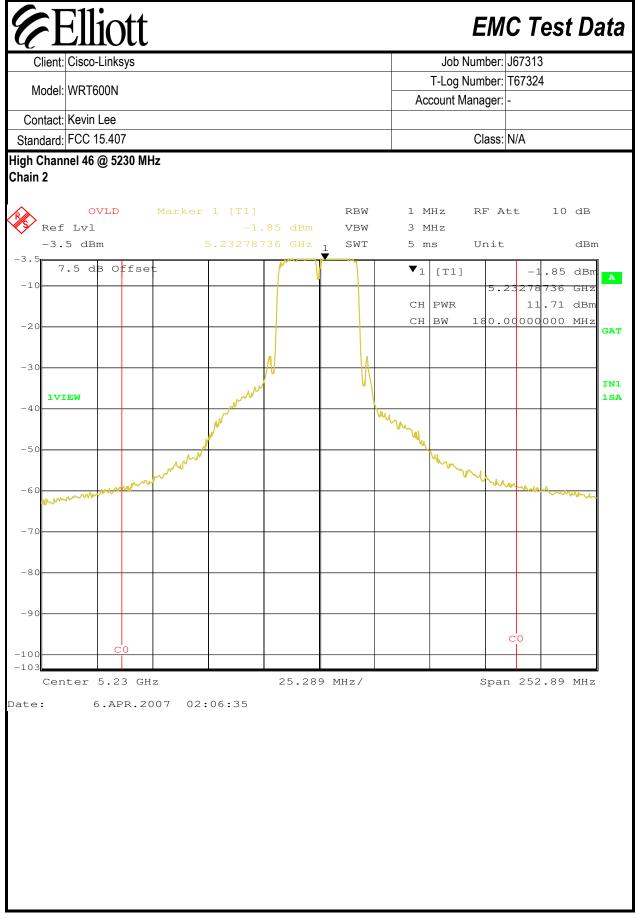


Elliott EMC Test Data Client: Cisco-Linksys Job Number: J67313 T-Log Number: T67324 Model: WRT600N Account Manager: Contact: Kevin Lee Standard: FCC 15.407 Class: N/A FCC Part 15 Subpart E Tests (5150-5250 MHz, 802.11n, 40 MHz) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 3/22/2007 Config. Used: 1 Test Engineer: Mark Hill/Rafael Config Change: None Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain. All measurements have been corrected to allow for the external attenuators used. Ambient Conditions: Temperature: 21.1 °C Rel. Humidity: 43 % Summary of Results Run # Test Performed Pass / Fail Result / Margin Limit 15.407(a) (1), (2) 1 Power, 5150 - 5250MHz 12dBm Pass 15.407(a) (1), (2) PSD, 5150 - 5250MHz 1.28dBm/MHz 1 Pass 1 26dB Bandwidth 15.407 Pass > 20 MHz RSS 210 1 99% Bandwidth 36.9 MHz Pass 2 5.54 dB Peak Excursion Envelope 15.407(a) (6) Pass Antenna Conducted - Out of All emissions below the 3 15.407(b) Pass Band Spurious -27dBm/MHz limit

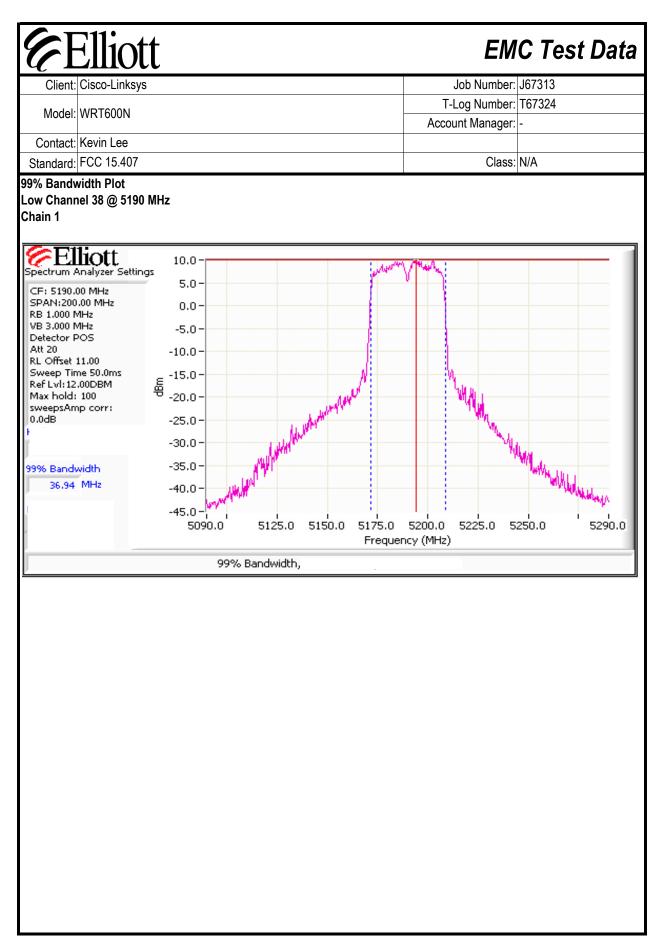

Modifications Made During Testing:

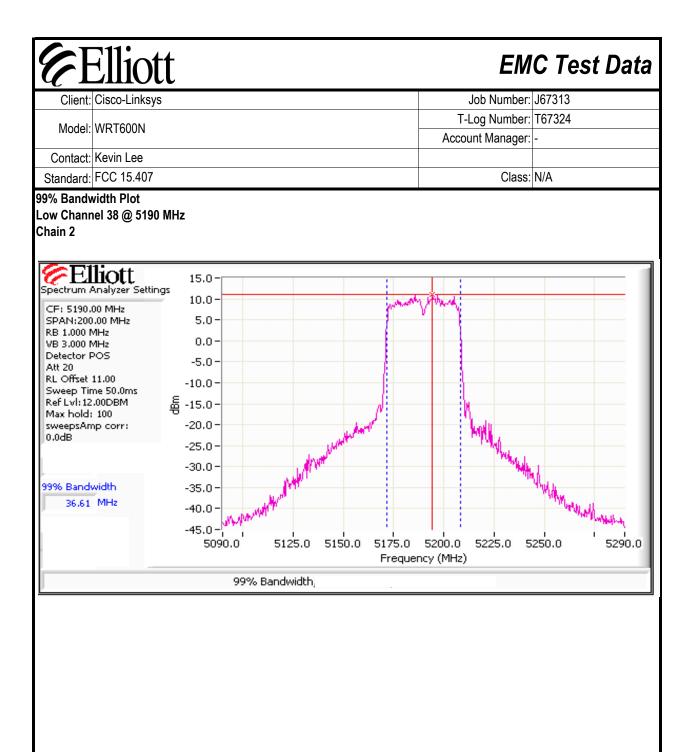

No modifications were made to the EUT during testing

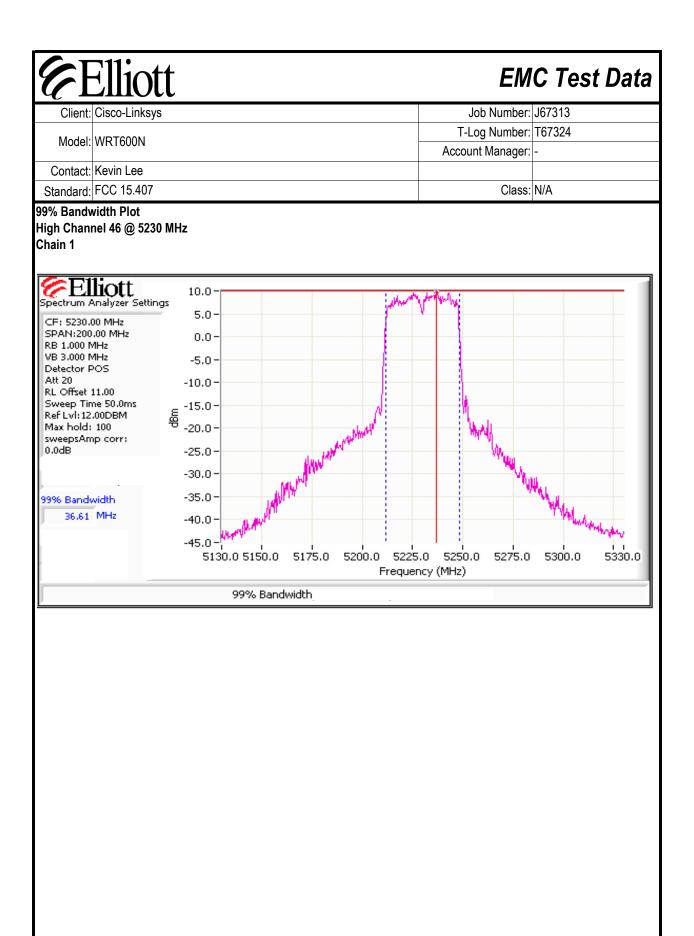

Deviations From The Standard

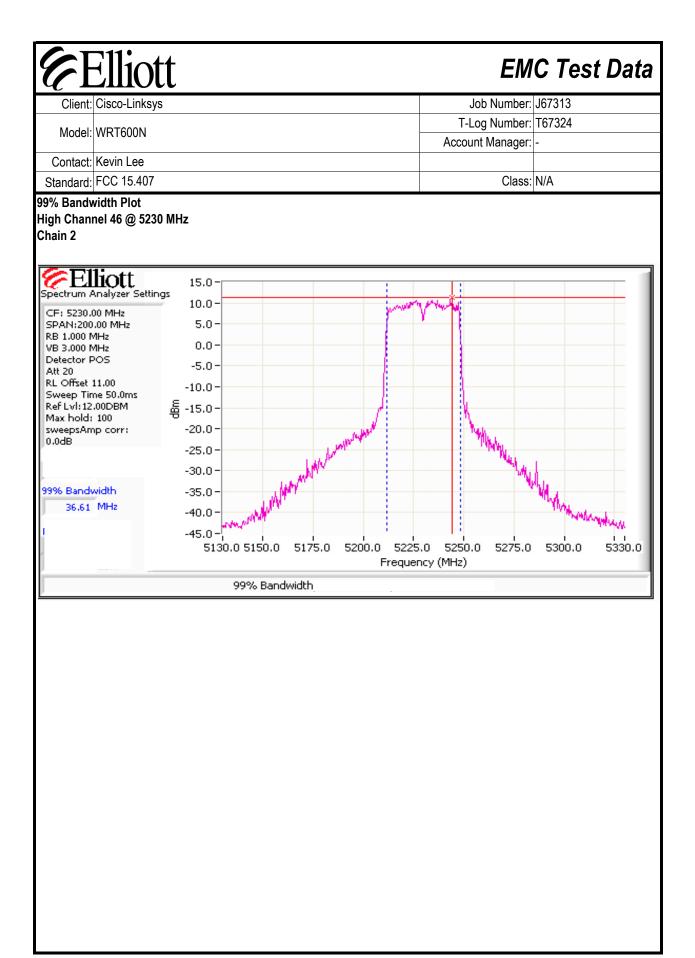

No deviations were made from the requirements of the standard.

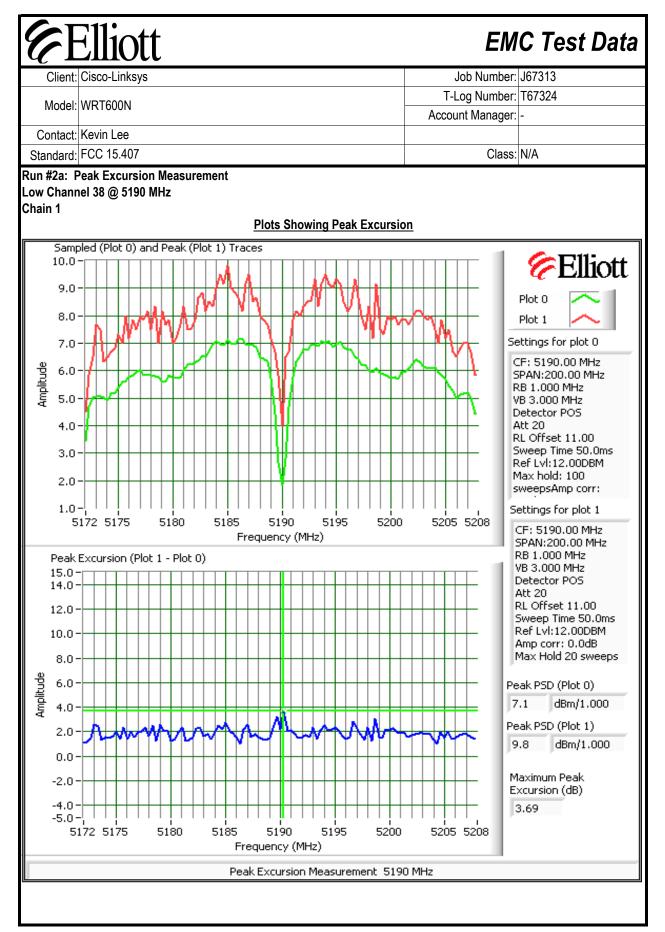
Client: Clicoclinksys Job Number: J67313 Model: WRT600N T-Log Number: T67324 Model: WRT600N Account Manager: - Contact: Kevin Lee Standard: FCC 15.407 Cliass: N/A Rum #1: Output Power Transmitted signal on chain is coherent ? Yes Regulatory Final Power Measurements: Power Frequency (MHz) Output Power (dBm) Antenna Gain (dBi) Note 3 EIRP Note 3 Setting ⁴ Frequency (MHz) Output Power (dBm) Yes Antenna Gain (dBi) Note 3 EIRP Id Bm Note 3 2.1 Id Bm Note 3 2.1 Id Bm Note 3 3.3 2.5 <t< th=""></t<>
Model: WR 1600N Account Manager: Contact: Kevin Lee Image: Contact: Class: N/A Standard: FCC 15.407 Class: N/A Run #1: Output Power Class: N/A Transmitted signal on chain is coherent ? Yes Regulatory Final Power Measurements: Could the chain 1 Chain 1 Chain 2 Total Chain 1 Chain 2 Total dBm Contact: Chain 1 Chain 2 Total Chain 1 Chain 1 Chain 1 Chain 2 Total dBm 0x0d0d 5190 12.0 12.3 15.2 3.7 3.7 6.7 21.4 C (MHz) Setting 26dB 99%4 Measured Limit (Watts) Measured FCC Limit RSS Limit ³ 5180 0.3
Model: WR 1600N Account Manager: Contact: Kevin Lee Image: Contact: Class: N/A Standard: FCC 15.407 Class: N/A Run #1: Output Power Class: N/A Transmitted signal on chain is coherent ? Yes Regulatory Final Power Measurements: Could the chain 1 Chain 1 Chain 2 Total Chain 1 Chain 2 Total dBm Contact: Chain 1 Chain 2 Total Chain 1 Chain 1 Chain 1 Chain 2 Total dBm 0x0d0d 5190 12.0 12.3 15.2 3.7 3.7 6.7 21.4 C (MHz) Setting 26dB 99%4 Measured Limit (Watts) Measured FCC Limit RSS Limit ³ 5180 0.3
Class: N/A Standard: FCC 15.407 Class: N/A Run #1: Output Power Transmitted signal on chain is coherent ? Yes Regulatory Final Power Measurements: Power Frequency (MHz) Output Power (dBm) Note 1 Antenna Gain (dBi) Note 3 EIRP Note 3 0x0d0d 5190 12.0 12.3 15.2 3.7 3.7 6.7 21.9 0 0x1111 5230 11.7 11.7 14.7 3.7 6.7 21.4 0 Frequency Software Bandwidth Output Power ¹ dBm Power PSD ² dBm/MHz R (MHz) Setting 26dB 99% ⁴ Measured Limit (Watts) Measured FCC Limit RSS Limit ³ F 5180 0x1a1a 41.7 36.6 14.7 16.3 0.030 1.03 3.3 2.1 F RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over
Run #1: Output Power Transmitted signal on chain is coherent ? Yes Regulatory Final Power Measurements: Power Frequency (MHz) Output Power (dBm) Antenna Gain (dBi) Note 3 EIRP Note 7 Setting ⁴ Frequency (MHz) Output Power (dBm) Total Antenna Gain (dBi) Note 3 EIRP Note 3 0x0d0d 5190 12.0 12.3 15.2 3.7 3.7 6.7 21.9 0 0x1111 5230 11.7 11.7 14.7 3.7 6.7 21.4 0 Frequency Software Bandwidth Output Power ¹ dBm Power PSD ² dBm/MHz R (MHz) Setting 26dB 99% ⁴ Measured Limit (Watts) Measured FCC Limit RSS Limit ³ F 5180 0x1a1a 44.3 36.9 15.2 16.3 0.033 1.28 3.3 2.5 F 5230 0x1a1a 41.7 36.6 14.7 16.3 0.030 1.03 3.3 2.1 F
Transmitted signal on chain is coherent ? Yes Regulatory Final Power Measurements: Power Setting ⁴ Frequency (MHz) Output Power (dBm) Note 1 Antenna Gain (dBi) Note 3 EIRP Note 3 0x0d0d 5190 12.0 12.3 15.2 3.7 3.7 6.7 21.9 0 0x1111 5230 11.7 11.7 14.7 3.7 6.7 21.4 0 Frequency Software Bandwidth Output Power ¹ dBm Power (Watts) PSD ² dBm/MHz R (MHz) Setting 26dB 99% ⁴ Measured Limit (Watts) Measured FCC Limit RSS Limit ³ R 5180 0x1a1a 44.3 36.9 15.2 16.3 0.033 1.28 3.3 2.5 F 5230 0x1a1a 41.7 36.6 14.7 16.3 0.030 1.03 3.3 2.1 F RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MH
Regulatory Final Power Measurements: Power Setting ⁴ Frequency (MHz) Output Power (dBm) Note 1 Antenna Gain (dBi) Note 3 EIRP Note 1 0x0d0d 5190 12.0 12.3 15.2 3.7 3.7 6.7 21.9 0 0x1111 5230 11.7 11.7 14.7 3.7 6.7 21.4 0 Frequency Software Bandwidth Output Power ¹ dBm Power (Watts) PSD ² dBm/MHz R (MHz) Setting 26dB 99% ⁴ Measured Limit (Watts) Measured FCC Limit RSS Limit ³ 5180 0x1a1a 44.3 36.9 15.2 16.3 0.033 1.28 3.3 2.5 F 5230 0x1a1a 41.7 36.6 14.7 16.3 0.030 1.03 3.3 2.1 F Note 1: analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MHz EIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the power (i.e. beam-forming is assumed because of coherency on the chains). I
Power Setting4Frequency (MHz)Output Power (dBm) Chain 1Note 1Antenna Gain (dBi) Chain 1Note 3EIRP Mag0x0d0d519012.012.315.23.73.76.721.900x1111523011.711.714.73.73.76.721.40Frequency Software MetaBandwidthOutput Power1 dBm MeasuredPower
Setting4Frequency (MHz)Chain 1Chain 2TotalChain 1Chain 2TotaldBm0x0d0d519012.012.315.23.73.76.721.900x1111523011.711.714.73.73.76.721.40Frequency Software Bandwidth Output Power ¹ dBm Measured Limit (Watts) Measured FCC Limit RSS Limit ³ MHz)Setting 26dB 99%4Measured Limit (Watts)Measured FCC Limit RSS Limit ³ R51800x1a1a44.336.915.216.30.0331.283.32.5F52300x1a1a41.736.614.716.30.0301.033.32.1FRBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MHzEIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the power (i.e. beam-forming is assumed because of coherency on the chains). If the individual chains are incoh then the EIRP is calculated from the sum of the individual EIRPs for each chain.If the transmit chains are coherent then the total system antenna gain is the sum of the numeric gains for each chain.
0x000d519012.012.315.23.73.76.721.900x1111523011.711.714.73.73.76.721.40FrequencySoftwareBandwidthOutput Power ¹ dBmPowerPSD ² dBm/MHzR(MHz)Setting26dB99%4MeasuredLimit(Watts)MeasuredFCC LimitRSS Limit ³ 51800x1a1a44.336.915.216.30.0331.283.32.5F52300x1a1a41.736.614.716.30.0301.033.32.1FRBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MHzEIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the power (i.e. beam-forming is assumed because of coherency on the chains). If the individual chains are incoh then the EIRP is calculated from the sum of the numeric gains for eacIf the transmit chains are coherent then the total system antenna gain is the sum of the numeric gains for eac
Ox1111 5230 11.7 11.7 14.7 3.7 3.7 6.7 21.4 0 Frequency Software Bandwidth Output Power ¹ dBm Power PSD ² dBm/MHz R (MHz) Setting 26dB 99% ⁴ Measured Limit (Watts) Measured FCC Limit RSS Limit ³ R 5180 0x1a1a 44.3 36.9 15.2 16.3 0.033 1.28 3.3 2.5 F 5230 0x1a1a 41.7 36.6 14.7 16.3 0.030 1.03 3.3 2.1 F Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MHz Note 2: EIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the power (i.e. beam-forming is assumed because of coherency on the chains). If the individual chains are incoh then the EIRP is calculated from the sum of the individual chains. If the transmit chains are coherent then the total system antenna gain is the sum of the numeric gains for eac
Frequency Software Bandwidth Output Power ¹ dBm Power PSD ² dBm/MHz R (MHz) Setting 26dB 99% ⁴ Measured Limit (Watts) Measured FCC Limit RSS Limit ³ R 5180 0x1a1a 44.3 36.9 15.2 16.3 0.033 1.28 3.3 2.5 F 5230 0x1a1a 41.7 36.6 14.7 16.3 0.030 1.03 3.3 2.1 F Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MHz Note 2: EIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the power (i.e. beam-forming is assumed because of coherency on the chains). If the individual chains are incoh then the EIRP is calculated from the sum of the individual EIRPs for each chain. If the transmit chains are coherent then the total system antenna gain is the sum of the numeric gains for each
(MHz) Setting 26dB 99% ⁴ Measured Limit (Watts) Measured FCC Limit RSS Limit ³ 5180 0x1a1a 44.3 36.9 15.2 16.3 0.033 1.28 3.3 2.5 F 5230 0x1a1a 41.7 36.6 14.7 16.3 0.030 1.03 3.3 2.1 F Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MHz Note 1: EIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the power (i.e. beam-forming is assumed because of coherency on the chains). If the individual chains are incohe then the EIRP is calculated from the sum of the individual chains are incohe then the EIRP is calculated from the sum of the individual EIRPs for each chain. If the transmit chains are coherent then the total system antenna gain is the sum of the numeric gains for each
(MHz)Setting26dB99%4MeasuredLimit(Watts)MeasuredFCC LimitRSS Limit351800x1a1a44.336.915.216.30.0331.283.32.5F52300x1a1a41.736.614.716.30.0301.033.32.1FRBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MHzEIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the power (i.e. beam-forming is assumed because of coherency on the chains). If the individual chains are incoh then the EIRP is calculated from the sum of the individual EIRPs for each chain.If the transmit chains are coherent then the total system antenna gain is the sum of the numeric gains for each
5180 0x1a1a 44.3 36.9 15.2 16.3 0.033 1.28 3.3 2.5 F 5230 0x1a1a 41.7 36.6 14.7 16.3 0.030 1.03 3.3 2.1 F RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MHz Note 1: EIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the power (i.e. beam-forming is assumed because of coherency on the chains). If the individual chains are incohethen the EIRP is calculated from the sum of the individual EIRPs for each chain. If the transmit chains are coherent then the total system antenna gain is the sum of the numeric gains for each
Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was not continuous but the analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MHz Note 2: EIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the power (i.e. beam-forming is assumed because of coherency on the chains). If the individual chains are incohethen the EIRP is calculated from the sum of the individual EIRPs for each chain. If the transmit chains are coherent then the total system antenna gain is the sum of the numeric gains for each
Note 1: analyzer was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting) and power integration over 100 MHz EIRP - if transmit chains are coherent then the EIRP is calculated from the sum of the antenna gains plus the power (i.e. beam-forming is assumed because of coherency on the chains). If the individual chains are incoherent then the EIRP is calculated from the sum of the individual chains are incoherent then the EIRP is calculated from the sum of the individual EIRPs for each chain. If the transmit chains are coherent then the total system antenna gain is the sum of the numeric gains for each chain.
Note 3: antenna. If the transmit chains are incoherent then the system antenna gain is not applicable as each transmic can be treated independently.
Power setting - if a single number the same power setting was used for each chain. If multiple numbers the p Note 4: setting for each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power set for chain 2.

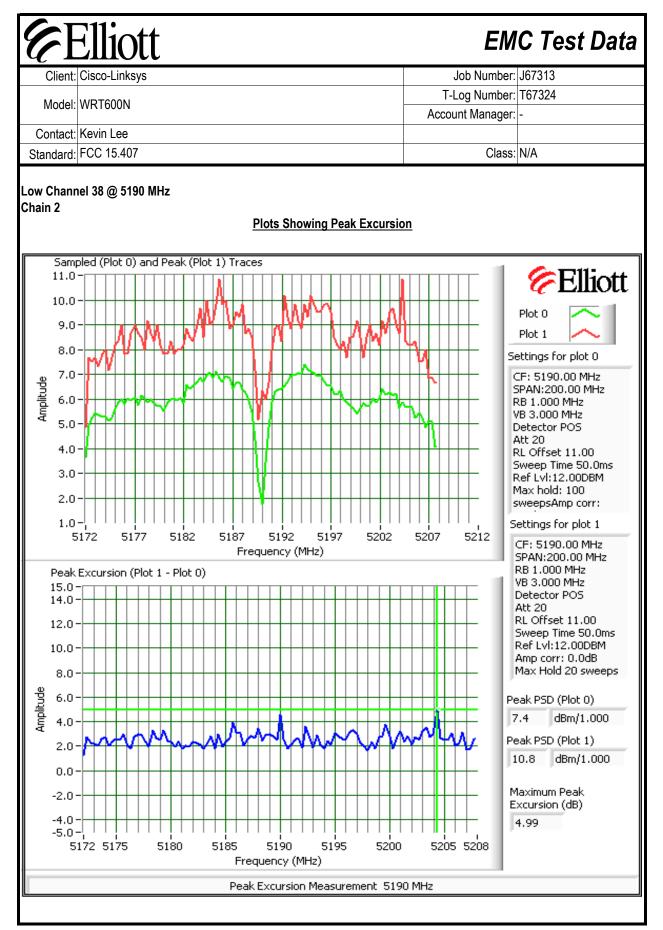


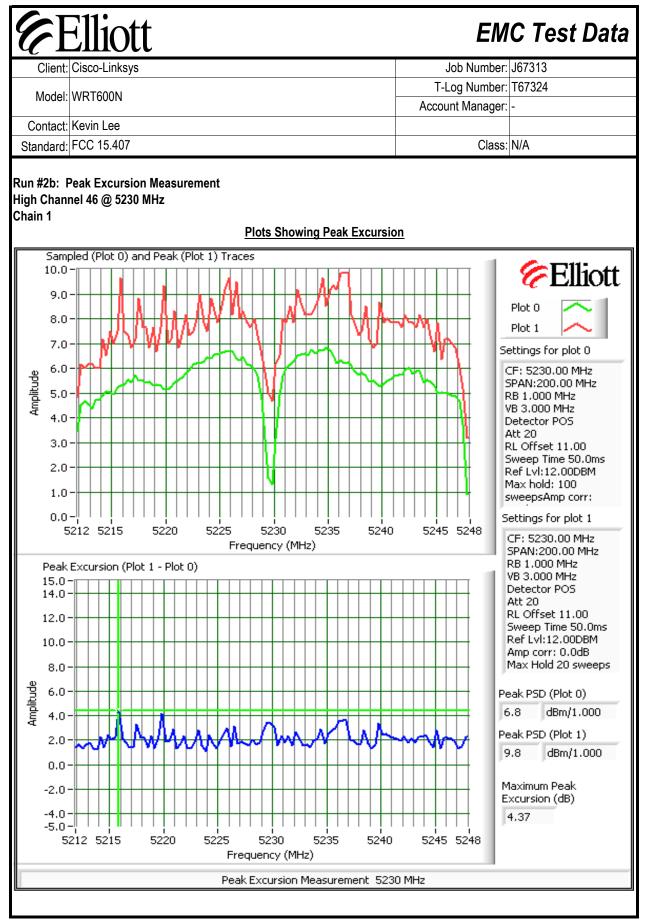


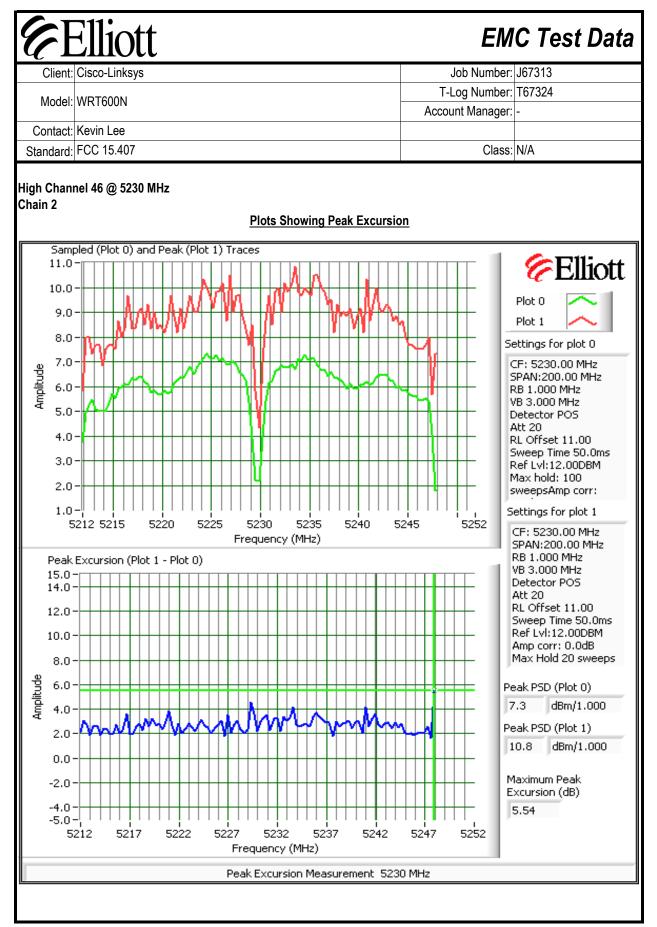


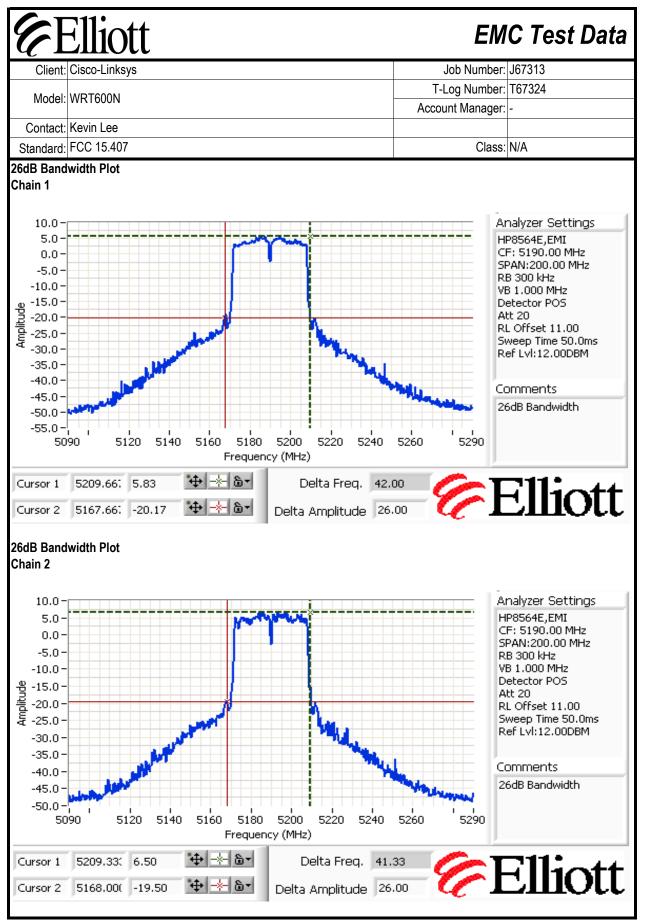


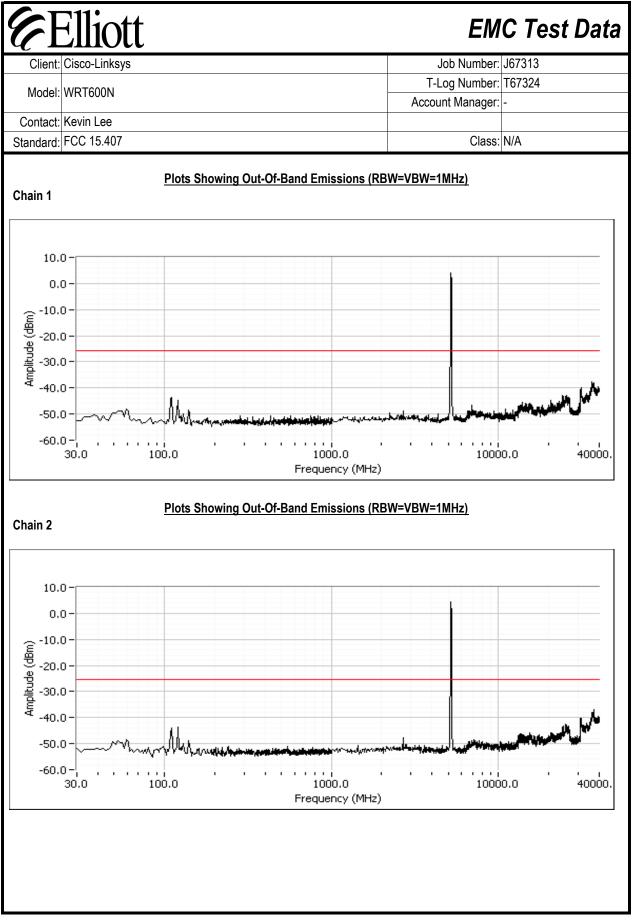

6	Elliott						EMC Test Data
	Cisco-Linksys						Job Number: J67313
Model.	WRT600N						Log Number: T67324
						Αссοι	unt Manager: -
	Kevin Lee						Class: N/A
	FCC 15.407	-itu					Class. IN/A
uli #2. PC	ower spectral Dens	sity					
			· ··· ·· ·	Note 1	-		
Power	Frequency (MHz)	PSD Main	(dBm/1MHz)	Note 1			7
Setting	r requency (init iz)	(dBm)	Aux (dBm)	Total	dBm/1MHz		
0x0d0d	5190	-1.9	-1.6	1.3	3.3	Pass	1
0x1111	5230	-2.1	-1.9	1.0	3.3	Pass	

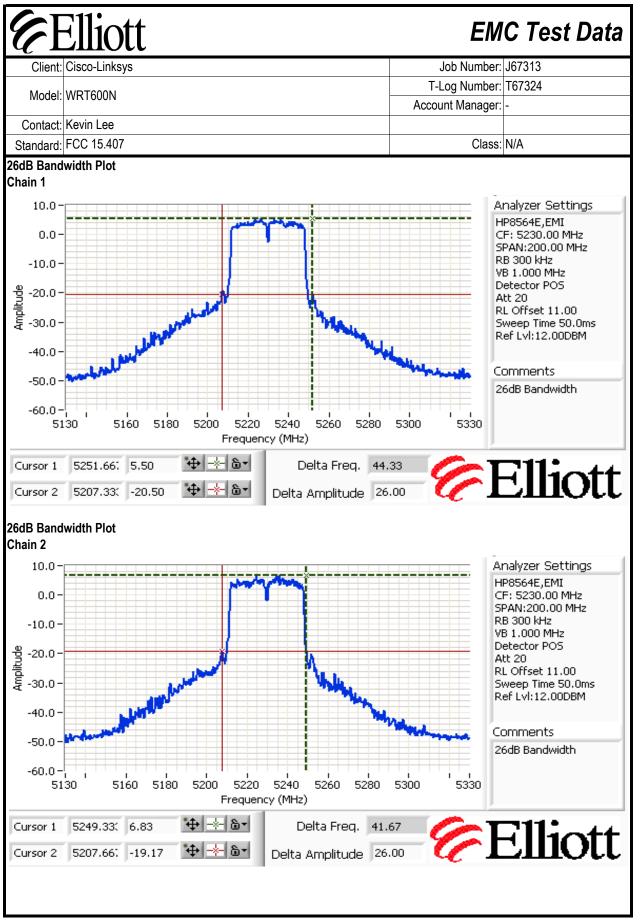


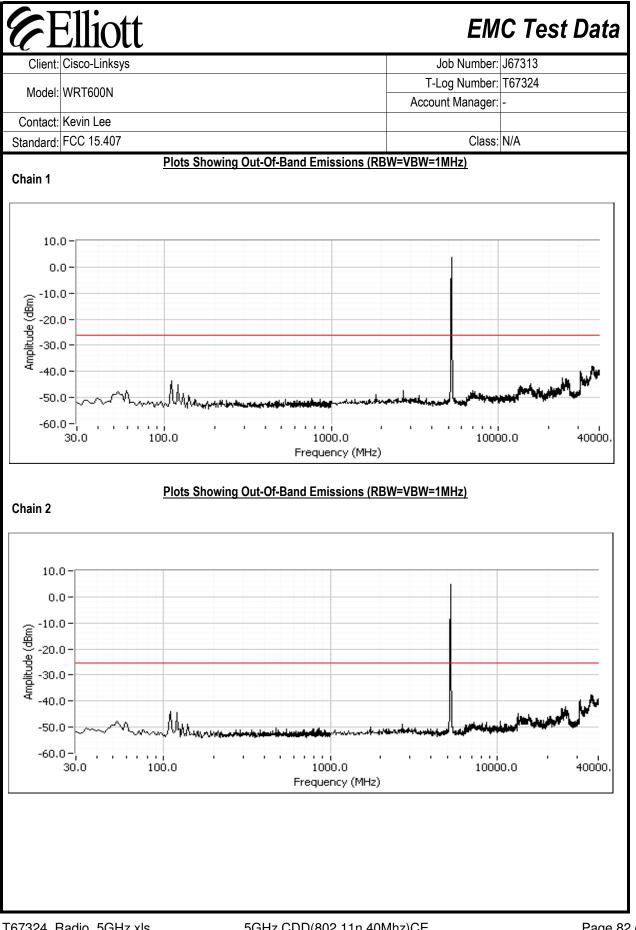


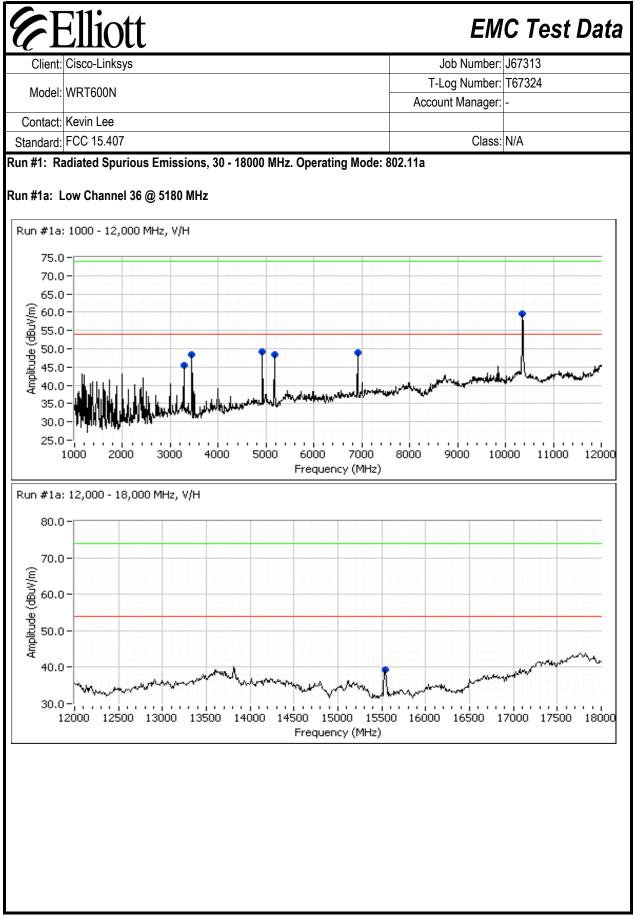




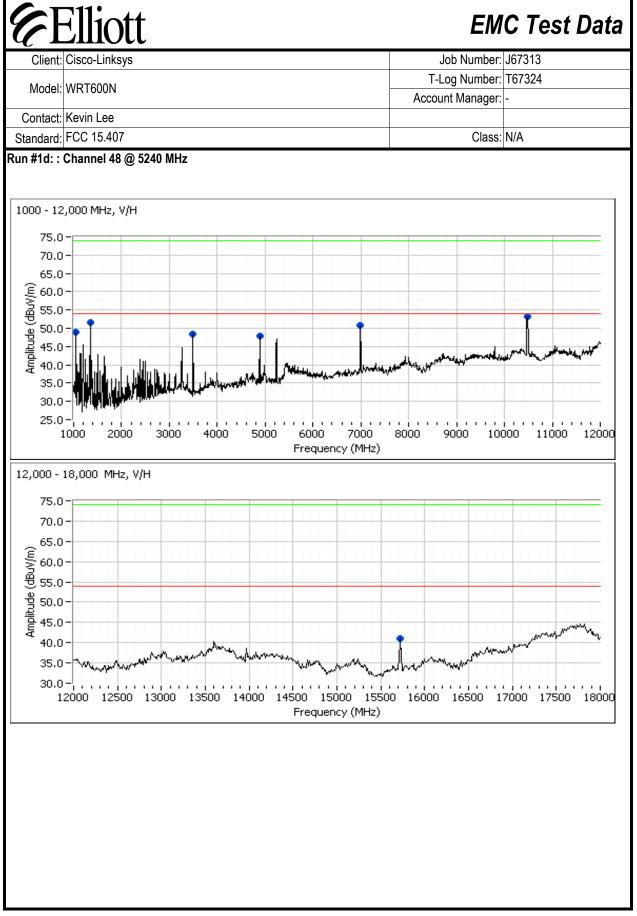


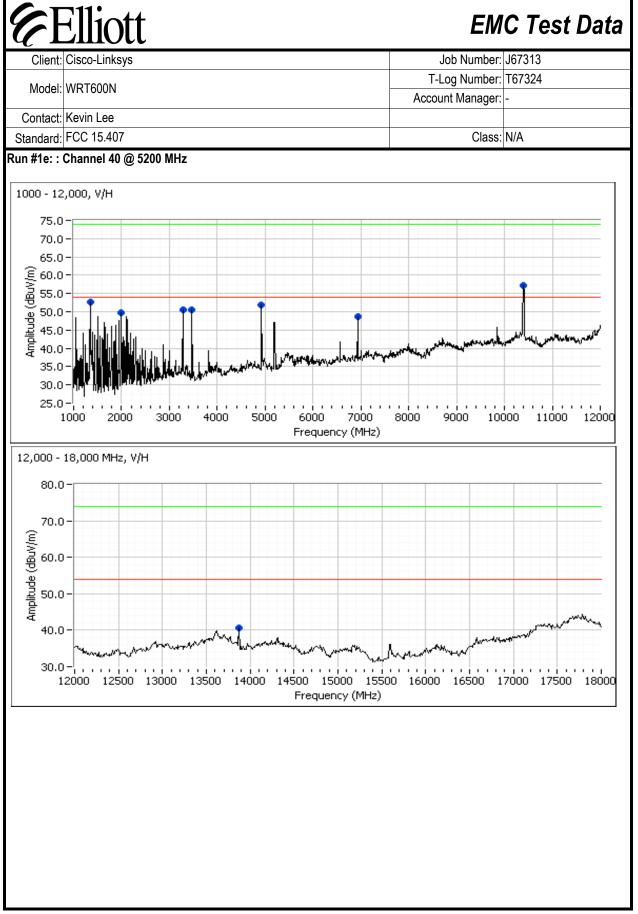



E	Elliott	EM	C Test Data
	Cisco-Linksys	Job Number:	
	WRT600N	T-Log Number: Account Manager:	
	Kevin Lee		
Standard:	FCC 15.407	Class:	N/A
	Out Of Band Spurious Emissions - Antenna Conducted el 38 @ 5190 MHz		
	Maximum Antenna Gain:3.7 dBiSpurious Limit:-27 dBm/MHz eirpLimit Used On Plots-30.7 dBm/MHz		
Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port consideration the maximum antenna gain (limit = -27dBm - antenna signals more than 50MHz from the bands and that are close to the lantenna gain is not known at these frequencies.	gain). Radiated field s	trength measurements for
Note 2:	All spurious signals below 1GHz are measured during digital device	radiated emissions tes	t.
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applie		

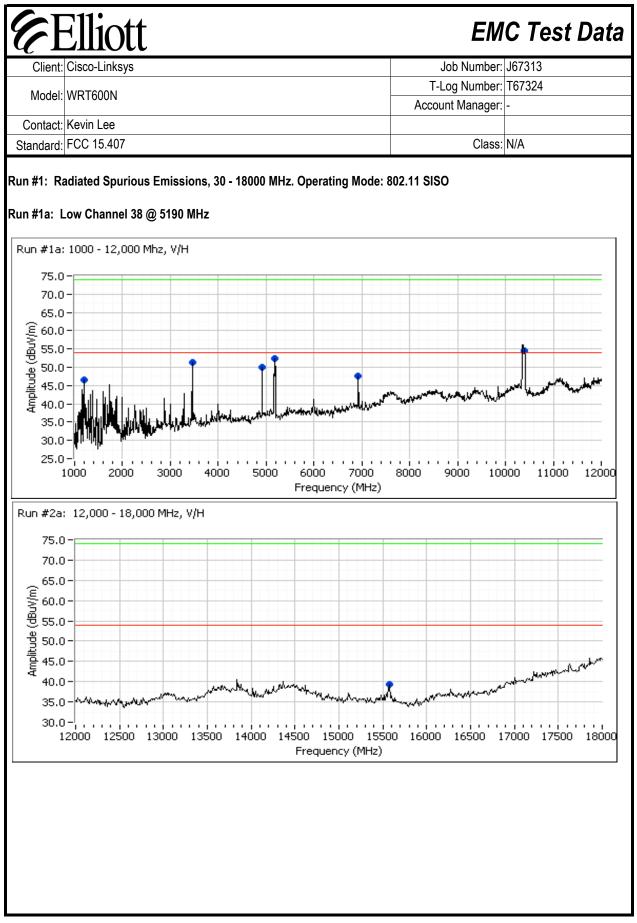


Ø	Elliott	EM	C Test Data
	Cisco-Linksys	Job Number:	J67313
Madal	WRT600N	T-Log Number:	T67324
		Account Manager:	-
	Kevin Lee		
	FCC 15.407	Class:	N/A
	Dut Of Band Spurious Emissions - Antenna Conducted nel 46 @ 5230 MHz		
	Maximum Antenna Gain: 3.7 dBi Spurious Limit: -27 dBm/MHz eirp		
	Limit Used On Plots ^{Note 1} : -30.7 dBm/MHz		
Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port co consideration the maximum antenna gain (limit = -27dBm - antenna signals more than 50MHz from the bands and that are close to the	a gain). Radiated field s	trength measurements fo
	antenna gain is not known at these frequencies.		
Note 2:	All spurious signals below 1GHz are measured during digital device		
Note 4: Note 5:	If the device is for outdoor use then the -27dBm eirp limit also appli Signals that fall in the restricted bands of 15.205 are subject to the		Hz band.

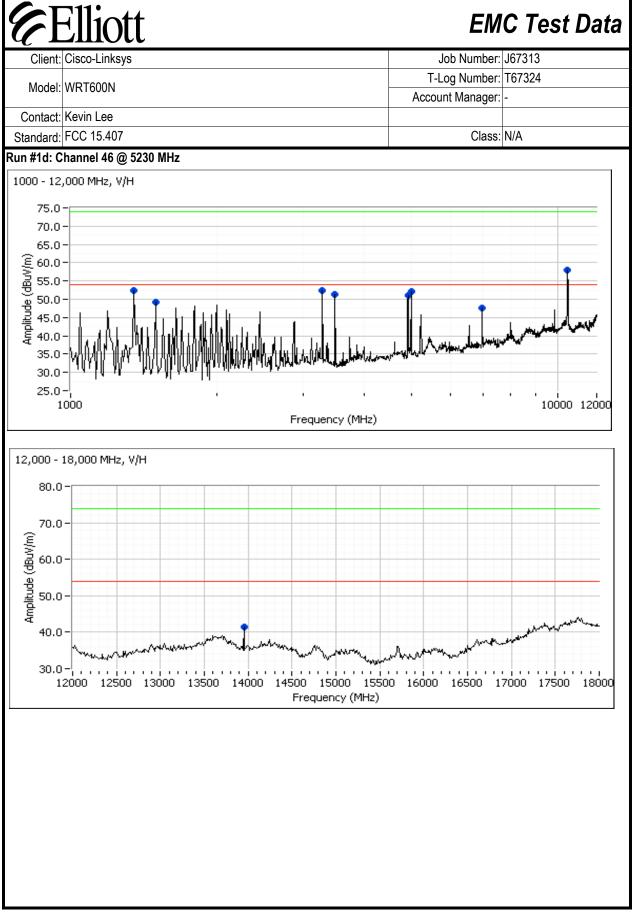



Client: Cisco-Link	ott _{sys}		Jo	b Number: J67313	
Model: WRT600N				og Number: T67324	
Contact: Kevin Lee			Accoun	t Manager: -	
Standard: FCC 15.40	7			Class: N/A	
RSS	210 and FCC 15.4	407 Radiated S	Spuriou	is Emission	s
	tils The objective of this test session specification listed above.	n is to perform final qualif	ication testin	g of the EUT with resp	ect to the
Date of Test: Test Engineer: Test Location:		Config. Used: Config Change: EUT Voltage:	None		
	support equipment were located			-	
For radiated emissions	testing the measurement anter	nna was located 3 meters	from the EU	Τ.	
Ambient Conditio	ns: Temperature: Rel. Humidity:				
Summary of Resu	lts				
Run #	Test Performed	Limit	Pass / Fail	Result / Margin	
(802.11a Mode) Legacy	RE, 30 - 18000 MHz - Spurious Emissions	FCC Part 15.209 / 15.407	Pass	50.4dBµV/m (331.1µV/m) @ 4923.9MHz (-3.6dB))
Modifications Ma	de During Testing: made to the EUT during testing	I			

Client: Cisco-Linksys Job Number: Jof7313 Model: WRT600N T-Log Number: T67324 Account Manager: - - - Contact: Kevin Lee - - - Standard: FCC 15.407 Class: N/A Rum#1a: Continued Preliminary Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m Vh Limit Margin Pk/QP/Avg degrees meters 3447.500 48.5 H 54.0 -5.5 Peak 113 1.7 Non-restricted 3282.500 49.3 V 54.0 -5.7 Peak 250 1.9 5170.830 48.3 V 54.0 -5.7 Peak 271 1.3 Non-restricted 2825.00 49.0 V 54.0 -5.0 Peak 270 1.0 Non-restricted
Model: WR 1600N Account Manager: - Contact: Kevin Lee
Account Manager: - Contact: Kevin Lee Standard: FCC 15.407 Class: N/A un #1a: Continued Class: N/A reliminary Readings requency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3447.500 48.5 H 54.0 -5.5 Peak 113 1.7 Non-restricted 4923.880 49.3 V 54.0 -5.7 Peak 250 1.9 5170.830 48.3 V 54.0 -5.0 Peak 271 1.3 Non-restricted 3282.500 45.4 V 54.0 -5.0 Peak 270 1.0 Non-restricted 3912.500 49.0 V 54.0 -14.6 Peak 61 1.0 Non-restricted 15540.00 39.4 V
Standard: FCC 15.407 Class: N/A un #1a: Continued reliminary Readings irequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters
un #1a: Continued reliminary Readings irrequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3447.500 48.5 H 54.0 -5.5 Peak 113 1.7 Non-restricted 4923.880 49.3 V 54.0 -4.7 Peak 250 1.9 5170.830 48.3 V 54.0 -5.7 Peak 75 1.3 Non-restricted 3282.500 45.4 V 54.0 -6.0 Peak 271 1.3 Non-restricted 3282.500 45.4 V 54.0 -6.0 Peak 270 1.0 Non-restricted 32912.500 49.0 V 54.0 -5.0 Peak 106 1.0 Non-restricted 15540.00 39.4 V 54.0 -14.6 Peak <t< td=""></t<>
tun #1a: Continued reliminary Readings irrequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3447.500 48.5 H 54.0 -5.5 Peak 113 1.7 Non-restricted 4923.880 49.3 V 54.0 -4.7 Peak 250 1.9 5170.830 48.3 V 54.0 -5.7 Peak 75 1.3 Non-restricted 3282.500 45.4 V 54.0 -5.0 Peak 271 1.3 Non-restricted 3282.500 45.4 V 54.0 -5.0 Peak 270 1.0 Non-restricted 3012.500 49.0 V 54.0 -5.0 Peak 106 1.0 Non-restricted 10359.17 59.6 V 82.6 -23.0 Peak <t< td=""></t<>
Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 3447.500 48.5 H 54.0 -5.5 Peak 113 1.7 Non-restricted 4923.880 49.3 V 54.0 -4.7 Peak 250 1.9 5170.830 48.3 V 54.0 -5.7 Peak 271 1.3 Non-restricted 3282.500 45.4 V 54.0 -5.0 Peak 270 1.0 Non-restricted 3282.500 49.0 V 54.0 -5.0 Peak 270 1.0 Non-restricted 3012.500 49.0 V 54.0 -5.0 Peak 106 1.0 Non-restricted 10359.17 59.6 V 82.6 -23.0 Peak 61 1.0 1540.00 39.4 V 54.0 -14
Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 3447.500 48.5 H 54.0 -5.5 Peak 113 1.7 Non-restricted 4923.880 49.3 V 54.0 -4.7 Peak 250 1.9 5170.830 48.3 V 54.0 -5.7 Peak 271 1.3 Non-restricted 3282.500 45.4 V 54.0 -5.0 Peak 270 1.0 Non-restricted 3282.500 49.0 V 54.0 -5.0 Peak 270 1.0 Non-restricted 3012.500 49.0 V 54.0 -5.0 Peak 106 1.0 Non-restricted 10359.17 59.6 V 82.6 -23.0 Peak 61 1.0 1540.00 39.4 V 54.0 -14
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 3447.500 48.5 H 54.0 -5.5 Peak 113 1.7 Non-restricted 4923.880 49.3 V 54.0 -4.7 Peak 250 1.9 5170.830 48.3 V 54.0 -5.7 Peak 75 1.3 Non-restricted 3282.500 45.4 V 54.0 -5.7 Peak 271 1.3 Non-restricted 3282.500 45.4 V 54.0 -5.0 Peak 270 1.0 Non-restricted 3282.500 49.0 V 54.0 -5.0 Peak 270 1.0 Non-restricted 30359.17 59.6 V 82.6 -23.0 Peak 106 1.0 Non-restricted 15540.00 39.4 V 54.0 -14.6 Peak 61 1.0 Frequency Level
3447.500 48.5 H 54.0 -5.5 Peak 113 1.7 Non-restricted 4923.880 49.3 V 54.0 -4.7 Peak 250 1.9 5170.830 48.3 V 54.0 -5.7 Peak 75 1.3 Non-restricted 3282.500 45.4 V 54.0 -5.7 Peak 271 1.3 Non-restricted 3282.500 45.4 V 54.0 -5.0 Peak 270 1.0 Non-restricted 3912.500 49.0 V 54.0 -5.0 Peak 270 1.0 Non-restricted 10359.17 59.6 V 82.6 -23.0 Peak 106 1.0 Non-restricted 15540.00 39.4 V 54.0 -14.6 Peak 61 1.0 Intervieweiter Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit
5170.830 48.3 V 54.0 -5.7 Peak 75 1.3 Non-restricted 0282.500 45.4 V 54.0 -8.6 Peak 271 1.3 Non-restricted 0282.500 49.0 V 54.0 -5.0 Peak 270 1.0 Non-restricted 03159.17 59.6 V 82.6 -23.0 Peak 106 1.0 Non-restricted 10359.17 59.6 V 82.6 -23.0 Peak 106 1.0 Non-restricted 10359.17 59.6 V 82.6 -23.0 Peak 61 1.0 15540.00 39.4 V 54.0 -14.6 Peak 61 1.0 aximized Readings requency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1923.900 48.1 V 54.0 -5.9 AVG 251 1.9
1282.500 45.4 V 54.0 -8.6 Peak 271 1.3 Non-restricted 1912.500 49.0 V 54.0 -5.0 Peak 270 1.0 Non-restricted 0359.17 59.6 V 82.6 -23.0 Peak 106 1.0 Non-restricted 5540.00 39.4 V 54.0 -14.6 Peak 61 1.0 aximized Readings requency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1923.900 48.1 V 54.0 -5.9 AVG 251 1.9
912.500 49.0 V 54.0 -5.0 Peak 270 1.0 Non-restricted 0359.17 59.6 V 82.6 -23.0 Peak 106 1.0 Non-restricted 5540.00 39.4 V 54.0 -14.6 Peak 61 1.0 aximized Readings requency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 923.900 48.1 V 54.0 -5.9 AVG 251 1.9
0359.17 59.6 V 82.6 -23.0 Peak 106 1.0 Non-restricted 5540.00 39.4 V 54.0 -14.6 Peak 61 1.0 aximized Readings requency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 1923.900 48.1 V 54.0 -5.9 AVG 251 1.9
5540.00 39.4 V 54.0 -14.6 Peak 61 1.0 aximized Readings requency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 1923.900 48.1 V 54.0 -5.9 AVG 251 1.9
Iaximized Readings irrequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4923.900 48.1 V 54.0 -5.9 AVG 251 1.9
requencyLevelPol15.209 / 15.407DetectorAzimuthHeightCommentsMHzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters1923.90048.1V54.0-5.9AVG2511.9
requencyLevelPol15.209 / 15.407DetectorAzimuthHeightCommentsMHzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters1923.90048.1V54.0-5.9AVG2511.9
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 1923.900 48.1 V 54.0 -5.9 AVG 251 1.9
1923.900 48.1 V 54.0 -5.9 AVG 251 1.9
1923.900 50.8 V 74.0 -23.2 PK 251 1.9
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30d the level of the fundamental and measured in 100kHz. Interview No spurious emission, being 20-dB of the limit, were detected above 18GHz.

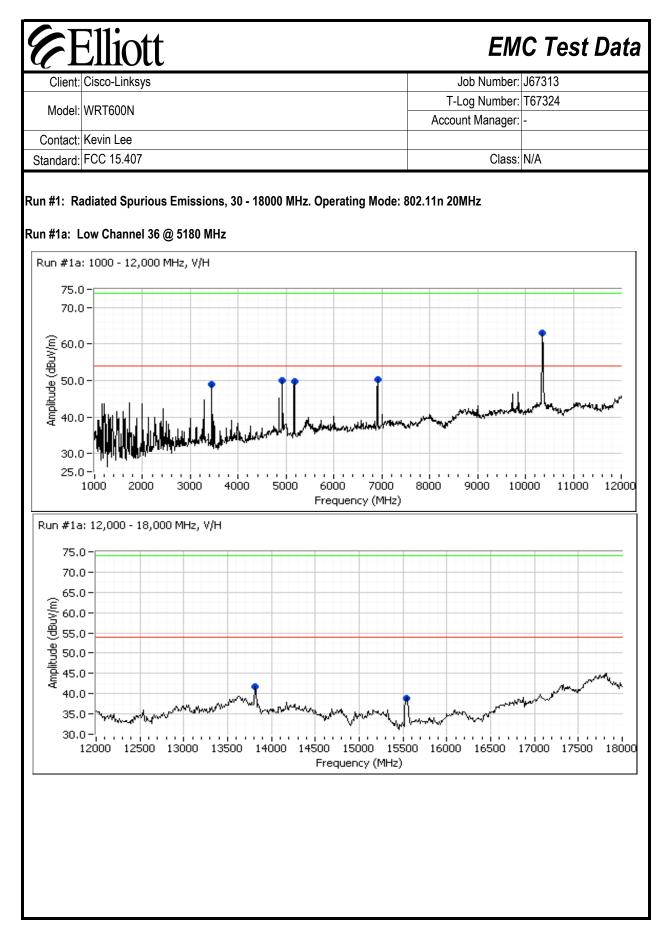


Model: WRT600N T-Log Number: T67324 Contact: Kevin Lee Account Manager: - Standard: FCC 15.407 Class: N/A reliminary Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 6986.680 50.8 V 54.0 -3.2 Peak 284 1.0 Non-restricted 10480.040 53.3 V 54.0 -5.0 Peak 30 1.0 Non-restricted 1050.210 49.0 V 54.0 -5.5 Peak 111 1.7 Non-restricted 3493.440 48.5 H 54.0 -6.1 Peak 264 1.6 1.6 15720.00 41.1 H 54.0 -12.9 Peak 264 1.6 1.6 1482.02 60.3 V 54.0	Client	Cisco-Link							Job Number:	J67313
Model: WR 1600N Account Manager: Contact: Kevin Lee										
Standard: FCC 15.407 Class: N/A rreliminary Readings rrequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBy//m v/h Level Pol 15.209 / 15.407 Detector Azimuth Height Comments M4Z dBy//m v/h Level O Standard 6986.680 50.8 V 54.0 -0.7 Peak 30 1.0 Non-restricted 0480.040 51.6 V 54.0 -6.1 Peak 264 1.6 137.00 41.1 H.1 1.7 Non-restricted Maximized Readings	Model:	WRT600N							0	
reliminary Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6986.680 50.8 V 54.0 -3.2 Peak 284 1.0 Non-restricted 0480.040 53.3 V 54.0 -0.7 Peak 30 1.0 Non-restricted 1050.210 49.0 V 54.0 -5.0 Peak 317 1.0 1350.040 51.6 V 54.0 -5.5 Peak 264 1.6 3493.440 48.5 H 54.0 -6.1 Peak 264 1.6 15720.00 41.1 H 54.0 -12.9 Peak 66 1.0 Natimized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz </td <td>Contact:</td> <td>Kevin Lee</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>	Contact:	Kevin Lee							_	
Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6986.680 50.8 V 54.0 -3.2 Peak 284 1.0 Non-restricted 0480.040 53.3 V 54.0 -0.7 Peak 30 1.0 Non-restricted 1050.210 49.0 V 54.0 -5.0 Peak 317 1.0 1350.040 51.6 V 54.0 -5.5 Peak 264 1.6 3493.440 48.5 H 54.0 -5.5 Peak 264 1.6 15720.00 41.1 H 54.0 -12.9 Peak 66 1.0 Iaximized Readings Erequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin	Standard:	FCC 15.40)7						Class:	N/A
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 6986.680 50.8 V 54.0 -3.2 Peak 284 1.0 Non-restricted 0480.040 53.3 V 54.0 -0.7 Peak 30 1.0 Non-restricted 1050.210 49.0 V 54.0 -5.0 Peak 317 1.0 1350.040 51.6 V 54.0 -2.4 Peak 264 1.6 3493.440 48.5 H 54.0 -5.5 Peak 264 1.6 3493.440 48.5 H 54.0 -5.5 Peak 264 1.6 15720.00 41.1 H 54.0 -12.9 Peak 66 1.0 Maximized Readings Erequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg	Preliminary	/ Readings	5							
6986.680 50.8 V 54.0 -3.2 Peak 284 1.0 Non-restricted 0480.040 53.3 V 54.0 -0.7 Peak 30 1.0 Non-restricted 1050.210 49.0 V 54.0 -5.0 Peak 317 1.0 1350.040 51.6 V 54.0 -2.4 Peak 264 1.6 3493.440 48.5 H 54.0 -5.5 Peak 2111 1.7 Non-restricted 4894.040 47.9 V 54.0 -6.1 Peak 264 1.6 1.6 15720.00 41.1 H 54.0 -12.9 Peak 66 1.0 1.0 Maximized Readings Erequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments 0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 0481.320 60.3	requency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
0480.040 53.3 V 54.0 -0.7 Peak 30 1.0 Non-restricted 1050.210 49.0 V 54.0 -5.0 Peak 317 1.0 1350.040 51.6 V 54.0 -2.4 Peak 264 1.6 3493.440 48.5 H 54.0 -5.5 Peak 111 1.7 Non-restricted 4894.040 47.9 V 54.0 -6.1 Peak 264 1.6 15720.00 41.1 H 54.0 -12.9 Peak 66 1.0 Maximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 52.5 V 74.0 -21.5		dBµV/m		Limit		Pk/QP/Avg		meters		
1050.210 49.0 V 54.0 -5.0 Peak 317 1.0 1350.040 51.6 V 54.0 -2.4 Peak 264 1.6 3493.440 48.5 H 54.0 -5.5 Peak 264 1.6 3493.440 48.5 H 54.0 -5.5 Peak 264 1.6 4894.040 47.9 V 54.0 -6.1 Peak 264 1.6 15720.00 41.1 H 54.0 -12.9 Peak 66 1.0 Isrequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 1349.980 52.5 V 74.0 -3.1 AVG 264 1.6 6986.570 46	6986.680									
1350.040 51.6 V 54.0 -2.4 Peak 264 1.6 3493.440 48.5 H 54.0 -5.5 Peak 111 1.7 Non-restricted 4894.040 47.9 V 54.0 -6.1 Peak 264 1.6 15720.00 41.1 H 54.0 -12.9 Peak 66 1.0 Istrinized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 6986.570 50.7 V 74.0 -23.3						Peak			Non-restric	ted
3493.440 48.5 H 54.0 -5.5 Peak 111 1.7 Non-restricted 4894.040 47.9 V 54.0 -6.1 Peak 264 1.6 15720.00 41.1 H 54.0 -12.9 Peak 66 1.0 Iaximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 6986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 <td></td>										
4894.040 47.9 V 54.0 -6.1 Peak 264 1.6 15720.00 41.1 H 54.0 -12.9 Peak 66 1.0 Iaximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 5986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 5986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted 5986.570 50.7 V 74.0 <td></td>										
15720.00 41.1 H 54.0 -12.9 Peak 66 1.0 laximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 50.9 V 54.0 -7.7 AVG 264 1.6 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 5986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted cote 1: For emissions in restricted bands, the limit of 15.									Non-restric	ted
Imaximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 50.9 V 54.0 -3.1 AVG 264 1.6 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 6986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted lote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and measured in 100kHz. For all other emissions, the limit was										
Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 50.9 V 54.0 -3.1 AVG 264 1.6 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 6986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all ot	15720.00	41.1	Н	54.0	-12.9	Peak	66	1.0		
Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 50.9 V 54.0 -3.1 AVG 264 1.6 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 6986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all ot	lavimizad	Doodingo								
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 50.9 V 54.0 -3.1 AVG 264 1.6 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 6986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted Iote 1: ////////////////////////////////////		¥	Pol	15 209	/ 15 407	Detector	Δzimuth	Height	Comments	
0481.320 47.0 V 54.0 -7.0 AVG 34 1.0 Non-restricted 0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 50.9 V 54.0 -3.1 AVG 264 1.6 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 6986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and measured in 100kHz. For all other emissions, the limit was set 30dB be									Comments	
0481.320 60.3 V 74.0 -13.7 PK 34 1.0 Non-restricted 1349.980 50.9 V 54.0 -3.1 AVG 264 1.6 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 6986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and measured in 100kHz. For all other emissions, the limit was set 30dB be									Non restrict	tod
1349.980 50.9 V 54.0 -3.1 AVG 264 1.6 1349.980 52.5 V 74.0 -21.5 PK 264 1.6 6986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted Idet 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and measured in 100kHz. For all other emissions, the limit was set 30dB be										
1349.980 52.5 V 74.0 -21.5 PK 264 1.6 6986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted Idea 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and measured in 100kHz.		60.3		74.0	-13.7				NULLESUIC	leu
6986.570 46.3 V 54.0 -7.7 AVG 286 1.0 Non-restricted 6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB being the level of the fundamental and measured in 100kHz.	0481.320			54 O	21		.767			
6986.570 50.7 V 74.0 -23.3 PK 286 1.0 Non-restricted lote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB being the level of the fundamental and measured in 100kHz. For all other emissions, the limit was set 30dB being the level of the fundamental and measured in 100kHz.	1349.980	50.9	V							
lote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be the level of the fundamental and measured in 100kHz.	10481.320 1349.980 1349.980	50.9 52.5	V V	74.0	-21.5	PK	264	1.6	Non rostrici	tod
lote 2: [No spurious emission, being 20-dB of the limit, were detected above 18GHz.	10481.320 1349.980 1349.980 6986.570	50.9 52.5 46.3	V V V	74.0 54.0	-21.5 -7.7	PK AVG	264 286	1.6 1.0		
	10481.320 1349.980 1349.980 6986.570 6986.570	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	10481.320 1349.980 1349.980 6986.570 6986.570	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	10481.320 1349.980 1349.980 6986.570 6986.570	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	10481.320 1349.980 1349.980 6986.570 6986.570	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	10481.320 1349.980 1349.980 6986.570 6986.570	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	0481.320 1349.980 1349.980 6986.570 6986.570 lote 1:	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	0481.320 1349.980 1349.980 6986.570 6986.570 lote 1:	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	0481.320 1349.980 1349.980 6986.570 6986.570 lote 1:	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	0481.320 1349.980 1349.980 6986.570 6986.570 lote 1:	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	0481.320 1349.980 1349.980 6986.570 6986.570 lote 1:	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	0481.320 1349.980 1349.980 6986.570 6986.570 lote 1:	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	0481.320 1349.980 1349.980 6986.570 6986.570 lote 1:	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	10481.320 1349.980 1349.980 6986.570 6986.570	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	10481.320 1349.980 1349.980 6986.570 6986.570	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	10481.320 1349.980 1349.980 6986.570 6986.570	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	10481.320 1349.980 1349.980 6986.570 6986.570	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	10481.320 1349.980 1349.980 6986.570 6986.570	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted
	0481.320 1349.980 1349.980 6986.570 6986.570 lote 1:	50.9 52.5 46.3 50.7 For emissi the level o	V V V V ons in re	74.0 54.0 74.0 estricted bar damental ar	-21.5 -7.7 -23.3 nds, the limi nd measure	PK AVG PK t of 15.209 w d in 100kHz.	264 286 286 //as used. Fo	1.6 1.0 1.0 r all other e	Non-restrict	ted

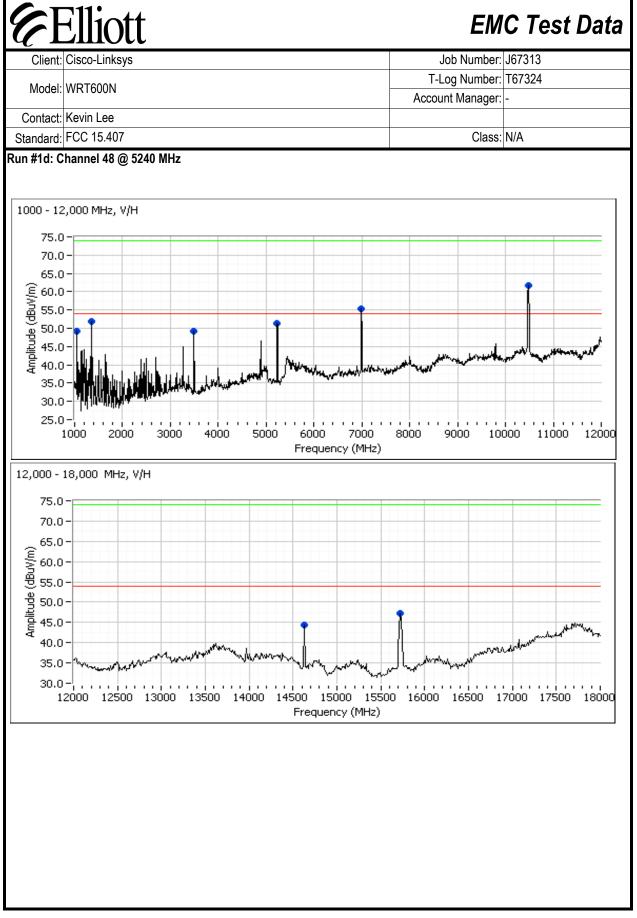


	Ellic								C Test Data
Client:	Cisco-Link	sys						Job Number:	
Model	WRT600N						T-L	.og Number:	T67324
MOUEI.							Accou	int Manager:	-
Contact:	Kevin Lee								
Standard [.]	FCC 15.40)7						Class:	N/A
	y Readings								
Frequency	<u> </u>	Pol	15 209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
6933.320	48.7	V	54.0	-5.3	Peak	52	1.6	Non-restric	ted
10398.760	57.2	V	54.0	3.2	Peak	182	1.8	Non-restric	
1349.980	52.6	H	54.0	-1.4	Peak	70	1.8	Non rootino	
3282.590	50.6	V	54.0	-3.4	Peak	289	1.3	Non-restric	ted
3466.750	50.6	H	54.0	-3.4	Peak	111	1.8	Non-restric	
4923.970	51.8	V	54.0	-2.2	Peak	245	1.6		
2000.090	49.8	H	54.0	-4.2	Peak	111	1.8	Non-restric	ted
13870.00	40.7	H	54.0	-13.3	Peak	41	1.2		
	Readings								
-requency	Level	Pol	15 209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
4923.930	50.4	V	54.0	-3.6	AVG	245	1.6		
4923.930	52.3	V	74.0	-21.7	PK	245	1.6		
1349.940	51.3	Ĥ	54.0	-2.7	AVG	69	1.8		
1349.940	52.7	H	74.0	-21.3	PK	69	1.8		
6933.240	39.6	V	54.0	-14.4	AVG	52	1.6	Non-restric	ted
6933.240	47.1	V	74.0	-26.9	PK	52	1.6	Non-restric	
10398.800	44.1	V	54.0	-9.9	AVG	182	1.8	Non-restric	
10398.800	58.6	V	74.0	-15.4	PK	182	1.8	Non-restric	
3282.580	49.0	V	54.0	-5.0	AVG	288	1.3	Non-restric	ted
3282.580	51.1	V	74.0	-22.9	PK	288	1.3	Non-restric	ted
3466.600	48.7	Н	54.0	-5.3	AVG	110	1.8	Non-restric	ted
3466.600	50.6	Н	74.0	-23.4	PK	110	1.8	Non-restric	
1999.960	32.6	Н	54.0	-21.4	AVG	110	1.8	Non-restric	
	41.8	Н	74.0	-32.2	PK	110	1.8	Non-restric	
1999.960					t of 15 200 w			minging the	
1999.960 Note 1: Note 2:	the level o	f the fun	damental a	nd measure	d in 100kHz. limit, were de			missions, the	e limit was set 30dB be

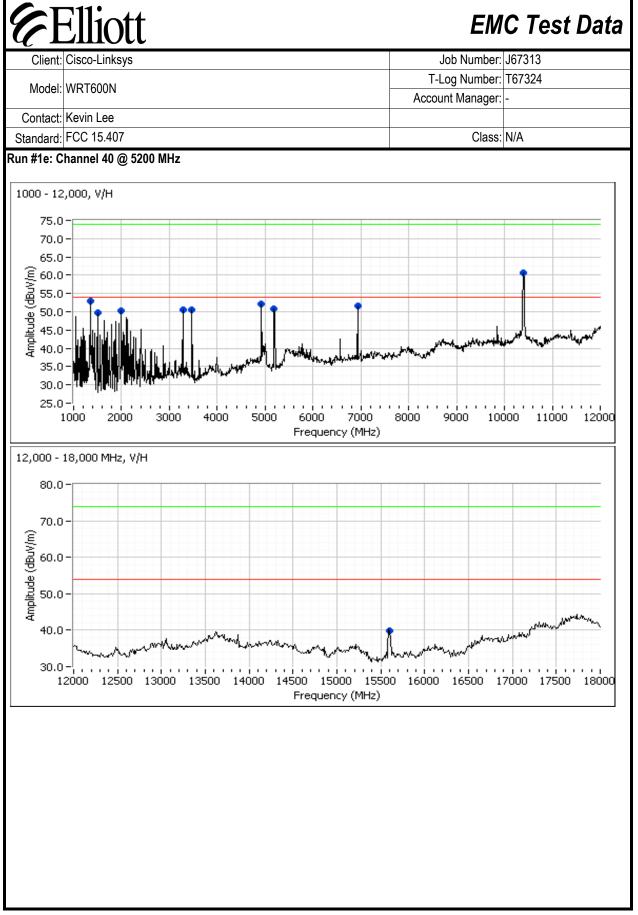
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 19.8 °C Rel. Humidity: 45 %
Model: WR 1600N Account Manager: - Contact: Kevin Lee Image: - Standard: FCC 15.407 Class: N/A RSS 210 and FCC 15.407 Radiated Spurious Emissions Rest Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 3/23/2007 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz Seneral Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 19.8 °C Rel. Humidity: 45 %
Account Manager: Contact: Kevin Lee Standard: FCC 15.407 Class: N/A RSS 210 and FCC 15.407 Radiated Spurious Emissions Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 3/23/2007 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz Seneral Test Configuration he EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 19.8 °C Rel. Humidity: 45 %
Standard: FCC 15.407 Class: N/A RSS 210 and FCC 15.407 Radiated Spurious Emissions Fest Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 3/23/2007 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 19.8 °C Rel. Humidity: 45 %
RSS 210 and FCC 15.407 Radiated Spurious Emissions Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 3/23/2007 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 19.8 °C Rel. Humidity: 45 %
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to specification listed above. Date of Test: 3/23/2007 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz Seneral Test Configuration he EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. or radiated emissions testing the measurement antenna was located 3 meters from the EUT. Temperature: 19.8 °C Rel. Humidity: 45 % %
Test Engineer: Rafael Varelas Config Change: None Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 19.8 °C Rel. Humidity: 45 %
·
Ambient Conditions: Temperature: 19.8 °C Rel. Humidity: 45 %
Rel. Humidity: 45 %
Summary of Results
Run # Test Performed Limit Pass / Fail Result / Margin
(802.11a) RE, 1000 - 18000 MHz - FCC Part 15.209 / 51.6dBμV/m SISO Spurious Emissions 15.407 Pass 51.6dBμV/m



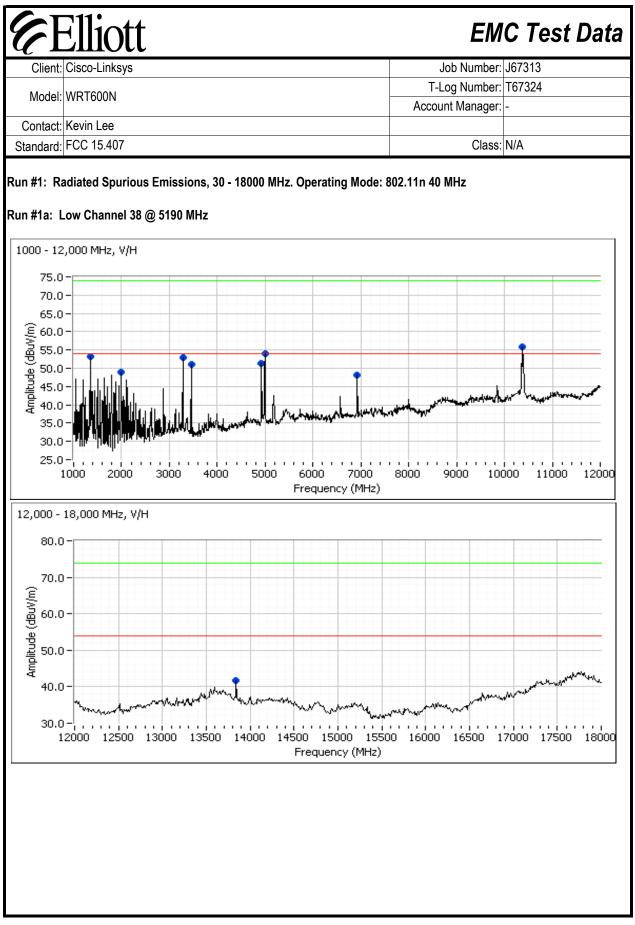
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Model: WK1600N Account Manager: - Contact: Kevin Lee Class: N/A Standard: FCC 15.407 Class: N/A Preliminary Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 1.9 1192.500 46.5 V 54.0 -7.5 Peak 243 1.9 3460.060 51.2 H 54.0 -2.8 Peak 110 1.7 Non-restricted 4923.870 50.0 H 54.0 -4.0 Peak 223 1.4 5172.420 52.5 V 54.0 -1.5 Peak 305 1.3 Non-restricted 10379.900 54.5 H 54.0 0.5 Peak 47 1.0 Non-restricted 10380.00 39.3 V 54.0 -3.3 <t< th=""></t<>
Account Manager: - Account Manager: - Contact: Kevin Lee Image: - Standard: FCC 15.407 Class: N/A Preliminary Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1192.500 46.5 V 54.0 -7.5 Peak 243 1.9 3460.060 51.2 H 54.0 -2.8 Peak 210 1.7 Non-restricted 4923.870 50.0 H 54.0 -4.0 Peak 223 1.4 5172.420 52.5 V 54.0 -1.5 Peak 305 1.3 Non-restricted 10379.900 54.5 H 54.0 -14.7 Peak 64 1.0 Maximized Readings Frequency Level Pol 15.209 / 15.407 Detector <t< td=""></t<>
Standard: FCC 15.407 Class: N/A Preliminary Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments 1192.500 46.5 V 54.0 -7.5 Peak 243 1.9 3460.060 51.2 H 54.0 -2.8 Peak 210 1.7 Non-restricted 4923.870 50.0 H 54.0 -4.0 Peak 223 1.4
Preliminary Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1192.500 46.5 V 54.0 -7.5 Peak 243 1.9 3460.060 51.2 H 54.0 -2.8 Peak 110 1.7 Non-restricted 4923.870 50.0 H 54.0 -4.0 Peak 223 1.4 5172.420 52.5 V 54.0 -1.5 Peak 305 1.3 Non-restricted 6921.670 47.5 V 54.0 -6.5 Peak 83 1.0 Non-restricted 10379.900 54.5 H 54.0 0.5 Peak 64 1.0 Marinized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz<
Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1192.500 46.5 V 54.0 -7.5 Peak 243 1.9 3460.060 51.2 H 54.0 -2.8 Peak 110 1.7 Non-restricted 4923.870 50.0 H 54.0 -4.0 Peak 223 1.4 5172.420 52.5 V 54.0 -1.5 Peak 305 1.3 Non-restricted 6921.670 47.5 V 54.0 -6.5 Peak 83 1.0 Non-restricted 10379.900 54.5 H 54.0 0.5 Peak 47 1.0 Non-restricted 15580.00 39.3 V 54.0 -14.7 Peak 64 1.0 Maximized Readings
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 1192.500 46.5 V 54.0 -7.5 Peak 243 1.9 3460.060 51.2 H 54.0 -2.8 Peak 110 1.7 Non-restricted 4923.870 50.0 H 54.0 -4.0 Peak 223 1.4 5172.420 52.5 V 54.0 -1.5 Peak 305 1.3 Non-restricted 6921.670 47.5 V 54.0 -6.5 Peak 83 1.0 Non-restricted 10379.900 54.5 H 54.0 0.5 Peak 47 1.0 Non-restricted 15580.00 39.3 V 54.0 -14.7 Peak 64 1.0 Maximized Readings Image Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/
1192.500 46.5 V 54.0 -7.5 Peak 243 1.9 3460.060 51.2 H 54.0 -2.8 Peak 110 1.7 Non-restricted 4923.870 50.0 H 54.0 -4.0 Peak 223 1.4 5172.420 52.5 V 54.0 -1.5 Peak 305 1.3 Non-restricted 6921.670 47.5 V 54.0 -6.5 Peak 83 1.0 Non-restricted 10379.900 54.5 H 54.0 0.5 Peak 47 1.0 Non-restricted 15580.00 39.3 V 54.0 -14.7 Peak 64 1.0 Maximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted <
3460.060 51.2 H 54.0 -2.8 Peak 110 1.7 Non-restricted 4923.870 50.0 H 54.0 -4.0 Peak 223 1.4 5172.420 52.5 V 54.0 -1.5 Peak 305 1.3 Non-restricted 6921.670 47.5 V 54.0 -6.5 Peak 83 1.0 Non-restricted 10379.900 54.5 H 54.0 0.5 Peak 47 1.0 Non-restricted 15580.00 39.3 V 54.0 -14.7 Peak 64 1.0 Maximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted <
4923.870 50.0 H 54.0 -4.0 Peak 223 1.4 5172.420 52.5 V 54.0 -1.5 Peak 305 1.3 Non-restricted 6921.670 47.5 V 54.0 -6.5 Peak 83 1.0 Non-restricted 10379.900 54.5 H 54.0 0.5 Peak 47 1.0 Non-restricted 10379.900 54.5 H 54.0 0.5 Peak 47 1.0 Non-restricted 15580.00 39.3 V 54.0 -14.7 Peak 64 1.0 Maximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted
5172.420 52.5 V 54.0 -1.5 Peak 305 1.3 Non-restricted 6921.670 47.5 V 54.0 -6.5 Peak 83 1.0 Non-restricted 10379.900 54.5 H 54.0 0.5 Peak 47 1.0 Non-restricted 15580.00 39.3 V 54.0 -14.7 Peak 64 1.0 Maximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted 3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 N
6921.670 47.5 V 54.0 -6.5 Peak 83 1.0 Non-restricted 10379.900 54.5 H 54.0 0.5 Peak 47 1.0 Non-restricted 15580.00 39.3 V 54.0 -14.7 Peak 64 1.0 Maximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted 3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010
10379.900 54.5 H 54.0 0.5 Peak 47 1.0 Non-restricted 15580.00 39.3 V 54.0 -14.7 Peak 64 1.0 Maximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted 3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 14924.010
15580.00 39.3 V 54.0 -14.7 Peak 64 1.0 Maximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted 3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 4924.010 52.5
Maximized Readings Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted 3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 4924.010 52.5 H 74.0 -21.5 PK 225 1.4 5173.100 44.9 V 54.0 -9.1 AVG 306 1.3 Non-restricted
Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted 3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 14924.010 5173.100 44.9
Frequency Level Pol 15.209 / 15.407 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted 3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 14924.010 5173.100 44.9
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted 3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 4924.010 52.5 H 74.0 -21.5 PK 225 1.4 5173.100 44.9 V 54.0
10380.100 50.7 H 54.0 -3.3 AVG 48 1.0 Non-restricted 10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted 3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 4924.010 52.5 H 74.0 -21.5 PK 225 1.4 5173.100 44.9 V 54.0 -9.1 AVG 306 1.3 Non-restricted
10380.100 62.8 H 74.0 -11.2 PK 48 1.0 Non-restricted 3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 4924.010 52.5 H 74.0 -21.5 PK 225 1.4 5173.100 44.9 V 54.0 -9.1 AVG 306 1.3 Non-restricted
3459.950 50.9 H 54.0 -3.1 AVG 111 1.7 Non-restricted 3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 4924.010 52.5 H 74.0 -21.5 PK 225 1.4 5173.100 44.9 V 54.0 -9.1 AVG 306 1.3 Non-restricted
3459.950 52.8 H 74.0 -21.2 PK 111 1.7 Non-restricted 4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 4924.010 52.5 H 74.0 -21.5 PK 225 1.4 5173.100 44.9 V 54.0 -9.1 AVG 306 1.3 Non-restricted
4924.010 50.1 H 54.0 -3.9 AVG 225 1.4 4924.010 52.5 H 74.0 -21.5 PK 225 1.4 5173.100 44.9 V 54.0 -9.1 AVG 306 1.3 Non-restricted
4924.010 52.5 H 74.0 -21.5 PK 225 1.4 5173.100 44.9 V 54.0 -9.1 AVG 306 1.3 Non-restricted
5173.100 44.9 V 54.0 -9.1 AVG 306 1.3 Non-restricted
Note 1:For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB the level of the fundamental and measured in 100kHz.Note 2:No spurious emission, being 20-dB of the limit, were detected above 18GHz.



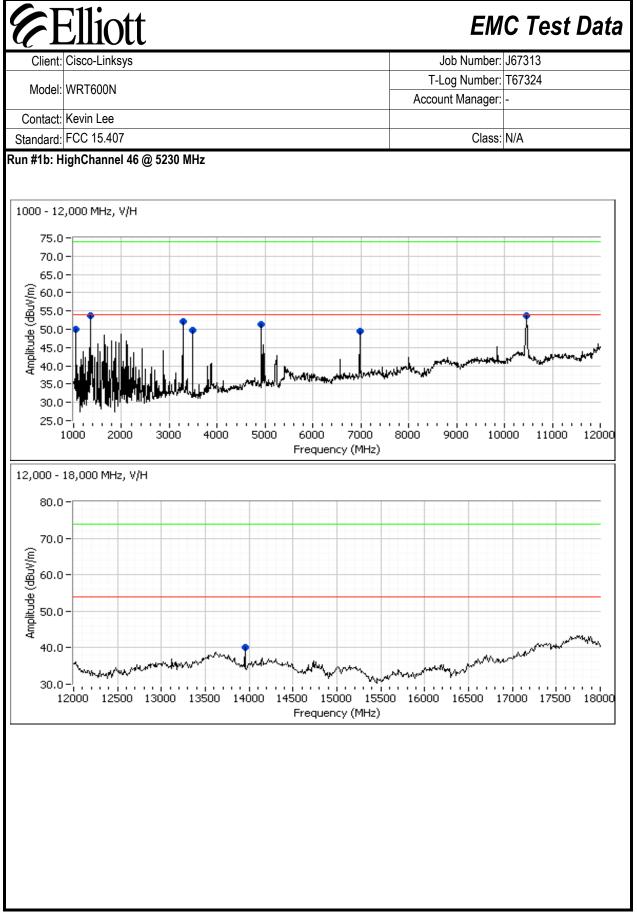
	Cisco-Link							Job Number:	J67313
							T-L	og Number:	Г67324
Model:	WRT600N							int Manager: -	
Contact:	Kevin Lee								
Standard:	FCC 15.40)7						Class: I	N/A
Preliminar	Readings	5							
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
6973.280	47.7	V	54.0	-6.3	Peak	59	1.3	Non-restricte	ed
10460.000	58.1	V	54.0	4.1	Peak	13	1.0	Non-restricte	ed
1349.980	52.5	V	54.0	-1.5	Peak	294	1.3		
1500.120	49.1	Н	54.0	-4.9	Peak	213	2.0		
3282.680	52.3	V	54.0	-1.7	Peak	266	1.3	Non-restricte	
3486.820	51.3	Н	54.0	-2.7	Peak	107	1.4	Non-restricte	ed
4923.970	51.0	V	54.0	-3.0	Peak	229	1.6		
4994.660	52.1	Н	54.0	-1.9	Peak	279	1.7		
13950.00	41.5	Н	54.0	-12.5	Peak	35	1.1		
Maximized		Del	15 200	/ 15.407	Detector	A —i	Llaiabh	Commonto	
Frequency	Level	Pol			Detector	Azimuth	Height	Comments	
MHz	dBµV/m 51.6	v/h V	Limit 54.0	Margin -2.4	Pk/QP/Avg	degrees 294	meters		
1349.990 1349.990	53.1	V	54.0 74.0	-2.4	AVG PK	294	1.3 1.3		
10461.050		V	74.0 54.0	-20.9	AVG	13	1.3	Non-restricte	, d
10461.050		V	74.0	-0.9	PK	13	1.0	Non-restricte	
6973.290	46.2	V	54.0	-7.8	AVG	59	1.0	Non-restricte	
6973.290	40.2 50.2	V	74.0	-23.8	PK	59	1.3	Non-restricte	
	51.5	H	54.0	-23.0	AVG	107	1.3	Non-restricte	
	01.0	H	74.0	-21.2	PK	107	1.4	Non-restricte	
3486.660	52.8			-6.7	AVG	212	2.0	NUTFICSUICU	
3486.660 3486.660	52.8 47.3		54 0			212	2.0		
3486.660 3486.660 1499.960	47.3	Н	54.0 74.0		PK	212	20		
3486.660 3486.660 1499.960 1499.960	47.3 50.4	H H	74.0	-23.6	PK AVG	212 266	2.0	Non-restrict	h
3486.660 3486.660 1499.960 1499.960 3282.730	47.3 50.4 51.2	H H V	74.0 54.0	-23.6 -2.8	AVG	266	1.3	Non-restricte	
3486.660 3486.660 1499.960 1499.960 3282.730 3282.730	47.3 50.4 51.2 52.9	H H V V	74.0 54.0 74.0	-23.6 -2.8 -21.1	AVG PK	266 266	1.3 1.3	Non-restricte Non-restricte	
3486.660 3486.660 1499.960 3282.730 3282.730 4924.040	47.3 50.4 51.2 52.9 50.9	H H V V V	74.0 54.0 74.0 54.0	-23.6 -2.8 -21.1 -3.1	AVG PK AVG	266 266 228	1.3 1.3 1.6		
3486.660 3486.660 1499.960 1499.960 3282.730 3282.730 4924.040 4924.040	47.3 50.4 51.2 52.9 50.9 52.6	H H V V V	74.0 54.0 74.0 54.0 74.0	-23.6 -2.8 -21.1 -3.1 -21.4	AVG PK AVG PK	266 266 228 228	1.3 1.3 1.6 1.6		
3486.660 3486.660 1499.960 3282.730 3282.730 4924.040 4924.040 4995.200	47.3 50.4 51.2 52.9 50.9 52.6 28.5	H V V V V	74.0 54.0 74.0 54.0 74.0 54.0	-23.6 -2.8 -21.1 -3.1 -21.4 -25.5	AVG PK AVG PK AVG	266 266 228 228 228 279	1.3 1.3 1.6 1.6 1.7		
3486.660 3486.660 1499.960 1499.960 3282.730 3282.730 4924.040 4924.040	47.3 50.4 51.2 52.9 50.9 52.6	H H V V V	74.0 54.0 74.0 54.0 74.0	-23.6 -2.8 -21.1 -3.1 -21.4	AVG PK AVG PK	266 266 228 228	1.3 1.3 1.6 1.6		
3486.660 3486.660 1499.960 3282.730 3282.730 4924.040 4924.040 4995.200	47.3 50.4 51.2 52.9 50.9 52.6 28.5 40.2	H H V V V H H Ons in re	74.0 54.0 74.0 54.0 74.0 54.0 74.0 estricted bar	-23.6 -2.8 -21.1 -3.1 -21.4 -25.5 -33.8 mds, the limi	AVG PK AVG PK AVG PK t of 15.209 w	266 266 228 228 279 279	1.3 1.3 1.6 1.6 1.7 1.7	Non-restricte	ed
3486.660 3486.660 1499.960 3282.730 3282.730 4924.040 4924.040 4995.200	47.3 50.4 51.2 52.9 50.9 52.6 28.5 40.2 For emissi the level o	H H V V V H H ons in re	74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	-23.6 -2.8 -21.1 -3.1 -21.4 -25.5 -33.8 nds, the limi	AVG PK AVG PK AVG PK	266 266 228 228 279 279 279 279	1.3 1.3 1.6 1.6 1.7 1.7 r all other e	Non-restricte	


Client: Cisco-Link			Ja	ob Number:	J67313
Model: WRT600N				og Number:	
			Accour	nt Manager:	-
Contact: Kevin Lee Standard: FCC 15.4				Class:	Ν/Δ
				010001	
RSS	210 and FCC 15.4	107 Radiated S	Spuriou	us Emi	ssions
est Specific Det	ails				
	The objective of this test session specification listed above.	n is to perform final qualif	ication testin	ig of the EU	IT with respect to t
Date of Test:		Config. Used:			
Test Engineer: Test Location:	Rafael Varelas Fremont Chamber #3	Config Change: EUT Voltage:			
he EUT and all local or radiated emissions	support equipment were located s testing the measurement anter	nna was located 3 meters			testing.
	support equipment were located s testing the measurement anter	nna was located 3 meters 19.7 °C			testing.
he EUT and all local or radiated emissions	support equipment were located s testing the measurement anter ons: Temperature: Rel. Humidity:	nna was located 3 meters 19.7 °C			testing.
he EUT and all local for radiated emissions	support equipment were located s testing the measurement anter ons: Temperature: Rel. Humidity:	nna was located 3 meters 19.7 °C		IT. Result	/ Margin
he EUT and all local or radiated emissions Imbient Conditic Summary of Resu	support equipment were located s testing the measurement anter ons: Temperature: Rel. Humidity:	nna was located 3 meters 19.7 °C 45 %	from the EU	IT. Result 52.3d	

Model: Wf Contact: Ke Standard: FC	evin Lee							Job Number:	J67313
Contact: Ke Standard: FC	evin Lee						T-L	og Number:	T67324
Standard: FC							Accou	nt Manager:	-
	CC 15.40								
		7						Class:	N/A
reliminary R	eadings								
	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz dE	BµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
3447.500	49.0	Н	54.0	-5.0	Peak	117	1.4	Non-restric	ted
4923.960	50.0	V	54.0	-4.0	Peak	255	1.6		
5170.830	49.8	V	54.0	-4.2	Peak	74	1.9	Non-restric	ted
6912.500	50.2	Н	54.0	-3.8	Peak	37	1.4	Non-restric	ted
10350.00	62.9	Н	85.8	-22.9	Peak	45	1.0	Non-restric	ted
13810.00	41.7	V	54.0	-12.3	Peak	71	1.0		
15540.00	38.8	V	54.0	-15.2	Peak	57	1.0		
laximized Re	adinaa								
	Level	Pol	15.209	/ 15 407	Detector	Azimuth	Height	Comments	
	BµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
-	48.4	V	54.0	-5.6	AVG	256	1.6		
	50.8	V	74.0	-23.2	PK	256	1.6		
the T:	e level of	the fund	damental ar	nd measure	d in 100kHz.			1115510115, 111	e limit was set 30dB b
lote 2: No	o spuriou	s emissi	on, being 2	0-dB of the	limit, were de	etected abov	e 18GHz.		



E CE		ott						EM	C Test Data
	Cisco-Link							lob Number:	J67313
							T-L	og Number:	T67324
Model: W	VRT600N							nt Manager:	
Contact: K									
Standard: F	CC 15.40)7						Class:	N/A
Preliminary F	Readings	6							
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz d	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1050.210	49.3	V	54.0	-4.7	Peak	323	1.0		
1350.040	51.9	V	54.0	-2.1	Peak	267	1.6		
3493.440	49.2	Н	54.0	-4.8	Peak	110	1.7	Non-restric	ted
5234.910	51.3	V	54.0	-2.7	Peak	0	1.0	Non-restric	ted
6986.680	55.3	V	54.0	1.3	Peak	37	1.6	Non-restric	ted
10479.930	61.7	V	54.0	7.7	Peak	34	1.0	Non-restric	
14630.00	44.3	V	54.0	-9.7	Peak	229	1.0		
15720.00	47.3	V	54.0	-6.7	Peak	49	1.0		
laximized R	andinas								
Frequency	Level	Pol	15 209	/ 15.407	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
5235.570	50.0	V	54.0	-4.0	AVG	0	1.0	Non-restric	tod
5235.570	59.4	V	74.0	-14.6	PK	0	1.0	Non-restric	
0479.500	66.1	V	85.2	-14.0	PK	37	1.0	Non-restric	
6986.640	55.7	V	85.2	-19.1	PK	37	1.6	Non-restric	
3493.300	48.5	H	54.0	-29.5	AVG	110	1.0	Non-restric	
3493.300	40.5 50.3	<u>н</u>	74.0	-3.5	PK	110	1.7		
1350.080	50.5 48.6	V	54.0	-23.7 -5.4	AVG	267	1.7	Non-restric	leu
1350.080	40.0 50.3	V	54.0 74.0	-5.4 -23.7	PK	267	1.6		
							-		
1050.080	48.2	V	74.0	-25.8	PK	323	1.0		
lata 1	or emiss	ons in re	estricted bar	nds, the limi	t of 15.209 w	as used. Fo	r all other e	missions, the	e limit was set 30dB belo
th	ne level o	f the fun	damental ar	nd measure	d in 100kHz.				
lote 2: N	lo spurio	us emiss	ion, being 2	0-dB of the	limit, were de	etected abov	e 18GHz.		
Note 1: th	ne level o	f the fun	damental ar	nd measure	d in 100kHz.			missions, the	e limit was set 30d



	Cisco-Link	<u>sys</u>						Job Number: J67313
Madal		1					T-L	₋og Number: T67324
wodel.	WRT600N	I					Accou	int Manager: -
Contact:	Kevin Lee							
Standard:	FCC 15.40)7						Class: N/A
reliminar	/ Readings	5						
requency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1349.980	52.8	Н	54.0	-1.2	Peak	64	1.8	
2004.020	50.3	Н	54.0	-3.7	Peak	125	1.8	Non-restricted
3282.590	50.6	V	54.0	-3.4	Peak	288	1.3	Non-restricted
3466.750	50.6	Н	54.0	-3.4	Peak	118	1.8	Non-restricted
1923.960	52.0	V	54.0	-2.0	Peak	244	1.6	
5194.390	50.9	V	54.0	-3.1	Peak	292	1.8	Non-restricted
1500.120	49.8	Н	54.0	-4.2	Peak	224	1.8	
6933.320	51.7	V	54.0	-2.3	Peak	290	1.0	Non-restricted
0399.950	60.6	V	54.0	6.6	Peak	137	1.0	Non-restricted
15600.00	39.9	V	54.0	-14.1	Peak	77	1.0	
	Readings		45 000	45 407				1
	Level							
		Pol	15.209		Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments
MHz 1349.930	dBµV/m 52.3	v/h H	Limit 54.0	Margin -1.7	Pk/QP/Avg AVG	degrees 64	meters 1.8	Comments
MHz 1349.930 1349.930	dBµV/m 52.3 53.5	v/h H H	Limit 54.0 74.0	Margin -1.7 -20.5	Pk/QP/Avg AVG PK	degrees 64 64	meters 1.8 1.8	
1349.930 1349.930 2004.040	dBµV/m 52.3 53.5 49.2	v/h H H H	Limit 54.0 74.0 54.0	Margin -1.7 -20.5 -4.8	Pk/QP/Avg AVG PK AVG	degrees 64 64 124	meters 1.8 1.8 1.8	Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040	dBμV/m 52.3 53.5 49.2 50.4	v/h H H H H	Limit 54.0 74.0 54.0 74.0	Margin -1.7 -20.5 -4.8 -23.6	Pk/QP/Avg AVG PK AVG PK	degrees 64 64 124 124	meters 1.8 1.8 1.8 1.8 1.8	Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710	dBμV/m 52.3 53.5 49.2 50.4 49.4	v/h H H H H	Limit 54.0 74.0 54.0 74.0 54.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6	Pk/QP/Avg AVG PK AVG PK AVG	degrees 64 64 124 124 115	meters 1.8 1.8 1.8 1.8 1.8 1.8	Non-restricted Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0	V/h H H H H H	Limit 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0	Pk/QP/Avg AVG PK AVG PK AVG PK	degrees 64 64 124 124 124 115 115	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Non-restricted Non-restricted Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710 3282.680	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0 49.1	V/h H H H H H V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0 -4.9	Pk/QP/Avg AVG PK AVG PK AVG PK AVG	degrees 64 64 124 124 115 115 288	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710 3282.680 3282.680	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0 49.1 51.2	V/h H H H H V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0 -4.9 -22.8	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	degrees 64 64 124 124 115 115 288 288	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.3 1.3	Non-restricted Non-restricted Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710 3282.680 3282.680 4923.940	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0 49.1 51.2 51.0	V/h H H H H V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 54.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0 -4.9 -22.8 -3.0	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG	degrees 64 64 124 124 115 115 288 288 288 244	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.3 1.3	Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710 3282.680 3282.680 3282.680 4923.940	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0 49.1 51.2 51.0 53.4	V/h H H H H V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0 -4.9 -22.8 -3.0 -20.6	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK	degrees 64 64 124 124 115 115 288 288 244 244	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.3 1.3 1.6	Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710 3282.680 3282.680 4923.940 4923.940 5195.140	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0 49.1 51.2 51.0 53.4 49.1	v/h H H H H V V V V V V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0 -4.9 -22.8 -3.0 -20.6 -4.9	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG AVG	degrees 64 64 124 124 115 288 288 244 244 291	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.3 1.6 1.6 1.8	Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710 3282.680 3282.680 4923.940 4923.940 5195.140	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0 49.1 51.2 51.0 53.4 49.1 58.4	v/h H H H H V V V V V V V V V V V V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0 -4.9 -22.8 -3.0 -20.6 -4.9 -15.6	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	degrees 64 64 124 124 115 288 288 244 291 291	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.3 1.3 1.6 1.8 1.8	Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710 3282.680 3282.680 3282.680 4923.940 4923.940 5195.140 5195.140 1500.100	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0 49.1 51.2 51.0 53.4 49.1 58.4 47.9	v/h H H H H V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0 -4.9 -22.8 -3.0 -20.6 -4.9 -15.6 -6.1	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	degrees 64 64 124 124 115 288 288 244 244 291 224	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.3 1.3 1.6 1.6 1.8 1.8	Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710 3282.680 3282.680 3282.680 4923.940 4923.940 5195.140 5195.140 1500.100	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0 49.1 51.2 51.0 53.4 49.1 58.4 47.9 50.6	V/h H H H H H V V V V V V V V V V V V V H H	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0 -4.9 -22.8 -3.0 -20.6 -4.9 -15.6 -6.1 -23.4	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	degrees 64 64 124 124 115 115 288 288 244 291 291 224 224	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.3 1.3 1.6 1.6 1.8 1.8 1.3	Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710 3282.680 3282.680 3282.680 4923.940 5195.140 5195.140 1500.100 1500.100 5933.280	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0 49.1 51.2 51.0 53.4 49.1 51.2 51.0 53.4 49.1 50.6 50.6 50.4	V/h H H H H V V V V V V V H H H H V V V V V H H H V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0 -4.9 -22.8 -3.0 -20.6 -4.9 -20.6 -4.9 -15.6 -6.1 -23.4 -3.6	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	degrees 64 64 124 124 115 288 288 244 291 291 224 224 289	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.3 1.6 1.6 1.8 1.8 1.3 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Non-restricted
MHz 1349.930 1349.930 2004.040 2004.040 3466.710 3466.710 3282.680 3282.680 4923.940 4923.940 5195.140	dBμV/m 52.3 53.5 49.2 50.4 49.4 51.0 49.1 51.2 51.0 53.4 49.1 58.4 47.9 50.6	V/h H H H H H V V V V V V V V V V V V V H H	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	Margin -1.7 -20.5 -4.8 -23.6 -4.6 -23.0 -4.9 -22.8 -3.0 -20.6 -4.9 -15.6 -6.1 -23.4	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	degrees 64 64 124 124 115 115 288 288 244 291 291 224 224	meters 1.8 1.8 1.8 1.8 1.8 1.8 1.3 1.3 1.6 1.6 1.8 1.8 1.3	Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted Non-restricted

Client: Cisco-Li	ott		le le	bb Number: J67313	
	•			og Number: T67324	
Model: WRT600				t Manager: -	
Contact: Kevin Le					
Standard: FCC 15	407			Class: N/A	
RSS	6 210 and FCC 15.4	107 Radiated S	Spuriou	is Emissions	
Test Specific De	tails				
Objective	The objective of this test session	n is to perform final qualif	ication testin	g of the EUT with respec	t to the
Date of Tes		Config. Used:			
	: Rafael Varelas : Fremont Chamber #3	Config Change: EUT Voltage:			
Ambient Condit	ons: Temperature: Rel. Humidity:				
Summary of Re	sults				
Run #	Test Performed	Limit	Pass / Fail	Result / Margin	
	RE, 30 - 18000 MHz - Spurious Emissions	FCC Part 15.209 / 15.407	Pass	53.1dBµV/m (451.9µV/m) @ 3282.7MHz (-0.9dB)	
(802.11n Mode) 40MHz CDD	ade During Testing:				

Client:	Cisco-Link							Job Number:	J67313
Madalı	WRT600N						T-l	T-Log Number: T67324 Account Manager: -	
Model:							Accou		
Contact:	Kevin Lee								
Standard [.]	FCC 15.40)7						Class:	N/A
Preliminary									
Frequency	Level	Pol	15,209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	e en interne	
13840.00	41.6	Н	54.0	-12.4	Peak	43	1.1	Non-restric	ted
6920.020	48.1	V	54.0	-5.9	Peak	88	1.3	Non-restric	ted
10379.970	55.8	V	54.0	1.8	Peak	76	1.6	Non-restric	ted
1349.980	53.1	Н	54.0	-0.9	Peak	56	1.7		
2003.930	49.0	Η	54.0	-5.0	Peak	113	1.4	Non-restric	
3282.680	52.8	V	54.0	-1.2	Peak	260	1.3	Non-restric	
3460.150	51.1	Н	54.0	-2.9	Peak	106	1.4	Non-restric	ted
4923.970	51.3	V	54.0	-2.7	Peak	237	1.6		
5000.150	54.1	V	54.0	0.1	Peak	260	1.9		
Maximi-ad	Deedlage								
Maximized	Level	Pol	15 200	/ 15.407	Detector	Azimuth	Hoight	Commonto	
Frequency MHz	dBµV/m	v/h	Limit	Margin	Detector Pk/QP/Avg		Height meters	Comments	
3282.740	авµv/ш 53.1	V	54.0	-0.9	AVG	degrees 261	1.3	Non-restric	tod
3282.740	54.3	V	74.0	-19.7	PK	201	1.3	Non-restricted	
6919.920	46.8	V	54.0	-7.2	AVG	88	1.3	Non-restricted	
6919.920	50.1	V	74.0	-23.9	PK	88	1.3	Non-restricted	
10379.860	50.9	V	54.0	-3.1	AVG	75	1.6	Non-restric	
10379.860	59.7	V	74.0	-14.3	PK	75	1.6	Non-restric	ted
1350.050	52.2	Н	54.0	-1.8	AVG	55	1.7		
1350.050	53.4	Н	74.0	-20.6	PK	55	1.7		
2003.940	49.2	Н	54.0	-4.8	AVG	113	1.4	Non-restric	ted
2003.940	50.1	Η	74.0	-23.9	PK	113	1.4	Non-restric	
3459.940		H	54.0	-2.4	AVG	105	1.4	Non-restric	
3459.940	52.7	H	74.0	-21.3	PK	105	1.4	Non-restric	ted
4924.010	50.2	V	54.0	-3.8	AVG	237	1.6		
4924.010	52.1	V	74.0	-21.9	PK	237	1.6		
E000 440	31.0 42.4	V	54.0	-23.0	AVG	260	1.9		
5000.440	474	V	74.0	-31.6	PK	260	1.9		
5000.440 5000.440	T L .T							missions the	
		ions in re	stricted har	nds the limi	it of 15 209 w	AS USAN FO	r all other o		
	For emiss		estricted bar			as used. Fo	r all other e	11113510115, 1116	e limit was set 300B
5000.440	For emissi the level o	f the fun	damental a	nd measure	it of 15.209 w d in 100kHz. limit, were de				e limit was set 300B i

6ł	Ellic	Ott						EM	C Test Data
Client:	Cisco-Link	sys					J	lob Number:	J67313
							T-L	T-Log Number: T67324	
Model:	WRT600N							Account Manager: -	
Contact:	Kevin Lee								
Standard:	FCC 15.40)7			Class:	N/A			
reliminar	y Readings	S							
requency	<u> </u>	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1050.134	50.0	Н	54.0	-4.0	Peak	266	1.8		
1349.980	53.6	Н	54.0	-0.4	Peak	42	1.8		
3282.590	52.1	V	54.0	-1.9	Peak	257	1.3	Non-restric	ted
3486.820	49.8	Н	54.0	-4.2	Peak	117	1.8	Non-restric	ted
4923.970	51.3	V	54.0	-2.7	Peak	232	1.6		
6973.280	49.4	V	54.0	-4.6	Peak	290	1.0	Non-restric	ted
0460.000	53.8	V	54.0	-0.2	Peak	88	1.6	Non-restric	ted
13950.00	40.1	V	54.0	-13.9	Peak	52	1.3		
lavimizod	Readings								
requency	Level	Pol	15 209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
1350.020	51.5	H	54.0	-2.5	AVG	23	1.8		
1350.020	52.8	<u> </u>	74.0	-21.2	PK	23	1.8		
10459.670		V	54.0	-4.3	AVG	88	1.6	Non-restric	ted
10459.670		V	74.0	-16.9	PK	88	1.6	Non-restric	
3486.740	48.9	H	54.0	-5.1	AVG	117	1.8	Non-restric	
3486.740	50.6	H	74.0	-23.4	PK	117	1.8	Non-restric	
1049.999	49.5	H	54.0	-4.5	AVG	266	1.8		
1049.999	51.0	H	74.0	-23.0	PK	266	1.8		
3282.600	50.8	V	54.0	-3.2	AVG	256	1.3	Non-restric	ted
3282.600	52.3	V	74.0	-21.7	PK	256	1.3	Non-restric	ted
4924.030	51.2	V	54.0	-2.8	AVG	231	1.6		
4924.030	53.1	V	74.0	-20.9	PK	231	1.6		
6973.280	45.9	V	54.0	-8.1	AVG	290	1.0	Non-restric	ted
6973.280	49.9	V	74.0	-24.1	PK	290	1.0	Non-restric	ted
lote 1: lote 2:	the level o	of the fun	damental ar	nd measure	t of 15.209 w d in 100kHz. limit, were de			missions, the	e limit was set 30dB belo

EXHIBIT 3: Photographs of Test Configurations

1 Page

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Cisco-Linksys Model WRT600NConstruction

EXHIBIT 6: Operator's Manual for Cisco-Linksys Model WRT600N

EXHIBIT 7: Block Diagram of Cisco-Linksys Model WRT600N

EXHIBIT 8: Schematic Diagrams for Cisco-Linksys Model WRT600N

EXHIBIT 9: Theory of Operation for Cisco-Linksys Model WRT600N

EXHIBIT 10: RF Exposure Information